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Abstract—Graphene’s remarkable electrical, mechanical, ther-
mal, and chemical properties have made this the frontier of many
other 2-D materials a focus of significant research interest in the
last decade. Many theoretical studies of the physical mechanisms
behind these properties have been followed by those investing the
graphene’s practical use in various fields of engineering. Electro-
magnetics, optics, and photonics are among these fields, where po-
tential benefits of graphene in improving the device/system perfor-
mance have been studied. These studies are often carried out using
simulation tools. To this end, many numerical methods have been
developed to characterize electromagnetic field/wave interactions
on graphene sheets and graphene-based devices. In this article,
most popular of these methods are reviewed and their advantages
and disadvantages are discussed. Numerical examples are provided
to demonstrate their applicability to real-life electromagnetic de-
vices and systems.

Index Terms—Computational electromagnetics (CEM),
graphene, 2-D materials.

I. INTRODUCTION

GRAPHENE [1], [2], an allotrope of the 3-D crystalline
graphite, consists of carbon atoms arranged as a 2-D

monolayer of hexagonal lattice resembling a honeycomb.
In the last decade, it has attracted significant attention from
various research communities in the fields of physics and
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engineering due to its unprecedented mechanical and electrical
properties that have lead to the design of many new systems and
devices [3]–[6].

The graphene stacks can be produced on a piece of paper when
we write with a pencil since the pencil lead contains graphite
consisting of multilayer graphene. Recent technological devel-
opments in optical microscopy have permitted the experimental
study of atomically thin 2-D materials including graphene. In-
deed, Novoselov and Geim [1], who studied the graphene and
observed its properties at the beginning of the 21th century,
received the Nobel Prize for their groundbreaking contribution.
They have found that graphene supports a strong ambipolar
electric field effect and demonstrates semimetallic properties.
It has also been demonstrated that graphene exhibits electrical
characteristics similar to those of the semiconductors (except the
zero band gap) [7]. The invention of micromechanical cleav-
age technique has certified that the high-quality graphene can
be isolated easily. This has immediately ignited an evolution
in the investigation of a whole family of 2-D materials [8],
[9] (whose first member is graphene). The family of 2-D ma-
terials has expanded rapidly to include more members and
now consists of a large number of materials such as hexag-
onal boron nitride (insulator) [10], black phosphorus (semi-
conductor) [11], and NbSe2 (metal) [12]. These 2-D mate-
rials can often be stacked together to create novel materi-
als with synergetic effects [13] that can execute a user-desire
function.

Significant research has been done to uncover the underlying
physics behind the exceptional characteristics of 2-D materials,
which are distinctively different from those of their traditional
3-D parental materials. First of all, since 2-D materials are con-
structed starting from an atomic level, they are weakly restricted
by van der Waals forces that hold the material layers together [9].
Second, 2-D materials strongly interact with electromagnetic
fields in a broad range of frequencies changing from microwave
to ultraviolet part of the spectrum [14], [15]. Third, the quantum
Hall and Berry phase effects are observed along the direction
of the 2-D material’s surface [16]. These novel effects occur
on monolayer 2-D materials distinguishing them from their 3-D
counterparts and translate to unprecedented optical, electrical,
mechanical, and thermal features [17]. These features have
opened the way to designing tunable optical and electronic
devices with high confinement and low loss and abilities to
execute high-speed and flexible light detection, modulation, and
manipulation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6522-6567
https://orcid.org/0000-0002-9293-207X
https://orcid.org/0000-0002-8023-9075
https://orcid.org/0000-0003-3867-5786
mailto:kaikun.niu@kaust.edu.sa
mailto:ping.li@sjtu.edu.cn
mailto:zxhuang@ahu.edu.cn
mailto:jianglj@hku.hk
mailto:hakan.bagci@kaust.edu.sa


NIU et al.: NUMERICAL METHODS FOR ELECTROMAGNETIC MODELING OF GRAPHENE: A REVIEW 45

Indeed, in the last several years, many researchers have fo-
cused on realizing the potential of graphene in real-life appli-
cations. As mentioned above, graphene strongly interacts with
electromagnetic fields: Its response to high-frequency electro-
magnetic field, i.e., light, is nonlinear and shows plasmonic
characteristics. This response can be adjusted through doping,
gating, and chemical processes [18]. A tunable terahertz (THz)
graphene-based metamaterial has been engineered to achieve
conspicuous optical absorption peaks through the generation of
plasmon resonances [19]. The gigahertz (GHz) graphene-based
electro-absorption modulator capable of operating at a wide
range of frequencies has been designed by tailoring graphene’s
Fermi level [20].

The most successful and commonly used device, which makes
use of graphene’s electronic properties, is the field-effect tran-
sistor (FET). Graphene supports an impressively high carrier
mobility at room temperature, which in return helps to in-
crease the FET’s operation speed [21]. On the other hand,
the channel of the logical devices making use of graphene
cannot be switched off since graphene has no band gap. To
overcome this problem by opening up the band gap, graphene
nanoribbon (GNR) [22], and biased bilayer graphene [23] have
been proposed and implemented. Furthermore, the possibility of
molecular-scale electronics has been certified by the invention
of graphene-based quantum dot devices developed to achieve
electron transport [24]. It has been demonstrated that a tran-
sistor, which is implemented using graphene and boron nitride,
supports a negative differential conductance that can be tuned
by changing the gate voltage [13]. The first top-gated metal-
oxide-semiconductor FET (MOSFET) with graphene has been
manufactured to increase carrier mobilities [25]. Graphene has
played a prominent role in the design of organic light-emitting
diodes (OLEDs) [26], solar cells [27], antennas [28], [29], and
frequency multipliers [30].

