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Unsupervised Multimodal Word Discovery Based
on Double Articulation Analysis With
Co-Occurrence Cues

Akira Taniguchi

Abstract—Human infants acquire their verbal lexicon with
minimal prior knowledge of language based on the statistical
properties of phonological distributions and the co-occurrence of
other sensory stimuli. This study proposes a novel fully unsuper-
vised learning method for discovering speech units using phono-
logical information as a distributional cue and object information
as a co-occurrence cue. The proposed method can acquire words
and phonemes from speech signals using unsupervised learning
and utilize object information based on multiple modalities—
vision, tactile, and auditory—simultaneously. The proposed
method is based on the nonparametric Bayesian double articula-
tion analyzer (NPB-DAA) discovering phonemes and words from
phonological features, and multimodal latent Dirichlet alloca-
tion (MLDA) categorizing multimodal information obtained from
objects. In an experiment, the proposed method showed higher
word discovery performance than baseline methods. Words
that expressed the characteristics of objects (i.e., words corre-
sponding to nouns and adjectives) were segmented accurately.
Furthermore, we examined how learning performance is affected
by differences in the importance of linguistic information.
Increasing the weight of the word modality further improved
performance relative to that of the fixed condition.

Index Terms—Co-occurrence cues, developmental robotics,
lexical acquisition, probabilistic generative model, word
discovery.

I. INTRODUCTION

UMAN infants can acquire their verbal lexicon with
minimal prior knowledge based on the statistical
properties of phonological distributions and co-occurrence of
other sensory stimuli [1], [2], [3]. Regarding the importance
of fundamental statistical regularity in the lexical acquisition
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by infants, Saffran et al. [4] observed that there are three key
elements: 1) distributional cues; 2) co-occurrence cues; and
3) prosodic cues. Here, distributional cues are the statistical
relationships regarding the phonological information in utter-
ances, and co-occurrence cues are the information provided by
the sensory stimulus that co-occurs with a specific utterance.
Prosodic cues are information (such as intonation) included
in utterances and the silent sections generated between utter-
ances. A study of infant statistical learning [5] reported that
infants are sensitive to statistical regularities in many domains,
such as speech, music, behavior, and spatial vision. Statistical
learning mechanisms allow infants to discover statistical reg-
ularities in the environment, such as the words contained in
utterances.

As co-occurrence cues are described as one of the impor-
tant factors in lexical acquisition, infants observe various
other types of sensory stimulus simultaneously when hear-
ing speech [6]. Humans can classify things into categories
by observing various types of sensory information from early
in childhood and these categories play an important role in
human cognitive function [7]. Additionally, it is considered
that infants can change the type of important information to
which they are attending depending on the progress of learn-
ing [8], [9]. However, how to specifically change the impor-
tance of given information remains an open issue. Therefore,
this study focuses on the importance of co-occurrence cues
in the lexical acquisition process and the effect of changes in
their importance for efficient learning.

There is an approach that aims to elucidate the lexical
acquisition process by imitating the function of humans and
expressing it via machine-learning methods [10], [11], [12],
[13], [14], [15]. This type of approach is referred to as
a constructive approach. The findings obtained from these
computational models that partially imitate human language
learning functions contain clues for elucidating human lan-
guage learning functions. This approach can be used to
develop robots with functions that more closely approximate
those of humans. In this study, we focused on the language
learning function of infants, who can discover voice units
from spoken utterances. This function is expressed as a speech
unit discovery method via unsupervised learning that does not
use labeled data for its machine learning [14]. In speech unit
discovery using computational models, words and phonemes
are often considered as speech units [13], [14], [15]. There
have been various approaches in this area of research such as
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those that assume that both words and phonemes are speech
units [13], [14], or those that focus on only words [16] or
only phonemes [17]. However, the segmentation accuracy of
the latter methods is low due to several factors. For exam-
ple, an oversegmentation of words can occur based on the
recognition error of phonemes. Therefore, it is important to
consider both words and phonemes as speech units, using a
double articulation analyzer (DAA).

Several computational models for the discovery of speech
units have been proposed to utilize other types of information
that co-occur with linguistic information [18], [19], [20], [21],
[22], [23]. There are various types of co-occurrence cues and
the relationships between co-occurrence cues and linguistic
information that have some explanatory value. Many stud-
ies have assumed a set of images and linguistic captions
that explain the image [21], [22], [23]. With such methods,
the accuracy of speech unit discovery is improved by learn-
ing the association between the object in the image and the
speech unit, as compared with cases in which no image is
given. However, these studies are not aimed at lexical acqui-
sition and use only one type of co-occurrence information.
When considering the imitation of human statistical learn-
ing, it is desirable to use co-occurrence information based on
multiple types of sensory stimuli simultaneously. There has
been some previous research that meets this requirement [18].
In this study, multiple modalities, specifically, the image of
the object, the tactile feel when the object is grasped, and
the sound when the object is shaken, are handled as co-
occurrence cues for the spoken utterances that express the
characteristics of the object. Similar studies [19], [20] used
the position of a robot and the image at its place as co-
occurrence cues for spoken utterances that express places.
However, these studies assume that phonemes and syllables
have already been acquired, and thus cannot conclude that
lexical acquisition is completely achieved via unsupervised
learning.

In this study, we propose co-occurrence DAA, a novel
fully unsupervised learning method that discovers phonemes
and words using phonological information as distributional
cues and multiple other forms of sensory information as
co-occurrence cues. The proposed method is based on the
probabilistic generative model, HDP-HLM~+MLDA, which
integrates a hierarchical Dirichlet process hidden language
model (HDP-HLM) [14] and multimodal latent Dirichlet allo-
cation (MLDA) [24]. The integration of the two models
is based on the concept of symbol emergence in robotics
tool kit (SERKET) [25], [26] using the sampling importance
resampling (SIR) method [27]. SERKET is the theoretical
framework for the integration of probabilistic generative mod-
els, and the construction and demonstration of the integrated
inference algorithm with SIR is one of the novelties of this
study. The overview of this study is presented in Fig. 1. We
investigate how co-occurrence cues affect phoneme and word
discovery performance and compare learning results depend-
ing on the importance of co-occurrence cues. Hence, the main
contributions are as follows.

1) We construct a fully unsupervised learning method that

uses not only distributional cues but also co-occurrence
cues for phoneme and word discovery.
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Fig. 1. Overview of this study. Phonemes and words are discovered by
simultaneously using human utterances representing objects’ characteristics
and the multimodal object information that co-occurs with utterances.

2) We show using co-occurrence cues improves word
segmentation performance (mainly shown in Table II of
Experiment 1).

3) We suggest that co-occurrence cues regarding objects
facilitate the discovery of words regarding objects
(mainly shown in Fig. 7 of Experiment 1).

4) Performances of word discovery and object categoriza-
tion are further improved by increasing the weight of the
word modality (mainly shown in Table IV and Fig. 9 of
Experiment 2).

This study is novel, and its results can be applied in basic
research domains focused on a better understanding of lan-
guage acquisition, as well as in a variety of practical appli-
cations using language (e.g., human-robot interactions). Here,
we open the source code of the proposed method and speech
data set on GitHub.'

The remainder of this article is structured as follows. First,
Section II describes previous research that examines lexi-
cal acquisition and categorization by infants, computational
models for phoneme and word discovery, and word dis-
covery methods using co-occurrence cues. Next, Section III
introduces the conventional methods, MLDA, and nonpara-
metric Bayesian DAA (NPB-DAA), as the background for the
proposed method. Section IV describes the proposed method.
Then, we describe the experiments in Sections VI and VII.
Finally, we provide a conclusion and directions for future work
in Section VIII.

