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Abstract—Constructing Sustainable Smart Water Supply systems are facing serious challenges all around the world with the fast

expansion of modern cities. Water quality is influencing our life ubiquitously and prioritizing all the urban management. Traditional

urban water quality control mostly focused on routine tests of quality indicators, which include physical, chemical, and biological

groups. However, the inevitable delay for biological indicators has increased the health risk and leads to accidents such as massive

infections in many big cities. In this paper, we first analyze the problem, technical challenges, and research questions. Then, we

provide a possible solution by building a risk analysis framework for the urban water supply system. It takes indicator data we collected

from industrial processes to perceive water quality changes, and further for risk detection. In order to provide explainable results, we

propose an Adaptive Frequency Analysis (Adp-FA) method to resolve the data using indicators’ frequency domain information for their

inner relationships and individual prediction. We also investigate the scalability properties of this method from indicator, geography, and

time domains. For the application, we select industrial quality data sets collected from a Norwegian project in four different urban water

supply systems, as Oslo, Bergen, Strømmen, and A
�
lesund. We employ the proposed method to test spectrogram, prediction accuracy,

and time consumption, comparing with classical Artificial Neural Network and Random Forest methods. The results show our method

better perform in most of the aspects. It is feasible to support industrial water quality risk early warnings and further decision support.

Index Terms—Sustainable water supply, water quality control, data perception, risk evaluation, frequency analysis, scalability
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1 INTRODUCTION

DURING the latest years of 21st century, two important
phenomena have been emerging: urbanization and

information technologies. The United Nations (UN) Depart-
ment of Economic and Social Affairs (DESA) reports that for
the first time ever, the majority of the world’s population lives
in cities, and this proportion continues to grow with projec-
tions of 68 percent by 2050 [1]. Urban water supply systems
are the most critical infrastructure all over the world. A Smart
Water Supply system that integrates sensors, controllers, cloud
computing and data technologies, are essential for the devel-
opment of sustainable smart cities in the future. It is aiming to
provide safe, stable and sufficient water for the increasing
requirements in many expanding cities. However, the urban
water quality is facing serious challenges from industrial,
agriculture and social pollution.

To emphasize the importance of water safety in
urban supply is nowadays a truism. In 2015, the United
Nations Development Programme published the Sustain-
able Development Goals (SDGs), including Clean Water

and Sanitation as Goal 6 [2]. The dwindling supplies of safe
drinking water is a major problem impacting every conti-
nent, around 2.1 billion people [3]. The concerns of the
modern society regarding this issue are reflected in numer-
ous legislative initiatives in this field, such as the European
Union Water Framework Directive [4], United States Clean
Water Act [5]. The prevalent water supply process can be
divided into 3 sections, including water source manage-
ment, treatment, and distribution.

Traditional water quality control is taken after water treat-
ment. But the current water sources are mainly groundwater
and surface water. They are significantly prone to chemical
and microbial contamination. The quality control after the
water treatment apparently delays the risk detection and
reduces the response time to take preventive measures. In
Norway, the new national standard for water quality in the
source area is in progress [6], [7].

Water quality refers to physical, chemical, and biological
characteristics as indicators. Among the water quality indica-
tors, biological indicators have amore direct impact over peo-
ple’s health. Most of the national standards are made on
biological indicator levels. Typical indicators include coli-
form, escherichia coli (Ecoli), intestinal enterococci (Int), clos-
tridium perfringens (ClPerf), etc. Further treatment actions
aremade according to the test results [8]. Coliform itself is not
usually causing serious illness, but their presence is a signal to
indicate other active pathogenic organisms presentation.
Some special types of Ecoli are the reason for water poisoning.
Int is more dangerous to cause urinary tract infections, bacte-
rial endocarditis, diverticulitis, and meningitis. The tests of
biological indicators are primarily based on the bacterial
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culture in the laboratory. This process can take up to 24-
48 hours. Compare to the effectual time on the human body,
the danger is much higher than other indicators. In Norway,
the giardia outbreak in Bergen 2004 affected more than 2500
people including young children due to the bacteria test delay
results. Therefore, we have a severe requirement for early risk
detection in smartwater supply systems.

There have been some trial work for water quality control
based on data. In 2018, Hounslow [9] interpreted multiple
water quality indicators. In 2015, Yagur-Kroll et al. [10]
showed a group of general bacterial sensor cells for water
quality monitoring. There is some research work to use data
for water quality prediction. Holger et al. [11] designed
an Artificial neural network to predict salinity level for an
Australian river named Murray. Based on the data collected
at Astane station in Sefidrood River, Iran, Orouji and his col-
leagues designed a series of models as ANFIS, GA and Shuf-
fled FLA to predict water quality chemical indicators
(sodium, potassium,magnesium, etc) in [12], [13], [14]. Chang
et al. [15] proposed a systematic analysis framework to predict
NH3-H levels for Dahan River in Taiwan, China. However,
their work is generally on individual quality indicator and
ignored the inner relationship between them.

Today the advanced ubiquitous sensing technologies cut
across many areas of modern research, industry and daily
life [16]. They offer the ability to detect, transmit and mea-
sure more environmental indicators. A sustainable smart
water supply system adopts various sensors in order to
manage resources and monitor water quality efficiently. In
this process, data becomes an important tool to improve our
understanding of existing systems. By observing data itself,
through the appropriate methods, we can perceive the
changes in our water supply system. In practice, we applied
many different sensors in the water source areas, including
multiple sensors for pH, temperature, conductivity, etc. The
massive data collected by those low-cost sensors plus the
recent data analysis technologies, help us greatly improve
the water quality control process.

