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Abstract—Edge computing has become an alternative low-latency provision of cloud computing thanks to its close-proximity to the
users, and the geo-distribution nature of edge servers enables the utilization green energy from the environment on-site. To pursue the
goal of low-carbon edge computing, it is desirable to minimize the operational expenditure by scheduling the computing resource and
green energy according to the spatially and temporally varying user demands. In this article, inspired by the successful application of
deep reinforcement learning (DRL) in diverse domains, we propose a DRL-based edge computing management strategy which
continuously explores the states and adaptively makes decisions on service management and energy scheduling, towards long-term
cost minimization. Different from model-based solutions, our proposal is a model-free method, without any assumption on statistical
knowledge as a priori, and therefore is practical in implementation. To speedup the agent training procedure, we further design a
prioritized replay memory by utilizing the model-based solution as a guideline to set the transition priority. Extensive experiment results
based on real-world traces validate that our proposed DRL-based strategy can make considerably progress compared to the one-shot
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greedy strategy, and it can learn the system dynamically to manage the edge computing services at runtime.

Index Terms—Low-carbon edge computing, deep reinforcement learning, service management

1 INTRODUCTION

ITH the exponential growth of computing demands, it
Wis increasingly difficult for traditional cloud comput-
ing to meet the requirements of various latency-sensitive
applications (e.g., mobile applications, Internet-of-Things,
connected and autonomous vehicles). Edge computing has
been becoming an attractive low-latency computing para-
digm by pushing services to the edge servers within the
user proximity, and is promising in migrating the heavy
burden from both the cloud computing platform and the
backbone networks. However, as computing demand
grows, so does the electricity consumption and the emission
of greenhouse gas. Low carbon cloud computing has been
proposed to limit the carbon emissions of cloud by many
studies [1], [2]. For example, Canada’s Greenstar Network
[1] connects cloud computing resources directly to wind
turbines or solar power generators, using green energy to
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reduce carbon emissions. [3] and [4] study the grid power
market records and propose a computing model that
directly connects cloud computing resources and green
energy generator to reuse the wasted energy during over-
supply and transmission congestion.

Compared with the cloud, edge computing shows great
advantages in utilizing green and sustainable computing
because its geo-distributed servers can naturally harvest
various on-site green energy (e.g., wind energy, hydroelec-
tric energy, and solar energy) as the first power supply [5],
[6], [7], [8], to realize low-carbon edge computing. However,
edge computing is more complex than cloud computing,
due to its higher dynamics in a wide range of aspects, e.g.,
user mobility, user demands, resource availability. Specifi-
cally, the distribution of user demands is usually related to
time and user mobility, and the service s should also be
migrated accordingly. Green energy, featured by unpredict-
ability and geographical diversity, further exaggerates such
dynamics. To ensure energy supply stably, it is not enough
to exclusively utilize intermittent green energy, so electricity
from power grid is needed. But grid company usually
charges electricity in the form of step tariff, i.e., time-vary-
ing price, which cannot be ignored.

From the perspective of edge computing operators, it is
always desirable to reduce the operational expenditure (OPEX)
including energy cost as one of the most dominant parts, so
as to maximize revenue. Therefore, how to jointly manage
the services and schedule the energy in edge computing
toward the goal of OPEX minimization has been becoming a
hot research topic recently. For example, Yang et al. [9] pro-
pose an offline service management strategy with the
assumption that green energy cannot be stored, to minimize
short-term brown energy costs. Mao et al. [10] invent a
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Fig. 1. An example on service management and energy scheduling.

Lyapunov optimization based algorithm to reduce the ser-
vice cost of edge computing by aggressively maximizing the
utility of available green energy. Chen et al. [11] also propose
an online peer offloading strategy that maximizes the perfor-
mance efficiency while guaranteeing the long-term energy
consumption constraints on edge servers.

Although there have been many researches in this area,
we notice that most proposed methods are based on optimi-
zation models with certain assumptions or prerequisites to
manage service. Even there are some online algorithms,
they usually oversimplify the complex system or model it
inaccurately. When these model-based optimization meth-
ods are applied in practice scenarios, the achieved perfor-
mance is usually not satisfactory. Therefore, a model-free
solution is desired to intelligently manage service according
to runtime system dynamics. Fortunately, the successful
application of AlphaGo series on game control has been
raising fervent concern of academia and industry to rein-
forcement learning (RL) again [12], [13]. Especially with the
combination of deep learning, deep reinforcement learning
(DRL) and its derivative algorithms such as prioritized expe-
rience replay (PER-DQN) [14] have already been extensively
used in many control domains, e.g., robotics, autonomous
driving, and traffic light control, with no exception to the
ICT system management. For example, Huang et al. [15]
propose a deep reinforcement learning-based online offloading
(DROO) framework for offloading decisions and wireless
resource allocation with the goal of maximizing the
weighted sum computation rate. Therefore, applying RL to
design a model-free service management strategy for edge
computing is a feasible way.

