100 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2024

A Multiagent Meta-Based Task Offloading
Strategy for Mobile-Edge Computing

Weichao Ding™, Fei Luo™, Chunhua Gu, Zhiming Dai, and Haifeng Lu

Abstract—Task offloading in mobile-edge computing (MEC)
improves the efficacy of mobile devices (MDs) in terms of com-
puting performance, data storage, and energy consumption by
offloading computational tasks to edge servers. Efficient task
offloading can leverage MEC technology to reduce task process-
ing latency and energy consumption. By integrating the reasoning
ability and machine intelligence of the cognitive computing archi-
tecture, such as SOAR and ACT-R, reinforcement learning (RL)
algorithms have been applied to resolve the task offloading in
MEC. To solve the problem that conventional deep RL (DRL)
algorithms cannot adapt to dynamic environments, this article
proposed a task offloading scheduling strategy which combined
multiagent RL and meta-learning. In order to make the two
actions of charging time and offloading strategy fully consid-
ered at the same time, we implemented a learning network of
two agents on an MD. To efficiently train the policy network,
we proposed a first-order approximation method based on the
clipped surrogate objective. Finally, the experiments are designed
with a variety of the number of subtasks, transmission rate,
and edge server performance, and the results show that the
MRL-based strategy has the overwhelming overall performance
and can be quickly applied in various environments with good
stability and generalization.

Index Terms—Deep reinforcement learning (DRL), edge task
offloading, meta-learning, multiagent.

I. INTRODUCTION

ITH the increasing popularity and high-speed of

Mobile Internet, numerous mobile devices (MDs) will
be deployed in various business scenarios for data collection
and collaborative control. Thus, their MD-based applications,
such as target identification and environment sensing, pos-
sess great commercial value. However, MDs are limited by
various factors, such as cost and size, and they usually are
limited by weak performance and small battery capacity; there-
fore, it is difficult to provide long-term stable services for
the above-mentioned scenarios. To solve this problem, mobile-
edge computing (MEC) provides high-performance computing
resources for MDs at the edge of the network, while wireless

Manuscript received 14 November 2022; revised 5 January 2023; accepted
12 February 2023. Date of publication 17 February 2023; date of cur-
rent version 12 February 2024. This work was supported in part by the
Shanghai Sailing Program under Grant 20YF1410900; in part by the National
Natural Science Foundation under Grant 62276097; and in part by the Project
on Shanghai Science and Technology Innovation Action Plan under Grant
227R 1416500 and Grant 20dz1201400. (Corresponding authors: Fei Luo;
Chunhua Gu.)

The authors are with the Faculty of School of Information Science and
Engineering, East China University of Science and Technology, Shanghai
200237, China (e-mail: luof @ecust.edu.cn; chgu@ecust.edu.cn).

Digital Object Identifier 10.1109/TCDS.2023.3246107

power transfer (WPT) services enable MDs to receive contin-
uous and stable power supply from the hybrid access point
and store energy in their batteries [1].

The applications of MDs in smart scenarios are addressed
by combining MEC and WPT. However, this approach faces
three challenges in the related scheduling.

1) Choosing the WPT service duration to ensure successful

task processing while reducing the total latency.

2) Reasonably deciding whether application data needs
to be offloaded to the corresponding edge server for
processing to improve the task success rate.

3) Achieving adaptability of scheduling policies. Improving
the robustness of the algorithm to new tasks and envi-
ronments when the MEC environment or task type
changes.

If the WPT service duration is too long, despite provid-
ing sufficient power to the MD for task offloading or local
computing to ensure task processing completion, the exces-
sive latency may exceed the maximum allowable time for the
task and; eventually, it may cause degradation of user experi-
ence. If the WPT service duration is too short, the MD may
not have enough power for task offloading and cause task pro-
cessing failure [2]. Furthermore, the mobile application can be
split and generate directed acyclic graph (DAG) subtasks as
data transmission delay. This enables partial offloading and
parallel processing of tasks, and effectively reduces computa-
tional latency and transmission delay [3]. Therefore, to fully
utilize the computing resources of MDs and edge servers
and minimize the corresponding task processing latency and
energy consumption, we need to design a strategy to decide
whether to offload mobile tasks and WPT service duration.
This would ensure that MDs have sufficient power to process
and transmit the corresponding tasks and improve the quality
of service of users.

To resolve the problem of task offloading with multiple
DAG types in the MEC, cognitive computing is an effective
way, which integrates reasoning ability and machine intelli-
gence [4], [5]. Especially, artificial intelligence (AI) algorithms
enable high performance for edge servers [6]. Therefore, this
article tries to utilize one basic Al algorithm of the cognitive
computing architecture, such as SOAR [7] and ACT-R [8], i.e.,
reinforcement learning (RL), to resolve the problem. However,
the traditional deep RL (DRL) algorithm [9] is time consum-
ing because it needs to train various types of tasks to learn the
latest strategy in a new environment. To fix this problem of the
traditional DRL, meta-RL (MRL) utilizes inner and outer loops
to accelerate the learning rate of new tasks. The outer loop

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8892-3760
https://orcid.org/0000-0002-7062-4404
https://orcid.org/0000-0002-1520-9339

DING et al.: MULTIAGENT META-BASED TASK OFFLOADING STRATEGY FOR MOBILE-EDGE COMPUTING 101

is responsible for learning the commonality between different
tasks from a large number of samples and updating the param-
eters of the inner loop, which further adjusts the parameters
through a short training period to quickly adapt to the new task.
Therefore, this study proposes a multiagent MRL strategy [10]
to solve the task offloading problem in MEC environments,
where mobile applications have multiple DAG types and MDs
have WPT services. Consequently, the offloading decisions of
each subtask need to coordinate multiple actions, such as the
offload decision and required WPT service duration. Finally,
the proposed method reduces the total latency and energy con-
sumption of this task as much as possible while ensuring a
high task success rate. To evaluate the performance of the
strategy thoroughly, we consider the following dynamic sce-
narios: 1) heterogeneous users with personal preferences of
mobile applications, which are represented as DAGs with dif-
ferent heights, widths, and task numbers and 2) varying the
transmission rates according to the distance between the MDs
and MEC servers. The major contributions of this study can
be summarized as follows.

1) Proposing a MEC model where mobile applications
can be split into multiple DAG types and MDs with
WPT services. A task offloading algorithm, namely,
MASAC, based on multiagent RL was proposed aim-
ing to minimize the task processing latency and energy
consumption of MDs.

2) Based on the proposed MASAC algorithm, combined
with meta-learning, a multiagent MRL policy is con-
structed, which can quickly solve the offloading problem
in dynamic scenarios. The multiagent MRL policy
achieves high sample efficiency in new scenarios; thus, it
enables MDs to run the training process autonomously.

3) Simulation experiments to minimize the energy con-
sumption and latency are constructed, considering the
differences between any two DAG tasks in terms of
topology, data volume, and computation complexity. The
results indicate that the multiagent MRL can converge
to a desirable solution with less training, obtain good
stability, and generalize well. Furthermore, it achieves
better results in terms of energy consumption, latency,
and task success rate compared to other algorithms.

The remainder of this article is organized as follows. Related

studies are presented in Section II. The MEC and problem
models are described in Section III. The proposed task offload-
ing algorithm is presented in Section IV. In Section V, the
experimental results of the simulations are presented. Finally,
Section VI presents the conclusions of this study.

