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Abstract—This article investigates the role that kinematic fea-
tures play in human action similarity judgments. The results
of three experiments with human participants are compared
with the computational model that solves the same task. The
chosen model has its roots in developmental robotics and per-
forms action classification based on learned kinematic primitives.
The comparative experimental results show that both model and
human participants can reliably identify whether two actions
are the same or not. Specifically, most of the given actions could
be similarity judged based on very limited information from a
single feature domain (velocity or spatial). Both velocity and spa-
tial features were however necessary to reach a level of human
performance on evaluated actions. The experimental results also
show that human performance on an action identification task
indicated that they clearly relied on kinematic information rather
than on action semantics. The results show that both the model
and human performance are highly accurate in an action simi-
larity task based on kinematic-level features, which can provide
an essential basis for classifying human actions.
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I. INTRODUCTION

HUMAN vision is highly sensitive to the biological
motion patterns created by the movement of other indi-

viduals (e.g., [1] and [2]). From a developmental point of view,
this sensitivity to visual preferences exists in newborns [3] and
increases significantly over the course of 3–24 months [4], [5].
Learning to distinguish between different types of action and
action exemplars reflects this sensitivity and visual prefer-
ences [6].

Judging action similarity is an essential part of learning
action categories and a step toward action understanding. In
fact, in most behavioral studies, action similarity has been
addressed as a form of measure to understand action seman-
tics [7], action prototypes [8], and imitation [9]. Whereas
in computational studies, action similarity is addressed in a
similar form under the broad umbrella of human action recog-
nition (HAR). HAR is an area where different data modalities
provide different computational models to produce reliable
recognition [10].

Judging action similarity is a critical factor in the compu-
tational domain with very many application areas, such as in
sports analysis [11], [12], human–robot interaction [13], [14],
autonomous driving [15], education [16], health monitor-
ing [17], and video surveillance [18]. Action similarity can
be complicated in a realistic setting, such as the ambigu-
ity of the action class in multiclass action recognition [19].
To address this problem of ambiguity, the labeling of sim-
ilarity in action (same or different) was first introduced by
Kliper-Gross et al. [20] as a critical task in action recognition.
According to Kliper-Gross et al. [20], action similarity labeling
aims to determine whether the actors in two video sequences
are performing the same or different actions. Labeling algo-
rithms depend primarily on creating a suitable metric for the
differences between the actions of the extracted kinematic
features (see [19] for a detailed review of the approaches).
Kliper-Gross et al. showed a considerable gap (around 65%)
between state-of-the-art methods and the success rate of
humans on action similarity labeling and argued toward a
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principled understanding of what makes actions similar or
different [20]. The work presented in this article attempts to
reduce this gap by investigating the role of kinematic prim-
itives [21], [22] in judging action similarity for humans in
relation to a chosen computational model.

In terms of the modality of the action, we specifically pick
two types of modalities—optical flow (OF) from the red,
green, and blue (RGB) color space and 3-D skeleton data. Both
modalities are widely used in research with single-modality
models within HAR [10], [23], [24]. Numerous studies directly
use or incorporate OF in their computation, for example, to
detect moving regions [25], and to track the trajectory of
moving objects [26]. Similarly, 3-D skeleton data from either
sensors or markers are incorporated in HAR frameworks for
several purposes such as calculating joint relations [27] and
calculating the temporal variance of joints [28]. Furthermore,
3-D data provides point-light displays (PLDs) which are ideal
for testing human action judgment based on kinematics. PLDs
remove contextual information and thereby allow a fairer
comparison with the model performance. For these reasons,
these two modalities are used to investigate action similarity
judgments.

This article addresses three specific questions.
1) To what extent do similarity judgments produced by

the computational model based on kinematic primi-
tives from the optic flow correlate with human action
similarity judgments based on PLDs?

2) To what extent does human accuracy in action-matching
tasks relate to similar conditions and results from four
different versions of the computational model based on
kinematic primitives?

3) To what extent do human judgments of action identifica-
tion rely on the kinematic features of the actions rather
than higher level action semantics?

We addressed these questions using a computational model
that derives action primitives based on kinematic features (OF,
velocity, acceleration, and change in direction) from biolog-
ical motion regularities [29]. In Section II, we describe the
hand action data set used, followed by a detailed description
of the computational model in Section III. The behavior of
the model is contrasted with the results of three studies with
human participants. Experiment 1 (Section IV) involves an
action similarity task (AST) in which participants judge which
of two PLD actions is most similar to a PLD target action. The
computational model in Section III performs the similarity
task by learning to classify actions (using dictionary learn-
ing) based on a linear combination of kinematic primitives
(sparse coding technique). The similarity values are then used
as the matching criterion for the target actions. In Experiment
2 (Section V), participants are given an action matching task
(AMT) and we assess to what extent the different model vari-
ant representations of actions based on action modality and
usage of kinematic features can produce judgments similar
to humans. Finally, in Experiment 3 (Section VI), we use
an action identification task (AIT) to distinguish between the
use of kinematic features and semantic level identification in
action similarity judgments made by humans. In other words,
are humans relying on high-level semantic features for their

TABLE I
ACTIONS WITH THEIR REFERRED TERM

similarity judgments rather than on low-level kinematics? This
article is concluded with a discussion in Section VII.