However, these solvers are shown to be inefficient when
they come to complex environments. Take DROO as an
example, the solver adopts a deep neural network to learn
the integer variables, it will be time consuming with the
increment of action space. In this paper, we design a service
management strategy from the perspective of edge comput-
ing operators towards the goal of long-term cost efficiency.
To achieve this, there are a series of different spatial and
temporal dynamics that need to be addressed, as declared
before, including the user demands, green energy genera-
tion, and brown energy pricing. Usually, the service runs in
the form of container, which can be freely migrated among
different edge servers. In pursuit of cost efficiency, the

Three Example Strategies

operator shall make online decisions on both the service
management (i.e., which edge server to migrate the service)
and the energy scheduling (i.e., how much green energy
shall be utilized) in response to the real-time system envi-
ronment and potential future dynamics. This naturally fits
in the application scope of RL. Therefore, we leverage the
representative DRL algorithm deep Q-network (DQN), to
design an efficient energy-aware service management strat-
egy. We mainly make the following contributions in this

paper:

e  With the goal of minimizing the long-term OPEX, we
formulate the online service management and
energy scheduling problem into a mixed integer linear
programming (MILP) form.

e We consider the effect of current service migration
and energy scheduling actions for future energy con-
sumption and leverage the DQN technology and
design a DQN based solution to reduce migration
cost and improve green energy efficiency.

e To further accelerate the DQN agent training, we
propose a prioritized DRL (pDRL) algorithm by rede-
signing a prioritized episodic transition sampling
method according to the temporal-difference (TD)
error and utilizing the solution of the MILP problem
as a guideline to improve the efficiency of the the
actions.

e Extensive experiments are conducted to show that
our pDRL accelerates the convergence speed by
37.67% and reduces the long-term OPEX by 32.70%,
compared with state-of-the-art studies.

The reminder of this paper is organized as follows. First,
section 2 introduces the investigated problem through a toy
example and presents the formal problem formulation. Our
customized DRL algorithm is proposed in Section 3. Then,
Section 4 illustrates the experimental results and 5 discusses
some related studies. Finally, the conclusion of this paper is
provided in Section 6.

2 MOTIVATION AND PROBLEM STATEMENT

2.1 Motivation Example

To understand this problem better, let us consider a toy
example of service management and energy scheduling
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TABLE 1
Major Notations

Constants
N The set of edge node n
F The set of different type of service f
T The set of time slot ¢
Hpn The hop from the edge node m to another edge node n
Py The energy consumption of request processing for service f in a unit
Sy The energy consumption of request transmission for service f in a unit
Vi The energy consumption of service migration for service f in a unit
N}(t) The request arrival rate of service f in edge node n at time slot ¢
Gy(t) The green energy reserved in edge node n at time slot ¢

Variables
(1) Binary variables to indicate whether edge node n host service f

The total amount of green energy used for all requests in edge node n at time slot ¢
n(t The total amount of energy needed for all requests in edge node n at time slot ¢
t The total amount of reserved green energy in node n at the end of ¢

problem in two edge servers over 2 time slots, as shown in
Fig 1. In this example, we consider the total cost consisting
of three aspects: 1) processing cost: Only the edge servers
with the corresponding service can process the requests at
an energy cost of 5. We consider a simple scenario that there
is only one node to run the service while others are hiber-
nating to save energy. 2) service migration cost: Migrating
service between edge servers costs 11 units of energy in the
node hosting service; and 3) communication cost: Service
demands need to be routed to the edge server hosting ser-
vice with a cost of 1 per request per hop. Initially, service is
located at edge server a, and each server reserves a certain
amount of green energy, i.e., 25 units in edge server a, and
50 units in edge server b. And the number of hops between
server a and b is 3. The newly generated green energy
amounts are {20,25} and {5, 5} and the request arrival rates
are {1,5} and {5, 1} in server a and b, at time slots ¢; and ¢,
respectively. Assume the brown energy costs is 1 at time
slot ¢; and 2 at time slot ¢, while the green energy is free.
One of the straightforward solutions is maximizing the
utility of green energy at each time slot in a Greedy way.
That is, we move the service to server b at time slot ¢; with
50 units green energy cost and then migrate back to server a
at time slot ¢, with 50 units green energy cost, i.e., choosing
the edge servers with maximum green energy. We can see
from strategy Greedy that 30 + 33 + 3 = 66 units of energy
are needed by server b at time slot ¢; while 50 units can be
covered by local green energy. So the energy cost is (66 —
50) - 1 = 16. Similarly, the energy cost of service in server a
at time slot ¢, is 16 - 2 = 32. In this case, the Greedy strategy
produces a total energy cost of 48 as shown in Fig. 1. From
the Greedy strategy, we can see that greedily using the
green energy might need to migrate the service very often,
hence resulting in a higher energy cost. So, now we consider
leaving service in edge server a, using its available green
energy as shown in strategy Myopic. In this case, at time
slot ¢; and t;, the brown energy consumptions are (30 +
15) — 25 =20 and (30 + 3) — 25 = 8, receptively, leading to
a total cost of 20-148-2 = 36. It is noticeable that the
brown energy price at time slot t; is 2, which is relatively
higher than time slot ¢;. So, if we are smart enough, we
should save the green energy at time slot ¢; to ¢, for future

use and reduce the total energy efficiently. The Smart strat-
egy in Fig. 1 shows that total energy consumption is not
changed, yet we use only part of the green energy in server
a at t; as 17 and leave the rest to ¢, finally, the total brown
energy cost reduced to 28 -1+ 0-2 = 28.