II. RELATED STUDIES

Current research on task offloading in MEC applications
focuses on the environment and algorithms. To solve the limi-
tation of the MD power, combining the WPT technology with
MEC provides a novel solution that ensures the continuity
of computing services and reduces the overall system over-
head. Current research on WPT-based MEC task offloading has
attracted much attention. For example, Zhang et al. [11] inves-
tigated the problem of sustainable computational offloading in

MEC environments and proposed an online rewards-optimal
auction method to optimally handle the total amount of long-
term rewards for offloading tasks. Yan et al. [12] proposed
a low-complexity critic network algorithm to quickly evalu-
ate the offloading decision by analyzing the structure of the
optimal solution. Their experimental results demonstrated that
for different types of task graphs, the algorithm achieved
an optimization performance of 99.1%, while significantly
reducing the computational complexity compared to exist-
ing optimization methods. Li et al. [13] proposed a dynamic
task offloading algorithm based on Lyapunov optimization to
solve the problems of computational offloading and energy
harvest transfer in device-to-device architectures. They ver-
ified the effectiveness of their algorithm through extensive
simulation experiments, which proved that their approach
reduced the average task execution time by approximately
50% compared to the baseline algorithm. Zhang and Chen [14]
studied the task offloading problem in a heterogeneous MEC
environment with energy harvesting and proposed a nonco-
operative computational offloading strategy based on game
theory. Regarding MDs with limited battery and energy har-
vesting capabilities, Merluzzi et al. [15] designed a dynamic
algorithm for jointly optimizing communication and compu-
tational resources. Kai et al. [16] investigated a collaborative
computation offloading scheme and developed a collaborative
computing framework in which the tasks of MDs could be
partially processed at the terminals, edge servers, and cloud
centers. Ren et al. [17] investigated the multiuser service
latency problem in MEC offloading scenarios, proposed a new
partial computation offloading model, optimized the allocation
of communication and computation resources through optimal
data partitioning and other strategies, and conducted experi-
mental verification in a specific scenario where communication
resources were much larger than computation resources. The
proposed partial offload policy minimized the weighted delay
of all user devices, thus, improving the quality of service of
users. Most of the MEC offloading policy algorithms were
studied mainly by assuming a priori distribution of resource
demand or predicting resource demand based on historical
data. In [18], the problem of offloading decisions and resource
allocation among multiple users served by a base station was
studied to achieve optimal system user utility, i.e., the trade-
off between task delay and energy consumption. In [19],
an RL-based state—action—-reward-state—action (RL-SARSA)
algorithm was proposed to solve the resource management
problem of edge servers and to minimize the system cost
(including energy consumption and computational latency) by
optimizing offloading decisions. The above studies applied
heuristic algorithms to deal with large-scale task offloading
problems, which could take a long time to generate decisions
due to the high dimensionality of the problem, and they could
only find approximately optimal solutions, so they do not meet
the expected requirements in practice.

In order to meet the high demand of applications for stor-
age and computing, Ale et al. [20] studied the policy of
offloading computing tasks of IoT devices to edge servers and
proposed an end-to-end DRL approach to select the best edge
server for offloading and allocate the optimal computational

102 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2024

resource such that the expected long-term utility was maxi-
mized. Chen et al. [21] proposed a distributed computation
offloading method to utilize all resources, in which a complex
task could be split into many small subtasks. A distributed
computation offloading strategy based on a deep Q-learning
network (DQN) was proposed to find the best offloading
method to minimize the execution time of a compound task.
Peng and Shen [22] described the resource allocation problem
in MEC servers as a distributed optimization problem, which
was solved by the MADDPG-based algorithm to maximize
the number of offloaded tasks while ensuring a high quality
of service.

In addition, it is difficult to develop a general and reliable
task offloading strategy when applying DRL algorithms in a
MEC environment. To address these challenges, the perceptual
capabilities of deep learning, the decision-making capabili-
ties of RL, and the fast environment learning capabilities of
meta-learning can be organically combined to achieve fast
and flexible optimal offloading strategies. There are many
related studies on MRL and multiagent RL. Wen et al. [23]
proposed a dynamic proximal policy optimization with covari-
ance matrix adaptation evolutionary strategies based on the
original proximal policy optimization to obtain a valid obsta-
cle avoidance policy. Rakelly et al. [24] improved the sample
adoption efficiency by developing an offline policy MRL algo-
rithm that separated the task inference from the control. A
meta-learning method based on expert knowledge in a sparse-
reward environment was proposed in [25]. Xu et al. [26]
implemented an argument-based RL approach by extracting
metadata consistent with all agents, inspired by meta-learning.
To address the problem that the strategy learning difficulty
of exponential growth with respect to the number and type
of agents, a type-based hierarchical grouping communication
model was proposed in [27]. Wang et al. [28] proposed a task
offloading strategy based on MRL that could quickly adapt to
new environments with a small number of gradient updates.
The experimental results indicated that this new offloading
method could reduce the latency by 25% compared to the three
baselines and could be quickly adapted to new environments.

III. BACKGROUND
A. Reinforcement Learning

One of the best known RL algorithms is Q-learning [29].
This algorithm constructs mappings from state—action pairs to
values with dynamic programming. These values are known
as Q-values and are calculated with a utility function called
the Q-function. The Q-function returns the expected utility of
taking a given action in each state and follows a fixed policy
subsequently. The collection of Q-values for all state—action
pairs is called a Q-table. Q-learning requires several learning
episodes to find an optimal Q-table. The problem model of
the Q-learning algorithm is a Markov decision process (MDP)
that consists of an agent, a set of states .S, and a set of actions
A; for each state s; € S [30]. An episode is a learning period
that starts from an initial state and ends when the final state
is reached. During an episode, the agent chooses an action
a € A; of its current state s based on its Q-table and the

selection policy. Then, the agent perceives the next state s
and receives a reward R(s,a) after performing the previous
action. Afterward, the agent updates its Q-table based on the
Q-function

0Gs, a) <— (1 —a)Q0(s, a) + a[R(s, @)+ y max Q(s, a,)}
)]

where s € S, a € A, o € [0, 1] is the learning rate, and
y € [0, 1] is the discount factor. This update procedure is
repeated until the agent reaches the final state, which marks
the end of the episode. The main output of the Q-learning
algorithm is a policy w : § — A that maximizes the sum
of its rewards R = rg + yr; + --- + y"r, for an MDP that
has a terminal state s, or a termination condition. The optimal
QO-table is given as the policy m in Q-learning. The fact that
Q-learning does not require a model of the environment is an
advantage. Since Q-learning [29] has been proposed, RL has
been widely studied, and various improved algorithms have
been proposed. In [31], the double estimator was applied to
a delayed Q-learning framework to solve the overestimation
problem in RL.

B. Meta Reinforcement Learning

MRL enhances RL methods with meta-learning, which aims
to obtain a learning algorithm that can quickly determine the
policy for a learning task 7; drawn from a distribution of tasks
p(T). Each learning task 7; corresponds to a different MDP,
which typically shares the same state and action spaces but
may differ with respect to their reward functions or dynam-
ics. A typical example of MRL is the gradient-based MRL,
which aims to learn the initial parameters 6 of a policy neu-
ral network. It ensures that performing a single or few steps
of policy gradient over 6 with a given new task can lead to
an effective policy for that task. The formulation of model-
agnostic meta-learning (MAML), resulting in the target of
gradient-based MRL, is shown in the following:

J(O) = Egmpn[J1;(F(60, T1) | (2)

where Jr; denotes the objective function of task 7; and F
denotes the update function that depends on the objective func-
tion and optimization method. For example, if we conduct a
k-step gradient ascent for Tj, then F(0, T;) = 0+« Zle V.
Therefore, the optimal meta-parameters of the policy network
and update rules are

6" = arg maxEr,~, () [JT,. (F(, T,-))]. 3)
0

The gradient-based MRL has a good generalization ability.

IV. SYSTEM MODEL
A. MEC Model

The system architecture of task offloading and energy har-
vesting in a MEC application is demonstrated in Fig. 1. There
are many different types of tasks to be processed in MD, each
of which can be split into interdependent subtasks to build

DING et al.: MULTIAGENT META-BASED TASK OFFLOADING STRATEGY FOR

MOBILE-EDGE COMPUTING 103

Mobile App 1 Wireless device

Edge server

Meta learner

v

Data processing Virtualization infrastructure
unit
Local
R0
| A VM VM VM
1 e O .
L —— Offload === —— — — — —
scheduling oﬁ?oaa‘;ing I
M b'I.A N module Data transferring l Virtual data Virtual data |
oDlle . [bl . . - .
|_ _— — ﬂ JE unit I transferring unit processing unit |
| ® : = — — — —
| e e Ener, K . K
| t |— B e [Wireless signal transmitter ‘
| transferring unit |
L—- = _

Battery

Fig. 1. System structure of task offloading and energy harvesting in MEC.

DAG dependencies. Based on the dependencies and charac-
teristics of each DAG subtask, the offload scheduling module
ranks all subtasks according to their priority, ensuring that the
subtasks that depend on the previous task can be executed only
after the conditions are met. Then, the offloading scheduling
module generates appropriate decisions for each subtask that
decide whether to offload the task and duration of the WPT
service, which is executed before the offloading operation [32].
As depicted in Fig. 1, the WPT service is completed by the
energy-transferring module in the MD, which receives elec-
tromagnetic waves from the edge server, converts them into
electrical energy, and stores them in the device battery. The
offloading decision also determines how the task is executed,
that is, the DAG subtask can be processed directly on the
device or sent to the edge server for processing via the data
transferring unit.

