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Abstract—Human-Robot collaboration (HRC) is an important
topic for manufacturing and household robotics. It is very
challenging to ensure both efficiency and safety in HRC. This
paper presents an HRC pipeline that generates efficient and
collision-free robot trajectories based on predictions of the human
arm and hand (AH) motions. We train a recurrent neural
network for AH trajectory prediction based on observed initial
trajectory segments. To increase the accuracy of target estimation
at an early stage, the observed and the predicted hand palm
trajectory are combined to predict the current AH motion target
using Gaussian Mixture Models (GMMs). An optimization-based
trajectory generation algorithm is proposed to ensure the safety
of the human while collaborating with the robot. The proposed
system is validated in a shared-workspace scenario with human
pick-and-place motions. The task can be safely and efficiently
completed. The results demonstrate that our proposed pipeline
can predict the human AH trajectory and estimate the motion
target intended by the human accurately and early.

Index Terms—Human-robot collaboration, Collision avoidance,
Motion prediction, Intention recognition.

I. INTRODUCTION

OBOTS are powerful and fast, while humans are intel-

ligent and can carry out dexterous manipulation tasks
that may be hard for robots. Human-robot collaboration is
increasingly used in order to improve work efficiency and
flexibility. However, it is very challenging to ensure the safety
of the human and the efficiency of the robot at the same
time. In this paper, we consider a scenario shown in Fig. 1,
where a human and robot share a narrow workspace. Physical
interactions like compliance control in [1] are not considered
here. But the robot should work together with the human. To
improve the joint assembly tasks’ efficiency and ensure human
safety in the shared workspace, the robot needs to be able to
predict the human AH trajectory and infer the human’s target
position in a short time horizon.

We model human motions using four joints, i.e., shoulder,
elbow, wrist, and palm. Some work has been proposed to
predict human trajectories in similar scenarios, such as [2]-[4].
But these works just consider one or two joints, like the wrist
and elbow, which is not enough to make sure that the robot
can avoid the human AH, especially in this narrow workspace.
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Fig. 1. Side view of the human-robot pick-and-place platform used for our
experiments. In the shared workspace, the human puts objects to one of twelve
target positions. The robot observes the current AH trajectory and predicts
both the short-horizon human motion and the human reaching target position.
The robot then generates collision-free and goal-oriented trajectories online
to collaborate with the human for the assembly task.

In [5], an adaptive method is used to predict the human hand
trajectory. However, it is hard to use in our task because the
problem dimension is too high to adjust the weights online. In
general, creating an accurate dynamic model for human AH
motion prediction is difficult, especially for different persons.
So the state-of-the-art, e.g. [6], [7], are based on data-driven
models. Inspired by [6], we also adopt a position-velocity
encoder-decoder neural network for AH trajectory prediction.

In fact, we could train a neural network to predict the
short-term AH trajectory and estimate the intended final target
position at the same time. However, training such a multi-
task neural network would be challenging because of more
parameters to tune, and it would also be hard to take semantics
(like a set of known target positions) into account for human
intention prediction. Instead, probabilistic methods have been
preferred for intended target inference or motion regression
[8], [9] and they can generalize well to new scenarios. The
computational load of these methods is quite low when the
number of possible target positions is limited (a total of 12
targets in this paper, as shown in Fig. 2), so they are efficient
enough for fast motion prediction. Besides, the probabilistic
methods could be trained quickly in an unsupervised way.
Whereas the above work only estimated human intentions
based on the observed trajectory and is not suitable for our
task. In our scenario, the targets are very close to each other
(with 10 cm in between), and the initial parts of the trajectories
(about 50%) are very similar, as shown in Fig. 3a and 3b. To
increase the target estimation accuracy during the early stage
of the reaching motion, we propose using both observed and
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Fig. 2. Placement of the target and initial positions. The green markers
indicate the target positions (1-12), and the red marker at the front represents
the human hand’s initial (and rest) position. The black boxes show the cameras
of the motion-capture system used to track human motion.

predicted palm trajectories based on GMMs.

