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Pick the Right Co-Worker: Online Assessment of
Cognitive Ergonomics in Human-Robot
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Abstract—Human-robot collaborative assembly systems en-
hance the efficiency and productivity of the workplace but may
increase the workers’ cognitive demand. This paper proposes
an online and quantitative framework to assess the cognitive
workload induced by the interaction with a co-worker, either
a human operator or an industrial collaborative robot with
different control strategies. The approach monitors the operator’s
attention distribution and upper-body kinematics benefiting from
the input images of a low-cost stereo camera and cutting-edge
artificial intelligence algorithms (i.e. head pose estimation and
skeleton tracking). Three experimental scenarios with variations
in workstation features and interaction modalities were designed
to test the performance of our online method against state-of-the-
art offline measurements. Results proved that our vision-based
cognitive load assessment has the potential to be integrated into
the new generation of collaborative robotic technologies. The latter
would enable human cognitive state monitoring and robot control
strategy adaptation for improving human comfort, ergonomics,
and trust in automation.

Index Terms—Human-robot Collaboration, Cognitive Er-
gonomics, Trust in Automation, Human Factors

I. INTRODUCTION

COLLABORATIVE robots have shown their capacity to
coexist, cooperate, and safely share the working environ-

ment with humans, contributing to better work performances
and improving physical ergonomics [1], [2]. Although such
collaborative forms of automation provide unique opportunities,
they may perilously increase workers’ cognitive demand and
result in adverse health and safety hazards. The elevated
mental workload, in fact, may affect operators’ well-being and
consequently compromise their output and the efficiency of
the workplace. Besides, recent surveys [3], [4] and systematic
reviews [5] indicate that work-related stress and psychological
risks affect to date hundreds of millions of people worldwide,
having direct financial implications for private companies and
governments [6].

Consequently, assessing the social acceptance of and trust
in collaborative robots in real industrial settings is becoming
crucial for developing efficient and effective hybrid manufac-
turing environments. Despite the growing interest in the topic,
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Fig. 1: Conceptual illustration of complex assembly operations,
potentially increasing worker’s cognitive demand, leading to
errors and task difficulties. Online and quantitative evaluation of
cognitive load, especially in hybrid environments, can safeguard
operator’s health and ensure efficiency of workplaces.

very little research has been directed towards understanding
the effects of automated assistance in the production line and
differences were found in how examined groups perceived and
responded to the robot. In [7], workers of a semiconductor
factory were interviewed about their interactions with robots
over time. Results suggested that the deployment of robots
affects workers’ daily activity, but the impact changes acquiring
familiarity and experience with the technology and could be
reduced by informing the worker as much as possible about
the process. Through subjective questionnaires and narrative
interviews, other studies [8], [9] demonstrated that the robot had
been accepted as part of the team and that operators manifested
their sense of pride in working with the latest technology.

The interrelations between cognitive fatigue, operator sex and
robot assistance level were analysed by [10] to optimise human-
robot interaction and collaboration (HRI-C) system designs with
respect to task performance and user experience. The mental
effort, estimated by post-processing the electrocardiography
(ECG) signal, negatively affected task efficiency, while the
assistance through automation was subjectively perceived and
rated in questionnaires as benefitting performance in female
subjects. Physiological measurements (i.e. ECG, galvanic
skin response or GSR, respiratory rate and peripheral skin
temperature) were also exploited by [11] to estimate the mental
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Fig. 2: Overall structure of the online cognitive load assessment framework detecting patterns in human’s motion, investigating
workers’ attention, their interaction with assembly instructions and trust in the assistant.

cost in physically demanding tasks with haptic robots. Besides,
the analysis of subjective rating scales and secondary-task
performance in [12] suggested that, if steps of the primary task
were automated, worker perceptual resources were freed up
and monitoring performance on the secondary task improved.

However, to the best of our knowledge, available tools
to model human mental workload and quantify the cost of
performing collaborative tasks with a robotic agent can be
used almost exclusively by experts or merely provide offline
insights into the cognitive process [13]–[16]. A first attempt
toward an online cognitive load assessment in industrial HRI-C
was made in [17]. The authors recorded ECG and GSR and
utilised machine learning (ML) methods to detect humans’ high
or low cognitive load while cooperating with a robot. Similarly,
[18] exploited a ML classifier to discriminate between stressful
and relaxed states through the acquisition of ECG, GSR and
electrooculogram signal (EOG) measured by smart glasses
and [19] tested the feasibility of detecting the cognitive load
from the electroencephalographic (EEG) device utilising four
classifiers, including random forest, neural network, linear
discriminant analysis and logistic regression. Nevertheless, such
evaluations require rather expensive and impractical equipment
and, like most state-of-the-art techniques, it is potentially
challenging to be applied in industrial scenarios.

