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Abstract—Accelerated brain aging and abnormalities are as-
sociated with variations in brain patterns. Effective and reliable
assessment methods are required to accurately classify and
estimate brain age. In this study, a brain age classification and
estimation framework is proposed using structural magnetic
resonance imaging (sMRI) scans, a 3-D convolutional neural
network (3-D-CNN), and a kernel ridge regression-based random
vector functional link (KRR-RVFL) network. We used 480 brain
MRI images from the publicly available IXI database and
segmented them into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) images to show age-related associations
by region. Features from MRI images are extracted using 3-D-
CNN and fed into the wavelet KRR-RVFL network for brain age
classification and prediction. The proposed algorithm achieved
high classification accuracy, 97.22%, 99.31%, and 95.83% for
GM, WM, and CSF regions, respectively. Moreover, the proposed
algorithm demonstrated excellent prediction accuracy with a
mean absolute error (MAE) of 3.89 years, 3.64 years, and 4.49
years for GM, WM, and CSF regions, confirming that changes
in WM volume are significantly associated with normal brain
aging. Additionally, voxel-based morphometry (VBM) examines
age-related anatomical alterations in different brain regions in
GM, WM, and CSF tissue volumes.

Index Terms—Cerebrospinal fluid (CSF), gray matter (GM),
kernel ridge regression-random vector functional link (KRR-
RVFL), magnetic resonance imaging (MRI), white matter (WM).
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I. INTRODUCTION

AGING is a dynamic biological mechanism from birth to
old age, during which the cells in the body grow and

die. The human brain is known to undergo consistent changes
throughout an individual’s whole lifetime. The human brain
grows old and eventually stops functioning with increasing age.
The brain aging process is challenging to understand because
of the different accumulated damage rates of the brain, and
sometimes brain aging is accelerated and disrupted by internal
pathological changes [3]. Various neurodegenerative disorders
like Alzheimer’s disease (AD), Parkinson’s disease (PD), and
cognitive decline are difficult to foresee and detect early on.
Understanding the risk of age-related degeneration and how
it affects people is critical to offer appropriate care and treat-
ment. Brain age estimation entails training a deep learning
(DL) or machine learning (ML) model to detect brain aging
patterns using many brain magnetic resonance imaging (MRI)
images. Once trained, the model can estimate brain age on new
test samples. The disparity between the predicted brain age
and chronological age (actual age) is called the brain age gap
(BAG). It can be used as a biomarker for general health status
and early diagnosis of neurodegenerative ailments. A low BAG
score implies normal aging, but a high BAG value shows abnor-
mal aging, indicating a higher risk of age-related neurological
illnesses. The human brain has three important compartments:
gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). GM is occupied in the brain cerebrum, cerebellum,
brain stem, and spinal cord of the brain regions. GM consists
of neuronal cell bodies, dendrites, and unmyelinated axons.
GM is essential for various functions such as motor control,
memory preservation, and emotion management. Age-related
declines in GM volume occur annually at a rate of around
0.5%, and some brain regions experience more deterioration
than others [20]. WM is made up of myelinated axons that
link different GM regions of the brain and carry nerve impulses
between neurons. Axons are long connecting fibers covered in
a fatty material called the myelin sheath, which acts like an
insulator, allowing electrochemical impulses to be transmitted
efficiently across various areas. WM volume and myelinated
axons length are declined with aging. WM volume reaches its
peak at the age of 40–50, after which it progressively declines
[24]. CSF is a clear, colorless body fluid like plasma in the
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brain and spinal cord. The brain generates around 500 mL of
CSF daily at a rate of 25 mL per hour. CSF provides various
functions, such as protecting the brain from injury, removing
the brain’s metabolic waste, and preventing brain ischemia.
The volume of CSF also varies with normal brain aging [10].
On a global level, there is a negative linear relationship between
GM and age and a nonlinear relationship between WM, CSF,
and age. On a regional level, linear and nonlinear age-related
volumetric variations in various regions of the brain with the
aging process [2].

With the emergence of neuroimaging, the structural magnetic
resonance imaging (sMRI) modality has been extensively uti-
lized to examine structural changes of the brain during aging
and provide insight into the aging of the brain and degener-
ation. As a result, it is essential to classify and estimate an
individual’s brain age using high-dimensional morphological
changes from sMRI. Convolutional neural networks (CNN),
which are frequently employed in image classification and pre-
diction challenges, have shown great promise in visual fea-
ture extraction. CNNs’ excellent learning ability and automated
decision-making pipelines make them perfect for brain age
categorization and prediction, which may enhance medical con-
sultation, assessment, and decision-making [33]. In the present
work, a 3-D-CNN network is employed to extract the robust
features from the MRI scans.