Safe robot trajectories were generated online by solving two
optimization problems in [10], [11], but under the assumption
that the AH trajectory prediction was known already. Based on
the predicted AH trajectory from our proposed motion predic-
tion module, we can efficiently generate a safe robot trajectory
by solving only one optimization problem with fewer objective
functions. To significantly reduce the number of geometric
constraints in the trajectory optimization problem, we employ
capsules to model AH and robot links instead of a large
number of spheres as in previous work.

To summarize, the key contributions of this work are as
follows:

o We propose an HRC pipeline that combines high-level
and multi-joint trajectory prediction and intended target
estimation with low-level online collision-free trajectory
generation for HRC tasks.

o Not only the observed trajectories but also predicted
palm trajectories are used to estimate the final intended
AH target, thus increasing the target estimation accuracy
during the early motion stage by unsupervised learning.

o We evaluate the proposed HRC pipeline by real physical
experiments. The results show that the robot can generate
goal-oriented and collision-free trajectories to improve
the efficiency and safety of HRC.

II. RELATED WORK
A. Human Trajectory Prediction

Different methods have been proposed for human trajectory
prediction. Human joint-space trajectories are predicted based
on dynamical movement primitives (DMP) and then used to
predict human joint torques for intention estimation during
walking [12]. Another category of algorithms for AH motion
prediction is based on Inverse Optimal Control (IOC), which
tries to approximate a cost function explaining the observed
behavior, e.g., [13]. However, with IOC the goal information
needs to be known first, which is not possible for the task
we are interested in. Other work predicts human motions with
explicitly defined dynamic equations derived from physical
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Fig. 3. The units of axes are meters. (a) Recorded human reaching trajectories
(human palm) from the rest position to the twelve target positions. (b) Close
view of the first 40% of a few reaching trajectories for target positions 2-5,
demonstrating the initial overlap between the trajectories.

theory, such as [14]-[16]. But it is hard to model human
dynamics, and the model-based methods usually only work
well for a very short time horizon.

There are also some pattern-based approaches. They can
learn complex dynamic models from datasets based on all
kinds of approximation methods (e.g., neural networks, Hid-
den Markov Models, GMMs). Luo et al. used the GMMs to
model the human AH trajectory in [17]. This unsupervised
method can generalize to new persons by dynamically updat-
ing or generating new models. Wang et al. proposed a position-
velocity recurrent encoder-decoder neural network (PVRED)
[6]. A velocity connection is added to the input of the long
short-term memory (LSTM), and their results show that this
method can achieve a better performance than previous results.
We revised this model to predict the AH trajectory in our
scenario.

B. Human Intention Estimation

Human gaze, gestures, electroencephalography (EEG), elec-
tromyography (EMG), etc., could be used for human intention
estimation [18]-[20]. Here we focus on the algorithms that
make use of human reaching motions. Arpino and Shah
predicted the reaching target by time series classification in
[21]. They encoded each time step as a multivariate Gaussian
distribution and calculated the class posterior probability with
the observed trajectory. The result shows that they can achieve
a rather accurate target prediction. A similar idea has been

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3215093

SUBMITTED TO IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS

Observed
Trajectory

Motion
Dataset

Japooag -

Target Estimation

Robot
- Goals
: Scheduler :
Trajectory
i | Predicted L onemr:
: Trajectory

Fig. 4. The architecture of our proposed HRC pipeline. It contains three main parts: trajectory prediction, target estimation, and online trajectory generation.
The encoder-decoder network takes the observed human arm trajectory as input and predicts the next steps of the human arm trajectory. The GMMs library
then estimates the goal position of the human hand based on the observed and predicted trajectories. The encoder-decoder network and the GMMs library
are both trained on a self-collected human arm motion dataset. The goal schedule module adjusts the robot goals based on human intentions. The trajectory

generator yields collision-free trajectories during the collaboration tasks.

promoted in [17], where GMMs are used to approximate
one class of trajectories. In [22], Landi et al. combined the
minimum jerk model with an adaptive neural network to
predict whether the human will react to the robot end-effector.
The similarity between observed short-term movements and
the learned user behavior was used to predict human reaching
goal in a teleoperation task [23].