A learner is included in each MD and edge servers, where
the base learner is trained in the MD. Here, the base learner is
responsible for generating a specific policy based on task fea-
tures and requires less iterations. In contrast, the meta-learner
is trained at the edge server, which needs to train and acquire
meta-policies based on different tasks; hence, it is relatively
abstract in the learning space compared to the base learner,
which is independent of the specific task. Based on this design
characteristic, the base learner first acquires and updates the
meta-policy parameters. Subsequently, a specific offloading
strategy is trained and generated based on the meta-policy and
task features, which are uploaded to the meta-learner in the
form of higher order metadata. The strategy ensures that all
specific policies can obtain the same structured state. Finally,
the meta-learner trains and updates the parameters based on
the metadata and waits for the base learner to be called again,
starting a new cycle. Because the meta-learner requires more
training samples and its learning cost is too high, deploying it
on the edge server helps reduce the training time to improve
the learning efficiency of new tasks. On the other hand, the
base learner performs fast iterations based on the meta-policy
and consumes less resources and power in the MD.

B. Problem Model

For the task offloading problem in MEC with multiple DAG
types, the DAG application is denoted as G = (V, E), where
vi € V is a subtask in the DAG application, e(v;,v;) € E
indicates that subtask v; depends on subtask v;, v; is a pos-
terior subtask of v;, and v; is a preceding subtask of v;. A
posterior subtask can be executed only when all its preceding
subtasks are completed. For each subtask v;, we set its input
data volume D}“, CPU computation cycle number C;, output
data volume D?m, and maximum execution time 7;"** accord-
ingly. For the MD, the total CPU clock frequency and battery
capacity are set to F' and B™*, respectively. For the edge
server, the upload and download rates between the edge server
and MD are set to R" and R, respectively, while its CPU
clock frequency is set to F”. In addition, considering that the
computational and network resources of the MD are limited,
all processing units in MDs and edge servers are configured
with respect to corresponding task queues [33]. When multiple
DAG subtasks compete for device resources, they must be
computed or transmitted according to their priority [34].

Offloading strategy A = {aj, a2, ..., a,} is a sequence set
consisting of individual strategies for each subtask, where each
strategy contains the task scheduling type (local execution or
offloading execution) and WPT service duration CT;. In this
study, to illustrate the dependency relationship between DAG
subtasks and their processing order in the execution process,
for subtask v; € V, we set its task sending completion time as
F T?p, remote execution completion time as FT7, data return
completion time as F wa, and local execution completion time
as F Tf accordingly. When the task scheduling type is offload-
ing execution, it follows that FT?W > FT} > FT;-lp > CT;.
When the task scheduling type is local execution, it follows
that F' Tf > CTj; that is, the WPT service is executed first
to prevent the task from failing owing to insufficient power
when data are uploaded or processed. The posterior subtask
v; that depends on v; can request resources to process the
relevant data only when its timestamp is greater than FT]”!W

104 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2024

or FT! according to the scheduling type. This ensures that
all preceding business data of this posterior subtask are com-
plete. To reflect the impact of resource competition among
multiple DAG subtasks, the transmitting resource availabil-
ity time AT?p, remote execution availability time AT, data
return availability time AT?W, and local execution availability
time ATf are set accordingly. Therefore, based on the relevant
parameters of the MD and the edge server, the latency and the
energy consumption generated by task v; for performing local

scheduling and offloading scheduling can be calculated.

V. ALGORITHM DESIGN

This study proposes an offloading strategy combining DRL
and meta-learning. Therein, DRL is a sequential decision-
making method that learns the target environment through
continuous trial and error, which is beneficial for solving
complex problems, such as task offloading in the MEC.
Meta-learning is a method of learning multitask generaliza-
tion capability, which first generalizes a model by learning
multiple task-specific models. Then, it learns a specific task
based on a small number of samples. Therefore, by combin-
ing meta-learning with DRL, prior knowledge from a large
number of RL tasks can be obtained to improve learning and
convergence abilities when facing new tasks. Moreover, this
approach can increase the algorithm flexibility and facilitate
the lowering of learning costs to quickly solve the offloading
problem of different DAG task structures in a MEC environ-
ment. In this study, we solve the edge server decision making
and WPT service duration problems based on the multiagent
MRL algorithm.

A. MDP Model

To solve the offloading problem with multiple DAG tasks
using MRL, this study models the offloading process of
a DAG task as an MDP in the following form: M =
(S,A, P, Po,R, y). Therein, M denotes the offloading model
of each subtask, § is its corresponding state space, A is the
action space, P is the state transfer matrix, Py is the initialized
state distribution, R is the reward function, and y € [0, 1] is
the discount factor. For each subtask v;, the agent observes the
current MEC environment as s; € S. Subsequently, it selects
an action a; € A from the action space based on its learned
offloading strategy m(a;|s;), which is executed in the envi-
ronment to obtain a reward value r; € R and a new state
si+1 € S. This process is repeated to construct a sequence
set A, = (a1, a2, ..., ay) of the offloading decisions for each
subtask. Furthermore, to apply MRL to the MDP model, the
MDP learning process is decomposed into two parts: learn-
ing a meta policy efficiently across all MDPs and learning a
specific offloading strategy for an MDP quickly based on the
learned meta policy. To solve the MEC offloading problem
for multiple DAG tasks, detailed definitions of the state space,
action space, and reward function utilized in the MDP are
given in the following.

1) State Space: Because the energy consumption and
latency required for the DAG task offloading are closely
related to the task type, task data volume, and state of

the MEC environment, the state space is denoted as s; =
(G, A;, Din, C;, D™, T™™ B;) for subtask v;. G denotes the
topological ordering of the currently scheduled DAG tasks,
which is aligned with the task priority order. Each subtask
contains its detailed information, such as task index, task com-
putation volume, upload data volume, download data volume,
and maximum allowed time. A; = (ay, a2, ..., a;—1) denotes
the offloading decisions made by all preceding subtasks whose
priorities are higher than that of subtask v;. Di-n is the input
data volume for subtask v;, C; is the number of CPU computa-
tion cycles it requires, D" is the output data volume, 77" is
the maximum execution time allowed for the subtask, and B; is
the remaining electric energy of the MD before executing the
offloading scheduling. Furthermore, to alleviate the impact of
the disparity in the number of subtasks in different DAG tasks
on the state space, the topological ordering G is set to contain
two vectors for storing the front and back task indices; the
length of the two vectors is kept as the same, and the position
of the insufficient length is set to —1.

2) Action Space: To address the impact of the WPT ser-
vice duration on latency and task success rate, this study
determines the task offloading decision and the WPT ser-
vice duration by designing two agents with the same state
space but different action spaces. The discrete action space
is specified as a°°2d = {0, 1} in the task offloading deci-
sion problem, with O indicating that the subtask is executed
on the MD and 1 indicating that the subtask is offloaded to
the edge server for execution. Regarding the WPT service
duration problem, the continuous action space is specified as
a“P' = A. A denotes the duration, whose accuracy is retained to
two decimal places. This value directly affects the latency and
the remaining electric energy of the subtask; thus, indirectly
affects the scheduling decision of the subsequent subtasks.

3) Reward Function: The multiagent offloading strategy
based on the task scheduling decision and the WPT ser-
vice duration is a fully cooperative game process, where the
optimization goal of each agent is to minimize the energy
consumption and the latency, as well as to improve the task
success rate. The energy consumption and the latency of the
ith subtask in the task priority queue are obtained by taking
the difference of the corresponding values belonging to two
neighboring subtasks, which is formulated as

{ AE; = EP°® — loal @

AT[— T}Ota] _ T:St?l

In addition, when the electric energy of the MD is insuf-
ficient or the latency of the subtask exceeds the maximum
allowable time, a failure processing triggers, which directly
affects the user service experience. Therefore, it is necessary to
avoid such a situation. The formula for the failure processing
is as follows:

I,-(Fail) =1 if AE,‘ > Bi or ATi > Timax (5)

where B; denotes the remaining electric energy after process-
ing the ith subtask and 77"** denotes the maximum processing
time allowed for the ith subtask. Based on the above analy-
sis, the reward function for the offloading decision of the ith

DING et al.: MULTIAGENT META-BASED TASK OFFLOADING STRATEGY FOR MOBILE-EDGE COMPUTING 105

V(s)) mlay|s;) V(s,) m(a, | s,) Ws,) m(a,|s,)
| I
RN
1

a

Decoder :
.
X

Encoder

h:} g hl Qﬂ
R .{ '_. —

Fig. 2. Structure of the Seq2Seq network.

subtask is

{ 1 = —((6 AE; + TAT;) - (1 — I;(Fail)) + o - I;(Fail))

ot+t=1 ©)

where o and t denote the weights of energy consumption
and latency, respectively, and w is the penalty value for the
subtask’s failure processing.