II. RELATED WORK

We describe four types of related work considered in this
study. Section II-A describes studies on lexical acquisition
and categorization in infants. Section II-B describes how the
constructive approach has been applied to lexical acquisition.
Section II-C describes unsupervised speech unit discovery
methods that work from speech data only. Section II-D
describes word discovery methods that use co-occurrence cues.

A. Lexical Acquisition and Categorization in Infants

Various approaches have been studied to date to elucidate
the factors influencing lexical acquisition in infants [3], [4],

1 https://github.com/a-taniguchi/NPB-DAA-MLDA
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[51, [8], [9], [28]. In general, it is believed that infants discover
words using speech statistical distribution information. For
example, in one study on the role of distributional cues
in word segmentation [4], a word segmentation experiment
was conducted using an artificial language and adult sub-
jects. These experiments suggested that distributional cues
play an important role in the early word segmentation of
language learners. However, word segmentation using distribu-
tional cues alone is difficult owing to biases and deficiencies in
observed words during language learning. Moreover, the lan-
guage input may vary due to factors such as dialect, accent,
speaking rate, and external environment and context changes.
Therefore, Saffran et al. [4] contended that not only distri-
butional cues but also multimodal sensory information, such
as prosodic and co-occurrence cues, are important in lexical
acquisition.

Although experiments with infants have reported some
results, there are some remaining issues. Pelucchi et al. [2]
showed that infants are sensitive to syllable transition proba-
bilities in natural language stimuli and that statistical learning
is robust enough to support lexical acquisition in the real
world. One study on word segmentation for infants learning
English [8] focused on accents during speech and showed
that distributional cues play an important role in the early
stages of word segmentation learning. Therefore, it is con-
sidered that infants change the importance assigned to each
source of information depending on their progress in the lan-
guage learning process. Kuhl et al. [9] investigated whether the
importance of information affects perceptual accuracy as learn-
ing progresses. Previous experimental evaluations [2], [8], [9]
are widely used to assess language learning. However, because
these behavioral experiments were conducted after learning,
they are susceptible to various external factors. For example,
they cannot observe the dynamic progress of learning and sim-
ilarly cannot target adult subjects. Choi et al. [28] proposed
using the measurement results of electroencephalograms worn
during the experiment to overcome these problems. However,
this introduces new issues, such as the costly nature of elec-
troencephalogram measurements. Therefore, a constructive
approach based on a computational model, as introduced in
Section II-B, is useful.

Co-occurrence cues have been described as one of the most
important factors in lexical acquisition. Infants can observe
various other types of sensory stimuli and hear speech simulta-
neously. In fact, it has been reported that 10-month-old infants
can discover simple categories from visual information [6].
In this way, it has been observed that humans can classify
things into categories by observing various types of sensory
information from early childhood and that these categories
play an important role in human cognitive function [7]. One
study of language acquisition by infants reported that infants
tend to understand a word as the name of a category to
which the target object belongs, rather than as a proper
noun [29]. However, the details of nature and the relation-
ship between lexical acquisition and category formation in
infant development remain unresolved and controversial [30].
Additionally, Okanoya and Merker [31] presented a hypothesis
of string-context mutual segmentation in language evolution.
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Our proposed method can be interpreted as a computational
model that represents the functions an agent should have to
embody this hypothesis.

B. Constructive Approach to Lexical Acquisition

Several studies have used a constructive approach to imi-
tate the functions and developmental processes of humans and
express them as machine learning methods to further eluci-
date the process. The advantage of this approach is that it
can be analyzed relatively easily, with the learning results and
parameters as a computational process. Of course, it cannot be
concluded at this stage whether the machine learning methods
used in this approach accurately represent the human devel-
opmental process. However, the knowledge obtained from
methods that have functions similar to human lexical acqui-
sition can and will be used to understand the human lexical
acquisition process better. In addition, the knowledge obtained
from machine learning methods will be used to develop robots
that have functions closer to humans.

In recent years, several studies on lexical acquisition using
a constructive approach have been conducted [12], [13], [14],
[15], [32]. Several machine learning methods imitate the
lexical acquisition process of infants using a constructive
approach, such as the phoneme and word discovery method
known as the NPB-DAA. NPB-DAA is an unsupervised-
learning method based on Bayesian inference, which assumes
that the time-series data has a double-articulation structure.
Here, double articulation refers to a structure in which the
time-series data can be segmented into a certain unit, and each
unit can also be segmented into chunks. For example, human
utterances can be segmented into units of words, and each
word can be segmented into another unit called phonemes, thus
it has a double articulation structure. One of the main features
of NPB-DAA is that not only can words and phonemes be
acquired through fully unsupervised learning, but it can also
be applied to relatively small data sets. Therefore, in this study,
NPB-DAA was used as the base of the proposed method, and
the outline is described in Section III.

In the constructive approach for lexical acquisition, many
studies only used speech signals. For example, a lexical dis-
covery method [13] that supports variously changing phoneme
and word expressions extended adapter grammars [33], which
is the nonparametric Bayes morphological analysis. However,
owing to limitations in the noisy-channel model used for
modeling variability, sufficient lexical acquisition performance
could not be achieved in this study. Studies on syllables are
common in the field of lexical acquisition and speech recog-
nition tasks by infants [8], [34], [35]. Alternatively, machine-
learning studies focusing on syllables are relatively rare
because it is difficult to achieve unanimity in the detec-
tion and definition of syllables [12]. Previous experimental
results, however, have shown high accuracy, especially in
word segmentation, which is useful for future reference in the
approach of word discovery. Audio Word2vec [15], which is
an extension of Word2Vec [36] applied to speech data, seg-
ments speech utterances at the word level and then converts
those words into vector representations. However, in these
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studies, speech unit discovery was performed using only the
information obtained from the speech signal, and other sensory
co-occurrence cues were not used.

C. Unsupervised Speech Unit Discovery Methods From
Speech Data Only

Lexical acquisition by unsupervised learning is cost-
effective because it does not require a large amount of labeled
data to be prepared for learning. Studies on discovering units,
such as words, from spoken utterances using unsupervised
learning have been conducted using various approaches [16],
[17], [37], [38], [39], [40]. The main purpose of these previous
studies was to enable automatic speech recognition to be
applied to languages with few resources for learning, rather
than imitating the infant statistical learning process via the
constructive approach, as was introduced in the previous
section. Kamper et al. [16] proposed a method that used
acoustic word embeddings in word segmentation by unsu-
pervised learning; however, they did not explicitly deal with
phoneme or syllable segmentation but focused only on word
segmentation.

In research on speech unit discovery using unsupervised
learning, a method based on a variational autoencoder (VAE)
was proposed [38], [39], [40]. The Bayesian hidden Markov
model VAE [38] is a speech unit discovery method that
extends VAE by embedding a Bayesian framework in the
hidden Markov model VAE [41]. Specifically, by assuming
the Dirichlet process (DP) as a prior distribution for the
distribution of speech units, it is possible to automatically
infer the total number of speech units. Our proposed method
can also automatically infer the number of phonemes and
words using DP. Neural network-based speech representation
learning [39] can obtain discrete representations using vec-
tor quantized VAE (VQ-VAE) [42]. Additionally, it can retain
a significant amount of linguistic information and the invari-
ance of the speaker. van Niekerk et al. [40] investigated the
usefulness of vector quantization in learning representations
that separate speech content and the characteristics peculiar
to the speaker. Recently, wav2vec-U [43], a method for unsu-
pervised speech recognition using phonemized unlabeled text
via generative adversarial networks [44], has been developed.
These prior studies showed high performance in word discov-
ery. However, the models used did not use purely unsupervised
learning from only speech data and functioned with prelim-
inary assumptions such as the use of texts or codebooks of
phonemes. Therefore, they are different from developmental
models that imitate the lexical acquisition processes of infants
with the aim of understanding their functions.