At present, zettabytes of data are collected by these numer-
ous sensors [17], [18]. At the same time, stronger data analysis
tools have been developed. Water quality indicators are typi-
cal spatiotemporal variables. The analysis can be divided into
correlation analysis and numerical prediction analysis. Early
works with correlation analysis include Hardoon et al. [19]
used Kernel Correlation Analysis method for web page
images and associated texts. For multiple variables, Principal
component analysis (PCA) is often the first choice. Jolliffe
et al. [20] reviewed classical PCA and newly developedmeth-
ods such as Robust PCA, Adaptive PCA, etc. Luo et al. [21]
applied tensor model in correlation analysis for gait recogni-
tion. But they did not consider the correlations in the time
domain. As for spatiotemporal data analysis, most of the
recent work is facing very huge data sets. For example,
Gudmundsson et al. [22] surveyed the player’s trajectories in
team-sports with respect to behavior and prediction. Lecun
et al. [23] proposed the pioneer concept for Deep Learning to
deal with spatiotemporal data. Liu et al. [24] analyzed 3D
human actions with modern LSTMmethod. Laptev et al. [25]
detects anomalies in the industrial platform data. However,
their work has to rely on large training sets, which we cannot
provide currently in water supply systems. In addition, the

explanation with those methods cannot support the require-
ments for industrial use.

In this paper, we introduce our preliminary experience in
Norway. First, we analyze the problem, challenges and
research questions. Second, based on water quality data col-
lected fromwater supply systems, we propose a framework for
water quality analysis with data perception. Third, we provide
an adaptive frequency analysis method for risk detection and
prediction. Thismethod is scalable inmultiple domains, includ-
ingwater quality indicators, geography and time. Furthermore,
by application, we select industrial quality data sets collected
from a national project in 4 differentNorwegian citywater sup-
ply systems, as Oslo, Bergen, Strømmen and A

�
lesund. We

show our preliminary findings of the frequency property rela-
tionship betweenwater quality indicators, as well as risk detec-
tion, prediction and evaluation analysis. The results are
compared also with classical Artifical Neural Network and
RandomForest in their prediction accuracy and time consump-
tion. In addition, scalability in time domain is also analyzed.

There are several visiblemotivations for this research. First,
it takes the advantage of the modern data analysis technolo-
gies to solve awater quality control problem in future Sustain-
able Smart Water Supply systems, especially in transferring the
knowledge across different indicator, geography and time
domains. Second, it copes with the practical water source
monitoring process, applies the data directly collected from
the industrial process. This avoids questions such as labora-
tory data reliability and industrial applicability. This is also
valuable to the current water supply in urban infrastructure
systems. Third, it builds the connection between easily acces-
sible physical and chemical indicators with biological indica-
tors that are critical to water quality risk. Fourth, this work
provides the support for further reasoning of decision-making
process and analysis over the pollution from industrial and
residential activities in the correspondingwater source areas.

2 PROBLEM ANALYSIS

2.1 System Description

Water sourcemanagement is to control the origins of drinking
water. In order to improve the water quality for the end users,
the control in thewater source is naturally a critical step.How-
ever, this is often neglected by most water supply systems
because of geographical inaccessibility, costly tests or unpro-
fessional operators. The Norwegian standard process for
water quality control is to take samples from the water source
area twice or four times a month from the several inflow
points in the area. After, the samples have to be tested in the
lab for all of the water quality indicators. In this work, we col-
lected the data from 4 different cities fromNorway, generally
from 2007 to 2015. Their locations are shown in Fig. 1.

The water source from Oslo is Maridalsvannet, which is
the biggest lake in this municipality. The water from the
lake will be sent to the Oset Water Treatment plant (WTP)
in the north of Oslo. The primary inflows are Skjærsjøelva
and Dausjøelva. The lake has an area of 3.83 km2 and 149
meters in height. The water serves as the main drinking
water source locally and covers approximate 90 percent of
Oslo’s water consumption. Weekly raw-water samples are
taken from the lake and analyzed for physical-chemical and
fecal indicator organisms.
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The water source of Bergen is coming from Svartediket
lake in the east of Bergen. It is an artificial lake in
Hordaland. It covers 0.5 km2 and 75 m in height. Drinking
water is collected at a 28 m depth in Svartediket. After
treatment, the clean drinking water is stored in a 15,000 m3

large water pool inside the mountain. It covers the drinking
water requirement for over 70 percent population in Bergen.

Strømmen is taking the freshwater from all the river net-
works around Nitelva. The biggest lake nearby is Øyeren in
the Glomma River watershed. It is located in the southeast
of Lillestrøm. The water is transferred to the Nedre Romer-
ike Avløpsselskap/Vannverk (NRV) treatment plant. All
the water source area takes the surface of more than
121 km2, with an average height of 101 m. The rivers around
are 0.5 m to 71 m high.

A
�
lesund is a city with 47,000 citizens. It lies on the west

coast of Norway. The drinking water for the dwellers mainly
comes from Brusdalsvatnet lake. This lake sits on Uksenya in
the community of A

�
lesund and Skodje in Møre og Romsdal

province. It takes the inflow from Spjelkavikelva river. The
water is pumped from the lake to a warehouse inside
Emblemsfjellet. It has an area of 7.52 km2 and 26 m above sea
level. The lake itself has a volume of 300millionm3.