The conventional CNN networks use gradient-based learn-
ing methods, which result in slow convergence rates and the
chance of being stuck in local minima. A randomized version
of the single-layer feed-forward neural network (SLFN), called
as random vector functional link (RVFL) network, has been
implemented to overcome these constraints. In RVFL, hidden
layer weights and biases are randomly initialized and remain
constant throughout the network training [29]. The traditional
RVFL is renowned for its fast learning rate, simple design, and
good generalization abilities. It provides direct connections be-
tween input and output nodes and nonlinear hidden nodes with
random weights. A feed-forward RVFL network overcomes the
limitations of conventional DL algorithms and also provides
better accuracy with faster speed. The input features are directly
fed to the output layer, which generates outputs employing a
linear decision function. In this study, a kernel trick is applied
to a standard RVFL network, which transforms the input space
into higher dimensional feature space while supplying input
features to the RVFL output layer through direct links [4], [38].
As a result, the output layer of the kernel ridge regression-
based RVFL (KRR-RVFL) network gets complete nonlinearity
by using the synergies of nonlinear activation functions like
radial basis (RadBas), triangular basis (TriBas), sigmoid, and
kernel function. The KRR-RVFL network benefits from both
kernel trick and nonlinear activation functions and provides
better performance of classification and regression tasks. In this
present work, a kernel ridge regression-based RVFL model is
used for the brain age classification and estimation of healthy
individuals. This study makes the following contributions:

1) All MRI images are segmented into GM, WM, and CSF
tissues. Experiments are conducted on preprocessed GM,
WM, and CSF datasets to show their regionwise associ-
ation with age.

2) Features are extracted using a 3-D-CNN deep network
from GM, WM, and CSF datasets.

3) The kernel trick is applied to the input features to get
the nonlinearity between the input and output of standard
RVFL to improve the efficiency of the classification and
regression framework.

4) The association between brain tissues and the natural
aging process examined by the suggested deep model.

5) The classification and regression performance metrics
of the wavelet KRR-RVFL network are compared with
state-of-the-art classifiers and regression networks.

6) Voxel-based morphometry (VBM) analysis is used to ob-
serve the age-related anatomical variations in GM, WM,
and CSF brain compartments.

The rest of the article is organized as follows: In Section II
Related works are discussed. Dataset as well as methodology
are presented in Section III. In Section IV results and discussion
are illustrated, and in Section V the article is concluded.

II. RELATED WORKS

Atrophy is the term used to indicate tissue volume loss
resulting from cellular loss caused by degeneration or other
mechanisms, like pruning. The human brain undergoes atrophy,
and brain shrinking has been broadly reported in several studies
[34]. The sMRI-derived parameters usually utilized to represent
aging can be roughly separated into a measure of GM, WM, and
CSF, which together form total brain volume [14]. Resnick et al.
[23] conducted research with 92 older adults to find out the dis-
tribution and rate of WM and GM loss in elderly persons. They
discovered that the tissues in the frontal and parietal regions
declined more quickly than tissues in the occipital lobar and
temporal areas, and WM tissue is extensively decreased. GM
loss in inferior frontal and orbital, cingulate, insular, inferior,
and parietal areas, and considerable loss in temporal region.
In contrast, [35] examined healthy young people aged 18 to 50.
Their findings revealed considerable GM loss in right prefrontal
cortex and left cerebellum but no GM loss in the medial tempo-
ral area, cingulate gyrus, insular, and temporal neocortex with
aging. CSF volume is larger in the elderly than in the young,
and CSF-filled ventricles seem to increase quadratically with
time, with relative stability until middle adulthood and rapid
expansion after that [7]. Liu et al. [13] demonstrated that the
volume loss is more apparent in WM than in GM, particularly
in the corpus callosum and frontal lobe, and discovered a 26%
reduction in WM tissue volume and 14% reduction in GM
tissue volume.

Ensemble DL integrates several networks to improve the
performance of classification and prediction of the models.
Hofmann et al. [8] integrated ensembles of CNN with layer-
wise relevance propagation (LRP) algorithm to detect relevant
features to predict the brain age. They discovered age-related
variations throughout the brain and enlargements of ventricles,
WM lesions as well as accelerating aging effect in the frontal
lobe. Kuo et al. [12] proposed an ensemble DL brain age pre-
diction model, they first used conventional ML approaches to
extract the robust input features, and secondly, the obtained
input features fed to ensemble DL model using 6-layer 3-D
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residual neural network. The authors achieved higher prediction
accuracy: mean absolute error (MAE) = 3.77 years; R2 = 0.90
with multiple concurrent input features. Siar and Teshnehlab
[31] implemented an AlexNet-based CNN architecture for brain
age classification. The age groups are separated into five cat-
egories ranging from 10 to 70 years. Softmax, support vector
machine (SVM), and decision trees (DT) classification layers
are used in this model, and with the Softmax classification layer
the model achieved 79% accuracy. Zhang et al. [39] introduced
a novel sparse pretrained RVFL method and they demonstrated
the advantage of adopting RVFL across 16 different datasets,
and the associated results show that RVFL outperforms an-
other noniterative classifier. In [19] authors implemented the
multiclass brain abnormalities classification framework using
fast curvelet Tsallis entropy for feature extraction from MRI
scans and kernel RVFL as a classifier to classify the five classes:
normal, brain tumor, infections, degenerative, and stroke. They
used two multiclass datasets, dataset-1 having 200 scans, out
of which 40 scans are normal and 160 are abnormal scans, and
another dataset-2 having 15 images of each class and a total
of 75 scans. The classification accuracy of dataset-1 is 97.33%
and for dataset-2 is 93%.