Comparing with the results of Greedy and Myopic, we
can find that greedily selecting edge server with the highest
on-site green energy supply at each time slot will not always
find a satisfactory solution. Similarly, from Myopic and
Smart, it can be obtained that aggressively using all the
green energy in edge server might miss the opportunity to
minimize the long-term energy cost.

2.2 Problem Statement and Formulation

Based on the toy example, now let us consider a general
case of energy scheduling problem in a set of edge nodes IN
over discrete time slots T'={1,2,3,...,T}. Table 1 shows
the major notations used in this paper.

2.2.1 Service Migration and Energy Consumption

To achieve low carbon edge computing, we need to select
the proper edge node to host the service and decide the
utilized green energy amount at each time slot. This long-
term energy cost minimization over time period T can be
considered as a Markov decision process (MDP). Note that
certain demands can only be performed on the edge node
hosting the corresponding service. So we are interested in
reducing the total energy cost consisting of three parts: 1)
request transmission, 2) request processing, and 3) service
migration.

Let binary variables 27(¢) indicate whether the service f
is placed in edge node n at time slot ¢, as

1
() =14
() {07

Note that, the amount of arrival requests for different
services is variable at different time slot, which contributes
to the diversity of requests arrival rate. Besides, the newly
generated green energy also varies on time and location. At
the beginning of each ¢, we need to decide how to place the

whether service f is placed in n at time slot t,

otherwise.
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services and schedule the energy. For each type of service f,
we consider one service instance for its requests, i.e.,

> ah(t) =1. (1)

nelN

Once an edge node n is selected, all the offloaded requests
then will be transformed and processed in its corresponding
service on node n. Thatis, if z f( ) =1, edge node n is selected
to process the requests of service f with rate }_, .\ A7 and
the energy consumption of request processing Py , thus the
processing energy consumption of node n is

=D i) A

fel meN

also, the transmission energy cannot be ignored. Since
requests A (t) need to be transformed from edge node m to
n with energy consumption of request transmission Sy,
therefore, the transmission energy consumption € (t) as

S S IETCRNL

fel meN

As for the service migration cost e!(¢), it is related to the
location of service at previous time slot z7/'(t — 1) and the
“distances” of migration, i.e., network hops H,,,. When a
service migration decision is made from edge node m to n,
m,n € N, it will consume energy V; for service migration,
thus, the migration energy consumption e (¢) occurs as

=2 7

fel meN

m t - 1) Hmn . Vf (4)

Note that, if no service migration happens, the migration
cost e?(t) = 0 since the migration distance H,,, is 0.

Notice that equation (4) is nonlinear due to the products
of two binary variables, i.e., 2}(t) - 2} (t — 1). To linearise
this equation to linear, a new binary variable y(t), 0 € N is
defined as

y(t) = 2 (t) -2 (t = 1),V(m,n) € N, 5)

then the products can be equivalently replaced by the new
variables with the following two linear constraints as

0 < y}(t) < a}(t),V(m,n) € N, (6)
and since z}(t) is a two binary variable, therefore

() + 2t —1) =1 <y}t) <2f(t —1),¥(m,n) e N.  (7)

In this case, (4) can be rewritten into a linear equation as

Z Z yf(f . (€©)

" melN

with constraints (6) and (7).

2.3 Green Energy Scheduling

There is no doubt that the generation of green energy varies
from node to node and time to time. For example, solar
powered edge servers can harvest sufficient green energy in
sunny day while others may not. If there is not enough

green energy to process all requests on the selected node n,
brown energy will be utilized at a higher price. Since
aggressively using up the green energy in selected edge
node n with service may cause a higher brown energy cost
during future peak hours, we need to determine the number
of used green energy at the start of each time slot ¢ as u,, (¢).
Note that we can only schedule the green energy of selected
edge node hosting the service, i.e.,

> per Ty ()
fet " f <u,

1 )<Y aj(t)- AVneN, ©)

Fer

where A is an arbitrarily large number.

Of course, the green energy amount also cannot exceed
the available amount or the total energy required. Let e™(t)
be the total energy requirement as

e (t) =€l (t)+ e (t) +e(t),vn e N, (10)
Then we have
0 < p,(t) < Gp(t),Yn e N, (11)
and
0 < u,(t) <enl(t),¥n e N. (12)

When there are not many requests at time slot t, the green
energy of selected node for processing these requests might
not be totally used, which can be reserved and utilized
together with the new green energy to be generated at time
slott + 1 (i.e., H,(t + 1)), and the same goes for other nodes.
So, the amount of green energy in node n at time slot ¢ + 1 is

Gyt + 1) = min(G,(t) — p,(t) + Hy(t +1),G),Vn € N,

(13)

where G'** is the battery capacity of edge node n.