The purpose of this paper is to present an online and quanti-
tative method to appraise the impact of industrial collaborative
robots and their actions on operators’ cognitive workload in
the production line (see conceptual illustration in Fig. 1). The
proposed framework monitors the mental effort, psychological
stress and trust in assistance of human operators directly from
the input images of a low-cost RGB-D camera. A preliminary
study in purely manual assembly tasks with imposed growing
complexity is presented and validated in [20]. Head pose
estimation and skeleton tracking are exploited to analyse

the workers’ attention distribution and assess hyperactivity
and unforeseen movements. This paper extends the factor
assessment tool to consider the interaction with an assistant.
Relying on research on gaze tracking and interpretation, we
examine the percentage of attention that an individual gives to
the assistant during the collaborative assembly task and count
the number of glances and gazes over time towards the area
dedicated to the assistant. Moreover, we propose two graphical
user interfaces to browse the assembly instructions and handle
the interaction with the assistant, and we examine the associated
keystroke dynamics. The study employed assembly experiments
in three collaborative scenarios (i.e. human-human and two
human-robot settings) with variations in workstation features
and interaction modalities to achieve successful acceptance
and usage of industrial robotic teammates. The underlying
hypothesis was that high robot assistance level and greater
transparency into the robot’s autonomous status decreases the
cognitive load and increases the trust of the human partner. The
performance of the developed tool was validated against state-
of-the-art methods in the field of cognitive science. ECG and
GSR signals were indeed recorded during the task execution
and processed offline, along with subjective questionnaires, to
ensure and support the validity of the results.

II. COGNITIVE LOAD ASSESSMENT FRAMEWORK

The cognitive load assessment framework is illustrated
by a block schema in Fig. 2. Our method analyses (i) the
attention distribution of a worker from gaze direction and
head pose, (ii) the stress level, by examining activity-related
body language (i.e. self-touching occurrences and high activity
periods) and (iii) the cognitive effort required to utilise the
assembly instructions and handle the right tools and components
to complete the task. Additionally, we investigate (iv) the trust
in the assistance provided during the industrial task by detecting
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when the operator turns the head and fixates relevant elements
of the collaborator. Combing all these factors, we evaluate
final scores of mental effort and stress level, enabling the
identification of excessive cognitive load in assembly workers.

Before presenting the functioning of each module, we
provide a description of the workstations layout. In industrial
collaborative assembly, an operating environment1 is defined by
at least three types of workstations: the assembly workstation
W1, which is the area occupied by the assembly components,
the instructions workstation W2, providing assembly infor-
mation and steps to follow through e.g. a monitor, and the
assistance workstation W3, where an assistant (either another
human operator or a collaborative robot) is willing to support
the assembler and provide necessary components from the
storage area. Based on the number of workstations, our system
accordingly associates reference frames in the position specified
during a configuration phase. The positions of those reference
frames with respect to the operator’s head are used to determine
the attention level toward every workstation (see Sec. II-B).

A. Human Upper-Body Kinematics Tracking Module

The Human Upper-Body Kinematics Tracking Module
detects worker’s presence in the operating environment and
provides spatio-temporal information about human movements
over time. We exploit an RGB-D camera and adopt the visual
skeleton tracking algorithm developed by StereoLabs, to track
the human skeleton. The choice of the external sensor system
was motivated by the desire to make the proposed framework
easily deployable in both laboratory and industrial settings.
Noteworthy, the module is scalable to any other person tracking
method, such as inertial-based motion-capture systems. Among
the twenty-five human keypoints (e.g. neck, shoulders, elbows,
wrists) extracted in real-time by the algorithm, we select
the ones belonging to the upper body, and we analyse their
3D position displacements to compute factors describing the
operator stress level (see Sec. II-D).