The Q-learning method was also used for this task. Cheng et
al. [2] proposed that humans optimize a reward function during
the pick-and-place task, related to the distance and velocity
from the human hand to the target position. Assuming that the
human motion follows a Boltzmann policy, they estimated the
posterior probability distribution over all targets based on the
observed trajectory. However, this method does not work so
well when targets are located close to each other (e.g., 10cm
in our scenario), because there will be several similar probable
target positions in this situation, especially during the initial
motion stage.

Therefore, we will use the probabilistic model GMMs for
target estimation instead of end-to-end deep learning methods.
The benefit of GMMs is that they are easier to train and
also provide us with probability information. As the target
positions in our task are close to each other, the trajectories
are very similar at the early stage. Unlike the work mentioned
above, we make use of both the observed AH trajectory and
the short-term prediction as the input of GMMs to improve the
estimation accuracy at the beginning of the reaching motion.

C. Online Trajectory Generation

Only specific motion planning algorithms can deal with the
dynamic obstacle avoidance problem, such as trajectory opti-
mization [24] and sampling-based methods [25]. Considering
the whole volume of obstacles across all prediction time steps

for safe trajectory generation results in conservatively planned
trajectories. Zheng et al. [11] propose a framework to deal
with this problem. They reformulate the obstacle avoidance
problem into two Quadratic Programming (QP) programs.
This way, they can generate a collision-free trajectory very
fast. However, in some scenarios, e.g., when the separating
plane used in their approach is close to vertical, the generated
trajectory is not safe anymore because of local minima and
the linearized kinematics. In other work like [26], [27], they
generated collision-free and custom-preferred waypoints in
Cartesian space online, during which the dynamics limitation
was not considered. They then control the robot end-effector
to track these points.

In our recent work [28], we solved a trajectory tracking
problem in a static environment. In this paper, we model
a predicted AH trajectory as several moving capsules and
solve the trajectory optimization problem in a model predictive
control (MPC) style. A set of penalty terms are added into cost
functions to efficiently generate a smooth and safe trajectory
for the dynamic HRC task.

II1. METHODOLOGY

As mentioned above, our proposed HRC pipeline is divided
into three main parts, namely trajectory prediction, final target
estimation, and online trajectory generation, as shown in Fig.
4,

A. Human Trajectory Prediction and Target Estimation

Predicting the human arm trajectory is the fundamental step
in our system. The predicted human trajectory is not only
employed to infer the intended hand position, but also enables
the controller to generate a safe trajectory.
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Fig. 5. The architecture of the encoder-decoder neural network. It consists of
two modules, i.e, encoder and decoder. Both encoder and decoder modules
are composed of LSTM cells.

To predict a trajectory, we use the encoder-decoder structure
of the sequence-to-sequence (Seq2Seq) model similar to [6].
This encoder-decoder model is based on LSTM [29] which
can account for dependencies in long sequence data. The
architecture of the encoder-decoder network in this paper is
shown as Fig. 5.

Although the trained GMMs described below could also be
used for regression, the shape of the predicted trajectory is not
similar to the actual trajectory [17]. Hence, we still make use
of the Seq2Seq model for motion prediction.