These four cities have different water source types as
lakes or rivers. The general impact factors for water quality
are not the same. For example, Maridalsvannet lake is sur-
rounded with some industrial factories and residents, Svar-
tediket lake is known to have more active bacteria, Øyeren
area covers a large surface and easily affected by rainstorms,
and Brusdalsvatnet lake is rural and better preserved. This
brings diverse difficulties for water quality monitoring, risk
detection and prediction.

Norway has adopted stringent drinking water quality
guidelines in accordance with the European Water Directive
Framework [6]. In which, water quality indicators can be
divided into 4 groups, including,

a. Physical data. Drinking water has to verify physical
attributes inwater quality for thewhole supply process.

b. Chemical data. Chemical indicators are the traditional
representation ofwater quality. Theyprovide informa-
tion onwhat is impacting on the system aswell.

c. Biological data. Biological indicators are direct meas-
ures of the health of the fauna and flora in the water
supply.

d. Environmental data. Environment data can be a lead-
ing impact factor for water quality in someplaces.

2.2 Challenges & Questions

In order to evaluate the risk from water quality change and
analyze the mechanism behind the data resources, we are
facing several challenges:

a. Data Sparsity: the pool of available data is often very
large. In practice, for water quality indicator sam-
ples, the overlaps between two conditions (such as
the same time, same location) are often very small or
none. This is based on two main reasons. First, the
operators who take the samples do not follow the
standard procedure (incomplete indicator collec-
tions, and data loss). Second, data standard has been
changed over last years (indicators have been added
or removed). These make the data set sparse.

b. Data Synchronization: current sensing technologies
can support real-time data collection over most of
the physical and chemical indicators for water qual-
ity. However, for biological indicators, which are the
key factors for health, the tests usually take much
longer time, from several hours to several days. This
makes the data set difficult to synchronize.

c. Risk Modeling: the final objective of drinking water
quality control is to improve health. Some specific
biological indicators as bacteria can cause significant
disease outbreaks, such as Ecoli. When they broad-
cast in the drinking water distribution system, the
consequences can be irreversible. The relationship
between those biological indicators and drinking
water risk needs a new model.

From our trial work in the smart water supply system in
Norway, we try to provide a solution to improve water
services, starting from water source management and con-
trol. Here we generate some research questions.

� Risk Detection and Prediction. Based on the data
analysis, can we predict the risk?

� Domain Explanation. Based on the data analysis
result, can we provide any domain explanation?

� Evaluation. Based on the prediction results, how can
we evaluate different methods?

3 APPROACH FORMULATION

3.1 Framework

In this paper, we propose a framework to analyze and pre-
dict water quality risk as shown in Fig. 2. In this framework,
the whole process can be divided into five parts.

All the raw data is collected from the sensor networks and
laboratory tests of water source areas. It covers all the relevant
water quality indicators. Data pre-processing usually involves
transforming raw data into an analytical format. Cleaning,
Synchronization, and Normalization. It has to take into
account the raw data which are out-of-range, missing, multi-
resolution and with different units. Here is worth to note that
the clustering and declustering processes are optional. This is

Fig. 1. Urban water sources in Norway.

WU ET AL.: QUALITY RISK ANALYSIS FOR SUSTAINABLE SMART WATER SUPPLY USING DATA PERCEPTION 379



designed to ensure the data can be organized from different
perspectives and simple to find hidden patterns. For example,
cluster and decluster can consider the time-sensitive features
inwater quality, as a different time scale, such as days, weeks,
months, seasons or years.

After the data is prepared, we need to find the key factors
from multiple dimensions of indicators by primary correla-
tions analysis, probability distribution and generate training
and testingdata sets. The eventual aimof thiswork is to predict
water quality risk. In order to find the risk model, we have
investigated with researchers fromwater quality control. Here
the risk evaluation model is further divided into three parts.
Cycle detection is to find the hidden cycle for indicator changes
in the time domain. Peak value calculation is used to track and
evaluate the levels of multiple biological bacteria outbreak.
Parameter correction is based on training set adaptation.

Furthermore, we have to decluster the results and predict
accurate bacteria indicators, both in tendency and values.
These values can map to different risk modes according to
practical water source management standards in different
countries and regions. Future decision support in water
treatment plants can adjust to both prediction and risk
mode. Also, in practice, the models need to be evolved with
both domain knowledge data set growing.

3.2 Domain Knowledge Analysis

The Norwegian government always gives the highest priority
to the drinking water supply for people. We are working as a
group for water quality control in the water sources. This
team contains the water experts, sampling operators, water
treatment plant managers, policy makers, and data research-
ers. In this project, in order to improve the explanation ability

of the results, we try to interpret from the domain knowledge
ofwater quality.

First, we can check an example as the biological indica-
tors from raw data in Oslo, as shown in Fig. 3 to see whether
we can predict the data by visualization. As we listed two
different bacteria Coliform, Ecoli in this picture, we find it is
hardly possible for this task.

Next, we consider the water quality evaluation and risk
detection, currently there are several key factors need to be
specified:

� Cycle. Cycle detection for water quality is to find the
periodic characters for indicator changes in the time
domain. Detected cycles in water quality can be ben-
eficial to find predict biological indicators, analyze
leading indicators and take preventive measures.

� Peak Values. Forwater quality biological indicators, the
peak values imply infection outbreaks. It is sensitive to
quality evaluation. The peak values prediction is critical
to water quality classification, development of stand-
ards and initialization of earlywarningmechanism.

� Scalability. Sustainable computing requires compu-
tational scalability. In water quality control, we need
to deal with generally the scalability of indicators in
the time domain.