The key results show that humans and the model were
highly accurate in similarity and matching tasks. There was no
significant gap between the computational model and human
performance. There were, however, noticeable differences in
the model variants relying on the velocity profile in terms
of selection bias and false hit rates compared to human
performance, which will be discussed. There was also a clear
result that humans were not able to reliably identify the PLD
actions, which strongly suggests that semantic-level process-
ing appears not to contribute to the similarity and matching
tasks.

II. HAND ACTION STIMULI

The stimuli used in this study are taken from the mul-
tiview cooking actions (MoCAs) data set [30] (available
for download from https://github.com/Malga-Vision/MoCA-
Project). The full data set includes motion capture data and
video recordings of upper body actions executed by one actor
in a cooking scenario. All the actions are hand-based and
involve some kind of object manipulation. For more details
about the actions in the data set (see [30], [31]). This data
set was chosen to test action similarity, as hand-based actions
cover a wide range of complexity with various movements, and
most day-to-day activities involve hand actions. Additionally,
since our focus is on kinematic primitives, the several intrica-
cies of manipulative hand movements would cover a variety of
kinematic feature interplay. Such rich and complex movements
albeit small provide an ideal test bed and learning ground for
an investigation into action similarity judgments. Furthermore,
an established representation of an action in terms of its kine-
matic features, however small, can be extrapolated to other
large body movements of a similar kinematic nature.

For this study, we chose 19 actions from the data set (see
Table I). Most of the actions are carried out by the right hand,
whereas some involve both hands (e.g., Mezzaluna or Rolling).

To investigate the similarity of the action, it was necessary to
select a single viewpoint to avoid the excessive duration of the
experiment with human participants. Therefore, we chose the
frontal viewpoint, which is familiar and natural for interaction,
especially during the early stages of child development.

However, the model has been shown to recognize actions
from multiple points of view [32], paving the way for future
investigations of human perception. See Fig. 1 for an example
frame for Eggs and its PLD.
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Fig. 1. Left image shows a frame of action eggs from a frontal point of
view, and the right image shows its PLD. PLDs correspond to the positions
of the markers.

Since this study focuses only on the low-level kinematic
features of actions, human participants were shown PLDs that
limit their recognition leverage from contextual information.
Alternatively, the model was designed to extract only kine-
matic information directly from the videos (see Section III for
details).

III. COMPUTATIONAL MODEL

Two different computational models are used to focus on
the bi-modality of the MoCA data set: one based on the bio-
logical motion detection model described in [29], that relies
on RGB videos to extract OF maps of the apparent motion,
and the other model is based on the analysis of motion capture
data in [33] that uses histogram representations of the mark-
ers’ trajectories. The OF-based model takes inspiration from
the human ability to distinguish between biological and non-
biological motion, an ability exhibited by newborns in which
they orient their attention toward biologically moving stim-
uli [3]. The model exploits the regularities of human motor
movement resulting from the two-thirds power law, a well-
known invariant of human movement [34], [35], and has also
been implemented on an iCub humanoid robot as proof of
applicability [29], [36], [37]. The model based on motion cap-
ture data, instead, exploits the sparseness and precision of
the markers’ trajectory in time to gather information about
the spatial evolution of the actions, together with velocity
distributions.

A. OF-Based Descriptors

The model for recognizing similarities in actions uses primi-
tives of visual motion to understand actions [32]. The approach
is to identify necessary and sufficient action subcomponents
and use them as visual primitives to form simple motion rep-
resentations that can reconstruct a wide range of complex
actions. A general breakdown of the model is as follows.

1) The OF from the RGB videos is extracted and thresh-
olded for each time instant. For each point in the
obtained maps, the tangential velocity (which is the mag-
nitude of the OF velocities) is computed and such values
are averaged over the region. The averaged velocities
over time give a compact representation of each video.
Velocity sequences over time are segmented into sub-
movements (portions). The submovements are derived
automatically with setpoints that correspond to a Start,

Stop, and Change in the action dynamics, which are the
local minima of the velocity profile [38].