The Seq2Seq model can be expressed as Xi,t+1:t+T =
f(Xi0+) and is trained on a dataset D = (X)), where N
is the number of demonstrated trajectories, t is the observed
trajectory length, and T is the length of the predicted trajectory.
X 1 are the positions of the human shoulder, elbow, wrist, and
palm in Cartesian space. We split every trajectory into pieces,
i.e., X; 0:1+7. The input of the model is the observed trajectory
X 0+ and the labels are X; ;1 1.;17. Our goal is to train this
model to make the prediction )A(MH:HT close to X; t41:¢47.
The loss function for the network is a weighted prediction
error over four different markers, as follows:

4
Loss = Z ijHXi,tH:T —Xirll (1)

Xi0r€D j=1

The weight values will be chosen by grid search. With the
dataset D, we also train a GMM library G' = (g,,)_, by
the well-known unsupervised expectation maximization (EM)
algorithm, where M represents the number of potential target
objects. For the target position estimation task, we just use the
trajectory of the human palm in the dataset. This is because
the palm motion encodes the most related information for
trajectory classification [17]. The observed trajectory X, is a
mXn matrix where m is the number of waypoints and n is the
dimensions per waypoint. We use K multivariate Gaussians
(ger)X_, to approximate every g,,, in G. So the probability of
X 1, one trajectory point at time step ¢ during demonstration
i, belonging to g,, is given by:

K
p(Xi,t gm) = ZP(QCklgm)p(Xi,t ng,gm) (2)
k=1

The probability of X, given gci and g, is a Gaussian
distribution:

1
p(Xilgcr, gm) = ———=—¢
’ v (2m)" o

=L (X =) T (X — )

3)

4T
P(Xi 0, Xiwr4rlgm) = [ ] p(Xi slgm) (4)
s=0

According to the Bayesian rule, the log-likelihood of g,, given
Xi o0+ and X ¢4 1447 is given by equation (5). We will choose
the g, with the highest posterior probability as the intended
target position.
t+T
P(gm|Xi 0 Xip1:047) = Z log p(Xi s|gm) + log p(gim)

s=0
(5)

B. Online Trajectory Generation

Our optimization-based online trajectory generation method
allows the robot to perform manipulation tasks while at the
same time avoiding human AH motions, workspace bound-
aries, joint position limits, and dynamic constraints.

A limited quadratic position loss [p is calculated from the
distance between end-effector position Pr and goal position
Pg. This loss is clipped at a maximum value m to avoid
overriding other objectives such as collision avoidance. We
also minimize a quadratic orientation loss [r between end-
effector orientation matrix Rg and goal orientation matrix Rg.

lp = min(m, | Pg — Pg|)? (6)
Ir = |Rp — Rg|)? (7)

Robot joint angles (p,»)?jo are constrained by joint position
limits (pi,minapi,mam)i:RQ’ VelOClty limits ('Ui,m,invvi,m,am)ijo
and acceleration limits (a”mn,ai,mm);fpjo, where Tg is the
length of generated robot trajectory per optimization loop.

Dimin <p; < Dimax (8)
Vi, min < p; < Vi, max (9)
Qi min < P;/ < Qi max

During the real experiment, time delay exists due to cal-
culation and communication between different modules. To
prevent robot motion jumps because of the trajectory replace-
ment between adjacent optimization loops, we constrain the
first two steps of any newly generated trajectory to be the
same as the corresponding steps in the previous trajectory.

We also add a velocity and acceleration regularizer r; with
weights b, ¢ to prefer smooth motions.

ri =bpi? +epf® (11)

Finally, we need to avoid collisions between the robot
and humans as well as between the robot and the fixed
workspace boundaries. We model human limbs and robot
links as capsule-shaped collision objects, i.e., cylinders with
hemispherical caps as shown in Fig. 6a. This results in a much
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(d)

Fig. 6. Separation plane generation and workspace constraints for collision avoidance. (a) We use capsules as efficient collision geometries. Several capsules
are created to cover the robot and the human arm. (b) The white lines visualize the pairwise closest distances between every robot capsule and human capsule.
(c¢) Separation planes are calculated between every human capsule and robot capsule. These planes are used in our trajectory optimization to guarantee a
safe separation whenever the distance between the human and robot is less than a threshold. (d) Static workspace boundaries are defined by six planes (four
vertical planes and two horizontal planes) to restrict the robot motion to the defined volume.