3.3 Basic Modeling

The original water quality indicators are changing in non-
linear and disordered way. Since we have eliminated the
processing with ordinary black box methods, we have to
seek for regular data analysis according to their traits. We
can not deduce the cycle directly from the visual observa-
tion from the data, such as in Fig. 3. However, if we examine
the indicators as regular electronic signals, then signal fre-
quency tools can be applied to detect cycles.

We define water quality indicators as:

fiðtÞ; t ¼ t0; t1; t2; . . . ; tiT : (1)

According to the water indicator standards in different
countries or regions, i is defined as:

i ¼ 1; 2; . . . ; N:

For example, in Norway, we have typically 11 collected
water indicators. We give the corresponding mapping from

Fig. 2. System framework.

Fig. 3. Original biological indicators from Oslo.
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the water quality indicators to the model as follows. But in
practice, different cities would select a fraction of them to test
and record. Differentwater quality indicators have diversified
units. This is because of twomain reasons. First, the indicators
represent different practical features. Second, even for the
same indicator in different countries or regions, they can have
different units according to the local standards.

FORMULATION MAPPING

f1ðtÞ Temperature (� C).
f2ðtÞ Conductivity (mS/m).
f3ðtÞ Turbidity (FNU).
f4ðtÞ Color (mgPt/L).
f5ðtÞ pH.
f6ðtÞ Alkalinity (mmol/L).
f7ðtÞ Coliform (cfu/100 ml).
f8ðtÞ Ecoli (cfu/100 ml).
f9ðtÞ Int (cfu/100 ml).
f10ðtÞ ClPerf (cfu/100 ml).
f11ðtÞ Termotol coliform (cfu/100 ml).

Thus, here we get,

fiðtÞ ¼
Physical Indicators 1 � i � 4
Chemical Indicators 5 � i � 6
Biological Indicators 7 � i � 11

8<
: : (2)

3.4 Cycle Detection

Next step, we design an algorithm to analyze the spectrum
properties for all the water quality indicators in order to find
the relationships between the indicators and different cities.
Traditionalmethods forwater quality analysismostly concen-
trated on the indicator changes or for individual prediction.

To our knowledge, our method is the first trial to analyze
water quality in the frequency domain. The analysis can
help easily to find the indicator cycles and their predictions.
Our algorithm is shown in Algorithm 1.

Algorithm 1. Water Quality Frequency Domain Analysis
Algorithm

Data: FM�N�T

Result: SM�N�K

– Initialization;
– *Clustering toM

0
;

whilem < M do
– *Clustering toN

0
or T

0
;

– Normalization;
while n < N do
Adp-FFT with Fmn ! y½kmn�;
Sig k = k in maxðA½kmn�Þ;
if Sig k < T=2 then
Smn½kmn� = y½kmn�;

else
Smn = 0;

end
SmN ½km� ¼ Smn½km�ð0 < n < NÞ;

end
– Sm�N�K ;
end
– *Declustering toM;N; T ;
– SM�N�K ;

We list the symbols in this algorithm as follows:

FM�N�T Input data set with M cities, N indicators
and T recordings.

SM�N�K Output data set with M cities, N indicators
andK frequencies.

M
0
; N

0
; T

0
Clustering results.

kmn FFT results frequency for citym, indicator n.
A½kmn� FFT results amplitudes for citym, indicator n.
y½kmn� FFT results with frequencies and amplitudes

for citym, indicator n.
Sig k Significant frequency.

In order to cope with the diverse units, normalization is
an inevitable step to process the data. In this work, we trans-
form all the water quality indicators of raw data to have a
mean of zero and a standard deviation of 1. Some people
also call this z-score standardization.

For regular frequency domain analysis, people often use
the Fast Fourier Transform (FFT) method. Classical FFT
is defined as in Equation (3). In this equation, y½k� of length
T is the result of FFT for the indicator sequence x½t� of
length T .

y½k� ¼
XT�1

t¼0

e�2pj
kt
T x½t�: (3)

As we can see from this equation, the length T is an
important parameter in FFT. But in practice, different water
quality indicators are difficult to synchronize both for city
and indicator domains. In addition, the clustering step in
the Algorithm 1 can create changes for T . Thus, here we
define a function T

0
mn as adaptive parameter of T , as in

T
0
mn ¼ C � am �

XN
n¼1

bnTn

N
: (4)

In this equation, C � am is the adaptive parameter for the
clustering effect in the city domain, in which C represents
clustering scale among all the cities and am as the weight
value for each city. For the second part of the equation rep-
resent the synchronization effect between different indica-
tors. N is the number of indicator types in one city. For
example, in Oslo, we have N ¼ 10, but Bergen has N ¼ 7.
Tn is the recording length of indicator n, bn is adaptive
weight value for indicator n.

So the overall adaptive FFT (Adp-FFT) method, we
define as in the Equation (5), in which we considered the
clustering and synchronization effect in water quality indi-
cator frequency analysis.

yðkmnÞ ¼
XT 0
mn�1

t¼0

e
�2pj

kt

T
0
mnfmnðtÞ: (5)

From here we get complete spectrograms of all the indica-
tors. After, we have to find the significant frequency in order
to detect the cycles for different quality indicators. To get the
significant frequency, first, we use the following equation to
find themaximal amplitude in the frequency domain.

Akmn ¼ maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyðkmnÞreÞ2 þ ðyðkmnÞimÞ2

q
Þ: (6)
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In this Equation 6, yðkmnÞre and yðkmnÞim represent the
real and imaginary parts of yðkmnÞ in the result of Adp-FFT.
yðkmnÞ is the sequence of complex numbers.