2) The submovements obtained from all the actions
(19 hand actions) are treated together and given as input
to a clustering of K-means, thereby building a unique
dictionary of K atoms. With the dictionary, each sub-
movement of the training set is then reconstructed as an
approximation of a linear combination of some of the
atoms in the dictionary, using the sparse coding tech-
nique, and represented as the sequence of weights used
for each atom in the reconstruction. At the end of this
procedure, given a video representing a given action,
the model can describe each submovement ui as the
feature vector [u1

i , u2
i , . . . , uK

i ], where uj
i is the coeffi-

cient/weight assigned to each atom (the jth atom, where
j = 1 · · · K). Since the representation is sparse, some of
the coefficients are equal to 0, and K = 15 is the number
of atoms in the dictionary.

3) A classification of the actions (19 hand actions) is per-
formed following a supervised approach. A multiclass
classifier is built with a one-versus-all approach, where
a binary classifier per class (i.e., per action) is built.
Therefore, for each action, a binary classifier is trained
to discriminate between the representation of that action
and all the rest. See Fig. 2 for an example of how
Eat contributed to the submovement dictionary and how
Transport is represented via the dictionary primitives.

B. Motion Capture-Based Descriptors

For the descriptors based on the markers’ 3-D information,
the model (described in [37]) creates representations of the
space–time evolution of action instances combining different
joints and their variations over time. We start from Motion
Capture data and we build 3D+time equally binned histograms
by partitioning the volume of positions and instantaneous
velocities (i.e., the displacements between two time-adjacent
positions) of actions. Histograms are built using 4 out of the
6 joints available. Fig. 3 shows examples of 3D+time his-
tograms representing the spatial occupation (SP) and velocity
components (Vel) for the palm marker. Additionally, a com-
bined descriptor (SP + Vel) is also used, where both the spatial
and velocity components are considered for each action.

IV. EXPERIMENT 1: ACTION SIMILARITY TASK

Experiment 1 explores the extent to which humans and the
OF-based computational model can perform action similarity
judgments on the chosen set of hand actions. The purpose
of this experiment is to see if the kinematic information in
the actions is sufficient for humans (kinematic information
from PLDs) and the model (kinematic information from OF)
to perform reliable similarity judgments.

A. Human—Action Similarity Task

The human participants performed ASTs on the PLDs of the
actions. The PLDs do not provide any contextual information
(the tool used or the setting), thereby limiting the contextual
semantics associated with the kinematic features.
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Fig. 2. (a) Eat action video from which OF is extracted, (b) identified
dynamic instants of Eat action based on set rules and extracted submove-
ments, (c) dictionary of primitives composed of 15 submovements (atoms)
extracted from all the 19 actions, (d) submovements extracted from the Eat
action, and (e) transport action represented via the dictionary primitives—
the submovement 1 has a large contribution from the atom 6, submovement
2 has a large contribution from atom 10, and so on. Images modified from [32]
and [38].

1) Participants: Twelve participants (seven males, mean
age 27.9 years, age range 24–45 years) from the University
of Skövde participated in this experiment. They received
information about the task and gave their written informed
consent to participate. They received a movie ticket for
their participation time. The experiment was carried out in
accordance with Swedish law (2003:460) regarding ethical
approval and the Declaration of Helsinki of the World Medical
Association.

2) Stimuli: The PLDs of the right arm for each of
the actions (motion capture data) were generated using
Biomotiontoolbox-2 [40] in MATLAB. The PLDs consisted
of six dots positioned in the shoulder, elbow, and wrist, and
three in the palm region (Fig. 1). Two orientations of the PLDs
were used: Upright (UP) and Inverted (INV) (by horizontal
flipping of the UP PLD). See Fig. 4 with a trial display of
three PLDs (namely, A, B, and T). The stimuli were presented
from a frontal point of view (facing the participants) and
played at their veridical speed. The experiment was carried out
using MATLAB R2014a with Biomotion Toolbox-2 [40] and
Psychtoolbox-3 [41]. The stimuli were displayed on a 22-inch
HP L2245wg LCD monitor, with a native resolution of 1680
× 1050 at 60 Hz, a viewable dimension of 29.5 cm × 47.5 cm
(W × H), and a viewing distance of 100 cm.

3) Procedure: Participants performed a two-alternative
forced-choice AST, where they were asked to indicate which

Fig. 3. Example of 3D + t histograms for two different actions. (a) Eating
and (b) Mixing. Histogram with SP components for (c) Eating and (d) Mixing.
Histogram with Vel components for (e) Eating and (f) Mixing. Images were
taken from [30].

of the two stimuli A or B were the most similar to the target
stimulus T (see Fig. 4). All possible permutations of the 19
actions were tested. There were two types of trials: 1) one of
the alternatives matched the target and 2) none of the alter-
natives matched the target. Each trial lasted only 4 s, and
participants had to respond within the same period. Upon
failure to respond in 4 s, the next trial started.