In addition to experimental investigation of graphene and
graphene-based devices, their numerical modeling and simu-
lation have been an important research topic. The Kubo formula
provides an analytic expression for the graphene’s conductivity
and shows that it is a function of several physical parameters
including wavelength, temperature, and chemical potential [31],
[32]. Moreover, a surface conductivity model, which describes
graphene as an infinitesimally thin (two sided) sheet with a local
and isotropic conductivity, has been proposed. This model per-
mits derivation of analytical expressions for the electromagnetic
field in the presence of a graphene sheet in terms of a dyadic
Green function (represented using Sommerfeld integrals) and
exciting electric current [33], [34]. Even though these analytical
models and methods can provide results for several canonical
problems for benchmarking purposes, many practical problems
involving graphene, such as design of arbitrarily shaped electro-
magnetic devices, are analytically intractable. With the recent
advances in the field of computational electromagnetics (CEM),
various accurate and efficient numerical methods have become
available for analysis of electromagnetic field/wave interac-
tions on graphene sheets and/or graphene-based devices [35].
These simulations tools are indispensable components of the

design frameworks; they provide constructive guidance that
significantly accelerates the design and fabrication process,
which would rely on experimental trial and error otherwise.
Review papers on experimental investigation of graphene’s
properties, graphene-based devices, and their applications are
widely available [36]–[39]. However, a comprehensive summary
of computational tools developed for analyzing graphene-based
devices/systems is not found in the literature. The purpose of
this review paper is to fill this gap.

In this review article, we focus on recent numerical methods
that are formulated and implemented for analysis of electromag-
netic field/wave interactions on graphene sheets and graphene-
based devices. We discuss advantages and disadvantages of these
methods and provide several numerical examples from several
influential works to demonstrate their applicability in real-life
engineering applications.

II. SIMULATION METHODS FOR GRAPHENE

In the last few decades, increasing CPU speed and availability
of memory on computers as well as the development of new
efficient and accurate algorithms have rendered electromag-
netic simulation tools more applicable than ever. To analyze
electromagnetic field/wave interactions on graphene sheets and
graphene-based devices, one can use several different frequency
domain (FD) and time domain (TD) numerical methods in-
cluding finite-difference time-domain (FDTD) method, discon-
tinuous Galerkin time-domain (DGTD) method, finite element
method (FEM), and method of moments (MoM). These methods
discretize and solve Maxwell or Helmholtz equations or their
integral equation (IE) representations. Regardless of the domain
they operate in (frequency or time), these methods call for a
mathematical model for graphene’s conductivity. This mathe-
matical model is described in the following section, which is
followed by the review of the numerical methods mentioned
above.

A. Mathematical Model

Numerical methods listed previously often model graphene as
a thin surface with complex and frequency-dependent/dispersive
conductivity. This frequency-dependence suggests that a FD
analysis is more adequate since a TD method requires the
additional step of converting frequency dependence into the TD.
The surface conductivity of graphene is often expressed using
the Kubo formula [31], [33], [40]

σd =
je2 (ω − j2Γ)

π�2
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−
∫ ∞

0

ε
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)
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(1)

whereω is the radian frequency,Γ is the phenomenological elec-
tron scattering rate (in some literature, the phenomenological
electron relaxation rate/time τ = 1/(2Γ) is used to substitute
Γ), e is the electron charge, ε is the energy state, and � is
the reduced Plank constant. fd = (e(ε−|μc|)/kBT + 1)−1 is the
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Fermi–Dirac distribution, where T is the temperature, kB is
the Boltzmann constant, and μc is the chemical potential (also
called Fermi energy) that can be adjusted by the electrostatic
bias field, chemical doping, or carrier density. The first and
second terms in (1) are due to intraband and interband contribu-
tions, respectively. The expression of the intraband contribution
reads

σd,intra =− je2kBT

π�2 (ω − j2Γ)

(
μc

kBT
+ 2 ln

(
e
− µc

kBT + 1
))

. (2)

The expression of the interband contribution reads

σd,inter � −je2

4π�
ln

(
2 |μc| − (ω − j2Γ) �

2 |μc|+ (ω − j2Γ) �

)
. (3)

The interband conductivity is on the order of e2/� and smaller
than the intraband conductivity. At lower frequencies (i.e., THz
region), electrons and holes near the band edges “block” the
interband transitions. Graphene behaves like a conductive film
and its conductivity (dominated by intraband contribution) can
be described in the form of a simple Drude model.

For higher frequencies (i.e., infrared and visible region where
μc is much smaller than optical frequency �ν), the graphene
conductivity is barely dependent on μc and �ν [41]. At these
frequencies, the electrons can gather enough excitation energy
to jump from an inner band to an upper band and the graphene’s
conductivity is dominated by interband contribution.

In addition, the formulas given in (1)–(3) are valid under the
assumption that the collision rate of carriers (τ−1) is less than
the frequency (ω) and spatial dispersion of the EM fields (kν),
i.e., ω � kν, τ−1 [42]. It should also be noted here that conduc-
tivities of other forms of graphene, such bilayer and multilayer
cases are different than that of the monolayer graphene. The
conductivity of monolayer and bilayer graphene has been dis-
cussed in [43]. The Hamiltonian decomposition, Landau-level
structure, and conductivity of multilayer graphene have been
investigated in [44]. Additionally, in [45]–[47], the optical and
Hall conductivities of monolayer graphene have been studied.

It is clear from the abovementioned equations that graphene’s
conductivity is a function of chemical potential, temperature,
and frequency. This consequently means that the polarization,
propagation, and scattering characteristics of the electromag-
netic waves interacting with the graphene can be tailored by
adjusting these parameters.