We find the corresponding frequency of the amplitude
Akmn in the frequency domain is then the significant fre-
quency for city m, indicator n. We will provide more exam-
ples in Section 4.2.

3.5 Indicator Prediction

By getting the result of spectrograms for the indicators, our
work is not finished. We want to use these results to predict
the tendencies of the water quality, especially for biological
indicators. Algorithm 2 is designed as follows to perform
this function.

Algorithm 2.Water Quality Prediction Algorithm

Data: SM�N�K

Result: FM�N�½TþPM �
– Initialization;
whilem < M do
Pm ¼ P ;
Hm ¼ H;
while n < N do
– Sort Smn½kt� according to amplitude Amn½kt�;
– Select topHm elements in Smn½kt�;
– Smnh½kt� = Smn½kt� (0 < NH < Hm);
if 0 < tp < Pm then
– Calculate Amn½Tmn þ tp�;
– Calculate Fmn½Tmn þ tp�;
– Calculate Fmn½Tmn þ tp�;
– tp++;

else
– Fmn½tþ tp� ¼ 0;

end
– Fmn½T þ Pm�;

end
– FmN ½T þ Pm�;

end
– FMN ½T þ PM � ;

We list the additional symbols as follows:

FMN ½TþPM � Output prediction data set with M cities,
PM Prediction range.

Hm Number of harmonics.
Fmn½Tmn þ tp� Phase value for prediction at time tþ tp

in citym and indicator n.

We use adaptive strategy during the frequency transform
process as in Equation (5). In this Algorithm 2, we also
adjust our inverse transform Equation (7) as follows:

FmnðTP Þ ¼ 1

Tmn

XTP
t¼Tmn�1

e
�2pj

kt
TmnyðkmnÞ: (7)

In this equation, Tmn is defined the same as in Equation (4).
Inverse Adp-FFT is used to transform water quality indica-
tors from the frequency domain back to the time domain to
see its tendencies. The prediction result can be calculated
with the following formula. In this Equation (8), we have
Tmn � t � Tmn þ Pm.

Amn½t� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSmnh½kmn�reÞ2 þ ðSmnh½kmn�imÞ2

q

Fmn½t� ¼ tg�1 Smnh½kmn�im
Smnh½kmn�re

Fmn½t� ¼ Amn½t� � cos ð2pk� tþFÞ:

(8)

As for our experience, the prediction range Pm, harmony
parameter Hm can both affect the accuracy. In practice, we
can set up a threshold for accuracy in order to find the opti-
mal solution of Pm andHm values.

3.6 Scalability

Scalability is an important property to evaluate the algorithms.
For this water quality prediction issue, we consider the scal-
ability of ourmethod in three data domains, indicator, geogra-
phy, and time.

3.6.1 Indicator Domain Scaling

The number of water quality indicators can vary from one
to several hundred, depending on the standards in different
countries or regions. Even, as for people’s requirement for
higher quality water, there are gradually new types of indi-
cators keep appearing. Traditional water quality research
mostly concentrated on individual indicator observation or
prediction. This is partly because it is highly challenging to
analyze the complex synergies between the physical, chemi-
cal and biological indicators.

In this method, we are trying to find the indicator rela-
tionship in the frequency domain. By visualizing the spec-
trogram of indicators, we can discover their characters in
the frequency domain, and search for their resonance effect.

In this algorithm, to scale in the indicator domain is fairly
easy by just adding the new indicator recordings into the
frequency analysis following Algorithm 1 and find the sig-
nificant frequency with Equation (6).

3.6.2 Geography Domain Scaling

Geography location is one of the most important factors to
affect the water quality, especially for the urban surface
water source. Geographical domain scaling is essential for
policy making, regional water source quality evaluations,
pollution analysis, etc. When we consider the geography
domain scaling in practice, there are several aspects can be
used for classification, such as:

� Water source type (surface, river, ground, frozen,
desalination, etc);

� Water source description (area, depth, discharge,
flow velocity, etc);

� Locations (longitude, latitude, height, etc);
� Climate (tropical, dry, mild mid-latitude, cold mid-

latitude, polar, etc);
� Main pollution type (organic, inorganic, macroscopic

contaminants, etc);
� Residential states (types, population, main activities,

etc);
� Agriculture states (planting, farming, fishery, etc);
� Industrial states (factory types, main discharge, etc).
The geography domain scaling can be executed from the

perspectives in the above description. In this study, we use
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a weighted arithmetic mean function for geography scaling.
This means the same water quality indicators in city, region
or country can be clustered, as shown

Fm
0
n½t� ¼

Pm
0

m¼1 vm
0
nfmnðtÞPm

0

m¼1 vm
0
n

: (9)

In this equation, vm
0
n is the weight of water quality indi-

cator n for the new geographical indicator Fm
0
n. By adjust-

ing m
0
, we can control the scaling process of the geography

domain. Changing different fmnðtÞ can be customized to
observe the data from different geographical perspectives.

3.6.3 Time Domain Scaling

Water quality prediction is beneficial for the whole process
of water supply. It provides early warnings and supports
early preventive measures. Time domain scaling can con-
tribute to prolonging the warning time. At the same time, it
can be helpful to analyze water quality changes in the
source area for longer periods (e.g., from second records to
year records). In this study, one of the most important rea-
sons we choose frequency domain analysis for water quality
data processing is to cope with the time domain scaling
issues.