Participants were informed of the corresponding physical
characteristics of the PLD, the viewpoint, and the orientations,
but no information on the actions themselves was provided,
just that they were performing daily actions. The PLDs had
random starting frames that played in a continuous loop at 30
FPS. Each response was followed by a fixation cross (0.23◦) in
the center (500–700 ms). After providing instructions, the par-
ticipants performed 30 practice tests followed by experiment
trials.

The permutation condition (for stimuli A, B, and T) was: a
trial may have all three stimuli as different actions (A �= B �= T)
or a trial may have only one other action (A or B) which is the
same as the target (A = T OR B = T) and A �= B. The total
trial number was 6498 and evenly distributed (with balancing)
amongst the 12 participants with each participant getting 541
trials (one participant got 547).

B. Model—Action Similarity Task

1) Stimuli: For a given trial, the target action video was
fed to the model, and the model extracted OF from the
video and computed the motion descriptor only OF was
used for each frame as described in Section III. The frontal
viewpoint was used for both the training and the model
testing.
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Fig. 4. Experiment 1 (AST) design for both the human participants
and model. Note that the model is fed with videos and PLDs for human
participants.

2) Procedure: There were 19 action classifiers trained on
each of the 19 chosen actions. For classification, a regularized
least squares (RLS) classifier was used, which adopted the
library GURLS [39] for an efficient implementation of RLS.
The radial basis function (RBF) was used as the kernel. The
model performed an AMT where it was presented with the
target (T) action video and two action classifiers (A and B).
These two classifiers competed to see which one of them (A
or B) was the most similar to T. So for a given trial (A: Eat;
B: Rolling; and T: Eggs), two action classifiers trained on Eat
(A) and Rolling (B) competed, and the classifier with the higher
similarity score (toward Eggs) won the trial. To simulate the
constraints of a viewing period that a human participant would
have, random instances of the stimuli were considered, where
an instance was one submovement of the action (e.g., in the
case of Mixing, one half-circular rotation of the palm would
be considered one submovement). The similarity measure was
computed by averaging the similarities between 10 random
instances of the action.

C. Result

Fig. 5 shows the confusion matrix of the responses given
by the humans [Fig. 5(a)] and the computational model with
OF descriptors [Fig. 5(b)]. The measure reflects the matching
rate, with target actions on the y-axis and matched action or
the action classifier with a higher score on the x-axis. A cell
(i, j) has the match of the ith target action matched with the
jth action. Diagonal cells (i = j) (accuracy cells) indicate the
matching rate when either A or B matched the target action,
that is, correctly identified (accuracy measure). Nondiagonal
cells (i �= j) report the similarity matching rate when the target
action was matched with another action. So, the diagonal cells
indicate the accuracy of correctly identifying/matching identi-
cal actions, whereas the nondiagonal cells indicate similarity
toward other actions. Furthermore, we computed a selection

bias (bias of an action in the given choice to get picked), by
averaging the measures in columnj minus the respective accu-
racy cell, giving the mean selection bias (%) of the jth action
classifier.

Accuracy measures show that both the human participants
(M = 84%, SD = 8.7) and OF (M = 82%, SD = 17.8) could
reliably identify the correct target action (when A = T OR
B = T), with no significant difference between them. Fig. 5(c)
shows a closer comparison of accuracies across the different
actions, where we see that except for a few actions (Lemon,
Pestare, and pouring), their performance on most of the actions
was at par with each other. There was no significant differ-
ence between the human and OF selection-bias measures. The
selection bias measures average 40% for both human and OF.
This measures the result that is driven primarily by the fact
that the experiment design has trials with no correct answer
(A �= B �= T), so the responses end up in the nondiagonal
cells which sum up in the selection-bias measure. Nonetheless,
if a difference in selection bias between the human and the
model shows up, it will be driven by the differences in their
accuracies (diagonal cells), which then will spill over to the
nondiagonal cells. As the result shows this was not the case
here.

D. Discussion

The results demonstrate the extent to which humans and the
model with OF descriptor could perform the action similarity
judgment when the trials include or did not include matching
actions (correct answer). This task reveals two things: 1) the
precision of their judgments in trials where there was a correct
answer and 2) selection biases in their judgments indicating
(possible clusters of) actions that are similar to each other. In
terms of precision, both the human (84%) and model (82%)
have shown they can reliably identify the same action, but
when it comes to selection bias we need further investigation in
order to make sense of its distribution, i.e., are they false-hits,
or biases.

Furthermore, the nondiagonal cells in conjunction with
selection bias do not seem to reveal any strong clusters of sim-
ilar actions. Nonetheless, this result provides a solid ground
to further investigate the role of kinematics in action similar-
ity judgment from a human-centered computational modeling
point of view.