TD methods often model the dispersive conductivity of
graphene [as shown in (1)–(3)] using an auxiliary difference
equation (ADE) in an (unknown) equivalent polarization cur-
rent. This equation is then solved together with Maxwell equa-
tions. The intraband conductivity, whose expression in FD
“looks” like a Drude model, is easily converted to TD and ex-
pressed in terms of an ADE. However, the interband conductivity
has a complex logarithmic form and, therefore, transforming it
into TD calls for more general approaches. The first one of these
makes use of the Padé approximant spectral fitting model, which
is accurate only in the near infrared part of the spectrum [48]. The
second approach is termed “vector fitting,” where a summation
of rational functions (in Laplace domain) of complex conjugate

pole-residues pairs, are used to approximate the interband con-
ductivity in a broadband of frequencies. The resulting expression
then is converted into TD using the analytical inverse Laplace
transform of the rational functions [49], [50].

B. Finite-Difference Time-Domain Method

The FDTD method, first invented by Yee [51] in 1966, is a
robust TD method that discretizes the time-dependent Maxwell
curl equations by approximating time and space derivatives
using finite difference approximations. The unknown time-space
samples of the fields/fluxes obtained by solving or through
explicit updates of the resulting equations in a recursive man-
ner in time. FDTD is straightforward to implement, suitable
for parallel computation, provides results that are immediately
ready for visualization, and being a TD method, produces wide-
band information in a single execution. These advantages have
rendered FDTD the first method of choice in many electromag-
netic problems in a wideband of frequency ranging from RF
to optical frequencies, which require numerical characterization
of transient, dispersive, and nonlinear field interactions [52],
[53]. Consequently, it should not come as a surprise that FDTD
has also become increasingly prevalent in the simulation of
graphene-based devices.

There are the following three main approaches to modeling
graphene in FDTD-based electromagnetic simulations.

1) A fine grid is used to discretize the graphene while tak-
ing into account its finite thickness. For this approach,
the surface conductivity is transformed to an equivalent
(complex) permittivity [54].

2) A subcell FDTD is used to simulate the thin layers of
graphene [55].

3) An impedance boundary condition (IBC) that locally rep-
resents the field behavior on a graphene sheet with zero
thickness is incorporated into FDTD [56], [57].

For the first approach, the 2-D graphene surface is usually
modeled as a 3-D material but with a very thin layer with
thickness h. The conductivity of this layer is expressed as

σ3D =
σd

h
. (4)

Then, a traditional FDTD method can make use of an ADE
technique to incorporate the Drude model for the graphene’s
intraband conductivity while ignoring its interband counterpart.
To incorporate the interband effects into the simulation, the
complex conjugate dispersion material model [58] can be used.
In addition, the conformal [59] and high-order modeling tech-
niques [60] have been used together with the FDTD method
to improve the accuracy of the simulation. Furthermore, an
extended Lorentz model, which is represented in the form of an
equivalent circuit [61], has been proposed to take magnetized
graphene into account in FDTD simulations.

The thickness of a graphene layer is approximately 0.34 nm
and the accuracy of the 3-D conductivity [as described in (4)]
reduces with increasing thickness. The nanoscale volumetric
mesh resulting from the discretization of the graphene layer leads
to a very small time step because of the Courant–Friedrich–Levy



NIU et al.: NUMERICAL METHODS FOR ELECTROMAGNETIC MODELING OF GRAPHENE: A REVIEW 47

Fig. 1. Transmission coefficient for a plane wave normally incident on an
infinite graphene sheet as computed using HIE-FDTD, traditional FDTD, and
an analytical expression. Reproduced with permission from [70].

(CFL) stability condition. As a result execution time and mem-
ory requirement of the traditional fully explicit FDTD method
increases. To alleviate this bottleneck, various unconditionally
stable time marching schemes, such as the alternating-direction-
implicit (ADI) FDTD method and the locally one-dimensional
(LOD) FDTD method, have been developed. These algorithms
remove or relax the limitations of the CFL condition. The
one-step leapfrog ADI-FDTD method has been applied to sim-
ulation of surface plasmon polaritons (SPPs) propagating along
a graphene slab biased by an electrostatic field [62] and the
LOD-FDTD method has been used to model more complicated
graphene devices [63]. Additionally, a matrix exponential FDTD
method has been developed to reduce the memory require-
ments of the traditional FDTD method when applied to fine
volumetric grids discretizing a magnetically biased graphene
layer [64].

While simulating a very thin structure like graphene using
the FDTD method, the computational efficiency is restrained
by the finest grid size only in one dimension. Therefore, it is
sufficient to use implicit FDTD updates/iterations only in this
dimension while keeping them explicit in the remaining two
dimensions. This approach increases the efficiency by avoiding
unnecessary implicit updates and relaxing the CFL condition for
the explicit one in one dimension. To this end, several weakly
conditional stable (WCS) FDTD methods have been developed.
Examples of these include the WCS-FDTD method [65] and
the hybrid implicit–explicit (HIE) FDTD method [66], [67].
Additionally, the HIE-FDTD has been updated to account for
dispersive material properties and used in design of a graphene-
based absorber [54] and polarizer [68]. Similarly, a graphene-
based absorber has also been simulated using the WCS-FDTD
method [69].