VBM methods have been developed to analyze and quan-
tify volumetric variations in the normal human brain using
sMRI. Farokhian et al. [6] used the VBM strategy to inves-
tigate regional and global brain GM and WM tissue volume
differences between healthy young and older individuals. GM
volume declined at the regional level at the frontal, insular, and
cingulate cortices regions. WM volume declined at thalamic
radiations and increased at occipital and pericentral regions in
older subjects compared to young subjects. On a global level,
they examined the effects of the aging process on GM, WM,
and the total intracranial volume (TIV) of healthy individuals.
Spindler et al. [32] detected significant WM variations using
VBM in patients with alcohol use disorder (AUD). 416 control
normal (CN) and 462 AUD patients are employed for this
experiment. This study revealed four significant clusters of
WM changes in AUD patients that are anterior and posterior
cingulum, corpus callosum, fornix, and internal capsule right
posterior limb. In [11] Joy et al. identified the structural GM
and WM changes in HIV patients using the VBM technique
and surface-based morphometry (SBM) analysis. In this study,
27 HIV-infected individuals and 15 HIV-unaffected CNs are
considered to examine the brain’s structural changes. Compared
to CNs, this study found a link between altered GM and WM
volumes in various brain areas of HIV-infected persons, partic-
ularly in the middle frontal and parahippocampal regions.

This section overviews important work done in the relevant
field to insight the motivation and knowledge.

III. METHODOLOGY

The following section explains the dataset used in the exper-
iments and the proposed brain age classification framework.

A. Dataset

For experiments, the data has been acquired from the publicly
available IXI (http://www.brain-development.org/ixi-dataset/)

TABLE I
DEMOGRAPHICAL INFORMATION OF THE DATASET

Class No. of Samples Mean Age SD TR TE
Ages (20–40) 160 30.13 5.79 9 Sec 4 Sec
Ages (41–60) 160 50.32 6.14 9 Sec 4 Sec
Ages (61–90) 160 76.24 8.96 9 Sec 4 Sec

Note: SD: standard deviation, TR: repetition time, TE: echo time

database. A total of 480 CN subjects are used in this study.
MRI scans are captured using a 3T Phillips scanner with a
slice thickness of 1.2 mm. Each MRI image dimension is 256 ×
256 × 150. The demographical information of the subjects is
illustrated in Table I.

B. Preprocessing

All T1-weighted MRI images are preprocessed by utiliz-
ing MATLAB-based statistical parametric mapping-12 toolbox
(SPM12) (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/),
computational anatomy toolbox (CAT)-12 toolbox (http://dbm.
neuo.uni-jena.de) and followed by a specific parameter set.
First, the MRI scans are segmented into three main components:
GM, WM, and CSF. MRI preprocessing includes bias-field
distortions correction, removal of nonbrain tissue, and normal-
ization to standard Montreal Neurological Institute (MNI) space
by diffeomorphic registration algorithm and then modulated.
The pictures of GM, WM, and CSF are smoothed using an
8-mm full-width half maximum (FWHM) Gaussian kernel.
The architecture of the proposed KRR-RVFL-based model is
illustrated in Fig. 1.

C. Feature Extraction

We used a 3-D-CNN as the backbone to extract deep fea-
tures from input MRI images. CNN consists of three main
layers. The proposed 3-D-CNN contains six blocks. Each block
consists of a convolutional layer (CL), batch normalization
layer, and rectified linear unit (ReLU) activation layer. A max-
pooling layer (MPL) with a kernel size of 2 × 2 and stride
of 2 is applied after every block to reduce the spatial dimen-
sions gradually. The channel numbers used in the blocks are
[32, 32, 16, 32, 16, 8].

D. KRR-RVFL

RVFL is a randomized neural network, and its graphical
representation as shown in Fig. 2. RVFL eliminates the draw-
backs of back propagation-based classifiers, such as slow con-
vergence, overfitting, and being trapped in a local minimum.
In RVFL randomness occurs between the input layer and hidden
layer, weights w and biases b are randomly initialized with
uniform distribution from the sets [0, 1] and [−1, 1], respec-
tively, and remain the same during training and testing. From
the hidden layer to the output layer, the output weights α are
calculated analytically. RVFL’s output layer is supplied with
X original input features and G hidden layer output features,
which can be written as D = [G X]. X and G are as shown as

X =

⎡
⎣
x11 . . . x1n

. . . . . . . . .
xN1 . . . xNn

⎤
⎦, G=

⎡
⎣
g1(x1) . . . gL(x1)
. . . . . . . . .

g1(xN ) . . . gL(xN )

⎤
⎦

http://www. brain-development.org/ixi-dataset/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://dbm.neuo.uni-jena.de
http://dbm.neuo.uni-jena.de
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Fig. 1. Architecture of the proposed wavelet KRR-RVFL-based deep model.