This experiment shows that further investigation into action
similarity requires a simpler task of judging action similarity,
where we can dissect the nondiagonal measures into a clear
separation of false-hit and selection bias. Therefore, we switch
to a simpler case of an action-matching task where there is
always one action alternative that matches the target.

V. EXPERIMENT 2: ACTION-MATCHING TASK

The second experiment extends the study further by 1) mod-
ifying the AST to a matching task for all the trials and
2) comparing human performance with the model and follow-
ing descriptors: velocity from OF, 3D + t spatial component
(SP), 3D + t velocity component (Vel), and, 3D + t spatial
+ velocity component (SP + Vel). The new task will test the
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Fig. 5. (a) and (b) Confusion matrices with mean similarity measures (%) of (a) human and (b) model with OF descriptor. (c) Comparison of accuracy (%)
and selection-bias(%) of human and model with OF descriptor.

matching capability, i.e., to judge which of the two alternative
actions matches the target action based on kinematics, and
thereby each trial has a correct answer.

A. Human—Action Matching Task

The stimuli and the procedure were similar to Experiment
1 with a difference in design (see Fig. 6). Each trial consisted
of the triad A, B, and T, with the condition (T = A OR T =
B) AND A �= B, i.e., one of the actions A or B was always the
same as the target action (T). With the given condition, the
unique permutations for 19 actions give 684 trials. Additional
trials were included to assess the implicit semantic access of
participants, which tested their performance as a function of
orientation: upright (UP) and inverted (INV) PLDs. If par-
ticipants perform significantly poorly for the INV PLDs in
contrast to the UP PLDs (inversion effect), this might indicate
implicit semantic access for the UP PLDs.

1) Participants: Twelve subjects (five males, mean age
31.4 years, age range 24–46 years) with normal (or cor-
rected) vision participated. They received information about
the task and gave their written informed consent to partici-
pate. They received a movie ticket for their participation time.

The experiment was carried out in accordance with Swedish
law (2003:460) regarding ethical approval and the Declaration
of Helsinki of the World Medical Association.

2) Stimuli and Procedure: Same stimuli as in Experiment
1 (human-AST) were used. Participants performed an AMT in
which they viewed three actions (A, B, and T) in one frame,
and they had to indicate (via keypress) which of the two stim-
uli A or B was the same as the T stimulus. The rest of the
procedure was similar to Experiment 1.

The experiment consisted of three independent variables
in a mixed design; orientation (UP/INV, within-subjects),
block order (UP-INV/INV-UP, between subjects), and actions
(19 actions, random variable). See Fig. 6 for a schematic
description. Block orders (UP-INV and INV-UP) were bal-
anced between subjects, with six participants viewing UP-INV.
Individual trial orders within blocks were randomized. The
total number of trials was 1368 × 12 (subjects) = 16 416
trials.

B. Model—Action-Matching Task

The model performed an equivalent version of the human—
AMT. The stimuli and the procedure were similar to
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Fig. 6. Experiment-2 (AMT) design for the models and the human partici-
pants. Similar to Experiment 1, the models are fed with video, and PLDs for
the human participants.

TABLE II
MEANS (%) AND MSE OF ACCURACY (ACC), SELECTION

BIAS (SB), AND FALSE-HIT (FH)

Experiment 1 with the experiment design adjusted to the
human—AMT. Although for the model there was no INV trial
block. The total number of trials conducted was 684 × 24
(times) = 16 416 in randomized order.

C. Results

The results are presented in confusion matrices for humans
(H) and the models, with the OF, SP, SP + Vel, and Vel
descriptors in Fig. 7. The results are analyzed in terms of the
accuracy, false-hit (frequency of an action to get incorrectly
picked as the target), and selection-bias.

1) Human Versus Model: Table II shows the comparison of
the means for the accuracy (%), selection-bias (%), and false-
hit (%) measures in two separate columns—first the actual
measures, and then the mean-squared error (MSE) by taking
the human results as the baseline. Selection bias and false-hit
have the same means (actions collapsed), as they are derived
from error (nondiagonal cells), but they vary in their standard
deviations.

The average performance in terms of accuracy was high for
human participants as well for all variants of the model (c.f.
Table II). The MSE for each variant of the model shows how
far it is from the human participants’ measure (zero = same
as human). Considering all measures, the SP+Vel model
is the closest to human performance. As can be seen in
Fig. 8, the measures vary greatly for individual actions, where

TABLE III
RT AND ACCURACY MEANS, (SD) ACROSS CONDITIONS

SP+Vel stands out by providing human-level performance on
all actions. Collectively, the selection bias appears to be com-
ing from a few selected action classifiers—Openbottle, Cut,
Spread, and Salt. Similarly, false-hit appears to be for a few
actions (target)—Pestare, Lemon, Pouring, and Eggs.