lower number of collision geometries compared to the familiar
representation using sets of collision spheres. Capsules with
radius (rg, j);.rzo are created between all connected human
joints with predicted positions (P ; )jT:O, and capsules with
radius (rg, k)gio are created between all connected robot joints
with positions (PR,k)zio- Based on the method provided by
[30], we compute the pairwise closest distances between the
segments connecting robot joints and the segments connecting
human joints. Then these closest distances subtract the radii of
capsules are the pairwise closest distances between the human
limb capsules and robot link capsules, as shown in Fig. 6b, and
use the directions of the shortest distance vectors as separating
plane normals NV ;, as shown in Fig. 6¢c.

For human-robot collision avoidance, we add a set of
penalty terms g; ; with the desired minimum distance d. We
use penalty terms instead of hard constraints because the speed
at which the human approaches the robot might be faster
than the maximum velocity at which the robot is allowed
to move. In such cases, with a hard constraint, the problem
could become infeasible, and the robot might stop, provoking
a collision. With a soft penalty, the robot will keep moving

away from the human as quickly as possible. Since the position
loss I, is limited, collision avoidance still has precedence over
reaching the target.

In many scenarios, a large open space will be available
into which the robot can safely retreat. When avoiding human
motions, it may be preferable for the robot to move towards
this area. We therefore support an optional bias B. In our
experiments, the robot can safely move upwards into a large
open area above the table, so we set the bias B to [0,0,0.5].

Npjk = R (12)
"IN+ B
qj,k = min(O, NB,j,k(PR,k — PH,j) —TH’J' — TR,k — d)2 (13)

Finally, the workspace boundaries are enforced by a set of
planes with normals (Ng ;)% _; and offsets (op.,)%,_;, as
shown in Fig. 6d. We add one inequality constraint for each

plane and robot sphere.
PrxNpm < opm (14)

At each time step, we optimize a trajectory with 10 fu-
ture time steps and a step size of 0.1s. The trajectory is
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Fig. 7. Analysis of trajectory prediction and target estimation. (a) Mean trajectory prediction errors over different time horizons of the four tracked human
arm and hand joints; (b) Target estimation accuracy at the early stage, with and without the short-term trajectory prediction. The result shows that the predicted

trajectory is beneficial for early target estimation.

re-optimized at 10Hz with the most recent human motion
predictions. As the basis for our implementation, we solve the
optimization problem via sequential quadratic programming
using a primal-dual interior-point method described in [28].

IV. EXPERIMENTS

In this part, we evaluate the proposed method with real
human motion data and the robot system in a desktop assembly
task scenario as shown in Fig. 1. The results show that our
method generates collision-free trajectories and helps the robot
to collaborate with the human more efficiently and safely.

A. Trajectory Prediction and Target Position Estimation

Many devices have been developed for body tracking [31],
[32]. In our experiment, four LED markers were placed on
the human shoulder, elbow, wrist, and palm, respectively (Fig.
1). While the subject was performing the pick-and-place task,
AH motions were recorded by a PhaseSpace Impulse X2
motion-capture system. We collected a dataset of pick-and-
place trajectories from 5 healthy subjects (4 male, 1 female)
of different body heights. The data were recorded at 270 Hz
and afterwards re-sampled down to 27 Hz for the use of the
Seq2Seq neural network. The number of recorded human
trajectories per subject is 240, and 25% of the dataset per
subject is held out for testing.

In the training phase of the Seq2Seq neural network, the
dataset was split into equally sized trajectory pieces of 0.7s
duration each. The former 0.35s part of the trajectory (10
steps) is the input of the neural network, and the remaining
0.35s trajectory (10 steps) is the label of the neural network
output. One pick-and-place cycle consists of about 32 steps.
Finally, the training dataset contains 48.6K samples, and the
test dataset contains 14.6K samples.

