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C-GRAIL: Autonomous Reinforcement Learning of
Multiple and Context-Dependent Goals
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Abstract—When facing the problem of autonomously learning
to achieve multiple goals, researchers typically focus on problems
where each goal can be solved using just one policy. However, in
environments presenting different contexts, the same goal might
need different skills to be solved. These situations pose two chal-
lenges: 1) recognize which are the contexts that need different
policies to perform the goals and 2) learn the policies to accom-
plish the same goal in the identified relevant contexts. These two
challenges are even harder if faced within an open-ended learn-
ing framework where potentially an agent has no information on
the environment, possibly not even about the goals it can pur-
sue. We propose a novel robotic architecture, contextual GRAIL
(C-GRAIL), that solves these challenges in an integrated fashion.
The architecture is able to autonomously detect new relevant con-
texts and ignore irrelevant ones, on the basis of the decrease of
the expected performance for a given goal. Moreover, C-GRAIL
can quickly learn the policies for new contexts leveraging on
transfer learning techniques. The architecture is tested in a sim-
ulated robotic environment involving a robot that autonomously
discovers and learns to reach relevant target objects in the
presence of multiple obstacles generating several different
contexts.

Index Terms—Autonomous robotics, context-dependent goals,
developmental robotics, intrinsic motivations (IMs), multitask
reinforcement learning (RL).

I. INTRODUCTION

IN RECENT years, the development of autonomous agents
able to choose their own tasks solely on the basis of

their interaction with the environment and of the motiva-
tions generated by this interaction has gained increasing
interest within artificial intelligence, robotics, and machine
learning. Although autonomy and versatility are pursued via
different approaches, such as information theory [1], [2], evo-
lutionary computation [3], deep learning [4], or epigenetic
models [5], the field of developmental robotics [6], and in
particular, the research on intrinsically motivated open-ended
learning [7], [8], is producing a growing number of promising
results.
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The concept of intrinsic motivations (IMs) is borrowed from
the biological [9] and psychological literature [10] describ-
ing how novel or unexpected “neutral” stimuli, as well as
the perception of control, can drive learning processes in
the absence of rewards or assigned goals. In the compu-
tational field, IMs have been implemented to foster dif-
ferent autonomous processes, such as state-space explo-
ration [11]–[13], knowledge gathering [14], [15], learning
repertoire of skills [16]–[18], affordance exploitation [19],
[20], goal selection [21]–[23], and also boosting imitation
learning techniques [24], [25].

In a reinforcement learning (RL) perspective, solving a task
can be described as the process of an agent learning a pol-
icy to maximize a reward function R usually associated to a
goal [26], i.e., a target state or effect. When facing the problem
of autonomously learning multiple goals, researchers typically
consider the case where each goal can be considered a single
task [27], [28], thus training one policy for each goal (or one
goal-parameterized policy). However, in real-world scenar-
ios, the environment might change over time: as an example,
objects might be displaced in different positions, or may only
be present at certain times, and their locations might obstruct
the achievement of some goals. The different configurations
of the environment constitute the different contexts in which
the system will have to learn to achieve its goals. In other
words, different from the perspective in which each goal cor-
responds to a task, here for each goal there are as many tasks
as there are contexts, to which potentially the system should
associate a specific policy. In an application-oriented perspec-
tive, we can think of a harvesting robot in agrifood scenarios,
where solving a goal (reach-and-pick the same fruit/vegetable)
might necessitate different policies given contexts that might
not be anticipated at design time. Moreover, “picking up” can
be considered as a single, high-level goal that the robot has
to solve in different contexts, determined by both the spe-
cific field and the specific fruits/vegetables to be collected.
Having robots capable of autonomously and dynamically fac-
ing these situations might reduce the costs for small producers
and improve automation. Similarly, service robots applied in
highly unstructured or even unknown environments, such as
houses, have to face tasks that might be affected (or not) by
many elements that vary not only between different houses but
also between different rooms in the same house.

The machine learning literature has proposed RL models
to face problems where the transition and/or reward functions
change in time and the agent is not informed on the context it is
facing. These problems have, in particular, been tackled under
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the heading of “nonstationary environments” [29], where the
challenge is both to recognize the contexts to associate with
different models/policies, and to manage them [30]–[32].
Different from this approach, in this work, we consider the
case where a robotic agent can use its sensors to perceive
the context it is facing. For example, in the domain we con-
sider here, the agent focuses on objects and obstacles relevant
to solve the tasks at hand. This approach is related to the
object-action compound framework (OAC [33], see also [34]),
stressing the importance of considering object-related con-
texts for the successful performance of actions. However, even
under this assumption, the challenge of managing all possible
contexts remains: indeed, a real-world scenario presents a large
set of features whose variations might generate a large (possi-
bly infinite) set of different contexts. In the perspective where
each context might be considered as a separated task (even if
sharing the same final goal), the system should therefore asso-
ciate to each one a different policy to be trained to reach the
goal in that specific configuration of the environment, even-
tually overloading the agent’s learning processes and memory
resources. Reducing the learning time has been successfully
addressed through transfer learning (TL) techniques [35], also
within the RL framework [36]: when learning a new policy,
transferring previously acquired knowledge to a similar task
can significantly speed up the process. However, this technique
does not cope with the problem of managing and limiting
the number of contexts (thus policies) in which the system is
trying to learn.

Our proposal is to consider that some configurations of
the environment may not be relevant for the achievement of
a goal, and therefore, they should be grouped together and
“solved” using a single strategy: for example, the position-
ing of some objects far from the target of the robot could
be irrelevant for the policy acquired so far, so that the same
policy would allow to achieve the same goal in different con-
texts. In a limited or controlled environment, the contexts
could be potentially identified and enumerated through the
analysis of the world structure, grouped by their similarity
and coded into the artificial system. However, in the perspec-
tive of autonomous development and learning in unstructured
and eventually unknown scenarios, the artificial agent has
to be endowed with a mechanism through which it can
autonomously understand which contexts could be “ignored”
(and hence, associated to previously existing policies) and
which ones require new strategies to achieve the same goals.