B. Human Attention Tracking Module

The RGB images captured by the stereo camera are also
used to detect the human face and identify facial landmarks,
exploiting OpenCV library and a TensorFlow pre-trained
deep learning model, respectively. Thus, the head pose is
continuously estimated by solving a Perspective-n-Point (PnP)
problem between the OpenFace 3D model of the face and
the output of the detector. A Kalman Filter is included to
stabilise the pose computed frame by frame and obtain a
more reliable visual-based head tracker. Depending on the
estimated head position and orientation with respect to the
camera, a frame is associated with the worker’s head and
the transformation camera

head T represents the head pose variation
over time. Consequently, the Cartesian vector expressing the
relative position between the head and each i-th workstation Wi

(i=[1, 2, . . . , N ] where N is the number of workstations defined

1Throughout the paper, the term ‘operating environment’ (or ‘working area’
or ‘workplace’) refers to a place available to manufacturing personnel to carry
out work, while ‘workstation’ is a specific location, e.g. an assembly table,
where employees perform specific tasks.

in a configuration phase) is mapped into spherical coordinates
(i.e. azimuth angle θi, elevation angle φi and radial distance).

To estimate the level of attention toward each workstation,
we model a fuzzy logic membership function

f(αi)=


1, if |αi| ≤ αmin,i

1
2

[
1−cos

( |αi| − αmin,i

αmax,i − αmin,i
π
)]

, if αmin,i< |αi|≤αmax,i

0, if |αi| > αmax,i
(1)

where the computed angles αi at each time instant t (i.e. az-
imuth θi(t) or elevation φi(t)) are separately transformed using
a raised-cosine filter [21] in a predefined range [αmin,i, αmax,i].
The attention level AWi toward the i-th workstation is therefore
defined as the product between the normalised azimuth and
elevation indicators as

AWi

(
θi(t), φi(t)

)
= f

(
θi(t)

)
f
(
φi(t)

)
. (2)

Given the estimated attention to all the workstations, we can
assess if the worker is currently distracted or focused on a
particular task. To this aim, we check if at least one of the
attention parameters is above a predefined threshold, and we
determine the workstation that the worker is focused on as the
one in which the associated parameter AWi is maximum.

C. Interaction with Instructions and with the Assistant

The central role of this module is to handle user’s inputs
through dedicated Graphic User Interfaces (GUIs). In this
work, we assume that assembly instructions are shown on a
monitor and, thanks to keyboard commands, the worker can
browse them to gain knowledge about the following mounting
step or go back in instructions. Accordingly, the ‘interaction
with instructions’ block is in charge of monitoring the task
advancement, providing the system with the number of steps
of the assembly sequence that the user has already followed
and the instruction check backs.

During assembly activities, the worker can ask for support
from another human operator or an industrial collaborative
robot and co-operate with the assistant through different
interaction modalities (see Sec. III-C). According to the set
modality, the request for a given action by the assistant
(e.g. picking a component from the storage area) can take
place via interactive buttons displayed on a tablet or can
be directly triggered by proceeding with the instructions of
the assembly sequence. Additionally, the user can pause and
resume the assistant’s action and reset it when a fault in the
selection is made. Finally, the assistant can provide feedback
on the advancement of the served action or the current state
(e.g. grasping a given object or resetting the action), which
is displayed on the monitor of the assembly instructions.
As mentioned before, the ‘interaction with assistant’ block
is scalable either for a human assistant or an industrial
collaborative robot. In the former case, we assume that another
operator is working in a close operating area where additional
components are stored and he/she can be informed via a screen
whenever the assembler needs a component. The integration of a
collaborative robot in our cognitive load assessment framework
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TABLE I: Definition of mental effort and stress level factors.

Mental effort factors Expression

Concentration Loss: time that the subject does not
explicitly dedicate to the task accomplishment.

1 −
∑M

w=1

[attention time]w
time elapsed

Learning Delay: ability to rapidly learning a novel
rule from instructions and automaticity in complet-
ing assemblies/subtasks.

dwell time on assembly
time elapsed

=
[attention time]1

time elapsed

Concentration Demand: estimation of the incidence
of attention failures.

∑D
d=1

[instant of attention loss]d
time elapsed

Instruction Cost: estimation of the general quality
of instructions.

∑C
c=1

[instant of not required switch]c
time elapsed

Task Difficulty: estimation of the required cognitive
effort to perform tasks.

∑B
b=1

[instant of instruction check back]b
time elapsed

Collaboration Burden: attention that the subject
gives to the assistant during the collaborative task.

assistant fixation time
time elapsed

=
[attention time]3

time elapsed

Wariness for Assistant: level of trust of the subject
toward the assistant.

∑A
a=1

[instant of assistant check]a
time elapsed

Stress level factors Expression

Self-touching: behavioural indicator of stress and
anxiety.