D. Word Discovery Methods Using Co-Occurrence Cues

Some studies have taken the approach of using co-
occurrence cues other than utterances simultaneously in word
discovery [18], [20], [21], [22], [23]. The motivations for
using information other than utterances include improving the
performance of word discovery and providing linguistic con-
nections to co-occurrence cues. Nakamura et al. [18] proposed
a word discovery method using multimodal sensor data that
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can be observed from an object as co-occurrence cues in word
discovery. In this study, object categorization was performed
using utterance information and multimodal sensor data, and
each word was linked to the object category. Specifically,
the nested Pitman—Yor language model (NPYLM) [45] was
used for word discovery, and MLDA [24] was used for object
categorization. NPYLM can discover words via unsupervised
learning, but because the input needs to be in text format,
it is assumed that phonemes or syllables can be recognized.
MLDA is an unsupervised categorization method that can
handle multiple modalities simultaneously (for details, see
Section III-A). In addition, SpCoA++ [20], SpCoSLAM [19],
and ReSCAM [46] can learn the place category and the lexicon
based on the syllable recognition lattices and the sensor obser-
vations about the place as co-occurrence cues. These studies
reported that simultaneous learning of categories and the
lexicon improves accuracy in both word segmentation and cat-
egorization. In addition to the situational context co-occurring
with speech, leveraging a top-down grammar learning process
also improves word segmentation performance [47]. However,
these studies assumed a certain level of prior knowledge of
phonemes and syllables. In our study, we proposed a method
that can simultaneously detect phonemes and words by refer-
ring to the above approach. This can be interpreted as a
machine learning method that imitates the process of an infant
acquiring lexicon.

Although not focused on Iexical acquisition or
speech unit discovery, some studies link speech and
images [21], [22], [23]. The visually linked speech recog-
nition model projects speech utterances and images into a
common semantic space [21]. The method for finding a word
and associating that word with an object in an image uses
both the image and its speech caption [22]. Such a method
does not use existing speech recognition devices or prior
linguistic annotations. However, word segmentation using
this method is insufficient for sections of speech that are
not sufficiently associated with images. The hybrid model
comprising a deep neural network and a hidden Markov
model discovers words from images representing objects and
their audio captions [23]. Because the above model does not
consider word-level information, there remains the problem
of confusing different words that share phonemes.

III. FOUNDATIONAL METHODS

The proposed method is based on NPB-DAA, which is
an unsupervised phoneme and word discovery method from
phonological features, and MLDA, which is an unsuper-
vised object categorization method for multimodal information
obtained from objects. This section provides an overview
of two foundational methods as MLDA in Section III-A
and NPB-DAA in Section III-B. The integrated model and
inference in the proposed method are described in Section IV.

MLDA can discover the category of an object by cluster-
ing observation data obtained when a robot sees, grasps, and
makes sounds with various objects, without requiring hand-
labeled category labels. NPB-DAA can segment speech into
phonemes and words based on only features of the speech,
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Fig. 2. Graphical models of (a) LDA and (b) MLDA (a version consisting

of four modalities; from the top: word, audio, haptic, and vision modalities).

without any hand-labeled segmentation boundary. Therefore,
MLDA and NPB-DAA may not always produce accurate
results, and different variations of results may be obtained
depending on the ambiguity of the observation data. For exam-
ple, a robot may observe various objects including coins and
buttons, but MLDA may classify them into the same category
owing to their visual similarity. On the other hand, humans
may verbally say “This is a coin found on the street corner’” or
“A round button fell” and NPB-DAA may segment the speech
data into the words, such as “/coi/ /nf/” and “/but/ /to/ /nf/.” In
our study, we integrate these methods by connecting the fea-
tures of objects and speech in robots and making them refer to
each other’s learning results, to teach the robot that “coin” and
“button” are different words and belong to different categories.

A. Multimodal Latent Dirichlet Allocation: MLDA

Nakamura et al. [24] extended the latent Dirichlet allocation
(LDA) [48] as an MLDA that can generalize multiple types
of sensory observation simultaneously to enable object cate-
gorization using multimodal data. For instance, images may
have certain colors and shapes while audio data may have
specific acoustic features. By extracting common categories
across these different modalities, MLDA can understand the
relationships between multiple modalities. The word distribu-
tions are obtained based on the observed frequencies of words
for each category. It has been shown that object categorization
using MLDA is closer to human senses than categorization
using a single modality. For more details on this approach,
refer to the original MLDA paper [24].

LDA [48] is a prominent representative method for topic
modeling. The original LDA was developed to estimate the
potential topic, that is, the latent category, for each word from
text documents including many sentences. Fig. 2(a) shows the
graphical model of LDA. oy ,, is a bag-of-words representa-
tion in a document. The bag-of-words representation is a way
to represent text as a collection of words and their frequencies,
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Algorithm 1 Collapsed Gibbs Sampler for MLDA
repeat
for all m,d, i do

u < random value between [0, 1]
for k < 1 to K do
Plk] <= Plk— 1]+ (Nk’d”‘di + )
end for
for k < 1 to K do
if u < P[k]/P[K] then
zZ’i = k, break
end if
end for
end for
until a predetermined exit condition is satisfied.

medi + ﬂm

mko™

Ny Dim (m) g

without considering the order in which they appear.> 6%
represents the word appearance probability for each category,
and 8" is a hyperparameter of the Dirichlet prior distribution.
7" refers to the index of the category assigned to each word.
7 is a parameter of the multinomial distribution representing
the probability of the appearance of each category, and the
Dirichlet prior distribution with « as a hyperparameter is used
as the prior distribution of this multinomial distribution. D is
the number of documents, I is the number of words in a
document, and K is the number of topics.

Fig. 2(b) shows the graphical model of MLDA. Here, the
superscripts w, a, h, and v represent different modalities,
indicating linguistic, auditory, tactile, and image information,
respectively. o* refers to the features of each modality. 6*
represents the appearance probability of different features for
each category in each modality, and each follows the Dirichlet
prior distribution with 8* as a hyperparameter. z* refers to the
index of the category assigned to each feature in each modal-
ity. 7 is a parameter of the multinomial distribution, and « is
a hyperparameter of the Dirichlet prior distribution. The num-
ber of objects is D, the number of observed features is I*, and
the number of categories is K. The features of each modality
are represented as bag-of-features.

The collapsed Gibbs sampler is used for MLDA parameter
estimation, as shown in Algorithm 1. The collapsed Gibbs
sampler uses marginalized conditional probabilities on 7 and
6™ regarding the category z7j; assigned to the ith feature of the
dth object in the modality m as follows:

P(Zrdr; —k | Z—ma’i’ Om,()[, ﬂm)
. N—mdi+ m
o <N];1mdl +Ol) /3

mko™
Ny Dim(m) g™

where Dim(m) is the dimension number of the histogram of

modality m. The subtraction subscript in (1) indicates that the
data in that index is excluded from the histogram.

In addition, Nykgom is the count number of data assigned to

the category k and data o™ of modality m in the dth object.