The selection-bias was lowest for SP+Vel (M = 2.1%,
SD = 1.3, MSE = 18.3). Human participants also showed
a relatively low selection bias (M = 5.7%, SD = 2.3). While
OF showed a comparatively higher selection-bias (M = 14.3%,
SD = 15.8, MSE = 307) and a high false-hit (M = 14.3%,
SD = 15.4, MSE = 347), closely followed by Vel (M = 9.3%,
SD = 15.4, MSE = 2 70).

The measures (accuracy, selection bias, and false hit)
were tested with ANOVA, which showed a significant dif-
ference between the five conditions (Human, OF, SP, Vel, and
SP+Vel), with F(4, 90) = 2.72, p < 0.05 for accuracy, F(4,
90) = 9.43, p < 0.0001 for selection-bias, and F(4, 90) = 6.93,
p < 0.0001 for false-hit. A post hoc Tukey HSD test revealed
the pairwise difference trend, where there was no significant
difference in accuracy between humans and the models. The
only significant difference in accuracy was between OF and
SP+Vel (p < 0.05, HSD [0.05] = 12.25). For selection bias
there was a significant difference between OF and others; OF
versus Human (p < 0.05, HSD [0.05] = 7.54), OF versus other
models (p < 0.01, HSD [0.01] = 9.08). These pairwise differ-
ences seem to be driven by the performance of the few action
classifiers and target actions.

2) UP Versus INV—Human: We treated the human
performance with respect to the orientation condition
(presented only to humans) to see if the participants’
performance was not affected by the orientation of the action
PLDs.

A 2 orientation (within-subject) × 2 block order (between-
subject) mixed ANOVA was performed on the accuracy and
RT. Table III presents the RT and accuracy means accord-
ing to orientation × block order. The actions were treated
as random variables. There was no performance difference
between the UP and INV actions. There were no main effects
for orientation or block order for both RT and accuracy p
> 0.05, indicating the lack of an inversion effect. However,
there was a significant interaction effect for RT (F(1,11) =
11.58, η2

p = 0.537, and p = 0.007). The significant difference
leading to the interaction effect consisted of faster matching
after INV displays (M = 1.982 s, SD = 0.217); t(10) = 2.31,
p = 0.043. Further analyses between UP and INV did not
show significant differences, with no simple main effect for
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Fig. 7. Confusion matrices with mean similarity measures (%), with target actions (y-axis) and matched actions or classifiers (x-axis). Matrices show measures
for (H) human, and the models with the different descriptors OF, SP, Vel, and SP+Vel.

orientation (p > 0.05). The interaction effect on RT seems to
be driven by the perceptual learning factor in switching from
performing on INV PLDs first and then on UP PLDs (fastest

RT) which is an easier transition in terms of the perceptual
task compared to performing on UP PLDs first and then on
INV PLDs.



NAIR et al.: KINEMATIC PRIMITIVES IN ACTION SIMILARITY JUDGMENTS 1989

Fig. 8. Difference measure for accuracy (%), selection bias (%), and false-hit (%) between human (as baseline), and the models with the different descriptors OF,
SP, Vel, and SP+Vel.

D. Discussion

1) Accuracy: From the accuracy measure, all the variants
of the model and the human participants could reliably iden-
tify whether the given actions were the same or not. In taking
human performance as a baseline, the SP+Vel performed
the closest to humans, closely followed by the SP variant.
Their high accuracy reflected the precision of motion capture
data, especially when characterizing an action with both spa-
tial occupation and velocity components. The model with Vel
and OF descriptors both showed difficulty in matching a few
selected actions (e.g., Lemon, Pestare, and Pouring). Although
Vel and OF relied on different motion data, both relied on the
action velocity information. This arises an interesting question
about the type of information that could be used for judging
action similarity, pointing toward the amount of information
necessary to capture the several intricacies of hand action
which the human vision system seamlessly captures.

2) Selection Bias: Taking the human selection-bias mea-
sure as a baseline, both SP and SP+Vel were at the same
level of human performance even with lower selection bias
for some actions. Whereas OF had peaked for a few selected
actions (Openbottle, Cut, Carrot, and Salt), followed by Vel
(Openbottle, Eat, and Pouring) with a lower difference from
human performance. Similar to the observation in accuracy
there was a commonality in terms of the kinematic information
in use—OF and Vel behaved similarly compared to SP &
SP+Vel. Furthermore, the high selection bias came from a
small set of action classifiers, indicating a peculiarity with the
action such that its velocity components might have affected
the selection process.

Going back to the model’s dictionary learning process [32],
it reveals that these actions have the greatest number of
kinematic primitives (atoms) that make up the dictionary
primitives (see [32] for detail). So, in other words, these
actions contain most of the primitives that make up the

submovements of all the 19 actions. Thereby, these actions
also correspond to other actions with submovements pop-
ulated by different atoms. Hence, they have more chances
to get confused with other actions, leading to a high selec-
tion bias. This also explains why action classifiers with high
selection bias also got a high accuracy, as they have suf-
ficient primitives to create a strong representation of their
own action.