To the best of our knowledge, this problem has not
been previously faced with intrinsically motivated autonomous
learning agents and in the current work, we thus compare vari-
ous versions of the proposed robotic architecture endowed with
different mechanisms (or with combinations of them) to prop-
erly analyze their roles. In particular, we present contextual-
GRAIL (C-GRAIL), an extension of GRAIL architecture
(goal-discovering robotic architecture for intrinsically moti-
vated Learning [37]). Similar to its precursor, C-GRAIL is able
to autonomously discover, select, and learn to achieve goals
on the basis of IMs, but new mechanisms allow C-GRAIL to
assign goals different values according to contexts. Moreover,
C-GRAIL is equipped with TL capabilities and with a smart

context-detector (SCD) mechanism to cope with the problem
of large numbers of possibly equivalent contexts. The system is
tested in an object-reaching scenario, where multiple obstacles
might be positioned around the targets, generating many differ-
ent contexts. Despite the simplicity of the experiments and the
limitations of the specific implementation of C-GRAIL (high-
lighted in the conclusions), the results show that the approach
and the mechanisms introduced in this new architecture con-
stitute a viable proposal for dealing with this type of problem.
In this sense, C-GRAIL can be considered as a blueprint archi-
tecture and the experiments proposed here constitute a proof of
concept of its validity and of the possibility to be implemented
in a robotic agent.

The remainder of this article is structured as follows.
Section II introduces the general problem of autonomous,
open-ended learning of multiple goals (Section II-A), the
specific problem of autonomous goal learning under vary-
ing contexts (Section II-B), and our proposed solution
(Section II-C). Section III describes C-GRAIL general func-
tioning (Section III-A) and its mechanisms and components
(Section III-B), while specific implementation details can be
found in the Appendix. Section IV describes the experimen-
tal scenario and the compared systems, while the results are
presented in Section V. Finally, in Section VI, we draw con-
clusions, highlight limitations, and describe possible future
extensions of this work.

II. PROBLEM DESCRIPTION AND PROPOSED SOLUTION

A. Autonomous Learning of Multiple Goals

In classical RL, the objective of the agent is to find an
optimal policy π∗ that at each time step t, given the current
state st ∈ S , selects an action at ∈ A to maximize the expected
returns, defined as the sum of rewards R = ∑T

t=0 rt over the
maximum time T . Rewards might be distributed over the state
space or associated only with the goal g, i.e., a specific target
state sg or, as in [28], a set of states Sg ∈ S , so that whenever
the agent reaches any sg ∈ Sg, the goal is achieved.

When learning a set of multiple goals G, the objective of
the agent is thus to find multiple goal-dependent policies πg,
each one maximizing a goal-dependent reward function Rg.
In particular, the overall objective is to find, for each g, an
optimal policy such that

∀g ∈ G, πg(at|st) = argmax
πg

E
[
Rg(πg)

]
(1)

where each goal-related policy is encapsulated in a separated
module (“expert”) trained through any RL technique.1

Different from the classical multitask RL, where tasks to be
learned are scheduled by the human programmer [28], [38], in
an autonomous open-ended learning perspective [39], we want
the robot to be able to autonomously select its own tasks to
maximize the expected competence C over all goals

C =
∑

G
Cg (2)

1Alternatively, it could be described as a single parameterized policy [38]
defined as π(at|st, g) [28]. The two formalizations are interchangeably with
respect to the purposes of this work.
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where Cg is a value quantifying the probability that the goal-
related policy πg will bring the agent in one of the goal states
sg ∈ Sg when executed. In this sense, autonomous open-ended
learning is not simply about reward maximization but focuses
on developing agents that gain the highest amount of knowl-
edge over an environment (independently from assigned tasks)
so that this knowledge might be exploited in the future (e.g., to
solve users’ requests). This has been often depicted as a two-
phase scenario [40], [41]: in a first “intrinsic phase,”2 the agent
is presented with a (potentially extremely large) set of learn-
able goals G, while in a second “extrinsic phase,”3 the system
will be asked to solve a specific (and previously unknown)
subset of goals Gtest ⊂ G. The research on autonomous open-
ended learning, as well as the work presented here, focuses
on the first phase. In particular, under the assumption that the
autonomous exploration-and-learning phase has a limited but
unknown time horizon L, the problem consists in appropri-
ately allocating the training time between goals so that CL

(the overall competence of (2) at time L) is maximum.
At each trial, the system focuses on a goal g, training πg

for a certain amount of learning time lt, so that previous com-
petence for g at time t (Cg

t ) will be (possibly) improved by a
delta

�Cg = Cg
t+lt − Cg

t . (3)

Consequentially, according to (2), also the overall compe-
tence C is improved by the same value �Cg. The objective of
the agent in the intrinsic phase is thus to build a metapolicy �

that, at each trial, selects a goal so that after the entire learning
period L, the competence over all goals C is maximized

�∗(g) = argmax
�

E[C |�]. (4)

Since the time horizon L is unknown and since it is not pos-
sible to analytically determine how C is changing after the
selection and training of each goal, a common solution [43]
is to use a greedy approach that at each trial maximizes
the expected competence improvement �C, which is the
intrinsic reinforcement used to train the metapolicy �. With
these premises, goal selection can then be modeled as an
N-armed bandit problem [26] as done in many architectures
for autonomous open-ended learning [23], [37], [44]–[46],
where goals g ∈ G are the arms of the bandit and �Cg are
goal-specific returns (depending on the training of the low-
level, goal-related policies πg), so that the value of each goal
Q(g) is dependent on the currently expected �Cg for practic-
ing/selecting that goal. Note that given the transient nature of
�C (and in general of IM signals), which decreases while the
competence for a goal improves toward its maximum, the goal
selection N-armed bandit should be more precisely considered
as a rotting bandit [47].

Under these assumptions, the general problem of
autonomous open-ended learning of multiple skills can
thus be seen as a training-time allocation problem on top of a

2Goals are pursued for competence acquisition and not for immedi-
ate reward maximization, although there is a continuum between the two
phases [42].

3Goals are pursued to solve users’ requests.

multitask RL problem or, from a hierarchical perspective, as
a two-level problem: 1) the high-level problem of selecting a
goal g to train to rapidly maximize the overall competence
and 2) the low-level problem of training the goal-related
policies πg.