Fig. 2. Graphical illustration of RVFL.

Here, g1(x1) = h(w1.x1 + b1) and so on, h(.) is nonlinear
activation function. If x are the input features and L are the
hidden nodes, then (x+ L) features are supplied to output

layer. Mathematical expression of the optimization function is

min
α

‖Dα−O‖2 + η‖α‖2 (1)

where η = 1/C is regularization parameter and O is output
target. The above equation can be computed by using ridge
regression (i.e., η �= 0) or Moore-Penrose pseudoinverse (i.e.,
η = 0). If η = 0, then α=D+O and η �= 0 then

α= (DTD + ηI)−1DT O (2)

α=DT

(
DDT +

I

C

)−1

O. (3)

The above equations are primal and dual solutions, respectively.
In standard RVFL, input features are directly applied to the

output layer, outputs generated using a linear decision bounds,
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Fig. 3. Graphical representation of KRR-RVFL.

and there is a possibility of instability in the classification. To
overcome this, kernel trick is used in RVFL network, which
transforms the input space. The idea of kernelized RVFL is
shown in Fig. 3.

The matrix D is written as D = [G φ(X)] and φ(X) is
the mapping function that maps input space X into a higher
dimension. The (3) can be represented as

α=
[
G φ(X)

]T ([
G φ(X)

] [ GT

φ(X)T

]
+

I

C

)−1

O (4)

α=
[
G φ(X)

]T (
GGT + φ(X)φ(X)T +

I

C

)−1

O. (5)

Now, applying the kernel trick to (5) and representing K,
as follows:

K = φ(X)φ(X)T =

⎡
⎢⎢⎣
k(x1, x1) . . k(x1, xn)

. . . .

. . . .
k(xn, x1) . . k(xn, xn)

⎤
⎥⎥⎦. (6)

The Eq. 5 can be expressed as

α=
[
G φ(X)

]T (
GGT +K +

I

C

)−1

O. (7)

The final output expression can be written as

y(x) = [g(x)TGT +φ(x)Tφ(X)T ]

[
GGT +K+

I

C

]−1

O (8)

y(x) = [g(x)TGT + k(xT , XT )]

[
GGT +K +

I

C

]−1

O (9)

where k = xTXT .

E. Wavelet Analysis and Wavelet Kernel

Wavelet analysis outperforms the Fourier transform (FT) by
providing exact time-frequency analysis. Wavelet kernels of
Morlet or Mexican Hat types are widely recognized for their
generalization and strong function-fitting capabilities, and they
can be termed as local kernels. Wavelet analysis approximates
a function via dilations and translations of mother wavelet φ(x)

φa,m(x) = |a|−1/2
φ

(
x−m

a

)
(10)

where a,m ∈R, a is dilation factor, and m is the fac-
tor of translation. The expression for wavelet transform
function f(x) is

Wa,m(f) =< f(x), φa,m(x)>. (11)

From (11), f(x) is decomposed on wavelet basis φa,m(x).
The mother wavelet function φ(x) must satisfy the follow-
ing condition

Wφ =

∫ ∞

0

|φ(w)|2

|w| dw <∞ (12)

where φ(w) is FT (φ(x)). The function f(x) can be recon-
structed as

f(x) =
1
Wφ

∫ ∞

−∞

∫ ∞

0
Wa,m(f)φa,m(x)dadm. (13)

The approximation of f(x) is expressed as

f̃(x) =

l∑
i=1

Wiφai,mi
(x). (14)

A basic multidimensional wavelet function can be written as
a combination of one dimensional wavelet functions

φ(x) =
N∏
i=1

φ(xi). (15)

If φ(x) is mother wavelet kernel, and if x, x′ ∈RN , then the
wavelet kernels are

K(x, x′) =
N∏
i=1

φ

(
xi −mi

a

)
φ

(
x′
i −m′

i

a

)
(16)

and the transnational invariant wavelet kernel function is

K(x, x′) =
N∏
i=1

φ

(
xi − x′

i

a

)
. (17)

The mother wavelet of Morlet wavelet function is

φ(x) = cos(b ∗ x) exp
(
−x2

2

)
(18)

then Morlet wavelet kernel function is

K(x, x′) =
N∏
i=1

(
cos

(
b ‖(xi − x′

i)‖
a

)
exp

(
−‖(xi − x′

i)‖
2

e

))
.

(19)

Kernel-based classification approaches capture the nonlin-
earity of data characteristics in the feature space and are often
sensitive to the selection of parameters.

Overall, the 3-D-CNN network extracted all levels of fea-
tures from brain tissue components. After, the extracted features
are applied to the wavelet KRR-RVFL (WKRR-RVFL) deep
model, and classification is done for brain aging.
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Fig. 4. Architecture of VBM framework.