See Fig. 2 for the layout of the twelve target positions. They
are placed in two rows, six targets per row. Targets in the same
row are at an interval of 10 cm, and the distance between these
two rows is 20 cm. The ids for targets are numbered top-down
and left-to-right from the human viewpoint, so 1..6 in the first
and 7..12 for the second line.

During the initial training experiment, an LSTM layer with
a 128-dimension hidden state was chosen. The Seq2Seq neural
network is trained using Pytorch [33] with a batch size of 128
and a teacher forcing rate of 0.6. The learning rate is initialized
to 0.005, with an exponential decay rate of 0.01. To speed up
the training process, the batch normalization (BN) technique is
also used. The weights in the loss function (hyperparameters)
are 0.08, 0.16, 0.32, 0.44 by grid search.

The test results for trajectory prediction are plotted in Fig.
7a. We can see that the biggest prediction error is from the
palm and wrist because the motions of these two joints vary a
lot. The prediction errors for all joints are less than 2 cm over
5 time steps.

For predicting the human target position of the human
reaching motion, twelve GMMs are trained with Python [34]
on dataset D = (X, .7)N,, with 75% used for training
and 25% for testing. The hyperparameter K of GMMs was
set to 18 based on the Bayesian Information Criterion(BIC)
[35]. As mentioned above, the initial parts (about 40%) of
the recorded human trajectories are very similar to each other,
and the data points overlap, as shown in Fig. 3b. This makes
it very difficult to classify the trajectory at the early stage, see
Fig 7b. Based only on the observed motion waypoints, the
GMM classification (orange curve) is initially mostly random,
but improves after about 40% of the trajectories have been
observed. Note that some false classifications remain even after
60% of the human motion is known.

However, our LSTM network has already learned to dis-
ambiguate between the different reaching motions and to
predict the human palm positions for the next few time steps.
Therefore, we can significantly improve the accuracy of the
reaching target classification during an ongoing motion by
feeding the GMMs with a few predicted hand positions in
addition to the observed positions.

The resulting improvement of the classification as a function
of the percentage of observed trajectory is shown in Fig.
7b (blue curve). To analyze the algorithm’s performance in
more detail, we also present the corresponding confusion
matrices, see Fig. 8. The diagrams show the classification
results without and with the LSTM predictions (upper/lower
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Fig. 8. The figures in the upper row show the confusion matrices for intended position estimation using only the observed trajectories. The figures in the
lower row show the confusion matrices for intended position estimation using observed and predicted trajectories. Each column corresponds to the condition
that 20%, 30%, 40%, 50%, and 60% of the reaching trajectory have been observed.

row) after (20%, 30%, 40%, 50%, 60%) of a human reaching
trajectory is input to the GMMs. In the upper row, the initially
rather random behavior can clearly be seen, only improving
after 50% and 60% of the human motions are observed. Still,
some false classifications between targets 3 and 10 and targets
6 and 12 remain; both are easily explained by the experiment
layout, where the human hand passes over targets 3 and 6 to
reach targets 10 and 12. With trajectory prediction enabled,
much more accurate and robust estimates are obtained if at
least 30% of the human motion has been observed.

B. Online Trajectory Generation

The proposed online trajectory generation method is tested
on a 6-DoF manipulator UR10e arm with a Shadow C6 hand.
The testing scenario is shown in Fig. 1. To ensure human
safety, the maximum joint velocity of the arm is limited to
0.02rad s~ and acceleration are limited to 1rads~2 (velocity
and acceleration constraints described above). The radius for
every capsule is 10cm and the collision margin d between
capsules is set to zero.

The trajectory optimizer is implemented in C++ using the
Eigen library for linear algebra functions. All of the modules
communicate with each other via ROS [36] platform. We use
Movelt [37] to load the robot model, and Roscontrol [38] with
the ur_modern_driver [39] to command the robot in real-time.
We calculate the predicted LSTM and GMMs results at around
20 Hz, while the trajectory optimizer runs at 10 Hz.