To reduce the electricity cost, it is reasonable to set differ-
ent priorities to use green energy and brown energy. Based
on the above definitions, the brown energy to be used can
be expressed as e, (t) — 1, (t) and the total energy cost is

O(t) =Y alt)(ealt) = ma () + B)ma (1), (14)

nelN

in which the coefficients & and g can be decided by edge
computing operators to indicate the green energy and
brown energy prices.

In our experiments, we aim at minimizing the consump-
tion of brown energy. Intuitively, we can preferentially uti-
lize green energy to replace brown energy, hence we set o
much larger than 8.

2.4 A Joint MILP Formulation

Now, we can formulate this service management and
energy scheduling problem into a mixed-integer linear pro-
gramming (MILP) and its objective is to minimize the long-
term total energy cost. By rewriting (14), this problem is for-
mulated as the following one:
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Cost-Min:
min : Y Z a(t)(en(t) — un(t) + Bt 1, (1),

st.: (1), (6), (7), (10), (9), (11), (12) and (13).

In fact, when the supply of green energy is sufficient, that
is, u,(t) is large enough, the problem can be transformed
into minimizing the consumption of green energy.

3 THE DRL-BASED EDGE COMPUTING ENERGY
SCHEDULING ALGORITHM

To cope with the computational complexity and the com-
plex network conditions, we propose a DRL-based algo-
rithm to solve the service management and energy
scheduling problem in edge computing. As a model-free
approach, it can automatically learn from transitions and
then give adequate control solutions accordingly at runtime
without any prior knowledge of the energy dynamics or
network statistics. At the very beginning, the DRL agent has
no knowledge of how to make decisions (or take action). It
receives the states of the network conditions, including ser-
vice demands, green energy amount, and service location,
and uses them as the input of the neural network to produce
corresponding decisions of service management and energy
scheduling as actions. Then, a corresponding reward can be
calculated based on how satisfactory the decisions are and
the weights of neuronal network will be updated accord-
ingly. Theoretically, if the agent experiences enough states,
it will be able to make optimal-approaching decisions. So, in
the first place, we define the three key elements of RL, i.e.,
state space S, action space A, and reward r as follows,

S: The state s € S is represented as an array composed of
the indexes of nodes which host the service, available
green energy amount, and the arrival rates of requests
processing on each edge server at time slot ¢, i.e.,

s(t) =((Xy(t),Vf € ),
(Ga(t),¥n € N),
by

(An(t), ¥ € N)), (15)
where X((t) is the index of the node to host service f
at time slot t.
A:To minimize the long-term energy cost, two decisions
should be made as

a(t) =((X;(),vf € T,

(fo(t) (t),Vf €F)) (16)
to indicate the services migration locations and
corresponding energy scheduling. Define O =
{0,3 Gx (1), 2 Gx;()(t)s s Gx;1)(t)} as the percent
of remained green energy Gx )t in node Xy(t) to be
used, where the value of O can be customized by the
network operators. The action jy,;)(t) as the green
energy usage can be decided as

mx,n(t) € O-Gx,(t),Vf €T, (17

Note that when ,qu(t)(t) > ex,y(t), we can only
need to use ey 1) (t) units green energy, remaining
the (fo(t>(t) — ex, () (t)) units for node X(t).
r: We set the reward at time slot ¢ as the negative of (14)
defined in our Cost-Min problem, i.e.,

(18)

With the three key elements, the agent can interact with
environment and evaluate the policy 7 on the basis of the
action-value function as

Q(s(t),a(t)) = r(t) + yQ(s(t + 1), m(s(t + 1)),

where Q(s(t+1),7(s(t+1))) contains the discounted
future potential reward, directing the agent with long-term
view. The optimal policy always select the action that can
obtain the maximal Q value, so the state-action value func-
tion can be updated according to transition j = (s, a,r,s’) as

(19)

Q(s,a) — Q(s,a) + a(r +ymaxQ(s', a') — Q(s, a)>. (20)

DQN applies neural network with weights 6 to fit Q val-
ues so that it can generically evaluate the state-action that
has never been seen before. Furthermore, DON introduces
experience replay memory M and target network with
weights ¢ to eliminate the correlation of experiences and
improve the stability of evaluating future reward. So mini-
batch B consisting of experiences randomly sampled from
M can be learned at once with learning rate «. Accordingly,
the loss function is expressed as

2
1) = X (1 + v Qs ) - Qo)) @D

JeB

3.1 Prioritized Replay Memory Design

The agent needs to learn sufficient transition experiences to
before it can make appropriate decisions. However, with all
possible service placement and energy scheduling deci-
sions, it is impossible to try all possible actions. Some exist-
ing work shows that potentially good actions should be
explored with a higher priority to accelerate the training
procedure [14]. It is undeniable that the use of prioritisation
in sampling transitions from experience replay does play
the role of improving training, however, the prioritized
transition with high temporal-difference (TD) error may
cause the jitter of result during long-term training. We
notice that the solution of Cost-Min problem in Section 2.2
can also be utilized as a guideline to judge the efficiency of
the actions made by the agent when it is not well trained.
We define a normalized difference error o of the instant
reward r(t) and the solution of problem Cost-Min Yy, as

1

- |YC\[ — T(t)‘ +1 ' (22)

(o2

By integrating the error o, with the Temporal-Difference (TD)
error § as

5= 1+ ymaxQ(s, ' 0) — Q(s,a;0), (23)
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we define the priority of transition j consisting of two parts:
CMe-error |o| related to the Cost-Min formulation and the
TD error § calculated by the agent, as

pj=1-0+(1—1)-86, (24)

where 7 is the controlling parameter to balance the importance
of o and é. Initially, we would like to set = 1 for the inexperi-
enced DON. Once it has gained some experiences, we attenu-
ate 7 to 0 since we can trust the well trained DQN then. The
probability of sampling transition j can be calculated as

P=t ey (25)

> ket P 7

where the d is the prioritization exponent.