∑S
s=1

[instant of self-touching]s + 60− t

60

Hyperactivity2: high activity periods with respect to
baseline movements in terms of joint’s displacement
over time.

mj
k =

∑τ−1
l=0 djk−l,k−l−1

if ∆j
k = mj

k−µj > σj then ajk =
∆j

k

σj
− 1

ak = min
( 1

N

∑N
j=1 a

j
k, 1.0

)
Note: M is the number of workstations, while D, C, B, A, and S are the total occurrences of the

corresponding event while working on the task

was instead achieved using a high-level Finite State Machine
(FSM). The FSM enables continuous transitions between robot
states in response to the external inputs from the worker and
the task advancement. The FSM’s initial state is identified
by the ‘Input waiting’ primitive in which the robot waits for
commands to start its motion. When the “component picking”
action is triggered, the robot passes through a sequence of
states (i.e. ‘Reaching component’, ‘Grasping’, ‘Delivering’ and
‘Handing over’, also displayed on the visual feedback screen),
enabling the robotic arm to pick the corresponding object, bring
it close to the human and finally hand over the item to the
human subject. Subsequently, the collaborative robot moves
back to the homing position, ready to serve new requests. The
robot action can be stopped at any moment or reset, permitting
the part to be repositioned in the initial storage position and
then triggering the ‘Homing’ primitive.

D. Cognitive Load Assessment Module

The last module computes a set of cognitive workload
indicators starting from the output of the modules described

2We define movements mj
k of j-th joint (j=1,2,..N ) in a time window τ

as the sum of 3D position displacements d j
k−i,k−i−1 within two subsequent

frames (where k refers to a system pipeline loop). In an initial calibration
phase, we compute the mean motion µ1,..µN of upper body joints and their
standard deviation σ1,..σN . During task execution, we periodically compute
the deviation ∆j

k of each joint from the baseline µj and associate a parameter
ajk by comparison with the stored σj . A unique descriptor of activity level
ak is determined as the mean over all upper body joints’ activities.

above. Table I presents a brief definition of these factors and
the associated pseudo-formulas that provide hints on how they
are calculated. For a more detailed description of the proposed
cognitive load factors and scores, as well as the scientific
motivation behind their definitions, see [20].

In this work, we include two additional factors for dealing
with the interaction and collaboration with an assistant. The
first is based upon contemporary psychology’s claim that the
average dwell time decreases with confidence and expertise on
collaborative tasks [22]. Accordingly, we analyse the attention
that an individual gives to the assistant during the collaborative
assembly task and we define the Collaboration Burden factor as
the ratio between the time (as sum of durations) the assembler
looks at the assistant and the time elapsed since the beginning
of the assembly. The Wariness for Assistant factor instead
investigates the trust of the operator toward the assistant and
its dynamic attitude. Taking inspiration from research on gaze
tracking [23], we count the number of glances and gazes over
time, namely the transitions of the worker’s attention in and
out of the area dedicated to the assistant.

Note that we do not expect that a single factor directly
reflects human cognitive processing. Our position is that a
combination of these factors could provide insights into the
human cognitive system. Each factor f (with f=1,..F ) is indeed
normalised with a threshold τf , when needed, and multiplied
by a weight λf . The sum of the weighted metrics determines
the final scores of mental effort and stress level. Note that
values of τf for the proposed factors were defined as the
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Fig. 3: Overview of three experimental scenarios: a) human-human collaboration, HHC, b) human-robot interaction, HRI, c)
human-robot collaboration, HRC. Employed GUI (i.e. instructions, iGUI, and assistant GUI, aGUI), assistants (i.e. human or
robot) and the sensor are also highlighted.

maximum registered value for all subjects who took part in
the model validation experiments in [20]. On that occasion,
we also asked participants to rate the relative importance of
factors in determining the experienced workload, exploiting
a technique developed in NASA-TLX. Given the patterns of
choices, we computed the weights that a specific subject would
associate with each factor f . The mean among all subjects for
each factor weight determined the value of λf . For new factors
(i.e. trust factors describing checks and fixations of W3), we
exploited thresholds and weights associated with corresponding
quantities concerning instructions (i.e. factors describing checks
and fixations of W2).

III. EXPERIMENTS

This section presents the experimental campaign to assess
how workers’ cognitive load develops while performing a col-
laborative assembly with an industrial robot. The performance
of our cognitive load assessment framework was tested against
physiological measurements processed after the completion
of the experiments. Specifically, we analysed the trend of
the mental effort in relation to heart rate variability [24] and
compared the stress level with the ordinarily used features in
galvanic skin response [25], [26].