F. Voxel-Based Morphometry

VBM is a whole-brain unbiased, objective technique devel-
oped to assess brain differences using sMRI images. VBM
seeks to identify variations in the local composition of brain
tissue while overlooking significant scale variances in physi-
cal anatomy and location. This is achieved by segmenting the
MRI images into GM, WM, and CSF compartments and then
spatially normalizing all the MRI images to the MNI space,
smoothing the GM, WM, and CSF scans, and finally performing
a statistical analysis to identify significant variations in two
or more experimental groups. In this study, TIV is used as
a global value for estimating the GM, WM, and CSF map
volumes, while age and gender are used as covariates. The mul-
tiple regression test is then performed using familywise error
(FWE) correction and p < 0.05 threshold. The 0.2 voxel extent
threshold is selected and finally, MATLAB xjview toolbox is
utilized to record and observe voxel brain region (visualized
with pseudo color), with informative variations, activation vol-
ume (cluster), activation intensity (assessed statistically using
multiple regression test, and presented as a T-value, where
T-value increases as the intensity increases). Fig. 4 shows the
VBM analysis processing framework.

IV. RESULTS AND DISCUSSION

A. Implementation Details

The assessments are carried out on a machine equipped with
MATLAB R2021a, an Intel(R) i7-8700 CPU-3.20GHz, 16GB
RAM, and Windows 10. The preprocessed GM, WM, and CSF
datasets are used in this experiment. The samples from each
dataset are randomly partitioned into 70:30 ratios. For 3-D-
CNN the training parameters are taken as follows: minibatch
size (16), learning rate (0.01), optimizer (sgmd), and epochs
(10). The hyperparameter values for the experiments are taken
as b= 3, a= 2, e= 2a2, regularization parameter η = 1/C,
C is chosen from the range 2z , where z = {−6,−4, . . . , 12},
and RadBas activation function and wavelet kernel function are
incorporated in RVFL network.

B. Experiments

This segment describes the performance measures used to
assess the efficacy of classification and regression algorithms.

TABLE II
PERFORMANCE EVALUATION OF PROPOSED KRR-RVFL WITH WAVELET

FUNCTION (IN %)

Data Accuracy Recall Specificity Precision F1-Score
GM 97.22 100 95.83 92.31 96.00
WM 99.31 100 98.96 97.96 98.97
CSF 95.83 100 93.75 88.89 94.12
Ensemble 99.56 100 99.12 98.23 99.14

Accuracy measures the classifier’s ability to differentiate be-
tween ages 20–40, ages 41–60, and ages 61–90. Sensitivity or
Recall defines the fraction of correctly classified positive occur-
rences. Precision describes the proportion of true positive pre-
dictions out of all positive occurrences. Specificity represents
the fraction of correctly classified negative occurrences. F1-
score measures accuracy through the weighted harmonic mean
of precision and recall. The confusion matrix (CM) evaluates
the performance metrics of classification models on a given
test data set, and true values are employed to construct CM.
The receiver operating characteristic (ROC) curve is a speci-
ficity versus sensitivity 2-D plot, illustrating the classification
algorithm performance for all values. To assess the accuracy of
brain age prediction models, MAE, BAG, coefficient of deter-
mination (R2), and root mean squared error (RMSE) between
individual predicted brain ages and real ages are evaluated.

C. Comparison of Different Segmented Brain Tissue Volumes

Table II displays the results of brain age classification for
the KRR-RVFL-based deep model utilizing a wavelet kernel
function, with GM, WM, and CSF datasets. The WKRR-RVFL
dep network achieved an accuracy rate of 97.22% for GM,
99.31% for WM, and 95.83% for CSF. Notably, WM exhibited
the highest accuracy in brain age classification, while CSF
provided the lowest performance metrics. Furthermore, the pro-
posed model reached a classification accuracy of 99.56% when
considering the combination of GM, WM, and CSF features,
which is slightly superior to WM maps. However, it’s important
to note that the computational complexity of the brain age
classification framework is significantly higher when compared
to a single modality. The CM and ROC curves of all segmented
brain compartments as shown in Fig. 5.

D. Comparison With Different Kernel Functions Introduced in
Standard RVFL and State-of-the-Art Classifiers

In this subsection, the efficacy of the proposed KRR-RVFL
model with various kernel functions like the polynomial ker-
nel (PK), Gaussian kernel (GK), is compared with standard
RVFL, deep RVFL (dRVFL), ensemble dRVFL (edRVFL) and
different classifiers like softmax [31], SVM [22], random forest
(RF) [27], ensemble bagging (EB) [25], K-nearest neighbor
(KNN) [5], Naive Bayes (NB) [37]. The performance matrices
of various classifiers with regard to accuracy, recall, specificity,
precision, and F1-score are tabulated in Table III. The wavelet
KRR-RVFL deep model outperforms standard RVFL, dRVFL,
edRVFL as well as other state-of-the-art networks.
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Fig. 5. CM and ROC curve of a) GM; b) WM; and c) CSF.