B. Multiagent Meta Reinforcement Learning Algorithm

Considering the structure of the DAG task, this study uses
a Seq2Seq network model to represent the scheduling process
of subtasks in order of the increasing priority, to realize the
impact of task scheduling priority on the offloading strategy.
To solve the task offloading problem for mobile applications
with multiple DAG types and edge servers with WPT services,
this study proposes a multiagent RL algorithm-based policy,
namely, MASAC, to generate the corresponding offloading
policy. MASAC contains two agents that cooperate with each
other and share the same optimization goal of minimizing
the energy consumption and the latency. The policy takes
whether to offload the task and the WPT service duration as
the respective learning objectives for the two agents. Such an
approach can reduce the energy consumption and the latency
required for task processing, and increase the task success
rate as much as possible. To improve the generalization of the
policy, this study combines MASAC with the idea of meta-
learning, proposes a multiagent MRL-based method, dubbed
meta-MASAC. It first learns each task offloading policy to
generate a meta-policy, and then combines new task features
to generate a specific offloading policy after a short training
interval. The implementation of each algorithm is described
as follows.

1) Seq2Seq: Because the offloading strategy of the DAG
task comprises a series of offloading strategies for all sub-
tasks and for the state space s; of subtask v;, its DAG task
structure is different, which further leads to differences in
the length of its topological ordering G. Therefore, to ensure

T

—|-»

ﬂc @ a,.,

that the subtask priority order is consistent with the gener-
ated decision sequence and the difficulties of network training
caused by inconsistent state dimensions are addressed, this
study uses a Seq2Seq network to represent the process of gen-
erating offloading strategies for subtasks in increasing order of
priority. The network encoder compresses the input sequence
into a uniform vector context, and then, the network decoder
decodes and generates the specified sequence according to the
context [35]. The decoding process of the network decoder
continuously takes the output of the previous moment (¢ — 1)
as the input of the next moment ¢ and decodes it cyclically until
the output is the stop sign. Note that the Seq2Seq network can
adjust its time length according to the number of subtasks and
does not need to ensure that the length of the input or output
sequence remains the same for each DAG task. Therefore, it
can be used to handle DAG tasks with different structures.

The Seq2Seq network structure combining subtask priorities
is presented in Fig. 2, where both the encoder and decoder are
composed of the long short-term memory (LSTM) network.
The input of the encoder is a sequence of subtasks, while the
output of the decoder is the offloading strategy corresponding
to each subtask. In addition, to avoid the accuracy degradation
caused by a long vector context, this study uses the atten-
tion mechanism to assign weights to each output of the vector
context and decoder. Now, suppose that the input sequence
of states by the encoder is Input = (s, s2,...,5,) and the
corresponding sequence of actions output by the decoder is
Output = (ay, ay, - .., ay). Then, the hidden state &; of the ith
encoder is as follows:

hi = fenc(si, hi—1) @)

where f.,. denotes the encoding function. After encoding all
subtasks, the output d; of the decoder at the current moment
must be calculated based on the vector context and the out-
put d;j—1 of the decoder at the previous moment, which is
formulated as

dj = faec(cj, dj-1, aj—1). 8)

106 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2024

The corresponding formula for the vector context at the jth
output is stated as follows:

n
=Y wihi €))
i=1

where wj; is the weight of the hidden layer state #; in the
encoder, which can be calculated with the SoftMax function.
It is formulated as

wji = softmax (e(h;, dj—1)). (10)

Therein, function e is the distance calculation function, which
denotes the effect of the hidden state /; on the decoder’s out-
put dj—1. To combine Seq2Seq networks with DRL algorithms,
the output of Seq2Seq networks can be input into a fully con-
nected network to approximate the Q-value function v(s;) and
the policy function m(a;|s;) for training the actor and critic
networks.

2) MASAC: To address the problem that agents need to
decide the offloading strategy and the WPT service dura-
tion simultaneously, this study utilizes the method proposed
in [36]. This method uses multiple agents to solve the problem
of an unstable environment and difficult convergence by
combining the MADDPG and SAC algorithms, where the
MADDPG algorithm optimizes each agent’s policy as a whole
via centralized training and distributed execution to reduce
the algorithm variance [22]. The SAC algorithm introduces
maximum entropy in the reward function to ensure that as
many action possibilities as possible are explored, thereby
enhancing the exploration ability and robustness. Thus, the
MASAC algorithm based on MADDPG and SAC follows the
core ideas of centralized training and decentralized execution.
Moreover, it explores as many optimal paths as possible, which
helps reduce the energy consumption and the latency of DAG
subtasks. Note that the MASAC algorithm is used to solve
the offloading strategy problem for different subtasks in the
same DAG task. Each subtask contains two agents that coop-
erate with each other and share the same optimization goal of
minimizing energy consumption and latency. They only dif-
fer regarding the actions taken. One agent is used to select
the appropriate offloading strategy based on the state, that is,
whether the current subtask is offloaded to the edge server
for execution. Another agent is used to calculate the WPT
service duration to avoid the failure of subtask processing
owing to insufficient power. Now, assume that the parameters
of the strategy network m;(s; 6;) and the evaluation network
Qi(x,ay,as, ...,an; ¢;) for each agent in the MASAC algo-
rithm are 6; and ¢;, respectively. Consequently, the action and
expected reward for the ith agent are given as

a; = m;(s; 6;)
N
yi=ri+ y(Qg(x, dy,dy, ... dy; (pl’) 4+« ZH,'(JZ@J)
1
(11)

where r: S x A — R denotes the reward function, s € S
denotes the current state, a € A denotes the action taken, x =
(s1, 52, ..., sy) denotes the state set of all agents, ¢’ denotes
the target evaluation network parameter, a; = 7} (s) denotes

the action selected by the ith agent based on the target policy
network, y € [0, 1] denotes the discount factor, « > 0 is used
to control the weight factor of entropy, and H(p) = — log(my)
denotes the entropy of strategy m in state s. Thus, each agent
can determine the TD error based on the current policy of the
actor network and estimate the value of the critic network,
which is calculated as

Ai(x,a) = y; — Qi(x, ay, az, ..., an; ¢;). (12)

Then, the critic network calculates the loss function, which
is given as
1 N
— Y,
L= N E (A (x, a)).

i=1

(13)

The updated network parameters are subsequently calcu-
lated with the gradient descent method, depicted as

N

Vol = }v ; Voi(s: 0) Ve, Qi(x, ar, ...,an). (14)
3) Meta MASAC: To ensure that the offloading strategy is
applicable to many different structures of DAG tasks, this
study combines the MASAC algorithm and meta-learning to
enable learning the meta-information in the subtask offload-
ing strategies for initializing the parameters of the actor and
critic networks. Subsequently, the parameters are adapted with
a small amount of training using specific task data, so that the
model can be used as an offloading strategy for new subtasks
after self-adaptation. The meta-learning algorithm is composed
of two parts: 1) a base learner and 2) a meta-learner. The base
learner is responsible for inner loop training in the task space
and provides feedback to the meta-learner in a higher order
form. The meta-learner is used for outer loop training in an
abstract space unrelated to a specific task. It can obtain meta-
data from different tasks and use them to update the parameters
of the base learner and meta-learner to achieve fast learning
and adaptation [37]. As depicted in Fig. 3, the meta-MASAC

algorithm can be divided into the following four steps.

a) Base learner training: The MASAC algorithm is used
in this step to train the N agents centrally and update the actor
network parameters separately. The generated set of corre-
sponding policies is 7 = (7!, 72, ..., 7V), where 7! denotes
the policy network of the ith agent.

b) Meta information storage: N agents
actions at 7T time steps according to the policy.
Their corresponding observed states o, actions a, and
the set of Q-values are Exp = {(01, al, ql)(l,ng),
(02, a2, qz)(l,z,“.j), ey (oN, av, qN)(Lz T)}, respectively,
where (o', a', ¢'); denotes the feedback data obtained by the
ith agent at time step ¢. The corresponding data of all agents
at T time steps is stored centrally to ensure that they can be
used to learn the metadata of all tasks.