A. Participants

Fourteen healthy volunteers, seven males and seven females
(27.3±2.9 years old), were recruited for collaborative assembly
experiments. The whole experimental procedure was carried
out at Human-Robot Interfaces and Physical Interaction (HRII)
Lab, Istituto Italiano di Tecnologia (IIT) in accordance with the
Declaration of Helsinki, and the protocol was approved by the
ethics committee Azienda Sanitaria Locale (ASL) Genovese
N.3 (Protocol IIT HRII ERGOLEAN 156/2020).

B. Experimental setup

The participants were asked to sit at a desk, on which
aluminium profiles and small boxes with screws, bolts, nuts,
etc., were placed (defining workstation W1). An RGB-D camera
(zed2, Stereolabs) monitored the subject from the front for the
whole duration of the experiment. The assembly instructions
were shown on a monitor (workstation W2) and could be
browsed through a Qt5 C++ GUI, i.e. the instructions GUI

(iGUI). During the task, an assistant was available to help
by providing additional components from the storage area
(workstation W3). A Python Web Application displayed on a
tablet, i.e. the assistant GUI (aGUI), allowed the assembler to
select the desired item, as well as pause, resume or reset the
assistant’s actions.

C. Experimental protocol

The study employed a within-subjects experimental design in
which each participant underwent three sessions with variations
in workstation features and interaction modalities (Fig. 3). In
scenario (a), the assembly task was performed in collaboration
with another human operator, while in the others (i.e. (b) and
(c)), the assistant was the Franka Emika Panda robot equipped
with the Robotiq collaborative gripper. For all participants, the
order of accomplishment of the proposed tasks was randomised
and there was a break between sessions to avoid learning effects
and cumulative workload.

Note that we devised an experiment where the assistant
provided the operator with five aluminium profiles through
handovers distributed during the whole session execution.
Through the scenarios, the team is asked to accomplish different
assembly tasks with comparable complexity levels, albeit
employing diverse interaction modalities between the assembler
and the assistant. HRI-C sessions featured different levels of
robot assistance and degrees of transparency into the robot’s
autonomous status. As such, we expect to identify variations
in operators’ psycho-social status.

The participants had ten minutes to complete each session,
which was estimated as the average time for a seamless task
accomplishment. Before beginning the experiment, a training
task was conducted to allow the user to familiarise with
the involved interfaces. During this phase, we captured the
physiological parameters and upper-body joints movements
under resting conditions, which were exploited afterwards as
the baseline (see the usage of the mean motion µj and its
standard deviation σj at rest in Tab. I).

D. Collaborative scenarios

In the following sections, the three proposed collaborative
scenarios are described in detail.
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a) Human-human collaboration, HHC: The experimental
session consists of a collaborative assembly task together with
a human assistant. The worker can select the desired item from
the aGUI displayed on a tablet and the assistant delivers the
requested component. We assume that another individual is
working in a close operating area where additional components
are stored and he/she can be informed via a screen whenever
the assembler needs a component.

b) Human-robot interaction, HRI: The worker interacts with
the industrial collaborative manipulator; however, all robot
movements must be authorised by pressing suitable buttons on
the aGUI. Moreover, the robot neither informs the user on the
receiving of the part request nor provides any feedback about
its state. Hence, the degree of interaction is extremely low, and
there is no transparency about what the robot is doing.

c) Human-robot collaboration, HRC: The robotic agent can
perform more tasks in autonomy, but it gives feedback on the
monitor about the action currently served (e.g. grasping an
object). Robot’s actions are directly triggered by proceeding
in the assembly sequence through the iGUI. This allows for
parallelism in activities performed by the two agents and
speeds up the process. Moreover, supervising options (i.e.
pausing/resuming robot motion and resetting actions in case
of errors) are explained in detail, and their effectiveness is
demonstrated to participants before the beginning of the session.

E. Experimental hypothesis

The underlying hypothesis was that high robot assistance
level and greater transparency into the robot’s autonomous
status decreases the cognitive load and increases the trust of
the human partner [10], [27]. Therefore, investigating workers’
attention toward the assistant, instructions and assembly compo-
nents and analysing human body language, we expected higher
values in our mental effort and stress level scores in scenario
(b) than (c) enabling robot’s feedback. Besides, it would be
extremely interesting to analyse differences from human-human
trials and access framework performance through questionnaires
and physiological measures.

F. Baseline measurements

In this section, we present the adopted quantitative and
qualitative measures to assess the performance and potential
of the proposed framework. Additionally, we justify the choice
of specific ground truth parameters and describe the sensors
adopted and the post-processing of the acquired signals.