3) False-Hit: Similar to the case of selection bias, SP+Vel
was at the same level of human performance closely followed
by SP, where SP had a high false-hit rate for the cut action.
Whereas OF and Vel had a high false-hit rate for a small set of
actions (Lemon, Pestare, and Pouring). A high false hit shows
a lack of descriptive capability, i.e., poor representation of the
action by the dictionary primitives. This is in addition to their
respective classifiers getting a low selection bias, also pointing
toward a lack of sufficient kinematic primitives. False hits for
these actions could also result from the classifiers’ training
process, where necessary and sufficient primitives were not
extracted properly for the dictionary.

4) UP Versus INV—Human: The lack of the inversion
effect indicates that action semantics did not seem to play
much of a role in judging action similarity and that they were
mainly relying on low-level kinematic features. This means
that there was no implicit access to semantics to aid their judg-
ments. To further ensure that this is mainly due to the fact that
humans could not exploit action semantics to aid their judg-
ment, we conducted Experiment 3 to specifically investigate
explicit access to semantics.

VI. EXPERIMENT 3: ACTION IDENTIFICATION TASK

This experiment addresses the third question of whether
human judgments in AST were based solely on the kinematic
features of the actions.
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A. Human—Action Identification Task

To what extent do humans have access to action semantics
that can be used to identify the actions used in the previous two
experiments? To this purpose, a five-alternative forced-choice
AIT was presented to human participants, where they had to
identify the displayed action (in PLD form) from a list of five
action labels. Are human judgments in the AST based solely
on the kinematic features of the actions rather than higher level
action semantics?

1) Participants: Fifty-four Mechanical Turk workers
(33 men, mean age 37.33 years, age range 26–73 years)
with normal (or corrected) vision and fluency in English
participated. They were informed about the task and gave
their informed consent to participate. Participants received a
monetary compensation of $2.50 for their participation time.
The experiment was carried out in accordance with Swedish
law (2003:460) regarding ethical approval and the Declaration
of Helsinki of the World Medical Association.

2) Stimuli: The trial display consisted of one action PLD
at a time followed by five action labels. The PLDs (19
actions) were the same as in Experiment 1: frontal viewpoint
played at a veridical speed with UP and INV orientations. The
stimuli were displayed using Amazon Mechanical Turk with
extensions from psiTurk [42] and jsPsych [43].

3) Procedure: Participants performed an AIT where they
were shown an action (target) for 4 s, after which they had to
identify (mouse click) the target action label from five action
labels (alternatives) within 10 s. The alternatives consisted of
the correct label and four randomly chosen labels (from the
same pool of 19 action labels) with no repetition. Clicking or
failing to respond within 10 s led to the next trial (preceded
by a fixation cross for 700 ms). The display orientation (UP
or INV) was informed prior to the start. Participants were
informed of the PLDs (identical to Experiment 2—human
AMT). The instructions were on the screen with example dis-
plays. After the instructions, a video of a trial was shown
(no practice session). There were questionnaires about the
difficulty of the task at the end of the experiment.

The experimental design is identical to Experiment 2—human
AMT. The block order (UP-INV and INV-UP) was balanced
between the subjects, with 29 participants viewing INV-UP.
Individual trial orders were randomized for each participant.
The blocks had 19 trials where each trial presented one of the
19 actions; the total number of trials per participant was 38.

B. Results

A selection criterion was used where the mean RT for
each participant should exceed 2 s; this was to ensure that
the participants diligently performed the task. Therefore, 14
participants were excluded and data from 40 participants were
then included in the analysis. Fig. 9 shows the accuracy% (for
correct identification) and the selection-bias%. To confirm the
reliance of humans on kinematic features for their similarity
judgments, we had to rule out explicit semantic level access
for the PLDs. If participants perform poorly in identifying the
PLDs, regardless of the display orientation, this would strongly
suggest a lack of semantic-level access.

Fig. 9. Accuracy (%) and% selection bias for Experiment 3.

Overall accuracy (M = 37.85%, SD = 14.17) indicates
poor performance with a mean selection bias of 15.35%
(SD = 3.12). Participants performed poorly for both UP
displays (M = 38.68%, SD = 15.61) and INV displays
(M = 35.92%, SD = 16.25).