This experiment has two phases: a reaching phase and a
staying phase. In the reaching phase, the human takes one
screw bolt from the initial position and puts it to target 3.
Once the human moves from the initial position, the robot
also starts to move from target 7 to the position of target 6.
After the bolt is placed, the human stays at target 3, working
for 5 seconds, while the robot is required to continue its task;
this is the staying phase. Finally, the human and the robot
return to their initial positions. To compare the performance
between a reactive controller (considering only the current AH
positions during robot trajectory generation) and the predictive
controller (considering current and predicted AH positions
during robot trajectory generation), we did the experiment
multiple times, as shown in Fig. 9 and Fig. 10. In this scenario,
the predictive controller uses five predicted palm positions to
improve the target estimation at the early stage.

Fig. 9 shows the experimental results of the reactive con-
troller. The figures from the first three columns show the
human reaching phase. Due to the lack of human motion
prediction, the robot starts moving towards its target, but also
towards the human arm. When the distance between the human
arm and robot becomes less than the predefined threshold (the
third column of the figures), the robot automatically adjusts its
motion to avoid the human arm and then continues to move
to target 6. The overall motion is still collision-free of course,
but far from optimal for the robot.

Fig. 10 presents the performance of predictive controller. As

TABLE I
COMPARISON RESULTS BETWEEN PREDICTIVE AND REACTIVE CONTROLLER

Trajectory Controller Trial Minimum Distance (cm) | Trajectory Length (cm) | Execution Time(s)
Predictive 1 25.40 75.07 3.88
Controller 2 26.58 86.73 3.89
(ours) 3 25.33 99.25 3.89

Average 25.77 87.02 3.89
Reactive 1 18.31 138.72 4.64
Controller 2 14.67 141.24 4.71
(baseline) 3 16.88 144.15 4.95
Average 16.62 141.37 4.77
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— robot tip —— robot tip —— robot tip —— robot tip
—— human palm —— human palm —— human palm —— human palm

Fig. 9. Experiments with a reactive controller (no prediction). The figures in the upper row visualize Cartesian trajectories of the human and the robot. The
blue line represents the trajectory of the robot (Shadow hand first finger tip, moving from target 7 to target 6), and the red line represents the trajectory of

the human (palm joint, reaching target 3). The photos in the lower row show the human arm movement during the reaching phase, then the human arm stays
at the target for 5s, as shown in the last figure.

—— robot tip —— robot tip —— robot tip
—— human palm —— human palm —— human palm

—— robot tip
—— human palm

0.2
- 01
13 0.0 Loz -01 00
x/m

Fig. 10. Experiments with our predictive controller. Human motions, start and goal positions, as well dynamic constraints of the robot, are the same with
Fig. 9
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—— predictive controller
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Fig. 11. The trajectories of robot Shadow hand first finger tip during the
experiments with reactive and predictive trajectory controller.

ST e

o elelelele

7 8

Initial robot trajectory
X

™~ Observed AH trajectory

AH initial position

Fig. 12. Dynamic goal scheduling. Initially, the robot plans to go to target
3. Once the human intention and AH trajectory prediction based on the
observed AH trajectory indicate target 3 for the human, the robot will replan
its trajectory online (here to target 5 instead of target 3), keeping a safe
distance so that it will not disturb the human task.

shown by the figures in the third column, the robot predicts
much sooner that the human will enter the shared workspace,
and the trajectory to target 6 is planned accordingly. Impor-
tantly, the closest distance between the human arm and the
robot is also larger than that in Fig. 9, which means that the
predictive controller is safer than the reactive controller.

For a direct comparison of the generated robot trajectories,
Fig. 11 plots three successive task executions (reach, stay,
return) for both controllers in a single diagram, where the large
detour taken by the reactive controller is clearly visible for the
reach phase. The trajectories from the predictive controller
also include some noise initially, but become smooth once
the target prediction remains stable. The return trajectories are
almost optimal (straight lines) for both controllers.