B. Introducing Context Dependency

As described in Section II-A, usually multiple goal learning
is addressed assuming that for each goal g, a single goal-
dependent policy πg may be sufficient. Differently, here we
are considering the case where the same goal might need dif-
ferent policies given different environmental conditions. This
is common in real-world scenarios, where achieving the same
goal may require a robot to use different strategies according
to the context: for example, certain objects might be obsta-
cles impairing the reaching of certain targets; hence, the agent
should use different policies to reach for the same location in
different contexts.

If we assume that the agent is able to identify the current
context φ ∈ � through its sensors, we can divide the set of
features F perceived by the agent in two subsets: 1) “low-
level” features f s, changing at the time-scale of an attempt to
achieve a goal (within trials) and describing the input state for
the control policy πg (e.g., the displacement of the joints of
a robotic arm) and 2) high-level features f φ changing over a
wider time scale (e.g., every n trials) and describing the current
context φ, where φ can be defined as a vector containing a
specific combination of the values (that for simplicity can be
thought of as binary, e.g., “obstacle 1 is present/not present”)
of all contextual features.

Each φ can thus be seen as a different task where the
system, to achieve the same g, might need a different policy
π

g
φ . Consequently, the maximization of competence C over all

goals G becomes the problem of maximizing C over G in all
contexts �. The objective in (4) will thus change to

�∗(g|φ) = argmax
�

[C |�] (5)

so that goal selection can now be modeled as a contextual-
bandit problem [26] in which the selection of the goal to train
at each trial is dependent on the current context φ, as well as
intrinsic returns �Cg

φ and value assignment Q(g|φ).
This description assumes that each context φ is actually

affecting goal achievability. However, in real-world scenarios,
it is easy to imagine that many of the features describing a
context do not affect the policy that the system is learning. The
fact that it is night or day might have no effect on a reaching
task performed indoor, while the on/off state of the light in
the room could; similarly, the presence of objects distant from
the target to be reached should not be taken into considera-
tion, while objects positioned close to the target might become
obstacles. If the robot is supervised by a human designer, the
latter could spot the relevant elements of the context, but in an
open-ended learning perspective (where eventually the agent
is operating in unknown scenarios), the robot should be able to
autonomously identify what is relevant for goal achievement.
Indeed, associating a different policy π

g
φ to any distribution of
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“high-level” features might substantially slow down the learn-
ing process and burden the system computational resources.
TL has proven to speed up skill acquisition (also in association
with IMs [48]), but this might not be sufficient to cope with
the “combinatorial explosion” of features, determining possi-
bly infinite contexts and thus, policies. Finding a smart and
autonomous way to avoid context/policy proliferation (i.e., a
solution to the problem of considering each context as rele-
vant and then having to associate it with a new policy) without
impairing the learning of multiple, context-dependent goals is
thus a crucial issue for autonomous learning.

C. Proposed Solution

The autonomous learning of multiple context-dependent
tasks presents two main challenges: 1) allocating training time
over goals taking into account different contexts and 2) avoid-
ing policy proliferation so as not to slow down the learning
process. To tackle the first issue, our approach follows the anal-
ysis in Section II-B: task selection is treated as an N-armed
contextual bandit where the system evaluates each goal on the
basis of the competence improvement �Cg

φ expected in the
current context φ. At the lower level of policy learning, for
each goal and for each context, the system associates a specific
policy π

g
φ , trained through any learning algorithm maximizing

the rewards Rg for achieving the goal state(s) sg defining g.
However, this general schema is modeled according to our
solution to problem 2).

To avoid policy proliferation, we introduce a heuristic based
on Ockham’s razor (“Numquam ponenda est pluralitas sine
necessitate” [49]—“Plurality is never to be posited without
necessity”), which in this scenario would prescribe the agent
not to multiply policies unless strictly necessary. In particu-
lar, we propose to work at the level of context detection: even
if the robot perceives through its sensors the current context
φ as it is in the environment, what the system actually takes
into consideration is determined by a binary vector rcf (rele-
vant contextual features) with the same length of φ that stores
which contextual features have been relevant for goal achieve-
ment so far. Moreover, since certain contextual features might
be relevant for a goal but irrelevant for others, for each g, the
system has a goal-specific rcfg vector, working as a mask over
φ. This process will lead the agent to identify a different list
of relevant contexts �g for each goal, and for each φg in �g,
it will associate a specific policy π

g
φg .

Given the current context φ in the environment, the agent
will consider different goal-specific contexts φg, each one
resulting from the following elementwise multiplication:

∀g ∈ G, φg = φ � rcfg (6)

so that the contextual bandit modeling goal selection is now
a particular instantiation of the classical problem, where the
evaluation of each arm/goal of the bandit depends on a context,
which is arm specific and determined by (6).

In accordance with Ockham’s principle, initially all rcfg

masks contain only zeros so that the agent starts to face the
environment by actively ignoring the contextual features: in
other words, at the beginning, the system selects goals as if

there was only one “baseline/blank” context φ
g
0 , thus asso-

ciating just one policy π
g
φ

g
0

to each goal. It is only when

“something goes wrong” that the system evaluates the pos-
sibility that some contextual features may be relevant and
should therefore be taken into consideration. To assess this
necessity, within a model-free framework, the agent relies on
the behavior of its low-level policies πg. In particular, nov-
elty or surprise, as suggested by the IM framework [50], can
be used to signal that an anomaly occurred: similar to [38]
(although that was a model-based system), we propose that
an “unexpected failure” of π

g
φ

g
n

can be used as a signal for
the identification of new relevant contextual features (see
Section III-B). A new context φ

g
n+1 will be then actively per-

ceived by the agent and a new policy π
g
φ

g
n+1

will be associated

with it. Moreover, π
g
φ

g
n+1

will possibly use TL drawing knowl-

edge from policies developed for the same goal in previously
identified contexts (see Section III-B for an example).

However, if this smart context-detection strategy is applied
from the very beginning of the learning process, when the
agent is still performing (almost) random behavior, this would
still possibly result in an explosion of detected contextual fea-
tures. For this reason, our proposal is to trigger this mechanism
only when the competence Cg

φg for g in φg is higher than a
threshold (whose optimal setting is beyond the scope of this
work; see the Appendix for the values used in this work).
Furthermore, considering all the contextual features of the
environment when a failure occurs would not follow Ockham’s
principle. The system thus considers only those features in φ

that are “relevant” for the goal at hand. Heuristics and previous
knowledge might be used for this purpose: for example, in a
manipulation task, they could be those related to an object the
robot hits in proximity of the target. If these heuristics are not
sufficient, the agent should then consider also the other fea-
tures (but again, refining these heuristics is not the purpose of
this research).