Furthermore, a conformal version of the HIE-FDTD method
has been developed to analyze tunable graphene-based couplers
for THz applications [70]. As shown in the inset of Fig. 1,
the graphene sheet is located on the xy plane and excited by
a planewave polarized along the x-direction. The excitation is
introduced in the FDTD method using the total-field/scattered-
field (TF/SF) technique. The parameters of graphene are selected

Fig. 2. (a) Schematic description of the monolayer graphene-based patch cou-
pler. (b) S-parameters of the coupler computed using the conformal HIE-FDTD
with coarse mesh (symbols), the staircase HIE-FDTD with coarse mesh (dashed
line), and the staircase HIE-FDTD with fine mesh (solid line). Reproduced with
permission from [70].

as μc = 0.1 eV, T = 300 K, and τ = 1 ps. The convolution per-
fectly matched layer (CPML) is used to truncate the unbounded
background medium in the z-direction and a periodic boundary
condition is enforced along the x and y directions to model an
infinitely wide graphene plane.

Fig. 1 plots the transmission coefficient versus frequency
as computed using HIE-FDTD, traditional FDTD, and an
analytical expression. All results are in good agreement. The
execution times required by HIE-FDTD and FDTD are 157
and 613 s, respectively, demonstrating the efficiency of the
HIE-FDTD method. Fig. 2(a) provides the schematic description
of a graphene-based patch coupler, with its backside being
grounded. The dielectric constant and thickness of the substrate
are εr = 2.33 and t = 2 μm, respectively. The width of the
graphene strip is W = 12 μm, and radii of the circular sector
patches are R1 = 20μm and R2 = 25 μm. The parameters of
graphene are μc = 0.5 eV, Γ = 0.41 meV/h, and T = 300 K.
A vertical electric field is generated by a sinusoid modulated
Gaussian pulse in the rectangular region underneath Port 1
along the z-direction. The S-parameters are computed using
[S] = [V ]r/[V ]i, where [V ]r and [V ]i are the reflected and
incident voltage vectors recorded at the ports, respectively. The
S-parameters computed using the conformal HIE-FDTD with
coarse mesh (symbols), the staircase HIE-FDTD with coarse
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mesh (dashed line), and the staircase HIE-FDTD with fine
mesh (solid line) (reference results) are shown in Fig. 2(b). The
results obtained from the conformal method agree well with the
reference results. However, the results of the staircase method
with coarse mesh are significantly different than the other two.

As mentioned above, the second approach to modeling
graphene using the FDTD requires subcell techniques to be
implemented. The subcell FDTD method [55] has been first used
in simulation of dispersive thin layers and it has been immedi-
ately recognized as an effective way to model graphene [71]. The
subcell technique is an efficient approach since a coarse mesh
can be still used, and the thin layer only occupies a fraction of
the grid. As a result, the memory requirements remain almost
unchanged after the insertion of the layer, which fills only a small
amount of the computation space. Since two kinds of materials
exist in one cell at the same time, this method divides the electric
and magnetic components, which are normal to the graphene
sheet, into two parts since they are not continuous across the
interface. Conversely, tangential components do not require any
splitting, due to their continuity across the boundary. Later on,
aim at thin dispersive layers that is outstretched to the boundaries
of the computational domain, a subcell perfectly matched layer
scheme in FDTD is proposed [72].

The third approach represents the graphene sheet as an IBC
with zero thickness (instead of conductive volume as done by
the first approach) [56], [57]. This approach eliminates the need
for a fine discretization/grid in the vicinity of the graphene sheet
and alleviates the inefficiency that comes with it due to the CFL
condition. The method has been first proposed in [56]. Fig. 3(a)
shows a conductive (graphene) sheet positioned on the xy plane
that coincides with K + 1/2 indexed z grid of a 3-D FDTD Yee
cell. The discontinuous boundary condition

n̂× [
2H (ω)− 1H (ω)

]
= σdEt (ω) (5)

is enforced on the conductive sheet. Here, n̂ is the unit vector
normal to the sheet, 1H and 2H are the magnetic fields at its
two sides, the superscripts 1 and 2 designate the bottom and top
sides, respectively.Et denotes the component of the electric field
tangential to the sheet. The boundary condition in (5) should
be transformed into the TD so that it can be used within an
FDTD method [56]. To this end, the intraband conductivity
is represented using a Drude-like model while the interband
conductivity is expressed in terms of complex conjugate pole-
residues pairs [57].

Note that the conductive sheet supports electric current and
charge, therefore, the tangential component of the magnetic field
and the normal component of the electric field is split into two
parts that are positioned at the bottom and top sides of the sheet.
As a result, the FDTD update equations for 1Hn

x and 2Hn
x are

obtained as

μ1δ
c
t

{
1Hn

x

}
= δbz

{
En

y (i, j + 1/2, k + 1/2)
}

− δcy
{
1En

z (i, j + 1/2, k + 1/2)
}

(6)

μ2δ
c
t

{
2Hn

x

}
= δfz

{
En

y (i, j + 1/2, k + 1/2)
}

− δcy
{
2En

z (i, j + 1/2, k + 1/2)
}

(7)

Fig. 3. (a) FDTD Yee cell enclosing a conductive (graphene) sheet. (b)
Magnitude and phase of transmittance (T) and reflectance (Γ) for a planewave on
normally incident on the graphene layer. Reproduced with permission from [56].

whereμ1 andμ2 are the permeabilities of the media at the bottom
and top sides of the sheet, δ represents the finite difference
operation, the superscripts c, f , and b designate the central,
forward, and backward difference, respectively; the subscripts t
and x, y, and z designate the derivates in time and along x-, y-,
and z-directions, respectively. Similarly, the update equations
for 1En

z and 2En
z are derived as

1En+1
z = 1En

z +
Δt

ε1

[
δcx

{
1Hn

y

}− δcy
{
1Hn

x

}]
(8)

2En+1
z = 2En

z +
Δt

ε2

[
δcx

{
2Hn

y

}− δcy
{
2Hn

x

}]
(9)

where ε1 and ε2 are the permittivities of the media at the
bottom and top sides of the sheet. It should be mentioned
here that the conductive surface boundary condition reviewed
previously has been extended to account for anistropic modeling
of graphene sheets. The resulting boundary conditions have been
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Fig. 4. (a) Schematic description of the periodic graphene microribbon array
supported by a SIO2 thin film and the planewave normally incident on it.
(b) Intensities of the electric and magnetic fields long after the TE polarized
planewave pulse has passed the array. Reproduced with permission from [56].

used within FDTD to simulate EM interactions on magnetized
graphene [73].