¢) Meta-learner training: Data collected by all agents at
T time steps is uploaded to the meta-learner. Subsequently,
the meta-actor and meta-critic use this data to train the
policy network actor and the evaluation network critic, respec-
tively. Regarding the policy network actor, its training data
is the set of state—action pairs of all agents (O,A) =

perform

DING et al.: MULTIAGENT META-BASED TASK OFFLOADING STRATEGY FOR MOBILE-EDGE COMPUTING 107
(3)Meta-Actor training (3Meta-Critic training
i i (1....N) i
a (0,a) .. q
Actor > —— Critic |0, A, Q)
1—
n; He Meta-Actor Meta-Critic
() A parameters parameters
RNN RNN
an . . (UBase learner trainin
(2)Meta information > g
N
storage : . N 2
T 72'1 T e 72'"’ ‘_
) e
0, al 0 see
— T ===
Vj V’V o Vm
(@Meta learner application
Fig. 3. Processing of Meta MASAC algorithm.
{(01, al)(l,sz), co (0N, aN)(1,2,...,T)}- Because the goal of calculation formula becomes
the policy network actor is to obtain the maximum reward, ;
poticy nety . . T = LSTM, (o), (17)
the corresponding parameter updating formula is . (t—k,...,)

¢ = argmax y;((x, a);)

0;

15)

where y;((x,a);) is the expected reward of the ith agent,
which can be calculated using (29), x = (01,02,...,0N)
denotes the set of observed states of all agents, and
0; denotes the policy network parameter. The evalua-
tion network critic evaluates the actor state and action
using the training data ((O, A), Q) = {(ol,al)(l,z,,__,r), ey
(0N7aN)(l,Z,.‘.,T)v‘1%1,2,,‘_1)’-"7‘11(\4,2 7777 T)}. The training of
the critic network is based on this data to estimate the expected
reward as accurately as possible. Therefore, the parameter
updating formula of the evaluation network critic is

@i = argmin A™% ((x, a),) (16)
i

where A™% ((x, a),) is the loss function of the ith agent, which
can be calculated using (30) and ¢; is the evaluation network’s
parameter. In addition, because the state information of the
MEC environment is partially observable, the LSTM network
is needed in both the meta-actor and meta-critic to analyze
the data within the last £k time steps to obtain more accu-
rate state information through the connection among the data.
One reason without the entire historical experience is that a
smaller data volume can improve the computational efficiency.
Another reason is that the latest experience has more influence
on the current policy. In addition, because the meta-actor only
needs the historically observed states o; as training data, the

where 4" denotes the output value of the LSTM network
of the meta-actor in the ith agent at the current time step, @
denotes the parameters of the LSTM network in the meta-
actor, and Oit—k,...,t—l) denotes the observed state of the ith
agent at previous k time steps. The meta-critic aims to compute
a reasonable (Q-value based on the state—action pairs of the
agent. Therefore, its LSTM network requires the observed state
o; and action a; as training data, which is calculated as follows:
..... (18)
where hff}‘ic denotes the LSTM network’s output value of
meta-critic in the ith agent, u denotes the parameters of the
LSTM network in meta-critic, and (o, a)éz— koi—1) denotes the
state—action pairs of the ith agent in the previous k time steps.

Both the meta-actor and meta-critic need to update their
network parameters based on metadata. Now, suppose that
the parameters of the corresponding output layer are t and &,
respectively. The corresponding parameter updating formulas
are defined as follows:

, T < argmin (aﬁ — nf’ac(oﬁ, hﬁcttor)), ie[l,2,...,N]
w,T (19)
W, 8 « ar%r?in(qi — vf;mr((o, a)fl’z"“’N), hffthic))
ie[l,é,...,N] (20)

where 7 (of, hS°") is the policy function of the meta-
actor, which outputs the corresponding action when the

108 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2024

Algorithm 1 Training Meta-Learning Algorithm

Input: Trained actor and trained critic of MASAC with N agents;

Output: Trained models of meta-actor and meta-critic.

1: Initialize output parameter T and LSTM parameter w of meta-actor, output parameter § and LSTM parameter u of

meta-critic, experience replay buffer D.

2: for step =1 — T do

3: Every agent executes action which generate by = = {rrl, nz, N IR

4 Add {(0', ", ¢"siep, (0%, @%, @Psteps - - > O, @V, ¢V) g0} 10 D;

5. end for

6: for agent i =1 — N do

7: for each (o', a“)mp do

8: Generate temporal mini-batch 0’ (k.. t—1)>

9: Train output network n’”“c(ot, h“cm’) and LSTM network h“cmr of meta-actor;
10: Calculate error and update parameter of meta-actor accordmg to Eq. (19);

11: end for

12: for each (0, a', q')srep do ‘

13: Generate temporal mini-batch (o, a)’(l =1y

14: Train output network V"’ ((o, a)(1 2 ’N) hc””‘) and LSTM network h‘””“ of meta-critic;
15: Calculate error and update parameter of meta-critic according to Eq. (20)

16: end for

17: end for

18: return Meta-actor and meta-critic

current observed state and the historical state based on
LSTM are known and updates the parameters by reducing
the difference between the current and the actual actions.
Vi ((o, a)il’z’“"N), hff;tic) represents the evaluation function
of the meta-critic, which can calculate the corresponding
Q-value by inputting the state—action pairs at the current
moment and the historical information output by LSTM.
Then, the Q-value is compared with ¢! in the data to update
the network parameters. Based on the above analysis, the
algorithm flow of the meta-learner training is presented in
Algorithm 1.

d) Meta-learner application: The result of training meta-
learners, namely, meta-actor and meta-critic, can be used to
initialize base learners, such as the actor network and the critic
network. Subsequently, a short training is performed on the
generic model according to the specific task characteristics
to fine-tune the network parameters and generate a specific
model based on this task. The application flow is reported
in Algorithm 2, where meta-actor is a meta-strategy network
that outputs actions directly based on states, and meta-critic
is a value network that outputs values based on states. During
training, both networks are optimized synchronously, and only
the meta-actor network is used to output actions during testing.

VI. EXPERIMENTS AND ANALYSIS
A. Simulation Environment Settings

The simulation experiments are to be conducted in the
TensorFlow framework on the offloading problem of differ-
ent DAG tasks in a MEC environment. We use the EUA data
set [38], which contains computational performance, remaining
power, charging power, location information, and computation
of different application services for MDs in multiple regions.
Subsequently, the advantages and disadvantages of offloading

Algorithm 2 Applying Meta-Learning Algorithm

Input: Trained meta-actor and meta-critic model, the number
N of new tasks, iteration times 7
QOutput: Action of new task.
1: forj=1— N do
2: Initialize actor network parameter 6; Of agent j based
on meta-actor;
3: Initialize critic network parameter ¢; Of agent j based
on meta-critic;
: end for
: for step =1— T do
forj=1— N do
Update parameter 6; and ¢; according to Egs. (15)
and (16);
8: end for
9: end for
10: forj=1— N do
11: Take action according to Eq. (11);
12: end for
13: return the action

strategies in terms of latency, energy consumption, and task
success rate are demonstrated experimentally. The compared
algorithms include the strategy LE based on local execution, the
strategy OE based on offloading execution, the strategy based
on the HEFT algorithm, the strategy based on the multiagent
DRL algorithm MADDPG, and the strategy based on multiagent
MRL algorithm Meta MASAC. To test whether the MRL algo-
rithms have excellent learning and convergence capabilities
when faced with new tasks, numerous DAG task structures
must be constructed for training tests. The configuration of
some basic experimental parameters is referred to the excellent

DING et al.: MULTIAGENT META-BASED TASK OFFLOADING STRATEGY FOR MOBILE-EDGE COMPUTING 109

work done in [28]. Moreover, it is known that the DAG task
structures are mainly influenced by the following parameters
according to [39].

1) Total Number of Subtasks: It is used to set the number of
subtasks in the entire DAG task. The larger this value
is, the higher the DAG task scale is, which increases
the corresponding decision sequence length. The total
number of subtasks is set to n = 20 in the experiments
by default.

2) DAG Width: 1t is used to control the height and width of
the entire DAG task structure. When the total number of
subtasks remains the same, the larger the width value is,
the wider the DAG task structure is, and vice versa. This
value is randomly taken from the set {0.2, 0.4, 0.6, 0.8}
when generating DAG tasks.

3) DAG Density: It is used to control the degree of depen-
dence of each subtask between adjacent levels in the
DAG task. The larger this value is, the more depen-
dent the subtasks are to their predecessors. This value
is taken randomly from the set {0.5, 0.6, 0.7, 0.8} when
generating a DAG task.

4) Computation—Communication Ratio: Tt is used to set the
ratio between computation and communication costs in
DAG tasks. A larger value indicates that the task prefers
high computational demands and vice versa. Because
most subtasks are computationally intensive, the value
is in the range of [0.5, 0.7].

Now, assume that the input data volume Di“ and output data
volume D" of subtask i are in the range of [10, 100] kB,
the required CPU cycles C; of subtask are in the range of
[107, 10%], and the maximum allowed execution time e
of the subtask is in the range of [500, 1500] ms. The CPU
clock frequencies of MD and the edge server in such a MEC
environment are set to 1.5 and 2.0 GHz, respectively. The
corresponding upload and download rates are R'? = R™ =
7 Mb/s, the upload and download power levels are PP =
0.5 W and P™ = 0.6 W, respectively, and the battery capacity
of the MD is 18.5 Wh. In addition, the parameters of Meta-
MASAC need to be set, which are listed in detail in Table I.