The Algorithm 1 we use for cycle detection has applied
our Adp-FFT (Equation (5)) to analyze frequency domain.
This method has an inherent time scaling property. So, we
can conclude time scaling property for adp-FFT as in the fol-
lowing Equation (10), here we omit the proof process.

if Adp� FFTðfmnðtÞÞ ! yðkmnÞ
then Adp� FFTðfmnð�tÞÞ ! yð�kmnÞ ¼ 1

j� j yð
kmn

�
Þ:

(10)

By virtue of this good property, we can keep the proper-
ties we analyzed in the whole time domain. In this method,
we should have 1 < � < Tmn. Because, in practice, on one
side, we can not analyze the frequency properties in the
smaller time domain that we don’t have supported data. On
the other side, to group the whole data as one has lost the
meaning of analysis. We are going to give more examples of
time scaling in Section 4.3.

3.7 Risk Modeling

In the water supply industry, most of the water quality
monitoring and control are taken in the treatment plant for
easy access reasons. Most countries or regions in the world
have made the water quality standards according to this
step.

In this paper, we propose the data perception approach
for water quality risk early detection and prediction in the
water source area. Among all the water quality indicators,
biological indicators are directly related to people’s health.
In the drinking water supply, we concentrate on most the
biological indicator changes, especially for their peak val-
ues. Peak values normally represent environment alter. This
could be a sudden change from weather, industrial or agri-
cultural activities. This is an important alert for water source

protection. The peak values of biological indicators require
a special process in the treatment plants accordingly.

According to the present published version in [7], we
define the risk of water quality with peak values as follows:

RiðtÞ ¼
fiðtÞ f

0
iðtÞ ¼ 0 && f

0
iðt� 1Þ > 0

fiðtÞ f
0
iðtÞ ¼ 0 && f

0
iðtþ 1Þ < 0

fiðtÞ f
0
iðtÞ 6¼ 0 && fiðtÞ ¼ maxðfiÞ

0 Others

8>><
>>:

: (11)

In this definition, fiðtÞ is a biological indicator, we choose
the peak value based on its first order derivative. If there is
no 0 derivative (data set is too small), we choose the max
value of the sequence.

4 APPLICATION

The application of this approach is based on our water qual-
ity project in Norway. In this project, we are working closely
with the people coming from the whole water supply pro-
cess to improve water quality by early warnings. In this
team, there are water quality experts, source sampling oper-
ators, treatment plant managers, policy makers, and data
researchers. In this section, we describe this application and
provide our preliminary results with analysis.

4.1 Data Collection & Description

The data we collected for this application is from several
industrial drinking water supply systems in Norway.

For geography domain, it includes 4 Norwegian cities, Oslo,
Bergen, Strømmen, andA

�
lesund, aswedepicted in Section 2.1.

For indicator domain, constrained by the synchronization of
different cities, we select meaningful indicators as physical:
conductivity, turbidity, and color, chemical: pH, and biologi-
cal: Coliform, Ecoli, and Int.

For time domain, it varies in different cities. We got the
data as Oslo (2009.01 - 2015.12), Bergen (2007.01 - 2015.12),
Strømmen (2008.01 - 2014.12), and A

�
lesund (2005.01 to

2015.12).
However, the data qualities are quite uneven. In practice,

some operators in the lab did not record all the sample
results correctly and led to massive missing values. For
example, the first issue is the time synchronization between
different cities is difficult. The data from Oslo, Bergen and
A
�
lesund was taken once a week, but Strømmen was once

every two weeks. The second issue is missing values. Some
of the physical and chemical indicators from A

�
lesund were

only recorded 25 times for 11 years; alkalinities all equal to
zero; values for Ecoli are over 95 percent zero. In Bergen,
they did not record any data for Clostridium perfringen.
After discussions with domain experts, these issues can
make prediction accuracy fluctuate.

4.2 Implementation Process

We are running our application according to the framework
designed in Section 3.1.

In data pre-processing, we haveworkedwithwater quality
experts to clean the data which are errors, not meaningful and
correct the inaccurate values. We synchronized the data
according to the recordings from all the 4 cities in order to
keepmost of the useful values. The normalization process has
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been followed by our Algorithm 1. In this study, we use the
pre-processed weekly data sets to analyze related features for
Oslo, Bergen, Strømmen and A

�
lesund. In addition, we will

analyze the scalability of this question in Section 4.3.3.
In feature selection, we also synchronize collected usable

water quality indicators for analysis. As for the practical con-
straints, we selected pH, Conductivity, Turbidity, and Color
as input features. Output biological indicators are Coliform,
Ecoli, and Int. Training set and testing set have taken accord-
ing to time. For each indicator, the first 90 percent of record-
ings are used for training and the rest 10 percent are used for
testing.

The risk modeling, prediction and evaluation are based
on the models we gave in Sections 3.4, 3.5, and 3.7.

4.3 Results & Analysis

In water research, there is no well-accepted theoretical analy-
sis for the complex interactions among all the water quality
indicators. This study takes the assumption as each indicator
is independent. But different from other work to analyze each
indicator separately, here we can provide a perspective to
find the relationships between indicators by frequency analy-
sis. At the same time, we present various evaluations to show
the prediction accuracy. In this section, we also show the scal-
ability of our method can serve as a very powerful tool for
practicalwater quality earlywarning.

4.3.1 Frequency Domain Analysis

The correlation analysis is a natural way to find the relation-
ship between different water quality indicators. We have
shown our results in our previous paper [26], [27]. From
there, we found no obvious results by direct correlation
findings between indicators. Frequency domain analysis in
this study is meaningful for water quality, in both theory

and practice. In our application, we have executed spectro-
gram analysis in 4 Norwegian cities for all the indicators as
weekly values using our Algorithm 1. The results of spectro-
grams are shown in Fig. 4. Different colors represent differ-
ent indicators. The x-axes in the sub figures are frequencies,
y-axes are amplitude after Adp-FFT. We can see from this
figure, in 4 cities, there are some indicators share the same
significant frequency.