(D

2This is also the case in MLDA, where descriptions, that is, sequences of
words, about an object given by the instructor is used as a word histogram
for each object.
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The count numbers are shown as follows:

Nmkom = ZNmkdom (2)
d
Nia = Z Ninkdom 3)
m,o™
Nk = Z Nukdom (4)
d,()ﬂ‘l

where N, is the count number assigned to the category k for
each feature in all objects for modality m.

Therefore, the global parameters of MLDA can be acquired
as the estimation result in the following:

om = Nykom + .Bm (5)
k0™ ™ Ny + Dim(m) ™
Nig + o

Mih = —=——. 6
.k Zkad-l-Ka ©)

B. Nonparametric Bayesian Double Articulation Analyzer:
NPB-DAA

NPB-DAA is an unsupervised phoneme and word discovery
method proposed to computationally imitate the lexical acqui-
sition process of human infants. NPB-DAA uses an acoustic
model (AM) and a word model (WM) to express phonemes
and words. The AM stochastically represents the duration of
each phoneme and the acoustic features that make up the
phoneme. The WM consists of a phoneme bigram model
and a word dictionary. The bigram language model (LM) is
the probability of transitioning to the word that appears after
each word, and the word dictionary is the probability of the
phonemes that make up each word. For more details, refer to
previous research [14].

NPB-DAA estimates latent phonemes, latent words, LMs,
and AMs, which are the latent variables of HDP-HLM, using
the blocked Gibbs sampler.> NPB-DAA uses a nonparamet-
ric Bayesian method (specifically, the stick-breaking process
(SBP) [49], which is based on the DP) to automatically esti-
mate the appropriate number of categories (i.e., the number of
phonemes and word types) for the data. In practice, a weak-
limit approximation [50] in the SBP is used to specify the
maximum limit number of categories for implementation. For
the inference algorithm, refer to this article in which it was
defined [14].

Fig. 3 shows the graphical model representation of HDP-
HLM, which is a generative model. The generative process
is omitted in this article. In HDP-HLM, latent words con-
tinuously generate observation data for a certain period.
In addition, the latent word corresponds to the word gz,
and the ith word z; = i has the phoneme string w; =
Wit, ..., Wik, ..., wir;). Here, L; represents the number of
phonemes of the ith word w;. The superscripts LM and WM
represent the LM and the WM, respectively. A WM is part
of an LM that expresses the kind of phonemes each word is
composed of and is referred to as a word dictionary. M and

3HDP-HLM is the name of the probabilistic generative model, and NPB-
DAA is the name of the inference algorithm for finding phonemes and words
in HDP-HLM by blocked Gibbs sampler.
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Fig. 3. Graphical model representation of HDP-HLM for NPB-DAA [14].

BYM are base measures for the LM and the WM, respectively.

In addition, a™M, yLM, a"M and yWM are the hyperparam-
eters of the LM and the WM, respectively. njLM is the output
from DP(aLM, ,BLM), which expresses the transition probabil-
ity. n]WM is the output from DP(a"M, BYM) which expresses
the transition probability of the next latent character string
from a latent phoneme j. wj; represents the kth latent phoneme
in the ith latent word. In addition, [y is the kth latent character
in the sth latent word zs. wj, is a parameter of the duration
distribution of the latent character /. In HDP-HLM, the latent
word z; is generated by the previous latent word z;_; and the
LM. The duration Dy of Iy is sampled based on the deter-
mined sequence w,, . The observation data y; is generated from
the output distribution h(6y,) corresponding to x; = sz k()
Here, the map functions s(f) and k(fr) represent the word
and phoneme indicators of the latent word string at time ¢,
respectively. Here, the observation time-series data y; is asso-
ciated with the feature vector obtained from the audio signal
at time .

IV. PROPOSED METHOD: UNSUPERVISED PHONEME
AND WORD DISCOVERY METHOD WITH
C0-OCCURRENCE CUES

In this section, we describe the proposed method, which
performs unsupervised phoneme and word discovery using
multimodal sensor data obtained by a robot. The integration
of the two methods involves one module sending inference
results to the other module, and iterative learning improves
overall learning. Based on the information about the object cat-
egory, word segmentation is more accurately corrected. Using
word segmentation results, better object categories are formed.
Initially, uncertain categories or incorrect words are gradually
self-organized and corrected.

The proposed model, HDP-HLM~+MLDA, is the integration
of HDP-HLM (NPB-DAA) and MLDA (Fig. 5). An overview
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Fig. 4. Flow of the iterative estimation of co-occurrence DAA. The following procedure was implemented to utilize the co-occurrence of object information
and phonological information. (i) Phonemes and words are learned in each iteration of NPB-DAA; word sequences are estimated for each of the multiple
model candidates. (ii) Object categorization is performed using each candidate of estimated word sequences and multimodal object information. (iii) The
probability distribution of words that are likely to appear in each category is obtained from the categorization results. (iv) Each model candidate is weighted
based on the appearance probability of words in the category assigned to each word included in the word sequences estimated from the utterance. If the
candidate has a higher weight, the words frequently appearing in the category to which the object belongs can be estimated. (v) Sampling to select the model
to be trained in the next iteration based on the weighting. The model to be updated is resampled with a probability proportional to the calculated weight value.

of the proposed inference algorithm, co-occurrence DAA*
is shown in Fig. 4. The inference algorithm is realized by
SIR [27], which samples candidates of word sequences using
NPB-DAA and weights the candidates using the MLDA. In
other words, this algorithm performs iterative learning with
NPB-DAA and MLDA.

A. HDP-HLM+MLDA: Building Integrated Probabilistic
Generative Model

To integrate HDP-HLM and MLDA, we adopt the idea of
the SERKET [25], [26], which is an integration framework for
probabilistic generative models. SERKET makes it possible to
easily construct a large-scale generative model and its infer-
ences by hierarchically connecting the base models, which are
its constituent units, while maintaining the independence of
each program that is the integration source. By constructing
the integrated model according to the SERKET framework, it
is possible to optimize the parameters of the integrated model,
even if the parameters estimated independently in each base
model are used. In the proposed method, 0" corresponding to
the word sequences is shared by HDP-HLM and MLDA.

A graphical model of the proposed method is shown in
Fig. 5. Each variable follows the definition in the graphi-
cal model of the base models shown in Section III. In the
proposed graphical model, the part corresponding to HDP-
HLM is expressed, and some variables are changed to avoid
duplication. Here, the word sequences 0", the LM, the WM,
including the word dictionary, and the AM correspond to zg,
M (WM W}, {w, 6} in the graphical model of HDP-HLM,
respectively.

4HDP-HLM+MLDA is the name of the probabilistic generative model,
and co-occurrence DAA is the name of the inference algorithm in HDP-
HLM+MLDA.

m oy Je— BY  Word
™
a — 0F Je— B Audio
l‘l
o" O} }e— B"  Haptic
d,i o k
6y Jer— pv  Vision
D r K
Fig. 5. Graphical model representation of HDP-HLM+MLDA, which

is the integrated model of HDP-HLM and MLDA. Some of the variables
corresponding to HDP-HLM are collectively shown as one variable.

The probability distribution to generate a word sequence
P@0" | 7”,0%,%9) can be defined using unigram rescaling
(UR) approximation [51]. The UR approximation represents
category-dependent N-gram word probability as follows:

P(o" | 2¥,6",9)

UR

~ P |9) ]
d,s,i¥

N-gram prob.

w w — w
P(Od,x,iw | 245w =K. O )

w
P(oi )

Category dependent term
/ Rescaling term

N
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where the global parameters of HDP-HLM related to the
proposed method are denoted as ¢4 = {AM, WM, LM}.