1) HRV responses: A chest strap (H10, Polar Electro Oy,
Kempele, Finland) was used to record the ECG signal. A large
and growing body of literature [24] has indeed investigated the
relationship between human cognitive processing and heart rate
variability (HRV) metrics. Among several metrics identified
by researchers, the low-to-high frequency (LF/HF) ratio was
selected since it was identified as a biomarker of the mental
effort [28], [29]. In this work, the raw ECG was initially
processed to extract the RR intervals, i.e. the time elapsed
between two successive R-waves, and then analysed using
Kubios software.

2) Galvanic skin responses: The galvanic skin response
(GSR, also known as electrodermal activity, EDA), a widely
studied biomarker of stress, [25], [30], was monitored by the
movisens EdaMove4 scientific research instrument. The mobile
device was connected to a textile band worn on the ankle. The
recorded GSR signal was then processed using the open-source
MATLAB toolbox Ledalab. A Butterworth low pass filter with
a cut-off frequency at 2 Hz was used to filter the high-frequency
components. Finally, we applied the continuous decomposition
analysis to separate the tonic (Skin Conductance Level, SCL)
and phasic (Skin Conductance Response, SCR) components.
As in [26], we computed the mean value of the SCL and the
mean amplitude of the SCR peaks to investigate the stress
induced by the entire task on participants.

3) Subjective questionnaires: At the end of the experiment,
we asked participants to fill NASA task load index questionnaire
[31], to quantify the workload and the trust scale defined
in [32]3 to assess trust development in industrial HRI-C.
Additionally, we asked participants if they had previously
performed an experiment in direct interaction with an industrial
robot. This permitted us to perform a statistical comparison
and determine whether familiarity with robotic technologies
could reduce the risk of excessive cognitive load.

IV. EXPERIMENTAL RESULTS

In this section, the results of the experimental campaign
are presented. First, the outcomes of physiological measures
and subjective questionnaires are evaluated to determine
how different collaborative assembly scenarios have impacted
operators’ cognitive load. This is followed by a deep analysis of
the presented cognitive load scores and their correlations with
the ground truth measurements. For the study, participants
were divided into two groups according to their declared
familiarity with robotic technologies. Eight out of fourteen
subjects, constituting group N, claimed to be näıve to human-
robot collaboration, while the remaining six subjects, group E,
owned previous experience with robotic manipulators. Last, we
focus specifically on the factors addressing the interaction with

3Note that the word ‘robot’ was replaced by ‘assistant’ in each statement to
evaluate the trust in all three scenarios. Statements F and J were neglected
since they were not applicable in our context.
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Fig. 4: Bar chart indicating mean and standard error of LF/HF
ratio and mental effort in three scenarios. Significance levels
obtained from Wilcoxon’s test are indicated at *p<0.05, **p<0.01.
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the assistant, investigating the differences among the examined
interaction modalities and making a comparison with the trust
scale results.

A. Baseline measurements

1) HRV responses: The ECG signal registered during every
collaborative scenario was segmented into four blocks (2.5
minutes each). This permitted us to extract frequency-domain
HRV-features within each block and assess differences in the
trends using Friedman test with repeated measures. Different
experimental conditions significantly impacted the LF/HF ratio
(p=0.022)4, a well-known biomarker of the mental effort. Figure
4 shows the results of the Wilcoxon test with Bonferroni
correction. For näıve subjects, the mean ranks in low human-
robot interaction (scenario b) were statistically significantly
higher than the mean ranks in human-human collaboration
session (scenario a, pN

a,b=0.007). However, increasing the
transparency on robot’s actions (scenario c), the parameter
exhibited a predominant decrease (pNb,c <0.001). On the
contrary, the robot agent does not affect the LF/HF ratio for
experts (pEa,b=0.086), and the parameter further decreases in
scenario c (pE

b,c=0.033).
2) Galvanic skin responses: As in [26], we examined the

mean value of the SCL and the mean amplitude of the SCR
peaks in different experimental conditions. The Friedman test,
run in 2.5-minute intervals, revealed a significant main effect of
the interaction modalities on the tonic and phasic components
(p<0.001 and p=0.003, respectively). The robotic aid predomi-
nately increased the SCL-related parameter compared to the
human aid either in näıve (pNa,b=0.009, pN

1,3=0.017) or expert

4The p-value obtained from Friedman test is defined as p, while pGi,j refers
to the p-value resulted from Wilcoxon test with Bonferroni correction between
condition i and j (i, j=a, b, c) for subjects belonging to group G (G=N,E).
Finally, median rank of the analysed metric in experimental session i for group
G is reported as MG

i .