More precisely, we give significant frequencies for different
indicators in the 4 cities in Fig. 5. Different colors to represent
different cities. 7 angles show different types of indicators,
including 3 biological indicators, as output and 4 physical and
chemical indicators as input. Each spoke length gives the
value of their significant frequencywith the unit as weeks.We
can interpret this figure from the following aspects.

a. Many water quality indicators posses the periodic
properties, but not all of them. Some indicators do not

Fig. 4. Spectrogram for weekly water quality indicators.

Fig. 5. Weekly indicator significant frequency.
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have significant frequencies, or they are not meaning-
ful in the field. Here we note them as zero. There are
various reasons for them. In practice, reasons can be
data are not recorded, measures are not standardized,
etc. Our results show the Frequency Zero indicators are:
pH (Bergen, A

�
lesund), Conductivity (Oslo), Turbidity

(Oslo, Bergen, A
�
lesund), Color (Oslo), Coliform and

Int (A
�
lesund).

b. Inside one city, some quality indicators share the same
significant frequency.We are interested in this feature,
because potentially, the physical or chemical indicator
could provide early risk warning for corresponding
biological indicators, because they are much faster to
access. For example, in Bergen, Color has the same fre-
quency with Coliform, Ecoli, and Int, as 51.89 weeks.
From Fig. 5, we can see in details, Oslo can use pH for
all the three indicator predictions (50.86 weeks); Ber-
gen can take Conductivity and Color (51.89 weeks);
Strømmen can use pH or Conductivity to predict Ecoli
(50.57 weeks); A

�
lesund can take Color to predict Ecoli

(71.26weeks).
c. Among all the cities, some indicators have similar

significant frequencies (concrete value depends on
the number of recordings). Our results show that
Turbidity does not support meaningful prediction
for biological indicators in all the 4 cities from the
frequency analysis perspective. Ecoli has similar sig-
nificant frequencies in 3 cities (Oslo, Bergen and
Strømmen). Oslo and Bergen show good frequency
connections between indicators as 50.86 weeks and
51.89 weeks. This could potentially be used for dif-
ferent cities collaborative analysis and provide risk
early warning.

4.3.2 Risk Prediction

The risk in the water supply system depends highly on bio-
logical water quality indicators. The following treatment
process will regulate accordingly to the changes of them.
Based on our analysis in Section 3.2, peak values of those
indicators give important information. We compare our fre-
quency analysis methods with two classical prediction
methods, including artificial neural network (ANN) and
random forest (RF). We evaluate them from three aspects.
First one we calculate the average prediction accuracy for peak
values. Peak values were selected based on the risk model
defined in Section 3.7. Second one we apply Root Mean

Square Error (RMSE) for overall prediction accuracy. Third
one we measure the computation time as the efficiency of
these methods.

In this experiment, inputs of these methods are physical
and chemical indicators, as pH, Conductivity, Turbidity,
and Color. Their outputs are biological indicators as Coli-
form, Ecoli, and Int. We take training and testing sets split
as 90 to 10 percent regarding limited recordings.

For ANN method, we use a three-layer back propagation
(BP) network structure. Input layer as 4 nodes, 3 nodes in
the output layer, and hidden layer for 300 nodes. Hyper-
bolic tangent (tanh) activation function is chosen consider-
ing we have normalized the data sets. Batch size as Nt=20 is
based on our data size.Nt is the total number of data record-
ings in different cities. For each data set, we train them for
1000 times.

For RF method, we take into account the results from fre-
quency analysis to choose one input indicator which has the
same significant frequency as the heuristic important fea-
ture. Initially, we choose 1000 as the number of trees in the
forest, and 40 to be the random seed for pseudo-random
number generator.

For our Frequency Analysis prediction method, we apply
the method we described in Section 3.5. The parameter as
the number of harmonics is sensitive to the accuracy, we
have made the experiments and draw the chart to analyze
their relationships between different water indicators. In
this case, we chose 20 as the number of harmonics to be the
optimal solution. This part can be further improved by
more adaptive strategies.

Fig. 6 shows the prediction accuracy for 3 biological indi-
cator peak values. This is a special evaluation of water qual-
ity prediction. The x-axis is the combination of methods and
cities and y-axis is the average prediction error. Different
colors show different water quality indicators. Because the
data sets have been normalized before, so there is no unit
for these errors. We can see from here if we compare the
three methods, Frequency Analysis performs better than
the other two for lower error values. As for the comparison
of indicators, Int shows higher error values, Coliform and
Ecoli do not show clear synchronization for peak value pre-
diction errors. Between different cities, Oslo shows higher
prediction error values among all these three methods.

The general RMSE accuracy comparison is given in
Fig. 7. It shows overall accuracy for all the predicting points.
Axes are made the same meaning as Fig. 6. Because it takes

Fig. 6. Prediction accuracy for peak values. Fig. 7. Prediction accuracy for RMSE measurements.
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all the points and calculate the average error values, so in
general, it is smaller than only peak value errors. The error
values do not show a high distinction between different
methods. For the average RMSE of different methods, our
Frequency Analysis improves more than 10 percent than
ANN and RF. The comparisons between indicators and cit-
ies do not show substantial similarities in these results.