B. Co-Occurrence DAA: Procedure of the Inference
Algorithm by NPB-DAA and MLDA

The inference algorithm applies SIR to the UR approxima-
tion based on the SERKET framework [25]. The target dis-
tribution is the posterior category-dependent word probability
distribution P(0" | y, 7", 6", %). The proposal distribution is
the N-gram word probability distribution P(0" | y, %), which
is estimated by NPB-DAA. Resampling is performed accord-
ing to the weights provided by the word distribution in the
object category by MLDA. This learning procedure enables the
proposed method to acquire the lexicon considering the object
categorization results by MLDA and to categorize objects
using the word sequences estimated by NPB-DAA.

Specifically, the following procedures and formulas are
used for learning. First, the model parameters are initialized.
The initialization is the same as in the previous NPB-DAA
paper [14]. The set of initial parameters %(q) (ast = 0) is
sampled as Q candidates independently. Next, the following
procedure, from .-V, is iterated T times (f € {1,2,...,T}).

I. To generate word sequences with consideration of the

object categories using SIR, we sample Q candidates of
the proposed distribution proportional to their respec-
tive weight values from the candidates sampled at the
(t — Dth iteration. Then, the parameters of each candi-
date are updated, and the word sequences are estimated

as follows:
0
G0~ 3 W(gﬁ})s(%l - gt(_qi) ®)
q=1
D gD ~ NPB-DAA(y, %(f’e) > a ) ©)

where the set of hyperparameters of HDP-HLM is
H = {G,H, y™M oM WM WMy the gth global
parameter candidate of HDP-HLM at rth iteration is
%(q), and the global parameter candidate resampled by
weight 7//(%@) at the (r — 1)th iteration is %(rqe) . In
addition, 8(-) is the Dirac delta mass in (8). Note that
in the (¢t = 1)th iteration, the weight in the (r+ — 1)th
iteration does not exist, so the initial value is copied as
%(q) = %(:Q. Here, NPB-DAA(-) is the process of one
iteration of the blocked Gibbs sampler by NPB-DAA.

II. Object categorization using MLDA uses the gth word
sequences candidate 0”@ and co-occurrence cues 0%
The global parameters 6¥(© and 79 are obtained as
follows:

0¥ @ 7@ ~ MLDA (0, o, f). (10)

Here, the set of word sequences for each candidate
0"@ is converted to a bag-of-words representation. We
apply the collapsed Gibbs sampler until the MLDA
categorization is sufficiently converged. The above pro-
cess is performed for each set of word sequences 0”@
estimated by all Q parameter candidates.
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III. The category k assigned to each word is sampled from
the probability distribution based on 6”@ and 7@ >
The probability that the category k is assigned to each

word og(sqzw is as follows:

2 w(g) _ w(q) (@
k ~ P<Zd,s,iw =k oy m Tgg 9/?)
wi(q) (@)
Ok @ Tdk

Yd,s, iV

v @)
Zk(ek @ ”d,k)

04 5,iw

(1)

IV. The weight of the parameter candidate of each HDP-
HLM, corresponding to the second term on the right
side in (7) is calculated as follows:

w(gq) wig) _ 3
W(g(q)) 1_[ P<0d,s,iw | Zd,s,iw = k, QW)
SR p(0w<q) )
a5, d,s,i¥
QW(l{)
7w
k’od,f,m

- T1

w(q)
d,s, iV Zk 0 w(q)

The weight is then normalized to use the probability

W (gl(q))
Zq W(gt (q)) ’
This normalized weight is held until the (z4-1)th iteration
and used to sample candidates.
V. The candidate with the largest weight is adopted as the

estimation result in the rth iteration. Increase iteration
value (# <— ¢+ 1) and return to step L.

. (12)

W(g{@)) — (13)

C. How to Weight Each Modality for Multimodal
Observations

Similar to MLDA, the proposed method introduces weight-
ing to adjust the degree of influence on categorization by
modality. Weighting in MLDA increases the quantity of the
feature itself (i.e., increasing the frequency of each occurrence
of the histogram). By changing the word modality weight, it
is possible to investigate the effect on categorization in lexical
acquisition.

The weighting process of categorization for each modality
is calculated as follows:

oM = _histh x modality weight”
" Y hist™ y-wexd
where hist”™ is the original observation feature his-
togram, and modality_weight™ is the weight value of a
modality m.

(14)

V. SPOKEN UTTERANCE AND MULTIMODAL DATA SET

This section describes the data set of spoken utterances for
phoneme and word discovery.

St is also possible to refer to the category index z assigned to a word
directly from the categorization process by MLDA. However, owing to the
code implementation used, we decided to perform sampling again in this
study.
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Fig. 6. List of objects used in the experiment from Multimodal Object Data
Set 165 [52].

TABLE I
EXAMPLES OF UTTERED SENTENCES

Uttered sentences (Japanese phoneme)
/kore wa omocha/
/jyuusu no botoru dayo/
/supurei kaN wa katai/

English
This is a toy.
It’s a bottle of juice.
The spray can is hard.

A. Overview

To evaluate the performance of speech unit discovery with
co-occurrence cues, we generated a speech data set corre-
sponding to the multimodal object sensor data. We used the
Multimodal Object Data Set 165 [52], which is an open data
set that includes vision, haptic, and audio sensory data, as well
as multimodal co-occurrence cues.® Here, we used 24 objects
from the data set for experiments. See Nakamura and Nagai’s
paper [52] for details regarding the observation process for
each modality.

Fig. 6 shows the image list for objects in the data set.
Objects were categorized into one of seven potential cate-
gories: stuffed toys, sweets, bottles, balls, spray cans, food
cans, or cup noodles. Table I shows an example of speech
sentences, with the Japanese phonemes and the English trans-
lation. The speech data set is the content that teaches the
characteristics and names of each object for a total of 75
Japanese sentences. Each speech item had a duration of
approximately 2-3 s per utterance.

B. Procedure for Creating Speech Data Set

A Japanese speaker was recorded in an anechoic chamber
using an omnidirectional microphone (SHURE PG27-USB).
The speech was uttered as clearly as possible to avoid speech
recognition errors. The speech was saved as a 1-channel
wav file with a sampling frequency of 16.1 kHz. The silence
intervals before and after the utterance were removed using

5Multimodal Object Data Set 165: http://hp.naka-lab.org/ubpages/mod165.
html.

1833

the automatic speech recognition system Julius’ [53] because
they would greatly affect the accuracy of phoneme and word
discovery if they remained in the data set. Next, the mel-
frequency cepstral coefficients (MFCCs) and the first and
second derivatives of the MFCC were extracted from the
speech data as features. The MFCC features were extracted
with the frame width set to 25 ms and the frameshift length
set to 10 ms. The MFCC and first and second derivatives of
the MFCC were 12-D features. In this study, we used a deep
sparse autoencoder with parametric bias in the hidden layer
(DSAE-PBHL) [54] to extract 12-D, 8-D, 5-D, and 3-D fea-
tures in a stepwise manner. Here, the features were compressed
using DSAE-PBHL because 1) the experimental results of a
previous study [54] showed higher word discovery accuracy
compared to MFCC and 2) dimensional reduction reduces the
computational cost. Using the above procedure, each speech
utterance was used as a 9-D acoustic feature.

VI. EXPERIMENT 1: PHONEME AND WORD DISCOVERY
USING CO-OCCURRENCE CUES OBTAINED
BY OBSERVING REAL OBJECTS

In this experiment, we compared the performance of the
proposed method, which uses speech and its co-occurrence
cues, with that of NPB-DAA, which uses only speech sig-
nals. We investigated the hypothesis that the use of co-
occurrence information contributes to the improvement of
phoneme and word discovery accuracy in situations close
to real-world environments. We also investigated whether
the word sequences discovered by exploiting co-occurrence
with object information also affect the performance of object
categorization. The co-occurrence information is described
in Section V, and the experiments were conducted using a
multimodal object data set.