Fig. 3(b) plots the magnitude and phase of transmittance
(T) and reflectance (Γ) computed by the FDTD (with resistive
surface boundary condition as briefly explained previously) for a
plane wave normally incident on the graphene layer. The figure
shows that the FDTD results agree well with those obtained
using an analytical method.

At last, a periodic graphene microribbon array has been sim-
ulated using the FDTD method with resistive surface boundary
condition. The graphene array, which is assumed to extend to
infinity along the x-direction and periodically repeated along
the y-direction, is shown in Fig. 4(a). A TE-polarized (electric
field parallel to the y-direction) or TM-polarized (electric field
parallel to thex-direction) planewave is normally incident on the
structure. Fig. 5(a) plots the transmission through the structure
for plane wave excitations with TE and TM polarizations. For
TE polarization, a resonance peak is observed around 8.35 THz.
This resonance is a result of the SPPs generated on the structure;
the electric and magnetic field intensities at this resonance
frequency are demonstrated in Fig. 4(b). The snapshot clearly
shows that the effects of the SPP are still observed long after
the TE polarized planewave pulse has passed the array. It should
be noted here that the array can be used as a polarizer at this
frequency. Fig. 5(b) shows that the transmission of the graphene
microribbon array resembles that of an infinite graphene sheet
for the planewave with TM polarization.

In summary, the FDTD-based approach that assumes zero
thickness for the graphene sheet and models it as an IBC is often
considered as the most effective one among the three types of
FDTD methods reviewed in this section. This is simply because
it avoids the very fine volumetric discretization of the graphene
layer. Additionally, this approach uses an explicit time marching
scheme, which does not call for matrix solutions, further reduc-
ing the computation time and memory imprint (in comparison
to unconditionally or weakly stable time marching schemes). It
should also be noted here that the subcell FDTD scheme also
uses a coarse mesh in the vicinity of the graphene layer, but
underlying formulation developed to implement two different
materials coexisting in one cell “destroys” the simplicity of
the FDTD schemes, which makes them attractive in the first
place.

Fig. 5. (a) Transmission through the graphene microribbon array for TE-
and TM-polarized normally incident plane waves. (b) Transmission through the
graphene microribbon array and infinite sheet computed using the FDTD for TM-
polarized normally incident plane wave. Those are compared to transmission
through the infinite sheet computed analytically. Reproduced with permission
from [56].

C. Finite Element Method

FEM is a powerful and versatile technique for numerically
solving boundary-value problems. It treats equations and bound-
ary conditions in a systematic and mathematically rigorous
way allowing for straightforward implementation of general-
purpose computer programs for solving a wide range of engi-
neering problems. Unlike finite-difference based methods (such
as FDTD as described in the previous section), it uses arbitrary
meshes (for example, with tetrahedral, hexahedral, or prism
elements) to discretize computation domains involving geo-
metrically complex structures with potentially inhomogeneous
material properties [74]. There are the following four basic steps
involved in the finite element analysis:

1) discretize the computation domain into a finite number of
nonoverlapping elements;

2) select a proper set of basis/interpolation functions to ex-
pand unknown variables;

3) formulate a system of equations using Ritz variational or
Galerkin method;

4) solve the resulting system of equations.
Several successful commercial software making use of FEM

has been developed in the last several decades as it has become a
maturing numerical tool widely used in the field of electromag-
netics. Three very well-known examples of such commercial
software are CST MICROWAVE STUDIO [75], COMSOL [76],
and high-frequency structure simulator [77]. A plethora of exam-
ples on the use of these softwares for analyzing electromagnetic
field/wave interactions on graphene exist in the literature. Please
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see [78]–[82] for some of those. It should be noted here that in the
application of these commercial software to the EM simulation
of graphene, graphene sheet is often modeled as any other
material, i.e., as a finite-thickness layer with a certain volumetric
conductivity value. To alleviate the increased computational
requirements that come with this approach, techniques relying
on impedance transmission boundary condition (ITBC) [83] and
impedance network boundary condition (INBC) [84] to model
thin layers of graphene have been into FEM.

It should also be noted here that the approaches and commer-
cial tools mentioned above rely on FD-FEM that directly works
with conductivity values of graphene at the frequency of interest.
For an FEM operating in TD (i.e., TD-FEM), the dispersive
conductivity expression has to be converted into TD, just like
it is done with FDTD. But note that the reason why TD-FEM
is not the first method of choice for transient EM simulations
of graphene is the fact that it requires the inversion of a sparse
matrix system at every time step. This can be avoided using
DGTD as described in the following section.