B. Results and Analysis

To verify the validity of MASAC in the task offloading
problem, we trained the MASAC offloading strategy using
a specific set of DAG tasks. The set contains 100 differ-
ent DAG tasks sharing the same parameters: total number
of subtasks = 20; DAG width = 0.4; DAG density = 0.5;
and computation—communication ratio = 0.5. Finally, the
performance of the algorithm is verified using a test set with
the same parameters and different structures. Fig. 4 demon-
strates the results of the average reward value obtained by
each DRL algorithm during the training process. The larger
the value is, the better the result of the offloading policy is.
Observe that the DDPG and the SAC algorithms have worse
convergence results in a multi-intelligence environment, where
the SAC algorithm achieves a higher reward value after con-
vergence but a slower convergence speed compared to the
DDPG algorithm. This is mainly because the SAC algorithm

TABLE I
PARAMETER SETTING OF ALGORITHMS

Parameters Value
Memory space size M 1 x 108
Maximum number of training iterations 1000
Batch learning size K 32
Optimizer Adam
Target network update period 100
Discount factor 0.99
Encoder network type LSTM

Number of hidden layers of Encoder network 2

Number of hidden cells of Encoder network {256,256}
Decoder network type LSTM

Number of hidden layers of Decoder network 2

Number of hidden cells of Decoder network {256,256}
Number of hidden layers in the Actor network 2
Number of hidden cells in the Actor network {500,128}
Actor network activation function ReLU
Actor learning rate 1x1073

Number of hidden layers of Critic network 3

Number of hidden units in Critic network {1024,512,300}
Critic network activation function ReLU
Critic learning rate 1x1073
Index storage length of pre-task and post-task 12
Number of base learner iterations 10

Average reward

=91 —— SAC
DDPG
—— MADDPG
—10 1 —— MASAC
0 200 400 600 800 1000

Iteration

Fig. 4. Average reward by RL algorithms.

requires more iterations to explore more decision paths, which
leads to obtaining better solutions. In addition, MADDPG and
the improved MASAC algorithm perform better in a multi-
intelligent environment, and the proposed algorithm obtains a
higher reward value after convergence.

After training, we selected four DAG tasks with the same
parameters as those of the training set but with different
structures to test the RL algorithms. As depicted in Fig. 5,
the policies generated by SAC and DDPG exhibit average
performance in all metrics, which is mainly owing to the
unstable training results of these two algorithms in a multi-
intelligence environment and struggling when converging to
the optimal solution. In contrast, the MADDPG algorithm
can effectively learn stable policies using centralized training
and distributed execution. Furthermore, its energy consump-
tion, latency, and task success rate are better than those of
DDPG and SAC. The improved MASAC algorithm has the

110 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2024

success rate

0.60 \ —®
650 \ A @ sac
055 L ~@- DDPG
\ - —&— MADDPG
. > -¥- MASAC
1 2] 4 1 2 3 4 1 2 E 4
DAG DAG DAG
(@ (b) ©
Fig. 5. Comparison of each trained RL algorithms in specific DAG tasks. (a) Latency comparison. (b) Energy comparison. (c) Success rate comparison
-5 -50{ —— —
-6 ¥ -5.2
s
B
; =71 5 -5.4
e B
o -8 Z -56
>
Z &
g
g
-9 4 < -5.84
—— MADDPG —— MADDPG
—101 Meta MASAC =6.01 —— Meta MASAC
0 200 400 600 800 1000 2 a 6 8 10

Iteration

(@

Iteration

(b)

Fig. 6. Meta MASAC average reward during training. (a) Average reward during training. (b) Average reward of new task training.

best performance among DRL algorithms with respect to all
metrics.

To reflect the convergence performance of the algorithms in
the task offloading problem, we trained the DRL-based offload-
ing strategy in a default environment with 20 subtasks. As
depicted in Fig. 6(a), the average reward values of MADDPG
and meta-MASAC during the training process are close. It is
observed that both algorithms can effectively converge after
sufficient training. Compared to the MADDPG algorithm, the
meta-MASAC algorithm achieves a relatively better final con-
vergence value, although its early convergence speed is slower.
This is mainly because the meta-MASAC algorithm can find
a better solution by exploring more actions, but at the expense
of more search time. In addition, to assess the offloading
performance of the algorithm in new tasks, after the training
process in the default environment, a new DAG task structure
with the same number of subtasks is fed into the current trained
network to obtain the corresponding offloading strategy.

Fig. 6(b) shows the average reward value when MADDPG
and meta-MASAC are applied to a new task structure with a
small number of iterations. The figure demonstrates that the
meta-MASAC algorithm converges faster and can be quickly
applied to solve new tasks, whereas the MADDPG algorithm
is less effective when faced with new tasks. Thus, it can only
be applied to specific tasks that it has already been trained on.

To further illustrate the performance of each offloading strat-
egy when applied to a new DAG task structure, a small number

of iterations are performed on each algorithm to reflect its
performance with respect to the convergence effect in terms
of energy consumption, latency, and task success rate. Fig. 7
shows that the local execution strategy LE achieves the worst
iterative results in terms of energy consumption and latency.
Moreover, its task success rate cannot be guaranteed because
of the limited performance and power of MDs. Therefore, the
task’s success rate is not recorded to avoid confusion. The
offloading execution strategy OE exhibits the best performance
in terms of energy consumption but a poor performance in
terms of latency and task success rate. The main reason is that
the energy consumption generated by transmission in MDs
is much smaller than that generated by computation. When
all subtasks are offloaded to the edge servers for processing,
the total energy consumption is only related to the transmis-
sion energy consumption. However, a large amount of data
transmission occupies a large network bandwidth, increasing
its transmission latency. Thus, the poor performance of the
OE strategy in terms of latency further affects its task suc-
cess rate. The HEFT-based strategy performs better in terms
of latency and has a balanced performance in terms of energy
consumption and task success rate. This is mainly because
the HEFT algorithm ranks the tasks based on weights, then
schedules them according to the earliest completion time,
fully leveraging the computational resources of MDs and edge
servers. Therefore, the task completion latency is guaranteed.
The MADDPG-based strategy can converge in terms of energy

DING et al.: MULTIAGENT META-BASED TASK OFFLOADING STRATEGY FOR MOBILE-EDGE COMPUTING

111

—eo—o—0-—o If
- OE
—a&— HEFT
—e— MADDPG
—¥— Meta MASAC

100

70

80

Latency/s
e
-

60

Energy consumption/)

40

- LE

—a— OE

—&— HEFT

—e— MADDPG
Meta MASAC

o
S

//‘
.

@
S

Task success rate/%

Iteration

(@

-a— OE
* %0 —&— HEFT
—e— MADDPG
Meta MASAC
6 8 10 2 4 6 8 10

Iteration

(b)

Iteration

(©

Fig. 7. Comparison of each strategy with respect to different metrics after a few iterations. (a) Energy consumption in a small number of iterations. (b) Latency
in a small number of iterations. (c) Task success rate in a small number of iterations.

180

- LE —o— LE
= OE = OE

1601 o jerr 251 —a— HEFT
—e— MADDPG —e— MADDPG

140

~¥— Meta MASAC Meta MASAC

120

100

Latency/s

80

Energy consumption/J

60

40

0.5

100

-a— OE
—&— HEFT
—e— MADDPG

80 Meta MASAC

60

Task success rate/%
i

40

20 25 30 35

Task num

(@)

40 10 15 20

Fig. 8.

Task num

25 30 35 20 25 30 35

Task num

(b) (©

Comparison of each strategy with respect to different metrics when the task number changes. (a) Energy consumption based on the variable task

number. (b) Latency based on the variable task number. (c) Task success rate based on the variable task number.

consumption, latency, and task success rate. Its comprehensive
performance is second only to the meta-MASAC-based strat-
egy, which shows that the MADDPG algorithm can be applied
to new DAGs with the same number of subtasks. However, the
new task structure has an impact on its performance as well;
hence, it has a mediocre performance in generalization. The
meta-MASAC-based strategy has the best overall performance
in all aspects and nearly converges at the beginning of the
iteration, which indicates that the algorithm can be quickly
adapted to the new task structure and has good performance
in terms of convergence and generalization.