A. Condition

This experiment used the data set described in Section V.
The hyperparameters of the language model LM of HDP-HLM
were oM = 10.0 and ™™ = 10.0. The limit of the number
of words by weak-limit approximation was 50 words. The
hyperparameters of the word model WM of HDP-HLM were
"M = 10.0 and y"M = 10.0. The limit of the number
of phonemes by weak-limit approximation was 50 phonemes.
The duration distribution assumed a Poisson distribution of
agp = 200 and By = 10. The emission distribution of the
acoustic features assumed a multivariate Gaussian distribution.
The prior distribution is a normal inverse Wishart distribution
of wp = 0, X9 = I (unit matrix), k9 = 0.01, and v = 14
(= Dimension +5 = 9+ 5). Here, we used NPB_DAA® as the
source code for the NPB-DAA implementation. We also set
the number of candidate parameters for HDP-HLM in each
iteration to Q = 10.

MLDA uses the histograms of the four modalities as input,
and the number of object categories to be set in the prior was
K = 7. The hyperparameter of the Dirichlet prior distribution,

7Open-Source Large Vocabulary Continuous Speech Recognition Engine
Julius: https://github.com/julius-speech/dictation-kit.
SNPB-DAA: https://github.com/EmergentSystemLabStudent/NPB_DAA.
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which is prior for multinomial distribution representing the
probability of appearance of each category, was set to o« = 7.1
(=~ 50/K = 50/7). The hyperparameter of the Dirichlet prior
distribution, which represents the emission probability of fea-
tures in each category, was set to 8 = 0.1. Here, we used
LightMLDA® as the source code for the MLDA implemen-
tation. The weight values set by MLDA for each modality
were fixed. The details are described in Section VI-B. Under
the above conditions, one trial consisted of 100 iterations of a
blocked Gibbs sampler of the NPB-DAA, and 20 trials were
performed independently. In addition, MLDA takes 1000 iter-
ations of a Gibbs sampler for each candidate of the word
sequences for each iteration of NPB-DAA.

B. Comparison Methods

The comparison methods are described as follows.

NPB-DAA [14]: This method is the conventional base-
line method for phoneme and word discovery with only
distributional cues.

MLDA [24]: This is the conventional method for object
categorization with multimodal data. To evaluate categoriza-
tion performance, two types were performed using 1) only
multimodal data, that is, three modalities (audio, haptic, and
vision) as the baseline method and 2) transcription sen-
tences (ground truth) with multimodal data, that is, four
modalities (word, audio, haptic, and vision) as the topline
method.

HDP-HSMM [55] + MLDA: This is a method that inte-
grates the hierarchical DP hidden semi-Markov model (HDP-
HSMM) and MLDA within the framework of SERKET, which
is similar to the proposed method. We created this base-
line to demonstrate the advantages of using co-occurrence
in DAA. HDP-HSMM is used instead of HDP-HLM to use
the distributional cues. HDP-HSMM does not assume double
articulation for phonemes and words. Therefore, during evalu-
ation, the segmented results are applied to both phonemes and
words.

Co-Occurrence DAA (Proposed Method): The modality
weights (modality_weight™) for object categorization
(See Section IV-C) are word:audiohaptic:vision =
200:50:100:100 as Co-occurrence DAA*! and
word:audio:haptic:vision = 200:340:160:280 as
Co-occurrence DAA*2. The modality weight™ of the
method *1 is determined by preliminary experiments (see the
Appendix). The modality weight™ of the method %2
is used, implementing the values established by a previous
study [18].

Julius GMM/DNN [53]: This is the topline, a speech rec-
ognizer built by supervised learning from large labeled speech
data sets. Julius GMM uses a Gaussian mixture model-based
triphone model, and Julius DNN uses a deep-neural-network-
based triphone model. The two different types of word dic-
tionaries are prepared; a generic word dictionary is a built-in
large-scale word dictionary, and a true word dictionary con-
sists only of the words in the data set. These results were

9MLDA: https://github.com/naka-tomo/Light MLDA.
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taken as reference values from Experiment 2 in Okuda et al.’s
paper [56], where a similar data set is used.

C. Evaluation Metrics

We prepared latent letters, that is, phonemes, and word
ground-truth labels for all data sets and evaluated the rela-
tionship between the ground-truth labels and estimated latent
letters and words as word discovery performance. We used
the automatic annotation tool provided by Julius GMM to
prepare the ground-truth labels. We also evaluated the rela-
tionship between the ground truth of object categorization by
the tutor and the estimated object categorization results as
categorization performance.

The evaluation metrics were as follows.

Normalized Mutual Information (NMI) [57]: NMI is one of
the most widely used evaluation metrics in clustering tasks for
unsupervised learning. NMI is an evaluation value obtained by
normalizing the amount of mutual information (MI) between
the correct clustering result and the estimated clustering result
to take a value ranging from 0.0 to 1.0. NMI is evaluated for
phoneme, word, and object categories.

Adjusted Rand Index (ARI) [58]: ARI is one of the most
widely used evaluation metrics in clustering tasks in unsu-
pervised learning. ARI takes 1.0 when the clustering result
matches the correct label and 0.0 when it is random. ARI is
evaluated for phoneme, word, and object categories.

Object Categorization Accuracy (ACC): ACC is a metric
used to evaluate the performance of object categorization in a
series of studies on MLDA [18], [24]. This metric represents
the matching rate when the label is changed so that the esti-
mated clustering label value most closely matches the correct
clustering label value.

D. Results

Table I shows the evaluation results for phonemes and
words at the end of training. The proposed method has a higher
word discovery performance than the baseline methods. As a
result, we have shown that using co-occurrence cues improves
word discovery performance in lexical acquisition. In contrast,
the phoneme discovery performance was almost the same for
all methods. This is likely because phonemes are the smallest
speech units without meaning, whereas words are the speech
units that can be assigned meaning.

Table III shows the performance of object categorization
at the end of training. The proposed method showed bet-
ter categorization performance than MLDA. The proposed
method showed higher values with the modality parame-
ters that were empirically set by Nakamura et al. [18]
than with the modality parameters determined by prelim-
inary experiments. HDP-HSSM+MLDA performed poorly
in speech segmentation and inaccurately in categorization
because it did not assume double articulation. As a result,
more accurate word discovery resulted in higher catego-
rization performance. The results also suggest that more
accurate object categorization leads to higher word discovery
performance.
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TABLE 11
PHONEME AND WORD DISCOVERY PERFORMANCE (EXPERIMENT 1)
Methods Distributional cue  Co-occurrence cue  Phoneme NMI Word NMI Phoneme ARI Word ARI
NPB-DAA v 0.556+0.008 0.722+0.023 0.307+0.017  0.519+0.049
HDP-HSMM+MLDA w/o DAA v 0.55040.008 0.4124+0.015 0.2924+0.017  0.167+0.011
Co-occurrence DAA*! v v 0.5564+0.010 0.731+0.028 0.307+£0.017  0.548 +0.056
Co-occurrence DAA*? v v 0.557+0.007 0.751+0.020 0.311+£0.013  0.575+0.050
Julius GMM with generic word dict. — — 0.575 0.557
Julius DNN with generic word dict. — — 0.474 0.725
Julius GMM with true word dict. — — 0.677 0.900
Julius DNN with true word dict. — — 0.493 0.825
TABLE III