III. C-GRAIL

In this section, we instantiate contextual-GRAIL (C-
GRAIL), a system that extends the GRAIL architecture [37]
encapsulating the proposals described in Section II-C. GRAIL
is able to autonomously: discover goals; select goals according
to competence-based IMs (CB-IMs); recognize goal achieve-
ment; and select computational resources to learn goal-related
skills. Despite its advancements, GRAIL (similar to other
systems [23], [44], [45]) is not able to manage context-
dependent goal selection, nor to identify relevant contexts and
avoid policy proliferation. Instead, the C-GRAIL architecture
can cope with multiple-context learning based on a smart con-
text detector (SCD) that identifies and stores new relevant
contextual features, thus contexts, when needed, allowing the
enrichment of the system behavior. Although autonomous goal
discovery is not the focus of this work, C-GRAIL is able to
perform it inheriting this capability from GRAIL.

Following the problem analysis and the suggested solution
presented in Section II, C-GRAIL can be seen as a two-level
architecture (with respect to the tackled problems), where the
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Fig. 1. C-GRAIL with main components and references to the lines in
the pseudoalgorithm describing the different processes. Note that experts are
goal-and-context specific.

high level learns to properly allocate training time solving a
(rotting) contextual bandit that maximizes the CB-IMs pro-
vided by the different goals, while the low level learns the
goal-related policies maximizing the rewards (self-)provided
for achieving the selected goals. IMs are thus used, similar
to [43] and [44], to explore the goal space and select the most
promising goal (with respect to competence gain) in the cur-
rent context. C-GRAIL hence learns inverse models to achieve
the goals it has selected on the basis of CB-IMs. Furthermore,
it is important to emphasize that the problem of learning dif-
ferent skills to reach the same goal in different contexts is
addressed here from the perspective of the high-level task of
training time allocation: at the low-level of policy learning,
we could have implemented different algorithms (or a dif-
ferent architectural structure) without modifying our general
solution.

Section III-A presents a formal description of C-GRAIL
capturing the main issues tackled in this article. Other func-
tions that are not specifically relevant to this work, such as
goal-discovery and expert selection, as well as the specific
implementation of the system, are reported in Section III-B
and the Appendix.

A. General Functioning

Algorithm 1 shows the general functioning of the C-GRAIL
architecture (Fig. 1). We assume the system operates within an
episode-based RL framework involving trials, each lasting T
time steps. We assume the state of the environment s includes
two sets of different features: 1) low-level features f s (such as
proprioception) that might change within the trial and 2) high-
level contextual features f φ (henceforth also denoted as φ for
simplicity; these involve for example the presence of an obsta-
cle in a certain location) that might change between the trials
and can be used to identify a context. At the beginning of each
trial, the system observes s and passes φ to a context-matching

Algorithm 1: C-GRAIL
1 Let known_goals = {} be the list of discovered goals
2 foreach g in known_goals do
3 rcf g = 0 (init rcf masks);
4 �g = {} (identified relevant contexts φg);

5 Let �Cg
φg be the agent’s intrinsic motivation for achieving goal

g in context φg in �g;

6 for trial← 1 to End do
7 Set the initial configuration of the environment s0;
8 Let t be the current time step within the trial;

9 (Determine current relevant context for
each goal; store new contexts and create
new policies);

10 I�trial = {} (reset identified context list);
11 Observe current state of contextual features f φ ;
12 foreach g in known_goals do
13 φg = CM(f φ, rcf g);
14 I�trial ← I�trial + {φg};
15 if φg not in �g then
16 �g ← �g + {φg

n+1} (add new context);
17 Create new policy π

g
φ

g
n+1

;

18 With a certain probability, select a policy π
g
φ

g
k

among those, if any, with a
competence ≥ transfer_threshold;

19 π
g
φ

g
n+1

transfer←−−−−− π
g
φ

g
k
;

20 (Select a goal);
21 g ∼ �(I�trial) (based on �Cg

φg);
22 prior_prob← χ(g|φg) (estimate the

probability of achieving g given φg);

23 for each time step t← 1 to T within the trial do
24 at ∼ π

g
φg(f s) (select an action);

25 Perform action at in the environment;
26 Observe next state st+1;
27 Let rt = GM(st+1, g);
28 Update π

g
φg (update policy based on

(st, at, rt, st+1) );
29 if failure & t < T &

prior_prob > competence_threshold then
30 Observe features f φ in st+1;
31 Let f fail be failure-related features in f φ ;
32 if f fail 
= 1 in rcf g then
33 f fail ← 1 in rcf g

34 (Update success predictor and intrinsic
motivation);

35 Update goal-success predictor χ based on GM;
36 posterior_prob← χ(g|φg) (updated probability

of achieving goal);
37 �Cg

φg ← posterior_prob− prior_prob;

(CM) function, returning the context φg, which is relevant for
each goal g (in the list of currently known_goals) given the
current state and the goal-specific relevant contextual feature
masks rcf g as described in (6).

If a new relevant context φ
g
n+1 is identified for a goal, it

is added to the list of known contexts �g for g and a new
policy π

g
φ

g
n+1

is created and associated to it. TL techniques are
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Fig. 2. Robot, of which we used here only the two actuated arms and a
camera in the head, the three target spheres, and the nine possible obstacles.

used to speed up the training of the policy: with a certain
probability, a policy π

g
φ

g
k

is randomly selected from those (if

any) used to achieve the same goal in different contexts and
having a competence higher than a certain transfer_threshold.
The selected policy is then used to initialize the new policy
(see Section III-B for details). The list of identified contexts
(I�) for the current trial, one for each goal, such that

I�trial =
{
φg1 . . . φgj . . . φgn

}
(7)

is passed to the goal selector policy � determining the goal
to pursue in the current trial on the basis of the expected
competence improvement �Cg

φg . We make no assumptions
on how to implement �, but it can be seen as a stochas-
tic policy selecting a goal according to a softmax distribution
based on IMs. The competence measure Cg

φg is defined as the
probability estimate of achieving g given φg, autonomously
assessed through a “predictive function” χ(g, φg). �Cg

φg is
computed as the difference between prior (prior_prob) and
posterior (posterior_prob) estimated probabilities of achieving
g given the same relevant context φg.