D. Discontinuous Galerkin Time-Domain Method

The DGTD method [85]–[87] combines the advantages of
the finite-volume method (FVM) [88] and FEM and it has been
successfully applied in various fields of computational sciences,
engineering, and physics for solving different PDEs. Like FEM,
the discretization of the computation domain can be done using
an arbitrary mesh and high-order accuracy convergence can
be obtained using high-order basis functions. Like FVM, all
spatial DGTD operations are localized since numerical flux is
enforced on the surface of a given discretization element to
“realize” information flow from/to its neighboring elements.
This localization translates into a global mass matrix being
divided into block-diagonal mass matrices. The inversion and
storage of these mass-matrix blocks (as would be constructed
by the finite element TD method [89]) are carried out before the
time marching starts. This renders the resulting DGTD-based
solver very compact (efficient with a very small memory imprint)
especially when an explicit integration method is used for time
marching. Additionally, the use of numerical flux and the result-
ing spatial localization allow for nonconformal meshes to dis-
cretize the computation domain and make it easy to implement
adaptive h and/or p refinement schemes and parallelization on
distributed memory computer clusters. Because of the properties
listed previously, the DGTD is the natural method of choice for
multiscale electromagnetic simulations involving thin sheets of
graphene.

The approach, which makes use of resistive boundary condi-
tion (RBC) and is originally developed for the FDTD method,
can also be implemented within the DGTD method for efficient
simulation of graphene sheets [90]. This implementation can be
summarized as follows: First a numerical flux, which takes into
account the fields satisfying the RBC, is reformulated from the
Rankine–Hugoniot condition [90]. The conductivity of graphene
is approximated as a summation of rational functions (of fre-
quency) using the fast-relaxation vector-fitting method [91].

Then, applying inverse Laplace transform to this summation,
the corresponding TD matrix equations are obtained. These
equations are solved using the TD finite integral technique.
For elements not touching the graphene sheet, however, the
well-known Runge–Kutta (RK) method is employed to solve
the two first-order time-derivative Maxwell equations as done
with a “traditional” DGTD method.

This RBC-enhanced DGTD scheme is further improved for
electromagnetic numerical characterization of magnetically bi-
ased graphene that has an anisotropic and dispersive surface con-
ductivity (caused by Lorentz force). This improvement makes
use of an auxiliary surface polarization current governed by a
first-order time-dependent partial differential equation (PDE)
that is enforced on the graphene, and is instrumental in obtain-
ing an isotropic and simultaneously nondispersive RBC. As a
consequence, a numerical flux, which is isotropic and does not
call for temporal convolution computations during the solution
of the final system of equations, is obtained. The applicability
and accuracy of the this method are demonstrated through its ap-
plication to the transient simulation of magnetized graphene for
a wideband changing from microwave to THz frequencies [92].
These simulations are briefly described as follows.

For the first example, an infinitely large graphene sheet located
on the xy plane is biased by a z-directed magnetostatic field
B0 = ẑB0. The chemical potential and scattering time are set
asμc = 0.5 eV and τ = 5 × 10−12 s, while the magnetic biasing
amplitudeB0 is changed in the range [0.5, 30] T. Fig. 6(a) and (b)
plots the total transmission coefficient and the Faraday rotation
angle obtained using DGTD and compare them to those com-
puted by analytical methods. Additionally, the cross-polarized
transmission coefficient obtained using DGTD is provided in
Fig. 6(c). These results demonstrate that the behavior of an
electromagnetic wave propagating through a graphene sheet is
clearly influenced by the magnetostatic biasing.

For the second example, first an unmagnetized graphene
patch is simulated using the DGTD scheme to further verify
the accuracy via comparison of the results with those obtained
by an IE solver (see Section II-E). Fig. 7(a) plots the extinction
cross-section (ECS) computed by these two methods: the results
agree well. It should be noted here that, the DGTD method
uses the TD boundary integral algorithm to accurately truncate
the computation domain. Then, the same graphene patch is
simulated again but this time under a z-directed biasing (static)
magnetic fieldB0 = 0.25 T. Fig. 7(b) and (c), respectively, plots
the total scattering-cross-section (TSCS) and ECS for different
values of the chemical potential μc, demonstrating the effects
of the plasmon resonances on the scattering characteristics of
the graphene patch. It can be concluded that the plasmon res-
onance becomes stronger and its frequency has a blue shift as
the chemical potential is increased. Furthermore, the effect of
the substrate on the plasmon resonance is investigated using the
DGTD method. Three materials are considered as the substrate
of the graphene patch (with μc = 0.5 eV): silicon (Si) with
εr = 4.0, silicon-dioxide (SiO2) with εr = 7.0, and silicon-
nitrate (Si3N4) with εr = 11.9. Normalized ECS of the graphene
patch for different types of substrate is shown in Fig. 7(d). The
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Fig. 6. (a) Total transmission coefficients. (b) Faraday rotation angle computed
using DGTD and analytical expressions for different bias field amplitudes.
(c) Cross-polarized transmission coefficient computed using DGTD for different
bias field amplitudes. Reproduced with permission from [92].

figure shows that a red shift happens at the first two peaks of
the plasmon resonance as the permittivity of the substrate is
increased. This can be explained by the fact that an increase in
permittivity effectively increases the dimension of the graphene
in terms of wavelength.

Furthermore, to account for spatial dispersion effects as-
sociated with graphene [which are observed when its con-
ductivity is modeled as nonlocal and a function of spectral
wavenumber (momentum operator) q], a nonlocal transparent
surface impedance boundary condition (SIBC) has been incor-
porated into the DGTD method. Since there is no exact TD SIBC
that can be utilized to model the complex conductivity, which
is now a function of q, it is approximated using a Taylor series
expansion in spectral domain under the low-q assumption. This
facilitates the formulation of a second-order PDE in electric
field and current density that is solved together with Maxwell

Fig. 7. (a) ECS of the unbiased graphene patch computed using the DGTD and
the IE solvers. (b) Normalized TSCS and (c) ECS computed using the DGTD
for different values of chemical potential. (d) Normalized ECS for substrates Si,
SiO2, and Si3N4. Reproduced with permission from [92].

equations using the DGTD method. The nonlocal properties of
GNRs have been simulated by this DGTD framework [22].