OBJECT CATEGORIZATION PERFORMANCE; ACCURACY (ACC), NMI, AND ARI (EXPERIMENT 1)

Methods Word modality ACC NMI ARI
MLDA Ground truth 0.875+0.000 0.862+0.000  0.725+0.000
MLDA No use 0.563+0.000 0.554+0.000  0.205=+0.000

HDP-HSMM+MLDA  Iterative estimation  0.550+0.096  0.619+0.059  0.249+0.103
Co-occurrence DAA*!  Tterative estimation ~ 0.677+0.084  0.730+0.078  0.438+0.135
Co-occurrence DAA*2  Iterative estimation  0.700£0.069  0.772+0.053  0.517 +0.112
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Fig. 7. Examples of word segmentation results (Experiment 1): The upper part of each subfigure shows the waveform of the target speech. The lower part of
each subfigure shows the segmentation position estimated by learning, color-coded for each word. The correct segmentation position of the word is overlaid
as a gray line. The horizontal axis represents the number of speech frames and the vertical axis represents the training iteration. The list of numbers at the
bottom of the lower part of each subfigure corresponds to the index sequence of the words estimated by training. The subcaption shows the actual phoneme

sequence of the utterance. The underlined part is a characteristic word for an

object. (a) NPB-DAA: /nuigurumi wa yawarakai/(Plush is soft). (b) NPB-DAA:

/oishii ne/(It’s delicious). (c) NPB-DAA: /ju:su no botoru dayo/(It’s a bottle of juice). (d) Co-occurrence DAA: /nuigurumi wa yawarakai/(Plush is soft).
(e) Co-occurrence DAA: /oishii ne/(It’s delicious). (f) Co-occurrence DAA: /ju:su no botoru dayo/(It’s a bottle of juice).

Fig. 7 shows examples of the results of word segmenta-
tion of speech. These figures were drawn from the results
at the last iteration of the trial with the highest word ARI.
Here, words that describe the characteristics of an object
are nouns and adjectives, such as “sweets” and “soft.” Most
of the word segmentation results of NPB-DAA resulted
in oversegmentation. The word segmentation results of the
proposed method reduce oversegmentation for words that
describe the object characteristics. For example, the word
/muigurumi/ is segmented as multiple words in Fig. 7(a),

while it is correctly segmented as a single word in Fig. 7(d).
Additionally, Fig. 7(e) is an example of almost exact word
segmentation. The proposed method correctly segmented the
word /okashi/, a feature of the object in this utterance. Fig. 7(f)
suppressed the oversegmentation of the word /ju:su/, but the
words /botoru/ and /dayo/ were undersegmented. As a result,
the existing methods tended to consider a certain percentage
of utterances as several words, whereas the proposed method
could segment words that represented object features more
accurately.
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VII. EXPERIMENT 2: EFFECTS OF THE WEIGHT OF WORD
MODALITY ON THE PERFORMANCE OF WORD
DISCOVERY OBJECT CATEGORIZATION

By varying the word modality weights, we aimed to investi-
gate the implications for lexical acquisition and object catego-
rization. The hypothesis tested in this experiment is “Uncertain
word segmentation results in the early stage of learning can
have a negative impact on classification and hinder overall
performance improvement.”

The proposed method is realized by the coupling of two
modules and their mutual iteration. The weight of a modal-
ity in object categorization controls the degree of influence,
that is, the importance of the modality when merging the two
modules. Therefore, adjusting the weight of a word modal-
ity may affect its classification performance. Word discovery
performance can also be affected by categorization because
word discovery is acquired by exploiting co-occurrences with
object information. Therefore, in this experiment, we focused
on the importance of word modality modality_weight"
described in Section IV-C.

As an additional evaluation for comparison, we performed a
method using MI [20] instead of weighting based on UR. The
weighting by MI is equivalent to the logarithm of the weight-
ing by UR. MI provides a softer resampling of candidates
than UR.

A. Condition

The data set and hyperparameter settings were the same
as those described in Section VI. For the weight settings of
the word modalities, we applied variable weight settings in
addition to the fixed value (200) used in the experiments in
Section VI

In the increase condition, this weighting did not use the
uncertain word segmentation results for categorization in the
initial stage of learning and increased the weights after some
progress in the NPB-DAA iteration. This means that lexical
acquisition and concept formation take place through separate
mechanisms in the early stage, followed by the integration
of knowledge from both. The increase condition of the word
modality weight (modality_weight™(¢)) was set accord-
ing to the number ¢ of iterations of the blocked Gibbs sampler
of NPB-DAA, as follows:

word_modality weight_Increase(r)

= max(0, min(30 4+ 10(z — 10), 200)). (15)

In the decrease condition, we set a change in weight that
is considered inappropriate for comparison. This weighting
strongly uses the word segmentation results for categoriza-
tion in the early stages of learning but gives less credence
to the word segmentation results. The decrease condition of
the word modality weight (modality_weight"(f)) was set
according to the number ¢ of iterations of the blocked Gibbs
sampler of NPB-DAA, as follows:

word_modality weight_Decrease(t)

= min(max(20, 10(30 — £)), 200). (16)
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Fig. 8. Visualization of conditions of word modality weight.
Graphical plots of these conditions are shown in Fig. 8. The
above setting was determined based on the Appendix.

B. Results

Table IV shows the performance of word discovery and
categorization at the end of training for each weight value set-
ting. As in Experiment 1, there was no difference in phoneme
performance, so we omitted the evaluation in this experiment.
As a result, the performance was higher when the word modal-
ity weights were gradually increased than when they were
fixed.

Overall, the co-occurrence DAA*2 of the increase condition
had the highest performance. The increase condition does not
use word modality in the early stages of learning, when word
discovery is uncertain, but uses it for categorization after some
learning has already progressed. This suggests that improved
categorization performance by the increase condition can be
used as co-occurrence cues for lexical acquisition, potentially
enhancing word discovery performance.

Alternatively, the decrease condition, which reduced the
word modality weights, slightly decreased the word discov-
ery performance and lowered the categorization performance.
The experimental results support our hypothesis that uncertain
word segmentation results in the early learning stages may
negatively impact classification.

Fig. 9 shows examples of the results of word segmen-
tation of speech. Fig. 9(a)-(c) shows examples that even
fixed conditions could not be accurately segmented. In these
examples, the increase condition improved word segmentation
performance. In addition, when compared with the results of
NPB-DAA in Experiment 1, oversegmentation could be sig-
nificantly alleviated for words that describe the characteristics
of an object.

In the comparison of weighting in SIR, the word modal-
ity weights were higher in UR for the increase condition and
higher in MI for the fixed condition. UR worked well with
the increase condition because it could focus on more appro-
priate candidates. MI worked to retain various candidates,
but in some cases, it failed to narrow down the appropri-
ate candidates. The results suggest that not only MI used in
the conventional method but also UR which is mathemati-
cally consistent with the proposed method, can be effective as
criteria.
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TABLE IV
PHONEME AND WORD DISCOVERY PERFORMANCE AND OBJECT CATEGORIZATION PERFORMANCE (EXPERIMENT 2)
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Methods SIR  Word modality weight Word NMI Word ARI Cat. ACC Cat. NMI Cat. ARI
x1 UR Fixed (200) 0.731+£0.028 0.548+0.056 0.677+0.084 0.730+£0.078  0.438+£0.135
*1 UR Increase (0 — 200) 0.763+0.030 0.587+0.066 0.710+0.065 0.765+0.046  0.491+0.095
*2 UR Fixed (200) 0.7514+£0.020 0.575+0.050 0.700+£0.069  0.7724+0.053 0.517+£0.112
*2 UR Increase (0 — 200) 0.764+0.026 0.595+0.055 0.7424+0.086 0.782+0.083 0.538 +0.154
*2 UR Decrease (200 — 20) 0.747+0.031  0.563+0.070 0.562+0.065 0.620+0.051  0.237+0.085
*2 MI Fixed (200) 0.758+£0.026  0.581+0.063 0.733+0.084 0.776 £0.067 0.526+0.130
*2 MI Increase (0 — 200) 0.765+0.028 0.580+0.065 0.7194+0.068 0.773+£0.065 0.521+0.102
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Fig. 9.