HHI HRI HRC

LF/HF ratio 
in 2.5min blocks

Heart Rate Variability

Mental effort
Mean in 2.5min blocks

Mental Effort Score

Fig. 5: Comparison between mental effort score computed
by our online framework and LF/HF ratio extracted from 2.5-
minute blocks of electrocardiography signal for a näıve subject.

(pEa,b, pE
a,c <0.001) subjects. Pairwise significant differences

between human-robot interaction were also found in SCL within
group N (pNb,c=0.048) and in SCR in both groups (pNb,c=0.005,
pEb,c0.006).

3) Subjective questionnaires: Median workload levels of
NASA-TLX score for scenarios a, b, and c were 56.7, 52.5,
and 40.3, respectively. Besides, we computed the total score
of trust perceived by participants during the tasks, following
the guidelines provided in [32]. The Kruskal-Wallis test
revealed a significant difference in the score depending on
the imposed experimental conditions, p=0.004. Specifically,
näıve participants reported a significant trust diminution with
the robot’s introduction (pNa,b=0.031, MN

a =34.5, MN
b =24.5), but

they regained the confidence to robot assistance with system
state’s observability (pNa,c=0.125). For experts, the reliability
of automated assistance was comparable (pEa,b=0.234) or even
enhanced as against human assistance (pE

b,c=0.063, ME
a =29.0,

ME
c =33.5).

B. Cognitive load scores assessment

1) Mental effort: The mental effort score, obtained from the
weighted combination of the factors, is presented in Fig. 5 (first
row) for a näıve subject. The black line defines the score’s
trend over time in the different experimental sessions, while
coloured bars highlight the mean within 2.5-minute intervals.
Note that the participant completed scenario (c) before the total
available time (i.e. ten minutes).

Analysing all subjects, Friedman test indicated that different
interaction modalities affected the mental effort score signifi-
cantly (p=0.004). Post-hoc comparisons reveal no differences
between human-human and human-robot interaction with
limited transparency on robot’s actions for experts. A significant
decrease in the score was however manifested between the
two different human-robot interaction modalities (pE

b,c=0.007).
In näıve subjects, the mental effort score was significantly

HHI HRI HRC

Stress Level Score

Hyperactivity
Self-touching
Mean of stress level

SCL 
SCR

Galvanic Skin Response

in 2.5min blocks

Fig. 6: Comparison between stress level score and skin
conductance level (SCL) and response (SCR) extracted from
2.5-minute blocks of galvanic skin response for a näıve subject.
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affected by the robot’s presence (pNa,b=0.043) but a greater
transparency on robot’s action determined a predominant
reduction (pNb,c=0.054).

The similarity of statistical outcomes encouraged us to
compare the mental effort score computed online by our
framework and with the offline-extracted LF/HF ratio levels (see
Fig. 5). Positive correlations (Spearman’s rank-order correlation
coefficient rs >0.4) were found between the mean within the
defined blocks of our score and the HRV feature extracted in
the same interval for thirteen out of fourteen participants, of
which five were significant at 1% level and two at 5% level.

2) Stress level: Figure 6 (first row) illustrates the estimated
stress of a näıve participant during the experiments. Hyperac-
tivity and self-touching factors are set out by grey and black
profiles, respectively. By summing them, we evaluated the stress
level score and its mean within blocks lasting 2.5 minutes
(displayed through coloured bars). Statistically significant
differences were identified by the repeated measure Friedman
test (p<0.001). Overall, we identified higher score readings
during robot assistance versus human assistance. All pairwise
post-hoc comparisons showed p-values below the significance
level. This guided us to analyse the stress level trend in relation
to the EDA recording (see Fig. 6). The mean of our score in
the defined blocks appeared to be positively correlated to the
SCL feature for ten subjects and to the SCR feature for three
more subjects, with significance in five subjects.

C. Trust in robot assistant
Figure 7 displays the developed metrics for operator’s trust

toward human and automated assistant. Note that our factors
were defined with pejorative connotation, so 0.0 refers to
complete trust and 1.0 to loss of any confidence. We computed
the factors mean for all subjects over time (colour-coded
line) and the corresponding standard deviation at each system
pipeline loop (shaded area). The results for sessions (a), (b),
and (c) are reported on the same chart to highlight differences
in the trends. Some participants completed the task before the
total available time. Therefore, we stop plotting the mean trend
when at least one subject has finished the execution.