TABLE III
COMPARISON BETWEEN THE WKRR-RVFL MODEL AND DIFFERENT

CLASSIFIERS ON WM DATA (IN %)

Model Accuracy Recall Specificity Precision F1-Score
NB [37] 90.56 92.86 88.10 79.59 85.71
KNN [5] 91.27 97.62 88.10 80.39 88.17
RF [27] 92.06 100 88.10 80.77 89.36
EB [25] 93.09 87.50 95.83 91.30 89.36
SVM [22] 92.86 95.24 91.67 85.11 89.89
Softmax [31] 93.75 85.42 97.92 95.35 90.11
RVFL [29] 94.44 95.24 94.04 88.89 91.95
dRVFL [28] 95.24 97.62 94.05 89.13 93.18
edRVFL [15] 96.03 97.62 95.24 91.11 94.25
PKRR-RVFL 97.92 100 96.88 94.12 96.97
GKRR-RVFL 98.61 100 97.62 97.96 98.95
WKRR-RVFL 99.31 100 98.96 97.96 98.97

Note: Bold indicates best result.

E. Comparison With Different Activation Functions

In this subsection, different conventional activation func-
tions like ReLU, scaled exponential linear unit (SELU),
sigmoid, sine, hard limit (HardLim), TriBas, and RadBas in-
corporated individually along with wavelet kernel function to
get complete nonlinearity at the output layer of RVFL network.
Activation functions are critical in neural networks because they
introduce nonlinearity, allow data translation, and substantially
influence the network’s ability to adapt to input and distinguish
between alternative outcomes. The comparative analysis of the

TABLE IV
COMPARISON BETWEEN DIFFERENT ACTIVATION FUNCTIONS ON WM

DATA (IN %)

Activation
Function Accuracy Recall Specificity Precision F1-Score

ReLU 92.47 96.15 92.19 91.13 91.33
SELU 89.13 92.61 90.32 90.11 88.74
Sigmoid 94.63 95.94 95.10 94.21 92.27
Sine 84.43 89.26 87.21 83.47 83.22
HardLim 97.13 99.75 96.81 95.29 96.49
TriBas 97.83 99.72 96.73 94.27 96.82
RadBas 99.31 100 98.96 97.96 98.97

Note: Bold indicates best result.

TABLE V
COMPARISON BETWEEN WKRR-RVFL REGRESSION MODEL AND

DIFFERENT REGRESSION MODELS ON GM, WM, CSF TESTING

DATASETS

Data
Regression
Model

MAE
(Years)

BAG
(Years)

RMSE
(Years)

R2

Score

GM

ELM [9] 4.61 0.99 5.24 0.93
KRR [30] 4.09 0.39 4.88 0.95
RVFL [29] 4.03 0.36 4.79 0.95
WKRR-RVFL 3.89 0.22 4.13 0.96

WM

ELM [9] 4.33 0.74 5.07 0.94
KRR [30] 3.97 0.28 4.81 0.96
RVFL [29] 3.90 0.26 4.65 0.96
WKRR-RVFL 3.64 0.13 4.04 0.97

CSF

ELM [9] 5.21 1.10 6.74 0.88
KRR [30] 4.77 0.89 5.40 0.91
RVFL [29] 4.73 0.84 5.33 0.91
WKRR-RVFL 4.49 0.63 5.19 0.92

Note: Bold indicates best result.

WKRR-RVFL model with different activation functions on the
WM dataset is shown in Table IV.

F. Performance Evaluation of Different Regression Models

The BAG is used as the biomarker to understand better the
healthy aging process and the prognosis of severe neuronal
ailments. In this study, we predicted the brain age of CN sub-
jects and obtained better prediction outcomes on WM images.
The extreme machine learning (ELM) regression network on
GM data maps got an MAE value of 4.61 years more than the
kernel ridge regression (KRR) and RVFL networks. The BAG
is 0.22 years for the WKRR-RVFL model and 0.36 years for
the RVFL network. The ELM achieved an MAE of 4.33 years,
RMSE of 5.07 years, and R2 score of 0.94, and for the RVFL
network, an MAE of 3.90 years on WM maps, whereas the KRR
obtained a BAG of 0.28 years, an RMSE of 4.81 years. The pro-
posed regression model achieved the lowest error outcomes,
such as MAE of 3.64 years, BAG of 0.13 years, and RMSE
of 4.04 years, than the comparative regression models. On CSF
data maps, ELM provided more error outcomes as MAE is 5.21
years and the BAG is 1.10 years. The BAG and error output
values are higher for CSF images, indicating that the fluid maps
are less associated with aging. The WM tissue is significantly
associated with the normal aging process than the GM tissue
and the summary of regression models assessment is tabulated
in Table V.