Algorithm 1. Prioritized DRL-based Agent Training

1: INPUT: minibatch B, step-size 7, replay period R
Randomly initialize neuronal network Q(s,a|0) with
weights 6 and target network Q(s, a|¢’) with weights ¢

3: Initialize replay memory M

4: Receive the initial observed state s(0) and make action a(0)
5: fort = 0to T,pisode do
6:
7

N

Generate action a(t) by exploration
Interact with the environment using actions a(t), obtain
reward r(t) and new state s(¢t + 1) and store (s(¢),a(t),r
(t),s(t+1)) > Mwithp, =1

8: ift = 0mod R then

9: forj=1— Mdo )
10: Sample transition j according to P; = p—Jb
Zke‘[\' P,
11: Compute the importance-sampling weight
wy =
max;e Wi
12: Compute the TD-error §; and CM-error o
13: Update transition priority according to (22) and (24)
14: Accumulate weight-change A — A+ w;-0;- V@
(Sj-1,a5-1)
15: end for
16: Update neuronal network weights 6 < 6 + 1 - A and set
A=0
17: Copy weights to target network every 7 steps ¢ — 6
18: endif
19: end for

3.2 Agent Training Algorithm

We summarize our pDRL algorithm in Algorithm 1 with the
incorporate of the prioritized replay memory. To start the
PDRL training procedure, we first define minibatch B, step-
size 1, replay period R in line 1. Then, we randomly set the
weights of the evaluation network Q(s,alf) as 6, and the
weights of target networks Q(s, a|¢) are cloned from the eval-
uation network(see line 2). Now, we are ready to start the
agent training with initial state s(0) and obtain an action a(0),
as shown in line 4. This action a(0) is executed to get a reward
r(0) and the resulted in new state s(1). This procedure is
repeated and the new transitions (s(t),a(t),r(t), s(t + 1)) are
stored in the replay memory with an initial priority of 1 (line
7), as the newly generated transitions should always be
explored first. For every R time, we sample |B| transitions
according to their probability P; and compute the importance-
sampling weight as w; (see line 11). The priority is also

TABLE 2

Default Settings
Parameters Values
The cost of processing a request 0.2
The cost of migrating a vin between a hop 15
The cost of one request’s communication 0.1
between a hop
The weight of green energy cost in reward 1
The weight of brown energy cost in reward 1000
The number of replaced size per iteration 512
The size of prioritized replay memory 4000
The number of fully connected layers 3
The learning rate 0.0001
The discount rate 0.9

updated as p; =7-7+4 (1 — 1) -8 according to current TD-
error §; and CM-error o in line 13. After that, as shown in lines
16 and 17, the weights of the evaluation network and the target
network are also updated according to the accumulated
weight-change calculated in line 14. The above procedure iter-
ates until convergence or reaching the predefined episode
bound. Once the agent gets well trained, it shall be already to
make the right decision towards energy cost minimization
according to any real-time observation (i.e., states).

4 PERFORMANCE EVALUATION

To validate the efficiency of our prioritized DRL-based algo-
rithm, we conduct extensive simulations and report the
results in this section. The simulated environment and all
algorithms are implemented by Python 3.7. The neural net-
works involved in DRL-based algorithms are implemented
using Tensorflow 1.9 framework and the optimization prob-
lem of CM is solved using Gurobi 9.0.2. All the experiments
are conducted on a server equipped with a 1.80GHz 8-Core
Intel Core CPU i7-8550U processor. Our pDRL consists of two
networks, namely eval_net and target net, respectively. Both
eval_net and target_net have the same network structure. The
input size is the dimension of state, and the input layer is con-
nected to three fully connected layers called n_I1, n_I2, and
n_I3. For the first layers n_I1, the size is 236, and the size of
n_I2 is 118 while n_13 is 59. The activation function is relu and
the output size is the numbers of edge nodes. The parameters
of target_net will be updated by the eval_net during the agent
training. The default settings are summarized in Table 2.

4.1 Simulation Result

We consider two well-known network topologies, i.e., ARPA
Network and NSF Network, consisting of 9 and 14 edge serv-
ers, respectively. Each server is associated with an amount of
requests and green energy at each time slot. We set 5 different
types of service from real world, including Uber request, pub-
lic work request, food order request, and base station request.
As shown in Fig. 2a, these requests follow different distribu-
tion patterns. The solid line indicates the average amount of
one service request arriving in all the edge nodes, and the
shaded area is the variation range of request amount. As we
can see, different service requests have different amounts and
trends throughout the day. The green energy generation trace
is extracted from ENTSOE', including solar energy and wind

1. https:/ /transparency.entsoe.eu/dashboard /show
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Fig. 2. Different request patterns.

energy. To be practical, we set the time slots from 17 to 23 as
the peak hours and the electricity prices in this period are
tripled.