Examples of word segmentation results (Experiment 2). The upper subfigures (a)—(c) show the results of the co-occurrence DAA (Fixed condition).

The lower subfigures (d)—(f) show the results of the co-occurrence DAA (Increase condition).

VIII. DISCUSSION AND CONCLUSION

In this article, we proposed an unsupervised phoneme and
word discovery method that exploits phonological and co-
occurrence cues, to imitate the lexical acquisition process
of infants using statistical learning. The main features of
the proposed method are the following two points: 1) it
integrates HDP-HLM, a probabilistic generative model for
simultaneous phoneme and word discovery, and MLDA, a
probabilistic generative model for multimodal object cate-
gorization and 2) multimodal sensor observations of image,
tactile, and audio stimuli can be simultaneously used as co-
occurrence cues for lexical acquisition. Experimental results
showed that the proposed method improved word dis-
covery performance for the entire utterance compared to
the existing methods that do not use co-occurrence cues.
These results suggest that the proposed method can find
words more accurately than existing methods, insofar as the
words express the characteristics of the object. In addition,
increasing the modality weight of the words in the cate-
gorization improved the categorization and word discovery
performance.

The study focused on
language acquisition (i.e.,

the critical elements for
co-occurrence cues) claimed

by Saffran et al. [3], [4], [5]. Therefore, perception/cognition
and learning, rather than utterance and production, were con-
sidered. Future perspectives may involve the utilization of
language to utter (reproduce) learned words and sentences on
their own. Other essential factors involved in the development
of language acquisition include a perceptual reorganization and
vocabulary spurt [59], [60], [61], [62]. Constructing a unified
computational model that accounts for multiple developmen-
tal stages in language acquisition remains a challenging and
unresolved issue.

The proposed method has a limitation in setting the
number of object categories. However, HDP-MLDA [63],
which extends MLDA with a nonparametric Bayesian method
(specifically, the DP), automatically estimates the appropriate
number of categories for the data. It is easy to extend the
MLDA part of the proposed method to HDP-MLDA. In the
future, the limitation on the number of object categories could
be resolved.

Our future study prospects include 1) enabling word
discovery that incorporates prosodic cues [56] into the
proposed method and 2) using the acquired words for
human-robot interaction and feedback learning through speech
synthesis.
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TABLE V
CATEGORIZATION ACCURACY WHEN VISION, HAPTIC, OR AUDIO
MODALITIES WERE USED INDIVIDUALLY (PRELIMINARY EXPERIMENT I)

Modality
Categorization ACC

Audio
0.333

Vision
0.500

Haptic
0.500

In this study, we employed NPB-DAA as an unsupervised
phoneme and word discovery method and MLDA as a
categorization method using multimodal object information.
The essence of the proposed method is the integration proce-
dure that exploits the co-occurrence of phonological and object
information in probabilistic generative models. It does not
depend on any particular model as long as it can be represented
by a probabilistic generative model. Therefore, in the future,
it will be possible to reconstruct the proposed method based
on various speech unit discovery and categorization models.

APPENDIX
PRELIMINARY EXPERIMENTS

A. Preliminary Experiment I: Object Categorization
Performance Using Accurately Written Transcript Sentences
and Multimodal Sensor Information

In this experiment, we confirmed categorization accuracy
using multimodal information when the speech data set was
recognized accurately. First, the modality weight for catego-
rization was determined by categorizing each modality. Then,
the categorization performance when the weight of the word
modality was changed was measured. The result of this exper-
iment can be interpreted as the upper limit (i.e., the topline)
of the categorization using this data set.

1) Condition: The word modality uses the word histogram
created based on the transcript, which is generated based on
the utterance content of the data set as word sequences. The
multimodal information of an object includes all three modal-
ities of vision, haptic, and audio. The number of categories
and the values of the hyperparameters were the same as those
described in Section VI. Here, the weight setting of each
modality used a value between 0, 10, 20, ..., 300 for the word
modality, 100 for the vision, 100 for the haptic, and 50 for the
audio. The latter three values were fixed. The weight value 0
indicates that categorization was performed while excluding
the word modality. Weight value settings for values other than
word modality were set to be proportional to the categoriza-
tion accuracy, referring to the accuracy when categorization
was performed for each modality alone (see Table V).

Because the seed value of the random numbers was fixed for
the implementation of MLDA, the trial was performed with
each weight value. The Gibbs sampler of MLDA was 1000
iterations. The number of iterations of the Gibbs sampler was
determined in advance by investigating learning iterations in
which the categorization converged sufficiently.

2) Result: Fig. 10 shows the categorization accuracy for
each weight of word modality. Comparing the categoriza-
tion accuracy for each weight, the accuracy of the weight
value 0 without using the word modality was low, and the
linguistic information contributed to the improvement of the
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Fig. 10. Relationship between the weight of word modality and categorization
accuracy when using transcription sentences, that is, ground truth (Preliminary
experiment I).

categorization accuracy in this data set. In addition, the
weights of 10 to 30 showed almost the same accuracy as
when the word modality was not used. The accuracy tended to
increase slightly from 40 to 200, and there was no significant
change in accuracy after the weight of 210. Therefore, it can
be inferred that the weight of the word modality was between
40 and 200.

B. Preliminary Experiment II: Relationship of
Categorization Performance and Modality Weight Using
Word Sequences By NPB-DAA

In this experiment, we examined the appropriate weight
value setting of the word modality using the word sequence
estimated by unsupervised learning. Specifically, the results of
the phoneme and word discovery experiments by NPB-DAA
were used as MLDA inputs, and the categorization accuracy
was compared by setting various weight values. In addition, by
performing categorization using the word sequences estimated
in each iteration of NPB-DAA, we investigated how the cate-
gorization accuracy changed when using word sequences that
had not been sufficiently learned, and how to set the weight
value at the time.

1) Condition: The multimodal object and speech data set
is described in Section V. The values of the hyperparameters
and the modality weights for object categorization were the
same as those described in Section A. The iteration numbers
for the Gibbs sampler of MLDA and NPB-DAA were 1000
and 100, respectively. Ten trials were performed by NPB-DAA
for each modality weight setting.

2) Result: Fig. 11 shows the accuracy of object categoriza-
tion for each word modality weight. Fig. 12 shows the changes
in the accuracy of object categorization for each word modality
weight when using word sequences estimated by NPB-DAA
for each iteration of NBP-DAA. From Figs. 10 and 11, it can
be inferred that the weight of word modality of 40 to 200 is
appropriate because the relationship between the weight of the
word modality and the categorization accuracy was similar to
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that of Section A. Furthermore, from Fig. 12, the number of
iterations of NPB-DAA did not significantly affect the cate-
gorization accuracy for each weight of word modality, except

for

[1]
[2]

[3]
[4]

[5]
[6]
[7]
[8]

the initial stage of NPB-DAA.
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