At each time step t within the trial, on the basis of the
low-level features f s of the current state st, an action at is
selected through the low-level policy π

g
φg(f s) bringing the

agent in st+1. The new state is observed and a reward is
autonomously calculated using a goal matching (GM) func-
tion, returning 1 for success and 0 otherwise. The policy π

g
φg

is hence updated accordingly. If the trial ends before its time
up T with a failure, and the computed prior_prob is over a
certain competence_threshold, the high-level features f fail in
f φ related to the condition at hand (see Section III-B) are set
to 1 in the rcf g vector. Finally, the competence predictor χ is
updated accordingly to goal achievement [0; 1] and the differ-
ence between prior_prob and posterior_prob is calculated to
provide the CB-IM �Cg

φg that biases goal selection.

B. Implementation

1) Robot and Sensory Input: C-GRAIL is implemented
in a simulated iCub robot through the 3-D physical engine
GAZEBO [51] and dedicated YARP plugins [52]. The two
arms have 4 degrees of freedom: wrist joints are kept fixed
and the hands are substituted by two scoops (see Fig. 2).
Collisions are not taken into consideration: a sensor in the

center of each scoop detects whether the robot has “touched”
an object. Inputs are provided by two sources: 1) the camera
of the right eye, kept fixed so that objects are always in the
visual field and 2) the arm joints, whose angles determine the
robot proprioception.

2) Goal Discovery: As in other versions of GRAIL
[37], [53], the system has a mechanism to discover
“interesting” states and store them as possible goals: we use
a simple, biologically inspired [54] built-in strategy detecting
those states resulting from a change in the visual input (in this
work, the change of color of a sphere, which “lights up” when
touched by the robot). The visual inputs corresponding to two
succeeding time steps are subtracted and whenever there is
a change (arms movements are excluded, see the Appendix),
the resulting image is compared with previously saved ones:
if new, it is stored in the goal-representation map (GR-M) and
associated with the first available unit of the goal selector (see
Section III-B4).

3) Smart Context Detector: This component is introduced
in C-GRAIL to avoid policy proliferation. It is composed of
two mechanisms: 1) the detection of current relevant contexts
and 2) the gathering of relevant contextual features (rcf ). At
the beginning of each trial, the SCD receives the set of con-
textual features φ, i.e., the values of those features that are not
changing during the trial, which in the presented experimental
case (see Section IV) are the occupied/nonoccupied positions
of the obstacles. For each goal g, the system has a mask vec-
tor rcf g where the features that have so far been identified
as relevant to the achievement of g are set to 1. A context
matching function CM filters the current features φ with the
rcf g of each goal, returning a list of goal-specific contexts
{φg1, φg2 , . . . , φgn} for all the currently known goals. The list
is used by the goal selector to choose the goal to pursue on
the basis of context-specific IMs. If a new context φ

g
n+1 is

detected for g, it is added to the list of relevant contexts �g

for that goal, and a new policy π
g
φ

g
n+1

associated to the goal g

is added to the repertoire of the system as a new expert (see
Sections III-B6 and III-B7).

While training on g, if there is a failure that terminates
the trial before its maximum duration T (see Section IV),
and if the predicted performance level (see Section III-B9) in
the current context φg is higher then a competence_threshold
(whose value has been set through experimental heuristics,
see the Appendix), the SCD sets to 1 in rcf g the contextual
feature(s) f φ related to the environmental state st where the
agent is situated when the trial terminates (here represented
by the center of the scoop on the actuated arm). Concretely, if
the agent bumps into an obstacle, only the features related
to that specific obstacle are set to 1, while the others are
not taken into consideration since the system, following the
law of parsimony, assumes that only the features related to
its current end-effector position are involved in the signalled
failure.

4) Goal Selector: At each trial, the goal selector deter-
mines the goal to pursue on the basis of CB-IMs and the cur-
rent context. In particular, the goal selector takes as input the
list I� of all the goal-specific relevant contexts φg identified
by the SCD component for the current trial, and selects the
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goal to pursue according to a softmax selection rule based
on the current context-specific values of the goals, updated
through a standard exponential moving average (EMA) based
on goal-and-context specific CB-IMs (Section III-B9). As in
other GRAIL versions, at the beginning of the experiment, the
goal selector is a “blank vector” whose units are not associ-
ated with any specific goal, but during exploration the system
is able to autonomously discover new goals and associate them
to the units in the goal selector as described in Section III-B2.

5) Expert selector: C-GRAIL can be implemented by asso-
ciating to each couple <g, φg> a single expert encoding the
policy controlling the robot when learning g in φg. However,
we endow the robot with the capability of autonomously
selecting different computational resources, one for each arm,
to achieve the same goal even in the same context. All the
goals (in each context) can be achieved using both arms, but
in this way, the system has a further degree of autonomy
whose advantages were investigated in [55]. Given the selected
goal and the current context for that goal, the selection of the
expert is based on an EMA of the rewards provided by the
goal-matching (GM, Section III-B8) function for that goal.

6) Experts: Each expert is implemented as a neural
network actor–critic model modified to work with continuous
states and action spaces [56]. At each time step, it receives
as input the low-level features f s corresponding to the four
actuated joints of the related arm (three for the shoulder and
one for the elbow). The four output units of the expert’s actor
encode the displacement of the joints through position control.
In particular, the outputs are remapped into a range determin-
ing the variation (the delta) in the position of the four joints.
At each step, the selected expert is trained through a TD RL
algorithm [26] maximizing the rewards generated by the GM
function for achieving the currently selected goal.

7) Transfer Learning: After a goal has been selected,
the system checks through its competence predictor χ (see
Section III-B9) the expected performance for that goal in the
current context φ

g
k . If the prediction is under a certain learning

threshold, the system checks if a policy π
g
φ

g
j

exists for the same

goal in a different context φ
g
j whose expected performance is

higher than a transfer threshold and, with a certain transfer
probability, uses it for TL (if multiple candidates are available,
one is randomly picked with uniform probability). The robot
action is then controlled by the policy of the selected source
expert and the output of its actor and critic components is used
to train the target expert (see the Appendix). Moreover, if the
trial ends achieving the goal the parameters of both the policy
and the evaluation function of the source expert are entirely
copied into the target expert associated with that goal.