The communication cost and migration cost are set accord-
ing to the hops between any two edge servers, and different
services have different unit cost. We evaluate the performance
of traditional model-based algorithm by minimizing the
instant cost of each time slot in (14) ("Instant”), greedy algo-
rithm by choosing the node with max green energy remained
("Greedy”), DRL-based algorithm (“DRL”), Deep Reinforce-
ment Learning for Online Computation Offloading algorithm
("DROQ”), Prioritized Experience Replay DQN ("PER”),
and our prioritized DRL-based algorithm (“pDRL").

First, Figs. 3a and 4a shows the convergence trend of epi-
sode rewards obtained by our pDRL, DRL, PER, and DROO
algorithms. Taking NSF network as an example, we have
trained these neural networks with 40000 episodes. With the
increasing number of training episodes, both DRL and pDRL
eventually converge. It can be seen that our pDRL converges
much faster than other DRL, converging in the 13000th epi-
sodes. Moreover, our pDRL reaches a lower cost than that of
other DRL algorithms, as 17761 for pDRL. This is because
our pDRL prioritizes the transitions according to its reward,
and the good transitions can be learned more effectively,
leading to faster convergence and lower cost. Fig. 3a shows
the same trend on ARPA Network, validating the effective-
ness of our pDRL on different network topologies.

Decision-making time is a critical metrics, determining the
availability of an algorithm. Hence, we present the average
execution time of four algorithms on two different network
topologies. As shown in Figs. 4b and 3b, all DRL-based algo-
rithms use neural networks to make the placement decisions
and can complete decisions in a short time, i.e., DRL and our
PDRL spend 0.06ms, 0.07ms on both NSF and ARPA Network,
respectively, while PER and DROO take 0.08ms, 0.08ms on the

012345678 91011121314151617181920212223
Time slot

(d) Time-related Pattern

above two networks. The Greedy algorithm, primarily sorting
the node according to its remained green energy, is O((|I'| +
IIN|) - log]N|) of time complexity, increasing almost linearly
with the service number and edge node number. It can be seen
that the execution time on ARPA network is 0.02ms in Fig. 3b
and NSF is 0.02ms in 4b, respectively. While the Instant algo-
rithm is executed by Gurobi’s ILP solver, which solves this
problem by heuristically exploring all the solution trees to
obtain the optimal one. Consequently, its time complexity is
almost O(|N|"1), increasing exponentially with the increase of
service number or edge node number. As a result, it need
more 0.17ms when the network topology expands from 9
nodes to 14 nodes. But in DRL-based algorithms, the results
show no obvious execution time increase with the network
scale, because the execution time of neural network is only
related to its structure. Hence they can be applied to large scale
networks and provide a fast response.

Then, we show the green energy consumption and total cost
of the four algorithms. Figs. 3c and 4c show the green energy
consumptions of 24 time slots, and Figs. 3d and 4d show the
costs. In our experiments, brown energy price is tripled during
peak hours, i.e., time slots from 17 to 23, comparing to off-peak
hours, i.e., time slots from 0 to 16. When there is insufficient
green energy, Greedy and Instant algorithms myopically focus
on optimizing the on-site energy cost based on present network
state without any consideration of the future probabilities. So,
they intend to maximize the green energy utility at each off-
peak time slot as shown in Figs. 3c and 4c. When peak hour
with higher electricity price falls, there is not sufficient green
energy available and more brown energy is needed, leading to
large cost as shown in Figs. 3d and 4d. The total cost of Greedy
and Instant is 36224 and 27529 respectively. As for DRL-based
algorithms, they can learn from past experiences and evaluate
probabilities of the future electricity price changing. With this
knowledge, they decide to use fewer green energy in time slots



116 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 1, JANUARY-MARCH 2023

—25000-

—=30000-

—400001

Episode Reward
|
w
b
2
S
S

—— DRL

—— pDRL

— PERI[
DROO!12!

—45000-

—=50000-

0 2500 5000 7500 10000

Episodes

(a) Training Requests

12500 15000 17500 20000

-~ Greedy
2000] ~®- Instant
—&— DRL

—+— pDRL
—wu— PERI[IY!
DROO!12]

1500

Green Energy Consumption
s
3
3

o
S
S

0123456 7 8 91011121314151617 181920 212223
Time slot

(c) Green Energy Consumption

Fig. 3. Simulation results on ARPA network.

0 ~ 16, and reserve part of green energy for time slots 17 ~ 23
with a higher electricity price, as shown in Figs. 3c and 4c. As a
result, we can use the reserved green energy during peak hours,
and the brown energy cost of pDRL and oher DRL-based algo-
rithms are much lower than Greedy and Instant, especially in
time slots 17 ~ 22. Furthermore, compared with other DRL-
based algorithms, our pDRL has an advanced prioritized replay
memory to learn better transitions, and consequently manages
the service and schedules the energy more efficiently. The total
cost of pDRL is further reduced in Figs. 3d and 4d, compared
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with other DRL-based algorithms. So we can conclude that our
PDRL algorithm deals with the environmental dynamics and
shows its advantages under this real-world trace.