A mixed ANOVA of 2 orientation (within-subject) × 2
block order (between-subject) was performed on the accuracy
to check for an inversion effect. The actions were treated as
random variables. There was no significant main effect of ori-
entation (F(1, 39) = 0.966, η2p = 0.025, p = 0.332), which
shows that there was no performance difference between the
action stimuli of UP and INV. The main effect of the block
order was also not significant (F(1, 39) = 1.807, η2p = 0.045,
p = 0.187). However, there was a significant interaction effect
(F(1, 39) = 6.152, η2p = 0.139, p = 0.018). The signifi-
cant difference leading to the interaction effect consists of a
higher accuracy for responses for INV displays (M = 29.74%,
SD = 14.01) when presented after UP displays (M = 42.11,
SD = 16.29); t(38) = 2.57, p = 0.014.

C. Discussion

Experiment 3 showed a poor overall accuracy (%), indi-
cating that participants had difficulty identifying the actions
of the PLDs displayed. Although most actions were identi-
fied above the chance level (i.e., 20%, of 5 options), very few
actions had a relatively high accuracy, such as Transport =
69%, Reaching = 50%, and Table = 50%. Despite the poor
accuracy, there was no particular selection bias pattern. The
kinematic information within the PLDs may not be enough for
the participants to recognize the action and choose the correct
action labels, which also points to why they did not show any
particular selection preference. Observing the results of AIT
in light of AMT and AST, no inversion effect was observed
for either task, and the poor accuracy in AIT indicates that
the participants had very limited access, if any, to semantics
in AMT and AST. Hence, we show that humans mainly rely
on the kinematic features of the actions to perform AMT and
AST—similar to the model.

VII. CONCLUSION

Three consecutive experiments compared human
performance on various action recognition tasks with
the performance of a computational model (see Section III
for details). The results from Experiment 1 showed that the
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model was close to human performance on a fairly difficult
similarity judgment task, despite the fact that very limited
information in the form of average OF was used. Experiment
2 provided further insight by showing that the majority
of actions could be matched based on limited information
within a single feature domain (velocity or spatial), while
both velocity and spatial information were necessary to reach
human performance on all actions. Experiment 3 indicated
that human participants lacked access to semantic information
in their judgments, further strengthening the conclusion that
velocity and spatial features are both used in HAR, but that
most actions can be recognized based on a single feature
domain if necessary. Further research is needed to understand
how humans utilize the velocity and spatial features to judge
action similarities—do they form kinematic primitives similar
to the model, and if so, how?

The current work provides insight into the potential mech-
anisms supporting action similarity detection in humans,
providing a pathway toward implementing similar models in
machines. The approach has a developmental inspiration, in
that it is based on an existing model of the ability of newborns
(biological motion detection [37]) to assess how far this simple
representation allows one to go in terms of a novel and more
complex skill, such as the detection of similarity of actions.
It is important to note that progressive development could
continue with more complex social competencies. In fact, for
humans, the detection of action similarity plays a fundamen-
tal role in imitation. In particular, according to the similarity
model [44], kinematic similarity increases the predictability
of the action. Imitation, in turn, supports the development of
action understanding. For example, several researchers have
suggested that the experience of being imitated is crucial in the
development of the mirror neurons system (e.g., [45] and [46]).
In this context, the child’s ability to judge the kinematic sim-
ilarity between her and her caregiver’s actions would support
the child’s ability to mimic, which is another step toward
understanding the action.

In a similar vein, the topic of imitation has also been widely
investigated in robotics (e.g., [47], [48], [49], and [50]) and has
important implications for the domain of learning from demon-
stration [51]. Additionally, for this application, the possibility
of detecting similarities in actions and performing actions that
closely resemble that of the human partner could increase the
intuitiveness and efficacy of the interaction.

An aspect worthy of further attention refers to the
performance based on the type of action in use. Humans
viewed PLDs to achieve a high level of performance, similar
was the case for the model variant relying on the same PLDs,
whereas the OF variant relied on the video feed and also per-
formed reliably high with comparatively lower performance
(in terms of selection-bias and false-hit). The experiments
presented here showcase that an efficient and effective strategy
of utilizing kinematic primitives of relevant motion is possible
in both modalities. Additionally, such a strategy could serve as
a part of a more complex action-recognition model mimicking
the robustness of human action judgment capability.

This work uses kinematics in the two different modalities
highlighting the importance of understanding the significance
of biological motion parameters and how they can be utilized

toward action understanding both from the point of view of
Human cognition and HAR models. Many recent approaches
to action recognition in computer vision rely on deep neu-
ral networks, e.g., [25] and [52] (see the detailed review
of approaches in [53]). These are quite different from the
presented model in that they use many more parameters in
their descriptors, providing much more powerful classifiers.
As a result, deep networks are often described as black-box
models, providing powerful input–output mappings but pro-
viding little information on the internal mechanisms necessary
to identify the stimuli. With the work presented here, we
argue for the need to investigate human action understanding
to enable more white-box methods toward designing systems
such that they understand actions with the human at the center,
i.e., a step closer to human-centered computational modeling.
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