To compare the influence of the total subtasks’ number on
each algorithm strategy during the experiment, the range of
this value was set to [10, 40]. Correspondingly, the step size
is set to five and the arbitrary types of DAG tasks are generated
for different task scales. As depicted in Fig. 8, with an increase
in the total number of subtasks, the results of each strategy in
terms of energy consumption and latency increase, resulting in
a decrease in the task success rate. Among the compared meth-
ods, the LE-based strategy has the highest energy consumption
and latency owing to its local execution only, which is limited
by the performance and power of MDs. The OE-based strat-
egy performs best in terms of energy consumption because
it prioritizes the use of edge servers for task processing and
allocates fewer tasks to MDs. However, as the load on the
edge servers increases, the computational resources allocated
to each subtask are correspondingly reduced. Thus, its latency
gradually increases. The HEFT-based strategy prioritizes some
tasks based on task completion time; hence, it performs the

best in terms of latency. The MADDPG-based strategy cannot
guarantee the optimal solution in all task types owing to the
lack of generalization. Thus, it has average performance in
terms of energy consumption, latency, and task success rate.
The strategy based on the meta-MASAC algorithm has the
best overall performance in all aspects and is highly adaptable
to dynamic environments. Therefore, it can guarantee a better
solution for different task sizes.

To further verify the effect of different environments on each
strategy, the value range of the transmission rate was set to
[6, 10] with a step size of 0.5. As depicted in Fig. 9, with an
increase in the transmission rate, the performance of all strate-
gies in terms of energy consumption and latency is reduced;
except for the LE strategy, which does not perform offload-
ing execution at all. The corresponding task success rate is
also improved. However, the MADDPG algorithm lacks the
adaptability to different environments; hence, it obtains unsta-
ble results. The strategy based on the meta-MASAC algorithm
can adapt well to the effects of different transmission rates,
and its energy consumption and latency decrease to a certain
extent with an increase in transmission rate. Its performance
is the best among all strategies in terms of task success rate,
which underlines the excellent performance of the algorithm
and its ability to adapt to different environments.

Finally, this study examined the impact of this environ-
mental factor on each algorithm by varying the computational
performance of the edge servers. As presented in Fig. 10, if
the CPU processing performance of the edge server increases,
all aspects of the MADDPG algorithm change significantly.

112

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2024

& —— -9~ LE
—=& OE
—a&— HEFT
—e— MADDPG
Meta MASAC

bhed

3

12

o
s 3
Latency/s
s =B

Energy consumption/)

2
S

o

©

o
@

°
<

= OE
—a— HEFT

—e— MADDPG
MADDPG Meta MASAC
Meta MASAC

Task success rate/%

7.0 75 8.0 8.5

Transmission rate

(@)

9.0 6.5 7.0 75

Fig. 9. Comparison of each strategy with respect to different metrics when

Transmission rate

(b)

6.0 6.5 7.0 75 8.0 8.5

Transmission rate

©

8.0 8.5 9.0

the transmission rate changes. (a) Energy consumption based on the variable

transmission rate. (b) Latency based on the variable transmission rate changed. (c) Task success rate based on the variable transmission rate.

& — -9 LE —_—e

®
S

70

A

~
3

—a&— HEFT
—e— MADDPG
Meta MASAC

—=— OF

o
)
Latency/s

Energy consumption/)
@
g

2
S

w
38

—

-

o
V]

—o— LE

—a— OE

—a— HEFT

—e— MADDPG
Meta MASAC

o
S

Task success rate/%

v
a

—&- OE
—&— HEFT
—e— MADDPG

Meta MASAC

45

5.0 75 10.0 12.5 15.0 17.5 20.0

CPU performance of edge server

(@

225 250 5.0 75 10.0 125

CPU perform

Fig. 10.
variable performance of the edge server. (b) Latency based on the variable
performance of the edge server.

The other algorithms remain unchanged, which indicates
that the current performance of the edge server is sufficient
to meet the processing requirements of the DAG tasks in the
default environment. Therefore, we can conclude that there
is little correlation between its offloading strategy and the
edge server performance. Meanwhile, the performance of the
MADDPG algorithm-based strategy is unstable in all aspects,
which is mainly because of the lack of algorithm general-
ization. This results in large differences in the corresponding
strategy when the environment changes, further reflecting
the advantage of the meta-MASAC algorithm in adapting to
dynamic environments.

VII. CONCLUSION

A strategy based on multiagent MRL is proposed to address
the problems of mobile applications with multiple DAG types
and MDs with WPT services to ensure the quick generation
of offloading strategies for different DAG task types. This
study constructs a system architecture with task offloading
and energy harvesting in a MEC environment, combines meta-
learning with this architecture, and sets up a meta-learner
and base learner. Then, it deploys them in the MD and
the edge server, respectively, to fully leverage device char-
acteristics and service requirements. In addition, this study
splits the MRL process into four steps: 1) base learner train-
ing; 2) meta-information storage; 3) meta-learner training;
and 4) meta-learner application, which are used to achieve
fast learning through the collaborative operation between two

(b)

15.0 17.5 20.0
ance of edge server

225 250 75 10.0 125 15.0 17.5 20.0

CPU performance of edge server

©

225 250

Comparison of each strategy with respect to different metrics when the edge server performance changes. (a) Energy consumption based on the

performance of the edge server. (c) Task success rate based on the variable

learners. Subsequently, the MDP model based on a resource-
limited MEC environment is constructed and combined with
MRL algorithms to determine the WPT service duration and
whether to offload the task. Finally, the experimental results
indicate that the meta-MASAC-based strategy achieves the
best overall performance with respect to all aspects, and can
be quickly applied to various environments with good stability
and generalization.

Although the meta-MASAC-based strategy has many ben-
efits for the MEC model proposed in this study, several
challenges require further exploration. In this study, we con-
sidered stable wireless channels, reliable MDs, and sufficient
computational resources. Thus, the strategy does not break
down when the number of users increases. However, some
MDs may drop out owing to broken network connections or
insufficient power. This situation can affect the training process
of our strategy. In addition, the MEC environment comprises
three parts: 1) cloud data centers; 2) edge servers; and 3) MDs.
However, in this study, only the task offloading policy between
the MD and the edge server is examined. Therefore, as a
future research direction, we aim to further study the applica-
tion of meta-algorithms in the cloud—edge—device architecture,
edge-to-edge architecture, and device-to-device architecture.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions are those of the
authors and do not necessarily reflect the views of the above
agencies.

DING et al.: MULTIAGENT META-BASED TASK OFFLOADING STRATEGY FOR MOBILE-EDGE COMPUTING

[1]

[2

—

[5]

[6]

[7

—

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, “Deep reinforcement
learning-based adaptive computation offloading for MEC in heteroge-
neous vehicular networks,” IEEE Trans. Veh. Technol., vol. 69, no. 7,
pp. 79167929, Jul. 2020.

B. Liu, X. Xu, L. Qi, Q. Ni, and W. Dou, “Task scheduling with prece-
dence and placement constraints for resource utilization improvement
in multi-user MEC environment,” J. Syst. Archit., vol. 114, Mar. 2021,
Art. no. 101970.

J. Liang, K. Li, C. Liu, and K. Li, “Joint offloading and schedul-
ing decisions for DAG applications in mobile edge computing,”
Neurocomputing, vol. 424, pp. 160-171, Feb. 2021.

Z. Lv, L. Qiao, and A. K. Singh, “Advanced machine learning on cog-
nitive computing for human behavior analysis,” IEEE Trans. Computat.
Social Syst., vol. 8, no. 5, pp. 1194-1202, Oct. 2021.

M. Monforte and F. Ficuciello, “A reinforcement learning method using
multifunctional principal component analysis for human-like grasping,”
IEEE Trans. Cogn. Devel. Syst., vol. 13, no. 1, pp. 132-140, Mar. 2021.
Q. He, Z. Dong, F. Chen, S. Deng, W. Liang, and Y. Yang, “Pyramid:
Enabling hierarchical neural networks with edge computing,” in Proc.
ACM Web Conf., 2022, pp. 1860-1870.

F. Luo, Q. Zhou, J. Fuentes, W. Ding, and C. Gu, “A soar-based space
exploration algorithm for mobile robots,” Entropy, vol. 24, p. 426,
Mar. 2022.

B. M. Smith, M. Thomasson, Y. C. Yang, C. Sibert, and A. Stocco,
“When fear shrinks the brain: A computational model of the effects of
posttraumatic stress on hippocampal volume,” Topics Cogn. Sci., vol. 13,
no. 3, pp. 499-514, 2020.

F. Jauro, H. Chiroma, A. Y. Gital, M. Almutairi, S. M. Abdulhamid, and
J. H. Abawajy, “Deep learning architectures in emerging cloud com-
puting architectures: Recent development, challenges and next research
trend,” Appl. Soft Comput., vol. 96, Nov. 2020, Art. no. 106582.