8) Goal Matching: The GM function allows the agent to
autonomously check if a pursued goal has been achieved.
When a goal is selected, its representation in the GR-M is
activated. While operating, if a change is detected in the visual
input, GM compares it with the representation of the selected
goal: GM thus generates a signal of 1 if there is an overlap
of the two images (0 otherwise). In the specific experimen-
tal domain presented here, the GM generates a binary signal,
but it can be continuous in different domains (as in [57]).
The signal is used as a reward to train the experts and the

expert selector; moreover, it is used as a teaching input for
the predictor whose activity determines the CB-IM signals.

9) Intrinsic Motivations: The CB-IMs signal, modeled as
a competence improvement signal [43], is the result of the
activity of the competence predictor χ . At the beginning
of each trial, χ receives as input the selected goal g and
the goal-specific relevant context φg, and outputs the pre-
dicted performance of the agent. At the end of the trial, the
prediction is updated according to the GM output, and the
competence prediction improvement (CPI), calculated over a
fixed time window (see the Appendix), determines the goal
context-dependent CB-IM signal biasing goal selection.

IV. EXPERIMENTAL SETUP

A. Environment and Task

In addition to the robot, the environment presents three
spherical objects representing potential reaching targets
(Fig. 2). Moreover, a varying number of rectangular paral-
lelepiped obstacles (with a maximum of 9) are placed close
to the targets. For each target, there might be simultaneously
three obstacles facing it on its right, left, and in the middle.
All the objects are anchored to the world at reaching distance.
When touched, targets “switch on” changing their color to
green. The task consists in learning to activate the spheres
in the shortest amount of time and in different environmental
contexts. At the beginning of each trial, the number of the
obstacles changes, thus configuring a new context (with nine
present/absent obstacles, there are 512 possible contexts). The
experiment lasts for 50 000 trials, each ending after 800 steps
or when any object is touched.

Despite its simplicity, and to some extent because of it,
this scenario allows us to focus on the main functions of the
proposed system and analyze their contribution to the learning
process. Furthermore, this type of task is typical of the IMOL
literature [25], [44], [58], as well as our previous work on
the GRAIL system [37], [53]: this allows us to both place
this study in continuity with previous ones, and facilitate a
comparison with other systems by highlighting advances and
differences.

B. Compared Systems

We compared C-GRAIL to other three systems, each one
lacking some of the mechanisms implemented in our archi-
tecture and reflecting other systems in the literature.

1) Bandit: This system is built similar to other architec-
tures for autonomous multigoal learning [23], [37], [44],
where goal selection is treated as a multiarmed ban-
dit and each goal is associated with a single policy.
Moreover, no TL is used.

2) C-Transfer: This system implements autonomous goal-
selection as a contextual bandit similar to [22] and [59],
but it is not endowed with the SCD mechanism as
C-GRAIL, thus all possible contexts are actually taken
into consideration by the agent. The system is equipped
with TL to share knowledge between policies achieving
the same goal in different contexts.
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Fig. 3. Average performances (over ten repetitions) of the four tested systems in learning the three tasks. (a) Bandit. (b) C-Transfer. (c) Smart C-Bandit. (d)
C-GRAIL.

3) Smart C-Bandit: This system implements the SCD
mechanism as C-GRAIL, but it lacks TL. The system is
thus able to limit policy proliferation, but it has to train
each new expert from scratch.

The performance of the systems is calculated during the
whole simulation as the average, over the last 30 attempts, of
the success in achieving a goal given a context. When general
results are presented (as in Fig. 3), the graphs report, for each
goal, the average of the averages over all the possible contexts.

V. RESULTS

Fig. 3 shows the average performance (over ten repeti-
tions) of the four systems in learning to reach the three target
spheres. As expected, the Bandit system cannot achieve a suf-
ficient performance. The agent is not able to distinguish the
different contexts, so it cannot select most profitable goals
accordingly; moreover, having just one policy per goal, it con-
tinues to modify the same expert, thus incurring in catastrophic
forgetting.

C-Transfer achieves a good performance over all the goals
(∼80%) only at the very end of the experiment, Smart

C-Bandit reaches a lower average performance (between
∼80% on goal 2 and ∼45% on goal 3), while C-GRAIL is
capable to achieve a 100% performance after only ∼8000 tri-
als. To investigate the differences between these last three
systems and understand how the components of C-GRAIL
contribute to its performance, we focus on the learning of a
single goal (goal 1, i.e., the sphere positioned on the left of
the robot) considering the data of a single representative seed
for each system.

Fig. 4 shows the performance of C-Transfer on goal 1 as
an average over all the contexts, while Fig. 5 shows the learn-
ing and performance for that goal with respect to the different
contexts depending on the configuration of the obstacles. To
make the visualization easier, we only show the contexts deter-
mined by the three obstacles close to the sphere associated
with goal 1, i.e., 23 contexts plus the one without obstacles
(identified as 1, 0, 0, 0 in Fig. 5 and Fig. 7). Notice that the
total number of possible contexts is given by the combination
of the nine obstacles that may be present in the world (512
possible configurations). Since C-Transfer does not have the
SCD, the system considers, for each goal, all 512 possible
contexts, thus potentially 512 policies to train. However, the
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Fig. 4. C-Transfer: performance on goal 1 averaged over all the possible
contexts.

Fig. 5. C-Transfer: analysis of context-related learning for goal 1 (we plot
here the contexts determined by three obstacles positioned close to goal 1),
with TL between contexts and IM signal.

transfer mechanism guarantees the system to share the motor
competence acquired in the contexts, both with partial trans-
fer (dotted green lines, Fig. 5) or copying the entire policy
from a different context when it can achieve the goal (dotted
purple lines, Fig. 5). Although C-Transfer manages to achieve
a high performance, the learning process is slowed down by
the fact that the system considers all the possible configu-
rations of the environment as relevant. This not only wastes
time in transferring skills between irrelevant contexts but also
slows down the goal selection process: as shown in Fig. 5, the
IM signal (orange lines) is always present even when compe-
tence has been properly acquired. This is because the plotted
signals incorporate the combination of single goal-related con-
texts with all the configurations of the obstacles that are close
to the other spheres. Since IMs are context related, the system
might still have motivations to improve its competence in a
context even if it is actually able to achieve the goal: this is
clear if we look at the end of the simulation, where even if the
performance is near the 80% the magnitude of the IM signal
is high, and where the system is still performing TL between
contexts (which are those not explicitly reported in the graph).