More generally, we evaluate our pDRL with 3 different
types of service request patterns, as shown in Figs. 2b, 2¢, and
2d. Similar to Fig. 2a, the solid line indicates the average
amount of service request, and the shaded area represents the
amount varying range. The request pattern in Fig. 2b follows a
uniform distribution, and each service has different upper and
lower bounds. The request pattern in Fig. 2c follows a normal

U4
DRL

pDRL
PERI1!
DROO12]

Instant
Greedy

S
1
b

Algorithm

(b) Execution Time

10000 -~ Greedy
-4~ Instant
—e— DRL

8000 _,
—»— PER1Y

6000

Cost

4000

2000

0 Mﬁ*@ﬁ%{kﬁ

01 23 456 7 8 9 1011121314151617 1819 20 21 22 23
Time slot

(d) Cost

S




GU ETAL.: SERVICE MANAGEMENT AND ENERGY SCHEDULING TOWARD LOW-CARBON EDGE COMPUTING 117

TABLE 3
Green Energy Consumptions Under Different Request Patterns

TABLE 4
Costs Under Different Request Patterns

Algorithm \ Pattern real world uniform normal time dependent
Greedy 36898 45266 48373 50245
Instant 36746 44935 48514 49305
DRL 34216 33460 41306 43687
PER[14] 32473 33999 34459 37684
DROOI15] 33188 34903 40035 44330
pDRL 35660 39010 43715 46800

Algorithm \ Pattern real world uniform normal time dependent
Greedy 36224 32644 46062 40885
Instant 27529 16208 32223 30174
DRL 25325 39068 48936 48421
PER[14] 28259 32662 52711 54460
DROOI15] 24829 46738 44402 47344
pDRL 21638 30139 44360 41784

distribution, and each service has a different mean and vari-
ance. While the number of service request in Fig. 2d varies with
time, presenting a Gaussian distribution in the time dimension,
and a certain range of random fluctuations are carried out near
the Gaussian distribution value. The performance of four algo-
rithms on the NSF network are listed in Tables 3 and 4.

Table 3 shows the total green energy consumptions of four
algorithms. We can find that the green energy consumption
of pDRL is always higher than other DRL-based algorithms.
This is because with the prioritized replay memory design,
our pDRL can learn better than DRL within the same training
episodes, and hence can find better service location and
make better energy scheduling solution. It is also noticeable
that Greedy and Instant consume more green energy than
four DRL-based algorithms. The reason is that they always
try to migrate services to the nodes with more green energy
and use as much green energy as possible in each time slot.
While frequent migration results in more energy consump-
tion, especially more brown energy cost when green energy
is insufficient, as shown in Table 4. Table 4 also shows that
the cost of pDRL always outperforms other algorithms, fol-
lowed by DRL. Since Instant myopically finds a single-time-
slot optimal solution and is second to DRL-based algorithms,
Greedy always shows the worst performance.

Averagely, our pDRL accelerates the convergence speed
by 37.67% and reduces the long-term OPEX by 32.70%, com-
pared with state-of-the-art studies.. The training acceleration
is because our pDRL prioritizes the transitions according to
its reward. Moreover, the solution of Cost-Min problem in
Section 2.2 is used as a guideline to judge the quality of the
actions. As a result, the good transitions can be learned more
effectively by the agent and the training procedure is acceler-
ated. As for the lower cost, it can be seen from Figs. 3c and 4c
that our pDRL saves the green energy from time slot 0 to 16
with lower price for future use while Greedy and Instant algo-
rithms myopically focus on optimizing the on-site energy cost
based on present network state without any consideration of
the future probabilities. For example, at time slot 7, the green
energy consumption of Greedy and Instant in ARPA network
is 1206 and 1125 respectively, while our pDRL is 563. With
such long term energy scheduling, during the peak hour with
higher electricity price, our pDRL saves sufficient green
energy and consumes less brown energy, leading to lower
cost compared with Greedy and Instant solutions.

5 RELATED WORK

5.1 A Review on Edge Energy Management
With the ever-growing computing demand, energy con-
sumption of edge computing has been becoming a notable

problem. It is important for edge servers to properly man-
age energy while scheduling resource. For example, [16]
studies how to balance mobile edge computing (MEC) system
performance and energy consumption by properly migrat-
ing services between edge servers with request delay con-
straint. Zhang et al. [17] leverage DVFS to adjust the power
consumption of the VMs, with certain service failure proba-
bility. Guo et al. [18] propose an efficient request offloading
and resource allocation strategy to reduce energy consump-
tion and application completion time on smart mobile devi-
ces. Chen et al. [19] focus on energy-efficient offloading in
MEC and propose a novel algorithm to reduce total energy
consumption. Guo et al. [20] study how to adjust the cover-
age range and allocate channel resources of base stations
with EH powering, to reduce the brown energy cost. Xiong
et al. [21] focus on a wireless energy and data transfer sup-
ported UAV system and propose a novel DRL-based
approach for long-term utility of UAV.