We also analyzed the minimum distance between the human
palm and the robot’s index fingertip, the length of the robot
trajectories, and the execution time under both controllers,
see TABLE I. As expected, the trajectories generated by the

Robot Performance in HRC

Performance

3
Trials

Fig. 13. The number of assembled products by the robot in two conditions.
(a) NP: human intention classification with no predicted arm trajectory; (b)
WP: human intention classification with predicted arm trajectory.

predictive controller are shorter, and the minimum distance
between the human and robot with the predictive controller
is larger than for the reactive controller. These results suggest
that the predictive controller is more efficient and safer than
the reactive controller.

C. HRC Efficiency

In order to investigate the efficiency of the whole algo-
rithm, the participant was asked to carry out the collabo-
ration task in more scenarios. During the experiments, the
participant picked the object from the initial position and put
the object in the 12 target positions in any random order,
like 7—+12—5—11-3—-9—-2—-8—10—-4—1—6—7 in this
experiment. One example to explain the task flow is that the
person placed a screw bolt in a target position, like target
3, and waited there for 5s. Meanwhile, the robot needed
to change its target position from target 3 to target 5 and
replan its trajectory based on the predicted AH trajectory
as shown in Fig. 12, to avoid disturbing the human’s work.
The relationships between the human intended target position
and robot available target positions are shown as TABLE II.
The main idea of the workflow design is to let the robot
and the human work concurrently without interfering with
each other during the collaboration process. The workflow
is coordinated by the robot goal scheduler module in Fig. 4.
Once the robot finished touching target 6, it continued to touch

TABLE I
EXPERIMENT WORKFLOW

Robot available Targets
3,4,5,6, 10, 11, 12
4,5,6,7,11, 12
1,5,6,7, 12
1,2,6,7,8, 12
1,2,3,7,8,9
1,2,3,4,7,8,9, 10
1,2,3,4,5,6,9, 10, 11, 12

Human Intended Target

0| =| S| 0| 00| | | L | W B =
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targets in the order 7—+8—9—10—11—12—1 if there were
no human movements in the workspace. Otherwise, the robot
target position was scheduled online according to TABLE II.
We did this experiment in 2 different situations for the ablation
study.

In situation 1, we predicted human intention (human tar-
get position) without any AH motion prediction (NP) and
replanned the robot trajectory with the predictive controller. In
situation 2, human intentions were estimated with a predicted
AH trajectory (WP). The trajectory of the robot was also
replanned with the predictive controller. During the total dura-
tion of the experiment, we counted the number of assembled
products by the robot. From Fig. 13, we can see that the
HRC efficiency was reliably improved based on our algorithm
strategy. The improvement was not significant, and one reason
was that many human-robot target combinations are conflict-
free (e.g., human’s intended target was at 7, and the robot was
going from target 3 to target 4.). If the conflict-free human-
robot target combinations were excluded, the HRC efficiency
improvement between WP and NP would be more significant.

V. CONCLUSION AND FUTURE WORK

We proposed a pipeline to improve the efficiency and safety
of HRC assembly tasks. We trained a Seq2Seq neural network
to predict the human AH trajectory accurately. Unlike other
methods, we made use of both the observed and predicted
trajectory as the input of GMMs for target estimation. As
shown by our experiments, this results in a much more
accurate posterior probability distribution over all potential
target positions from the early stages of human motion, even
if the trajectories are initially very similar to each other.

The predicted trajectory and estimated target position were
then combined to generate a goal-oriented and collision-free
trajectory based on a novel trajectory generation method. We
evaluated the effectiveness of the whole pipeline on our real
robot system, and the results demonstrate an enhanced safety
and efficiency of the HRC task.

For future work, more experiments need to be conducted
to test the pipeline’s effectiveness in more complex scenarios.
We also plan to replace the motion-capture system and use
the raw data from cheap RGB-D cameras for human trajectory
prediction and intention recognition. It will also be interesting
to fuse more information, such as human gaze or semantic
task information, to improve the target estimation accuracy
and robustness.
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