PILLI et al.: KRR-BASED RANDOMIZED NETWORK FOR BRAIN AGE CLASSIFICATION AND ESTIMATION 1349

TABLE VI
COMPARISON BETWEEN WKRR-RVFL REGRESSION MODEL

AND CONVENTIONAL REGRESSION MODELS

Data
Regression
Model

MAE
(Years)

BAG
(Years)

RMSE
(Years)

R2

Score

GM

SVR [16] 5.66 1.69 6.43 0.85
GPR [36] 5.42 1.27 6.32 0.86
RR [17] 5.28 1.33 6.22 0.86
RF [1] 5.39 1.21 6.59 0.86
LR [1] 5.45 1.43 6.41 0.86
WKRR-RVFL 3.89 0.22 4.13 0.96

WM

SVR [16] 5.47 1.14 6.28 0.86
GPR [36] 5.39 1.11 6.37 0.88
RR [17] 5.16 1.09 6.19 0.87
RF [1] 5.23 1.17 6.24 0.87
LR [1] 5.36 1.23 6.32 0.87
WKRR-RVFL 3.64 0.13 4.04 0.97

CSF

SVR [16] 6.03 1.82 7.10 0.82
GPR [36] 6.22 1.93 7.09 0.82
RR [17] 6.45 2.01 7.25 0.81
RF [1] 6.26 1.97 7.12 0.82
LR [1] 5.98 1.76 7.01 0.83
WKRR-RVFL 4.49 0.63 5.19 0.92

Note: Bold indicates best result.

G. Comparison Between WKRR-RVFL Regression Network
and State-of-the-Art Regression Networks

Table VI shows the comparison between the WKRR-RVFL
regression network and conventional regression models like
support vector regression (SVR), Gaussian regression process
(GPR), ridge regression (RR), RF, and lasso regression (LR)
networks for GM. WM, and CSF datasets in terms of prediction
accuracy measures.

On the WM dataset, the SVR network achieved an MAE
of 5.47 years, a BAG of 1.14 years, and the RF regression
network obtained a RMSE value of 6.24 years. The LR network
got 5.45 years of MAE and 6.41 years of RMSE values on
the GM dataset, whereas, for the CSF dataset, the RR network
obtained a BAG of 1.93 years and the RF network achieved the
prediction accuracy of a MAE is 6.26 years. The proposed deep
model achieved better prediction outcomes than conventional
regression models.

H. VBM Analysis

With the voxelwise multiple regression of age on the vol-
umes of brain tissues found significant changes in various
brain regions of healthy aging. All regions described here as
important survived a statistical threshold of p < 0.05 (FWE
corrected). Substantial age-related changes in GM volume have
been identified in the Right cerebrum caudate, Right cerebrum
extranuclear, and Left cerebrum extranuclear. WM volume al-
terations in Left cerebrum temporal lobe, Right cerebrum tha-
lamus, Right cerebrum extranuclear, Right cerebrum internal
ventricle. Areas of accelerated enlargement of the CSF are seen
at the Interhemispheric fissure and Left cerebrum limbic lobe.
Table VII demonstrated voxelwise multiple regression of age on
the WM, GM, and CSF tissues with p < 0.05 and the clusters
in Fig. 6 depict the GM, WM, and CSF tissues alteration of
brain regions.

TABLE VII
VOXELWISE MULTIPLE REGRESSION OF AGE ON BRAIN TISSUES

WITH p < 0.05

Tissue Anatomical Area Voxels T-Value

WM

Left cerebrum temporal lobe 2645 18.10
Right cerebrum thalamus 205 11.98
Right cerebrum extra nuclear 24 9.70
Right cerebrum internal ventricle 36 6.83

GM
Right cerebrum caudate 590 14.09
Right cerebrum extra nuclear 15 9.54
Left cerebrum extra nuclear 9 8.39

CSF
Left cerebrum limbic lobe 80 9.87
Interhemispheric fissure 10 7.70

Fig. 6. VBM analysis for a) WM alterations; b) GM alterations; and c) CSF
alterations.