In addition to RBC and SIBC, in [93], the ITBC has been used
within a wave-equation-based DGTD with the same purpose of
avoiding a very fine mesh around and inside the graphene layer.

E. Method of Moments

MoM [94] is a numerical technique that is used to solve
surface integral equations (SIEs) by converting them into a
linear matrix system of equations as briefly explained next:
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Using equivalence principle, the scatterers consisting of di-
electric/perfect electrically conducting bodies are “effectively”
replaced by equivalent electric and magnetic current densities
introduced on their surfaces. Then, the scattered fields are rep-
resented as convolutions of these unknown current densities and
the Green functions of the unbounded media with the material
properties of the background and/or the dielectric bodies. SIEs in
these unknown current densities are constructed on the interfaces
using boundary conditions on the total (incident plus scattered)
electric and magnetic fields. Unknown current densities are
expanded using basis functions. Inserting these expansions into
the SIEs and testing the resulting equation (for example, using
Galerkin scheme) yield the MOM matrix equation. The SIE
solvers have several advantages over Maxwell equation solvers
(such as FEM): They only discretize the surface of the scatterers,
effectively reducing the dimension of the problem from three to
two. They implicitly enforce the radiation condition therefore do
not call for approximate methods to truncate (unbounded) physi-
cal domains into computation domains. One disadvantage of the
SIE solvers is that the matrix resulting from the discretization of
the SIE is dense, which increases the computational cost of the
matrix solution. However, with the development of fast solvers
(such as multilevel fast multipole method (MLFMM) [95] and
adaptive integral method (AIM) [96], this bottleneck is no longer
prohibitive in solving large-scale practical problems. Conse-
quently, SIE solvers have become prime candidates for simu-
lating graphene-based electromagnetic devices and systems.

In [98], the SIBC associated with the graphene is cooperated
into SIEs and the resulting set of equations are solving using the
Nyström method. The simulation of graphene strips, which is
carried out using this method, shows that the surface plasmon
resonances can be tailored by tuning the chemical potential and
relaxation times of graphene [98]. Then, a further discussion of
THz wave scattering from graphene strips and disks is presented
to demonstrate that the chemical potential of graphene can adjust
the wavelength of plasmon resonance in the THz waveband [99].
Furthermore in [100] and [101], the properties of GNRs are
analyzed using another SIE solver.

Another method that has been developed to model graphene
within SIE solvers assumes that it has a finite thickness of
0.5 nm [97]. Then, an SIE solver, which uses a multilayered
medium Green function (instead of the unbounded medium
Green function as explained at the beginning of this section)
is used to simulate the structure shown in Fig. 8. This structure
involves a split-ring resonator (SRR) embedded in a layer of ZnO
and a graphene layer located between the ZnO layer and a layer
of a SiO2 substrate. The dimensions of the SRR are optimized to
make sure that the graphene plasmonics and metallic plasmonics
overlap in the same part of the frequency spectrum. In the first
set of simulations, graphene layer is removed and Fig. 9(a)
demonstrates that only thex-oriented dipole source can “couple”
to the SRR as shown by the photon decay rate. It can be seen from
Fig. 9(b) that the position of the source only affects the amplitude
of the decay rate’s peak but has no effect on its frequency. In
the second set of simulations, the graphene layer is introduced
into the system. As shown by Fig. 9(c), the amplitude of the
photon decay rate is enhanced especially in the proximity of

Fig. 8. Schematic configuration of a complicated electromagnetic system
for manipulating photon decay rates. Reproduced with permission from [97],
Copyright The Optical Society, 2015.

Fig. 9. (a) Polarization effect of a dipole at the center of the resonator gap
without a graphene layer. (b) Position effect of a x-oriented dipole inside the
resonator gap without a graphene layer. (c) Position effect of a x-oriented dipole
with and without a graphene layer. (d) Chemical potential effect of a x-oriented
dipole in the hybrid system. Reproduced with permission from [97], Copyright
The Optical Society, 2015.

the graphene layer. The dependence of the decay rate on the
chemical potential of the graphene is shown in Fig. 9(d). The
photon decay rate is not only blue-shifted but also splits into
several peaks due to a strong coupling between the SRR and the
graphene.

Furthermore, in [102], a marching-on-in-time (MOT) scheme
has been developed to solve TD SIEs enforced on interfaces
of a graphene-based devices. In addition, in [103], graphene
layer has been modeled as a thin dielectric sheet (TDS) (with
dispersive conductivity) within an MOT solver. This approach
“converts” the TD volume integral equation (TD-VIE) equation
into a TD-SIE and eliminates the need for a very fine volumetric
mesh inside the graphene layer. These MOT solvers methods
can be thought as TD MoM.



NIU et al.: NUMERICAL METHODS FOR ELECTROMAGNETIC MODELING OF GRAPHENE: A REVIEW 53

Fig. 10. (a) One-cell PEEC model for a nonmagnetized graphene patch.
(b) Unit model for uniform PEEC cell of nonmagnetized graphene. (c) Com-
plete equivalent circuit for anisotropic graphene. Reproduced with permission
from [105] and [106].

F. Partial Element Equivalent Circuit (PEEC) Method

The PEEC method [104], which is developed using potential-
based volume integral equation formulations and the charge-
current continuity equation, has often been used in electro-
magnetic simulation of ICs. However, with recently increasing
interest in graphene-based devices, it has been improved to take
into account graphene sheets.