Fig. 6 shows the performance of the Smart C-Bandit system
on goal 1, averaged on all the possible contexts. Thanks to the

Fig. 6. Smart C-Bandit: performance on goal 1 (averaged on all the possible
contexts) and discovery of relevant contexts.

Fig. 7. Smart C-Bandit: analysis of context-related learning for goal 1
(contexts as in Fig. 5), with relevant context discovery and IM signal.

SCD described in Section III-B3, the system adds new context-
related policies only when hitting on obstacles (and only if the
current policy has reached a minimum level of performance).
In particular, when performing goal 1, Smart C-Bandit “dis-
covers” (or rather “considers”) only two obstacles close to the
target sphere (dotted red lines, Fig. 6) plus two other obstacles
standing close to the other spheres (dotted black lines, Fig. 6),
resulting in four goal-related contexts plus all the combinations
with the other two discovered obstacles for a total of “only”
16 relevant contexts, way less than 512 that C-Transfer has
to consider. This is not only an advantage from a “storaging”
perspective but also from that of the learning process, since
while C-Transfer has 512 different policies to manage and
train, Smart C-Bandit has only 16. However, this advantage
is not enough to make Smart C-Bandit perform better than
C-Transfer. Indeed, not being able to exploit the power of
TL, every time a new relevant context is identified the system
has to start training the new policy from scratch, thus losing
time in reacquiring previously learned behaviors. This is clear
from Fig. 7: in many cases, when the system identifies a new
obstacle/context, there is a significant drop in the performance
even when the agent is properly accomplishing the task. This
limitation does not only lead to a slowness in learning but
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Fig. 8. C-GRAIL performance on goal 1, averaged over all the contexts.
Small figure: entire simulation, 50 000 trials. Big figure: zoom on 10 000 trials
and timing of the new relevant context identification.

Fig. 9. C-GRAIL: analysis of context-related learning for goal 1 on the first
10 000 trials, with relevant context discovery, TL between relevant contexts,
and IM signal.

also increases the possibility of causing a further prolifera-
tion of contexts: training new policies from scratch increases
the likelihood that initially inefficient movements will lead the
system to bump into obstacles that had already been avoided
in previously learned trajectories.

If TL alone is not able to reduce learning time due to the
large number of contexts generated by only nine obstacles,
and if the smart reduction of contexts cannot cope with the
problem of having to relearn skills from scratch, integrating
the two mechanisms into one architecture results in a profitable
solution to the autonomous learning of multiple context-
dependent goals. Fig. 8 shows the performance of C-GRAIL
on goal 1 averaged over different contexts (for a video, see
https://youtu.be/e6Pt4uyH2XQ). The system reaches a 100%
performance at trial ∼4000 and identifies two goal-related
obstacles such as Smart C-Bandit but no other obstacles; thus,
only four different contexts for this goal. Thanks to TL, the
agent has no drop in performance when new relevant con-
texts are identified and a rapid learning of the four experts,

and can thus easily cope with all the 512 real contexts in
the environment. This guarantees fast learning, reflected by
a rapid decrease in the IM signals related to goal 1 (Fig. 9),
which allows the system to focus on (and learn) the other goals
as reported in Fig. 3(d). Fast learning also helps the system
to reduce the number of identified obstacles: the quicker the
system learns, the less exploration and therefore, the lower the
risk of hitting and discovering other obstacles.

VI. DISCUSSION AND CONCLUSION

In this work, we tackled the problem of the autonomous
learning of multiple context-dependent goals. What we
proposed is to combine the well-known practice of TL with
a mechanism that guarantees the reduction of the number of
contexts to handle, focusing only on those that are relevant
for the goals. To this purpose, we presented C-GRAIL, an
integrated robotic architecture for intrinsically motivated open-
ended learning that enhances the previous GRAIL system [37]
with mechanisms for autonomous learning of multiple context-
dependent goals, smart context detection, and TL.

In particular, the results show that TL alone ensures the
rapid sharing of acquired skills, but it cannot be sufficient in
environments with multiple, possibly not relevant contexts. On
the contrary, a system able to take into account only relevant
conditions can significantly reduce the skills to learn. In the
presented work, such a mechanism is able to identify eight rel-
evant contexts out of 512, thus also increasing the advantages
of TL. The experiments also showed how IMs and “artificial
curiosity” can be useful not only for goal management but
also to identify relevant contexts. Indeed, the surprise caused
by an unexpected failure is a suitable trigger to bring the atten-
tion of the system to those environmental features that need
to be taken into account to build new context-related poli-
cies. Notwithstanding these achievements, we are aware that
the current operationalization of C-GRAIL has limitations that
should be addressed in the future. This could be facilitated by
the fact that C-GRAIL can be considered as a blueprint archi-
tecture whose specific implementation can be modified and
improved with computationally more effective elements and
additional mechanisms.

A relevant limitation is related to the perceptual compo-
nents of the architecture. In particular, we now arrange the
system perception in terms of low-level features used for motor
control and high-level features relevant for context detection.
Future work might enhance the system by endowing it with
the capacity of autonomously extracting relevant high-level
features, for example, using autoencoders to extract high-level
meaningful features [60], as well as further strategies for input
generalization [61].

A problem related to the previous point is that when the
agent fails to obtain the expected success for a goal due to
the changed context, the identification of new relevant fea-
tures (obstacles) is facilitated by the fact that the obstacles are
discrete, their encoding is given to the agent as a vector of
high-level features, and that the robot identifies as relevant
those features that are close to the hand when a hit hap-
pens. Future work might thus aim at allowing the agent to
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autonomously guess which are the features that are actually
relevant, for example, by using algorithms such as predictive
coding [62] to identify unexpected features on which to
possibly focus.