I. Discussion

In this work, we aimed to classify and estimate brain age
based on changes in the brain’s tissues. The appropriate detec-
tion of brain imaging biomarkers, that have a major influence
on brain age, using DL networks can enhance medical ser-
vices. Monitoring healthy aging using DL models may give new
methods for predicting health and the risk of neurodegenerative
disorders. Hence, this study aims to implement an accurate
brain age prediction framework that can be useful to observe
brain age in the clinical context. The significant finding of
our study is that age can be more highly correlated with WM
than GM and CSF. During young, middle, and old age, WM
experiences some of the most significant changes. The brain
develops during young adulthood and reaches maturity around
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the twenties. WM gradually increases, and specific brain re-
gions are responsible for bodily functioning during this period.
In middle age, brain atrophy begins slightly, and some areas are
affected, leading to cognitive function decline. In older age, the
brain shrinks more rapidly, and there is a significant reduction
in WM volume. The substantial decrease in WM volume is
consistent with the concept that the aging brain experiences
a decrease in neural connectivity. Multiple studies [18], [21],
[26] have demonstrated a relatively more significant decline
in WM volume with increasing age. In individuals aged 30–
90, there is a 26% reduction in WM volume compared to a
14% reduction in GM tissue volume. WM volume loss may be
characteristic of later stages of aging, whereas GM loss may
initiate earlier and progress gradually. Brain aging is charac-
terized by the deterioration of WM, including features such as
myelin discoloration, loss of myelinated fibers, and deforma-
tion of myelin sheaths. The proposed brain age classification
framework is implemented on 480 brain MRI scans collected
from the IXI database and arranged into three groups (ages
20–40, ages 41–60, and ages 61–90). All MRI images are
segmented and preprocessed using SPM12 toolbox, and GM,
WM, and CSF datasets are prepared for doing experiments on
the proposed KRR-RVFL-based deep model. The features of
input images are extracted using 3-D-CNN, and classification
has been done by the KRR-RVFL network with different ker-
nel functions. The experiments are conducted on GM, WM,
and CSF segmented data and achieved 97.22%, 99.31%, and
95.83% classification accuracy, respectively, and for ensemble
of three tissues the model provided better accuracy, but the
complexity of the model rise up hence we considered only
single modality to reduce the complexity. The summary of as-
sessment of wavelet KRR-RVFL model as depicted in Table II.
The proposed KRR-RVFL-based deep model with different
kernel functions is compared with various classifiers like NB,
KNN, EB, RF, and SVM classifiers, as well as with standard
RVFL, dRVFL, and edRVFL. WM dataset is considered as
input to the model. The KRR-RVFL model with wavelet kernel
function yields better performance metrics than other state-of-
the-art networks as illustrated in Table III. The utilization of the
RadBas activation function and the wavelet kernel function in
the RVFL network yielded notable classification results for WM
scans when compared with various other activation functions,
as summarized in Table IV. The summary of the assessment of
different regression models used to predict brain age is shown
in Table V. The proposed regression model outperforms other
comparative regression models on the WM dataset in terms
of MAE, BAG, and RMSE values. The WKRR-RVFL model
achieved RMSE of 4.13 years, 4.04 years, and 5.19 years and
a BAG of 0.22 years, 0.13 years, and 0.63 years for GM,
WM, and CSF datasets, respectively. Conventional regression
models like SVR, GPR, RR, RF, and LR networks are used to
predict the brain age of CN subjects, and the prediction accuracy
measures are compared with the proposed model outcomes
are shown in Table VI. Furthermore, we also investigated the
age-related anatomical variations in brain tissue volumes using
VBM analysis. VBM helps to detect the anatomical variations
of brain regions in neurodegenerative ailments like dementia,

PD, schizophrenia (SZ), Huntington’s disease, and multiple
sclerosis (MS). VBM automatically analyzes each voxel size
of segmented tissue to identify the GM, WM, and CSF volume
variations. VBM is not biased toward anatomical changes in
a specific brain location and prevents subjective differences in-
duced by artificially showing the region of interest. In this work
GM volume alterations have been identified in three regions,
WM volume variations are detected in five regions, and for
CSF two regions are identified. For WM maps T-value (18.10)
and for GM, CSF maps T-values (14.09), (9.87), respectively.
It indicates that the WM more correlates with age compared
with GM and CSF.

V. CONCLUSION

In this study, we classified and estimated the brain age of
480 CN individuals using a kernel ridge regression-based ran-
domized deep model with structural magnetic imaging (MRI)
images. We employed the DARTEL preprocessing pipeline to
segment the MRI images into GM, WM, and CSF tissues.
All images are then normalized to a standard MNI template
using the statistical parametric mapping-12 (SPM12) toolbox.
The features of the preprocessed MRI scans are extracted us-
ing a 3-D convolutional neural network (3-D-CNN), and these
extracted features are classified using a wavelet kernel ridge
regression (WKRR)-RVFL network. To address the potential
linearity issues at the output layer due to the direct link of
input features, a kernel trick is applied to the input features
before transferring them to the output layer. The WKRR-
RVFL-based deep model demonstrated excellent performance
metrics, including F1-score, Accuracy, Sensitivity, Specificity,
and Precision, Particularly in relation to WM images. Addi-
tionally, the model effectively estimated brain age, yielding
prominent outcomes in terms of BAG, MAE, root mean square
error (RMSE), and coefficient of determination (R2). When
compared to various classifiers and regression networks, the
KRR-RVFL network with the wavelet kernel function outper-
formed others. The experimental results underscore the fea-
sibility and validity of the wavelet KRR-RVFL network in
brain age classification and estimation. Furthermore, we con-
ducted a VBM analysis to observe age-related anatomical vari-
ations in GM, WM, and CSF brain tissues of CN subjects.
Notably, our findings suggest that WM volumes are more signif-
icantly associated with the normal aging process than GM and
CSF volumes.

The current study’s limitations lie in its exclusive use of struc-
tural MRI images of CN subjects for brain age classification
and estimation. The WKRR-RVFL model requires a significant
amount of memory to store the kernel matrix, which makes
solving linear systems involving kernel techniques computa-
tionally expensive, as well as confronting challenges in terms
of hyperparameter fine-tuning, interpretability, and scalability.
Future research can expand on this by incorporating functional
MRI scans to capture functional changes, positron emission to-
mography (PET) scans to observe metabolic changes and mag-
netic resonance spectroscopy (MRS) scans to detect chemical
alterations in the brain, facilitating a comprehensive analysis of
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age-related variations in the brain. Additionally, future studies
may explore the connection between brain aging and neurolog-
ical disorders.
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