What stands out in the data is an increase of the 7.8% in
the Collaboration Burden factor between scenario (a) and (b).
However, the time dedicated by the assembler to the robot
reduces with greater transparency on the robot’s actions. The
differences between the three experimental conditions were
also found to be statistically significant through the Kruskal-
Wallis test (p<0.001). Post-hoc comparisons for näıve subjects
identified a significant growth in the factor between human-
human and low human-robot interaction (pN

a,b=0.031), which
however vanishes enabling system’s transparency (pN

a,c=0.148).
Interestingly, we also noticed that participants with prior
experience in robotics tended to focus 5.1% less on the robot
than the näıve ones. The trends of the Wariness in Assistant
factor’s mean for all participants appeared comparable in
scenarios a and c and slightly shifted to higher values in
b. The p-values of Kruskal-Wallis test were, however, over
0.05 significance level.

A Spearman’s rank-order correlation was run to determine
if a relationship exists between our trust factors and the

Fig. 7: Mean trend over participants and shaded standard
deviation of factors estimating workers’ trust in automated
and human assistance.

outcomes of trust scales. For comparisons, we considered the
complements of our factors’ mean due to the negative sense
in which factors are defined in the sessions (e.g. [1 − µs

a,
1 − µs

b, 1 − µs
c], where µs

i is the mean of a factor in task i
for s-th subject). A positive correlation was found in nine out
of fourteen for both Collaboration Burden and Wariness in
Assistant.

V. DISCUSSION

The offline statistical analysis on baseline measurements
supported our experimental hypotheses (see Sec. III-E) and
suggested that the degree of robot’s transparency and observ-
ability available to the human worker has a noticeable impact
on the development of cognitive workload. With increasing
feedback on the robot’s autonomous status, HRV and GSR
features indeed indicated a significant reduction of mental effort
and stress during the interaction.

Interestingly, changes in experienced cognitive effort between
human and automated assistance mainly depended on the
operator’s familiarity with the technology. No differences
were indeed found either in ground-truth measures or our
cognitive load scores (i.e. mental effort and stress level) for
participants with prior experience in robotics. On the other
hand, näıve subjects tended to see automation as more stressful
and cognitively demanding.

One of the study’s major findings was the similarity in
the trends of the scores computed online by our method and
the state-of-the-art offline measurements that are less likely
deployable in industrial settings. The mental effort mean in
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defined time blocks was positively correlated to the LF/HF
ratio derived by ECG signal within the same time intervals.
Positive correlations were also identified between the stress
level and GSR features.

Additionally, we presented and analysed two factors to exam-
ine the trust in industrial human-robot collaboration. Proposed
trust metrics, whose readings were positively correlated to
outcomes of a state-of-the-art subjective trust scale, suggested
that robotics experts tend to rely more on automated support.
However, informed robot movements could put the näıve human
co-worker at ease and foster trust.

VI. CONCLUSIONS

This study investigated how workers’ cognitive load develops
while interacting with industrial collaborative robots. We
proposed an online and quantitative framework to monitor
the mental effort and psychological stress of a human operator
during an assembly task. Attention distribution, high activity
periods and body language were extracted directly from the
input images of a stereo camera and analysed. Additionally,
two factors were designed to examine the trust in the robotic
counterparts within hybrid manufacturing environments.

The proposed framework works online, does not require
expensive equipment and does not ask the human worker to
wear any sensor allowing the natural flow of work activities.
These are promising features to integrate the technique in real
industrial settings. Nonetheless, optical systems induce visibility
issues and workers’ privacy threats that could be partially
overcome with a multi-camera setup exploiting stick figures of
the human body, including information about human attention
direction. Regrettably, the current study was conducted in our
laboratory, reproducing a well-structured working environment
and was limited to students and staff participants. Its natural
progression will deal with the framework generalisation to
complicated industrial operations, examining the optimal
camera placement. The study would involve people working
in the manufacturing domain and investigate the opportunities
for human-robot collaboration in their environment.

This research lays the foundation for future work on cognitive
ergonomics in industrial human-robot collaboration. The mental
effort and stress level scores computed online by our framework
may be provided as input to the robot enabling real-time
adaptation of the control strategy according to human distress
and needs. This aspect could be extremely important to improve
operators’ comfort at work and achieve successful acceptance
and use of industrial robotic teammates.
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APPENDIX - SUPPLEMENTARY DATA

An illustrative video showing the functioning
of the proposed framework is available online at
www.youtube.com/watch?v=FU9702OZGvA and is provided
in the supplementary materials.
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