Y. Rizk, M. Awad, and E. W. Tunstel, “Decision making in multiagent
systems: A survey,” [EEE Trans. Cogn. Devel. Syst., vol. 10, no. 3,
pp. 514-529, Sep. 2018.

D. Zhang et al., “Near-optimal and truthful online auction for computa-
tion offloading in green edge-computing systems,” IEEE Trans. Mobile
Comput., vol. 19, no. 4, pp. 880-893, Apr. 2020.

J. Yan, S. Bi, and Y. J. A. Zhang, “Offloading and resource allocation
with general task graph in mobile edge computing: A deep reinforce-
ment learning approach,” IEEE Trans. Wireless Commun., vol. 19, no. 8,
pp. 5404-5419, Aug. 2020.

M. Li, T. Chen, J. Zeng, X. Zhou, K. Li, and H. Qi, “D2D-assisted
computation offloading for mobile edge computing systems with energy
harvesting,” in Proc. 20th Int. Conf. Parallel Distrib. Comput. Appl.
Technol. (PDCAT), 2019, pp. 90-95.

T. Zhang and W. Chen, “Computation offloading in heteroge-
neous mobile edge computing with energy harvesting,” 2020,
arXiv:2004.08073.

M. Merluzzi, P. Di Lorenzo, and S. Barbarossa, “Latency-constrained
dynamic computation offloading with energy harvesting IoT devices,” in
Proc. IEEE INFOCOM Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), 2019, pp. 750-755.

C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-end
task offloading in mobile-edge computing networks with limited com-
munication capability,” IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 2,
pp. 624-634, Jun. 2021.

J. Ren, G. Yu, Y. Cai, Y. He, and F. Qu, “Partial offloading for
latency minimization in mobile-edge computing,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), 2017, pp. 1-6.

W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu, and H. Duan, “Mobility-
aware multi-user offloading optimization for mobile edge computing,”
IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3341-3356, Mar. 2020.
T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
“Task offloading and resource allocation for mobile edge computing by
deep reinforcement learning based on SARSA,” IEEE Access, vol. 8,
pp. 54074-54084, 2020.

L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, and L. Li, “Delay-aware
and energy-efficient computation offloading in mobile-edge computing
using deep reinforcement learning,” IEEE Trans. Cogn. Commun. Netw.,
vol. 7, no. 3, pp. 881-892, Sep. 2021.

C. Chen, Y. Zhang, Z. Wang, S. Wan, and Q. Pei, “Distributed compu-
tation offloading method based on deep reinforcement learning in ICV,”
Appl. Soft Comput., vol. 103, May 2021, Art. no. 107108.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

[36]

(371

[38]

[39]

113

H. Peng and X. Shen, “Multi-agent reinforcement learning based
resource management in MEC-and UAV-assisted vehicular networks,”
IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 131-141, Jan. 2021.
S. Wen, Z. Wen, D. Zhang, H. Zhang, and T. Wang, “A multi-robot path-
planning algorithm for autonomous navigation using meta-reinforcement
learning based on transfer learning,” Appl. Soft Comput., vol. 110,
Oct. 2021, Art. no. 107605.

K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in Proc. Int. Conf. Mach. Learn., 2019, pp. 5331-5340.

D. Wang, B. Ding, and D. Feng, “Meta reinforcement learning with
generative adversarial reward from expert knowledge,” in Proc. IEEE
3rd Int. Conf. Inf. Syst. Comput.-Aided Educ. (ICISCAE), 2020, pp. 1-7.
J. Xu, L. Yao, L. Li, M. Ji, and G. Tang, “Argumentation based rein-
forcement learning for meta-knowledge extraction,” Inf. Sci., vol. 506,
pp. 258-272, Jan. 2020.

H. Jiang, D. Shi, C. Xue, Y. Wang, G. Wang, and Y. Zhang, “Multi-
agent deep reinforcement learning with type-based hierarchical group
communication,” Appl. Intell., vol. 51, pp. 5793-5808, Jan. 2021.

J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast adaptive
task offloading in edge computing based on meta reinforcement learn-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 242-253,
Jan. 2021.

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 3—4, pp. 279-292, 1992.

B. H. Abed-Alguni, D. J. Paul, S. K. Chalup, and F. A. Henskens, “A
comparison study of cooperative Q-learning algorithms for independent
learners,” Int. J. Artif. Intell, vol. 14, no. 1, pp. 71-93, 2016.

B. H. Abed-Alguni and M. A. Ottom, “Double delayed Q-learning,” Int.
J. Artif. Intell., vol. 16, no. 2, pp. 41-59, 2018.

Z. Yu, G. Xu, Y. Li, P. Liu, and L. Li, “Joint offloading and energy
harvesting design in multiple time blocks for FDMA based wireless
powered MEC,” Future Internet, vol. 13, no. 3, p. 70, 2021.

L. Wang, H. Shao, J. Li, X. Wen, and Z. Lu, “Optimal multi-user compu-
tation offloading strategy for wireless powered sensor networks,” IEEE
Access, vol. 8, pp. 35150-35160, 2020.

Y. Hmimz, T. Chanyour, M. El Ghmary, and M. O. C. Malki, “Joint radio
and local resources optimization for tasks offloading with priority in a
mobile edge computing network,” Pervasive Mobile Comput., vol. 73,
Jun. 2021, Art. no. 101368.

S. Hu and Y. Xiao, “Design of cloud computing task offloading
algorithm based on dynamic multi-objective evolution,” Future Gener:
Comput. Syst., vol. 122, pp. 144-148, Sep. 2021.

H. Lu, C. Gu, F. Luo, W. Ding, S. Zheng, and Y. Shen, “Optimization of
task offloading strategy for mobile edge computing based on multi-agent
deep reinforcement learning,” IEEE Access, vol. 8, pp. 202573-202584,
2020.

D. Chen, Y.-C. Liu, B. Kim, J. Xie, C. S. Hong, and Z. Han, “Edge
computing resources reservation in vehicular networks: A meta-learning
approach,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5634-5646,
May 2020.

P. Lai et al., “Optimal edge user allocation in edge computing with vari-
able sized vector bin packing,” in Proc. Int. Conf. Serv. Orient. Comput.,
2018, pp. 230-245.

M. Merluzzi, P. Di Lorenzo, S. Barbarossa, and V. Frascolla,
“Dynamic computation offloading in multi-access edge computing
via ultra-reliable and low-latency communications,” [EEE Trans.
Signal Inf. Process. Netw., vol. 6, pp.342-356, Mar. 2020,
doi: 10.1109/TSIPN.2020.2981266.

Weichao Ding was born in 1989. He received the
B.S. degree in computer science and technology
from Northeast Forestry University, Harbin, China,
in 2013. He is currently pursuing the M.S. and Ph.D.
degrees in computer applications with the School
of Information Science and Engineering, East China
University of Science and Technology, Shanghai,
China.

His main research interests include cloud comput-
ing, cloud resource management and optimization,
and big data applications.

http://dx.doi.org/10.1109/TSIPN.2020.2981266

114 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2024

Fei Luo was born in 1978. He received the
B.S., M.S., and Ph.D. degrees in computer sci-
ence from Huazhong University of Science and
Technology, Wuhan, China, in 1997, 2004, and 2008,
respectively.

From 2008 to 2015, he was an Assistant Professor
with the College of Information Science and
Engineering, East China University of Science and
Technology, Shanghai, China, where he has been an
Associate Professor since 2015. He is the author of
more than 30 papers and ten inventions. His research
interests include distributed and cloud computing applications.

Chunhua Gu was born in 1970. He received the
B.S., M.S., and Ph.D. degrees in computer sci-
ence from East China University of Science and
Technology, Shanghai, China, in 1992, 1998, and
2007, respectively.

He is a Professor and a Ph.D. Supervisor with
the School of Information Science and Engineering,
East China University of Science and Technology,
Shanghai, China. His main research interests
include cloud computing and Internet of Things
applications.

Dr. Gu is a Senior Member of the China Computer Federation.

Zhiming Dai was born in 1983. He received the
master’s degree in software engineering from Fudan
University, Shanghai, China, in 2012. He is cur-
rently pursuing the Ph.D. degree with the School
of Information Science and Engineering, East China
University of Science and Technology, Shanghai.

His main research interests include optimal
scheduling of edge computing.

Haifeng Lu was born in 1993. He received the mas-
ter’s degree from the Computer Science Department,
Donghua University, Shanghai, China, in 2017. He is
currently pursuing the Ph.D. degree with the School
of Information Science and Engineering, East China
University of Science and Technology, Shanghai.

His main research interests include edge comput-
ing and reinforcement learning applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