We also compare the prediction time consumption for
different methods. Here we did not test the time for each
concrete indicator. Because these methods are all applied in
the parallel platform. We have run the experiment 30 times
and calculate the average time. The results are shown in
Fig. 8. We can see ANN costs more than the other two meth-
ods. Frequency Analysis is slightly better than RF.

4.3.3 Scalability Discussion

In Section 3.6, we have discussed theoretical scalability for this
method in indicator, geography and time domains. As for we
did not collect enough information for more synchronized
indicators (indicator domain) and cities (geography domain),
in this section, we show the scalability of our method in the
time domain. As a reference, we also test our method scalabil-
ity in prediction accuracy and time consumption.

In order to test the scalability of our method, we add the
step to cluster our data in seasons. In Norway, the seasons
are generally mild. We use this scalability evaluation to find
the connections between indicator frequencies with seasons.
In this study, according to the government management
principles, we consider seasons according to the time,
defined as follows:

� Spring: February to April;
� Summer: May to July;
� Autumn: August to October;
� Winter: November to January.

Scalability is one of the most important profits we get from
this method. We have also run our whole application for time
scaling. We have solved the water quality prediction for
weekly data sets from 4 Norwegian cities in Section 4.3. In
order to evaluate the scalability of this method, we will com-
pare the season data results with weekly data sets in the sig-
nificant frequency, prediction accuracy of peak values and
RMSE, and the time consumption.We run the experiment fol-
lowing Sections 4.3.1 and 4.3.2 for FrequencyAnalysismethod
on the seasonal data sets. The results are recorded and further
divided by the corresponding value forweekly data sets.

We use radar charts to depict our scalability results.
Fig. 9 shows the scalability ratio on significant frequencies
of indicators. Water indicators are set at the 7 directions,
input indicators on the right side, output indicators on the
left side. The lengths of the vectors are the ratio values. Dif-
ferent colors represent different cities. Here we see Oslo and
Bergen show the linear scalability for all the meaningful
indicators. A

�
lesund has unified sub-linear scalability for its

meaningful indicators. As for Strømmen, Turbidity and
Color show their unique sub-linear scalability. We attribute
this exception to raw data recording errors based on domain
analysis. In general, we can say the scalability for this
method shows good linear scalability in significant fre-
quency analysis for water quality indicators.

As for the scalability in prediction accuracy, the results are
shown in Fig. 10. This radar chart shows the output indicators
accuracy in two groups, Peak values on the right side as PA,
and RMSE on the right side as RMSE. Different colors repre-
sent different cities. For seasonal data sets, since the record-
ings are much less than weekly data, so the training sets are
limited. This makes the prediction accuracy errors getting
much higher. So, in this figure, we see the ratios are in general
more than 1. They are sub-linear. From this, we can say there
is no general similarity for accuracy scalability.

The time consumption scalability results are in Table 1.
We can see with the seasonal data sets, prediction time con-
sumption is overall obviously reduced. But the reduction is
sub-linear scalability.

Fig. 8. Time consumption for prediction.

Fig. 9. Significant frequency scalability.

Fig. 10. Accuracy scalability for frequency analysis.
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4.3.4 Limitation & Insight Analysis

Limitations of the frequency analysis method can be found
in the following aspects:

� This method is difficult to use for the data sets which
do not have significant frequency effects. Some water
indicators in our urban supply system do not have
the meaningful frequencies, the predictions for those
have shown high accuracy errors.

� This method analyzes the relationship between dif-
ferent indicators on their frequencies. Every indica-
tor is considered to be independent, this results in
higher level complex relations between indicators
are ignored.

� The parameters in the prediction, such as the num-
ber of harmonics need time to adjust, this extra step
can take longer time. We are also looking for new
strategies to fix this.

This frequency analysis method for water quality predic-
tion can also bring many new visions for urban water sup-
ply systems. We discussed with the domain experts, the
insight can be found from several perspectives:

� This work can provide suggestions for IoT integration
sensor deployments in water supply systems. For
example, we found Color has a strong connectionwith
the biological indicators, so we suggest to put more
real-time color sensors all through the water supply
process in order to detect the risk.

� Compare with most of the black box algorithms, this
method can provide explainable relationship analysis
between indicators on their frequencies.

� This method can also provide a method to evaluate
data quality. Industrial data collections are usually
with noise. This method can find obviously inaccurate
points by abnormal frequency detection. For example,
the seasonal data in the Turbidity of Strømmen is
beyond scalability values, we are suspicious for the
quality in data collection.

� Urban systems can also be comparedwith thismethod,
so it provides a collaborative analysis between differ-
ent cities for the nationalmanagement level.

5 CONCLUSION

Water quality is a very critical issue in modern urban life all
around the world, especially for Smart Water Supply system
development. Traditional monitoring and risk control meth-
ods are difficult to detect bacteria broadcast on time and
provide efficient decision support. In this paper, we pro-
pose an approach for water quality risk early warning using
data perception. With the application among four different

cities in Norway, we have proved the feasibility, accuracy,
and efficiency of our approach. The preliminary results
evaluated by domain experts are very promising. This work
is beneficial in generally three aspects:

� It provides an early warning mechanism from the
water source areas using cost-less data analysis
techniques. This prolongs the preventive measures
response time, and support more decision options in
the latter steps of water supply.

� This approach integrates indicator, geography and
time domains. It provides a new frequency domain
analysis perspective to find the relationship between
different indicators and their predictions. At the same
time, it embraces scalability for these three domains.

� This work is applied to real industrial water supply
systems from 4 different Norwegian cities.
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