For energy-constrained edge devices, offloading requests
to the nearby edge servers is a feasible solution to prolong
device lifetime. Sun et al. [22] focus on the optimization of
device scheduling problem with the limitation of energy
and devise an energy-aware dynamic scheduling algorithm.
Xu et al. [23] investigate request offloading of Al applica-
tions in MEC with the consideration of energy scheduling
and propose an energy-aware strategy. Yi et al. [24] consider
how to divide the devices into multiple edge sub-networks
where a MEC using green powered server is equipped, to
minimize the operation cost with limited green energy.
Geng et al. [25] leverage the Big. Little architecture of the
multicore based edge devices to jointly make request off-
loading and local scheduling decisions, which schedules
requests to the appropriate CPU core according to request
priority, to reduce the energy consumption while satisfying
the completion time constraints.

Leveraging energy harvesting technology is another via-
ble way to lengthen the device lifetime. For example, [26]
study the trade-off between request latency and energy con-
sumption in MEC, and propose different request scheduling
methods. However, most of the existing solutions for energy
management are model-based with simplified network or
assumptions on environment dynamics, besides, they
mainly target on one-shot optimization, which may fail to
adopted well in dynamically changing real scenarios.

5.2 A Review on RL in Edge Computing

Reinforcement learning, as a model-free approach without
any prior knowledge, can automatically learn the dynamics
and make appropriate decisions accordingly at runtime.
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Many existing works leverage different RL-based algo-
rithms in edge caching. Qian et al. [27] propose a content
push and cache divide-and-conquer strategy based on RL,
where Q-learning decides which file to be cached and DQN
decides which BS to cache content, and this framework
effectively learns the content popularity and predicts the
future user demands. Wang et al. [28] propose a DQN-
based algorithm with attention-weighted federated learn-
ing, which selects the cache nodes and the replacement of
cache contents in mobile networks, with the goal of improv-
ing the cache hit rate. Zheng et al. [29] cast edge caching
problem into a MINLP problem and propose a RL-based
method to solve the problem with consideration of minimiz-
ing the total energy consumption.

Request/task offloading and resource allocation are also
widely studied in edge computing, and DRL is a particularly
effective strategy to tackle this complex controlling problem.
For example, Chen et al. [30] utilize DRL to jointly decide
energy-efficient request offloading and computing resource
allocation, which achieves a great reduction on energy con-
sumption compared with traditional algorithms. Liu et al. [31]
use DRL to solve the problem of load balancing with the consid-
eration of communication and computation requirements. With
the goal of achieving close-to-optimal performance, [32], [33]
solve complex request offloading problems based on RL under
various constraints, all of them achieved better performance
than traditional heuristic or convex optimization algorithms.
Taking [34] as an example, the authors propose a novel deep Q-
learning-based system to solve the problem of resource provi-
sioning and task scheduling with the goal of improving energy
cost efficiency and fast convergence. RL is also used to solve tra-
ditional ICT system management. Liu et al. [35] study the prob-
lem of sub-network division in the IoT and leverage DQN to
deal with the dynamic load balancing of edge servers. Kim
et al. [36] design AutoScale based on reinforcement learning
algorithm to decide running inference on the CPU or co-pro-
cessors so as to improve energy efficiency in mobile systems.

RL-based solutions have shown their great improvement
in edge computing resource management that is difficult for
traditional model-based methods. This inspires us to intro-
duce RL to the field of energy scheduling and service man-
agement in edge computing. However, taking advantage of
RL into this field is limited to the effiency of trial-and-error,
how to utilize the vast amount of samplings required for
agent training with effect in energy scheduling and service
management is our goal.

6 CONCLUSION

In this paper, we investigate the problem of service manage-
ment and energy scheduling in edge computing. To minimize
the long-term energy cost, every decision should be made care-
fully in a foresighted way by taking current network statics
and future vision into account. It is hard to use the traditional
model-based algorithm to address such problem. Instead, we
resort to the newly proposed DRL technique, i.e.,, DQN, to
design a model-free solution. To accelerate the DQN training
converge, we further customize it by leveraging the traditional
model-based solution as a guideline to update the transition
sample priority. Different with Prioritized Replay Memory
based on Temporal-Difference Error, pDRL utilized the

episode reward of transition sample as the difference error to
adapt to the sparsity of transition sample with high reward in
real scenarios. Extensive experiments verify the correctness of
our design and the efficiency of our algorithm by the fact that it
outperforms traditional model-based method algorithm. Our
study indicates that DRL provides the possibility of escaping
from the model-based solution with assumptions. A trained
agent can take a picture of the whole network as input to make
control decisions according to the desired objective for complex
network control problems. While, we shall not only simply
apply the DRL algorithm, but shall also well customize it
according to the characteristics of the control problem. In future
work, several approaches could be extended from this work.
For example, the unused green energy can be transferred to
neighbour servers to improve energy efficiency. Moreover,
PDRL could be exploited in mobile edge computing scenarios
assisted by multiple agents to support distributed service man-
agement and energy scheduling in large scale networks.
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