Finally, testing the enhanced features of C-GRAIL discussed
above would require the use of scenarios and tasks going
beyond those presented here. For example, here we considered
only the learning of simple reach-and-touch actions performed
on spherical objects; moreover, the environment contained
only distinct regular obstacles with the same size and similar
locations with respect to the target. A more complex chal-
lenge might require the pursuit of more complex goals, such as
picking-and-placing of objects in desired locations in a contin-
uous space, and several obstacles with variable size, shape, and
spatial arrangement. These scenarios possibly require the exe-
cution of other goals (or subgoals) as a precondition for their
achievement. M-GRAIL [53], another extension of GRAIL,
was conceived exactly for learning interrelated goals and could
be hybridized with C-GRAIL. Continuous spaces could be
faced through the segmentation of relevant areas based on
dissimilarity thresholds, as previously done in [57].

Notwithstanding these possible improvements, C-GRAIL
represents an advancement with respect to previous systems
for open-ended learning as it integrates for the first time two
critical features needed for fully autonomous learning, namely,
the capacity to actively consider contextual features only when
they are relevant for a specific pursued goal, and the capacity
to adapt to new relevant contexts through TL.

APPENDIX

This Appendix provides details not included in
Section III-B.

Visual Input and Change Recognition: The visual input is
an 80 × 60 binary (black and white) image resulting from
the pixel-by-pixel subtraction of two consecutive frames pro-
vided by the camera of the robot. If there is at least one pixel
activated a change has occurred, the map is normalized (norm
equal to 1) and associated to a unit in the goal selector. Arms
and scoops are set to blue color: when blue is present in one
of the two consecutive images, we exclude change detection
in correspondence to such pixels.

Contextual Features and Competence Threshold: Contextual
features f φ are encoded in a binary vector stating the presence
(1) or absence (0) of each of the possible nine obstacles. New
contextual features are added to goal-specific relevant contex-
tual features vector rcf g if a failure occurs and the current
competence on goal g is above a competence_threshold (0.4).

Goal Selection and Value Assignment: The probability
p(g|φg) of g to be selected given the goal-specific context
φg is determined by a softmax selection rule

p(g|φg) =
exp

(
Q(g|φg)

τ

)

∑n
i=0 exp

(
Q(n|φn)

τ

) (8)

where Q(g|φg) is the value of g given φg, n and φn are all
the currently known goals and their respective perceived rel-
evant contexts, and τ is the softmax temperature set to 0.01.

Q-values are updated through an EMA of the competence
improvement intrinsic reinforcements �Cg

φg , with a smoothing
factor γ set to 0.3

Qt+1(g|φg) = Qt
(
g|φg)+ γ

(
�Cg

φg − Qt
(
g|φg)

)
. (9)

Intrinsic Motivations: CB-IM signal �C is calculated on the
basis of a predictor evaluating the competence of the robot
to achieve g given φg. In particular, �Cg

φg at time t is the
difference between two averages of competence predictions
(CP), each one covering a period PT of 20 attempts to g in φg

�Cg
φg =

∑t
i=t−(PT−1) |CPi|

PT
−

∑t−PT
i=t−(2PT−1) |CPi|

PT
. (10)

Before covering the entire period (PTx2), we divide the current
collection in two groups.

Expert Selector: Given a goal and a context, a softmax
selection rule (8) with temperature set to 0.05 is used by the
Expert Selector to determine the expert controlling the robot,
based on the values updated through an EMA [(9), with a
smoothing factor set to 0.3] of the matching signal generated
for achieving the selected goal (1 for success, 0 otherwise).

Experts: The selected expert receives as input the angles of
the four actuated joints of the arm encoded through Gaussian
radial basis functions (RBF) with centers on the equally dis-
tributed vertexes of a 4-dimensional grid having 5 units per
dimension

yi = e
−∑

d

(
(cd−cid)2

2σ2
d

)

(11)

where yi is the activation of unit i, cd is the input value of
dimension d, cid is the preferred value of unit i with respect
to dimension d, and σ 2

d is the width of the Gaussian along
dimension d (widths are parameterized so that when an input
is equidistant, along a dimension, to two contiguous units, the
activation of both the units is 0.5). The output of the critic
component (V) is a linear combination of the weighted sum
of the input units

V =
N∑

i

yiui + bV (12)

where ui is the weight projecting from input unit i and bV is
the bias. The four outputs of the actor are determined by a
logistic transfer function

oj = �

(

bj +
N∑

i

ujiyi

)

�(x) = 1

1+ e−x
(13)

where bj is the bias of output unit j, N is the number of input
units, yi is the activation of input unit i, and uji is the weight
linking unit i to unit j. Motor commands on

j are generated by
adding noise to the activation of the relative output oj. Since
the desired positions of the joints are modified progressively,
the noise (n) added to the output of the actor is generated
with a normal Gaussian distribution with average 0 and stan-
dard deviation (sd) 2.0, and passed through an EMA with a
smoothing factor set to 0.08. Moreover, to manage the explo-
ration/exploitation problem, we implemented an algorithm that
lets the system autonomously regulate n. The sd of each expert
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is dependent on a “noise-decrease parameter” (d) determined
by an EMA (with smoothing factor set to 0.0005) of the suc-
cess of the expert in achieving the associated goal-context
couple (1 for success, 0 otherwise): the higher the compe-
tence, the lower the noise. The sd of the selected expert e at
trial k (sde

k) is updated as follows:

sde
k = sd(1− d). (14)

The actual motor commands are then generated as follows:

on
j = oj + n (15)

where the resulting commands are limited in [0; 1] and
then remapped into a movement range specific for each
joint determining the variation in their position. Experts are
trained through the standard TD reinforcement learning algo-
rithm [26], with a discount factor set to 0.99 and a positive
reinforcement of 1 for goal achievement, 0 otherwise. To speed
up the exploration process, we introduced negative rewards for
hitting obstacles (−1) and when trials end without collisions
(−0.5). The critic learning rate is set to 0.02, the one of the
actor to 0.4.

Transfer Learning: The learning threshold to activate trans-
fer learning is set to 0.4; the transfer threshold for the teaching
expert is set to 0.7; the transfer probability is set to 0.5. During
transfer learning, both the “teaching expert” (T_exp) and the
“learning expert” (L_exp) receive the current actuated joints
as input. The robot is controlled by the actor of T_exp and
only the weights of L_exp are updated using the output of the
actor and the critic of T_exp as “teaching input.”
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