To this end, a surface conductivity circuit model consist-
ing of a resistor, an inductor, and an impedance element is
introduced into the PEEC method to efficiently characterize
graphene [105]. This is effectively equivalent to enforcing an
IBC on the graphene surface. Fig. 10(a) illustrates one-cell of the
PEEC model for the graphene patch, the circuit elements inside
the red rectangle approximate the nonmagnetized graphene’s
impedance caused by the conduction loss. The resistance Rr

and inductance Lr represent the intraband contribution while
the complex impedance Zinter corresponds to the interband con-
tribution. V L

m(k) is the voltage source representing the external

electric field, V C
i(j) and V C

j(i) are the voltage control voltage
sources (VCVSs), Ppmm

and Ppm+1,m+1
are the potential self-

coefficients for the circuit model. Fig. 10(b) demonstrates the
PEEC circuit model for the nonmagnetized graphene patch. It
shows that there are four current filaments sharing the same

Fig. 11. Comparison of (a) σabs (absorption cross section) and (b) σext (ECS)
of the graphene patch simulated with the PEEC method [106] and the DGTD
method [92]. Reproduced with permission from [106].

common node in the PEEC partition and each branch is a
simplification of the circuit given in Fig. 10(a). To model the
anisotropy of graphene under a magnetostatic bias, the resistive
part of the unit circuit is replaced by a resistor in series with
current-controlled voltage sources [106]. The complete equiv-
alent circuit which combines x- and y-directional resistive cell
for anisotropic graphene is sketched in Fig. 10(c).

In [106], PEEC is used to simulate EM interactions on a
magnetized graphene patch of dimensions 10 × 2μm2. The
graphene patch is illuminated by plane wave propagating the
z-direction and linearly polarized along the length of the patch.
Biasing static magnetic field is z directed with an amplitude of
0.25 T. In Fig. 11(a), the σabs (absorption cross section) and (b)
σext (ECS) of the magnetized graphene patch computed using
PEEC [106] and DGTD [92]. The results are in good agreement
validating the accuracy of these two methods.

Furthermore, in [107], a TD solver making use of the PEEC
model has been developed for wideband electromagnetic simu-
lations of graphene-based devices.

III. SUMMARY AND COMPARISON

Section II gives a rather detailed review of numerical tools
developed for simulation of EM interactions on graphene sheets
and graphene-based devices. In this section, the important points
of this review are summarized.
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A. Summary of IBCs

To this date, following three main groups of IBC formulations
have been developed to model to thin layers of materials: 1) SIBC
(which is also termed SBC [56] or RBC [92]), 2) ITBC [83], and
3) INBC [84].

The SIBC is formulated under the assumption that the vari-
ation of the fields inside the thin conductor layer is linear and
larger than the variation of the fields along its surface. As a result,
the SIBC technique requires that the layer thickness to be smaller
than the skin depth inside the layer. As detailed in the article,
this technique has been successfully used to model graphene
sheets within FDTD, DGTD, MOT, and PEEC methods at the
THz frequency band. For lower frequencies, the graphene layer’s
thickness becomes larger than the skin depth, and therefore, it
becomes almost transparent to the electromagnetic fields [83].
For such cases, the ITBC formulation, which is derived using the
transmission line theory, is more suitable to model the tangential
electromagnetic fields on both sides of the graphene surface. The
INBC technique, which describes the field inside a conductive
sheet using two-port network equations, has a wider range of
applicability in modeling good conductor layers (i.e., σ � ωε)
than the SIBC and the ITBC since it is not restricted by the skin
depth.

B. Methods for EM Simulation Graphene

FD methods can directly use conductivity values of graphene
obtained via experiments or calculated using the mathematical
expression at the frequency of interest. But they are limited to
single-frequency or narrow-band problems. From this perspec-
tive, TD methods have an advantage over FD methods since
they can produce broadband results with a single execution of
the simulation. However, since the graphene’s conductivity is
dispersive, it has to be “converted” into TD using the Drude
model or some variation of “vector fitting” schemes. Both FD
and TD methods can benefit from IBC-based techniques to avoid
generation of a very fine mesh around and inside the graphene
layer.

FDTD and PEEC, by design, use orthogonal grids to discretize
the geometries and Maxwell equations. This leads to additional
staircase approximation errors, when they are used in analyzing
graphene based devices with curved surfaces. On the other hand,
FEM (both FD and TD versions), DGTD, MoM, and MOT,
which use triangular and/or tetrahedral elements, can account
of arbitrary geometries more accurately. Even though the SIE
formulation used by MoM and MOT reduces the dimension of
the problem from three to two (from volume to surface model-
ing), their computational requirements increase significantly for
electrically large devices. In this case, one has to use a fast solver,
such as MLFMM [95] and AIM [108] in FD and plane-wave TD
method [109] and TD-AIM [96] in TD.

In short, for simulating EM interactions on graphene sheets
and graphene based devices, one often chooses FEM and DGTD
for their ability to model arbitrary geometries, which helps with
increasing the accuracy of the solution and the FDTD due to its
simplicity that eases the burden of implementation.

IV. FUTURE RESEARCH DIRECTIONS

In many EM applications that benefit from graphene’s electri-
cal properties, device sizes are getting smaller at nano-scales and
optical operation frequencies are becoming the norm. In such
scenarios, a rather simplified graphene conductivity model as
revised in this article may not be accurate enough. For example,
at lower frequencies where, traditional integrated circuits (ICs)
are operated, both photon and thermal excitation energies of
graphene are much weaker than its Fermi energy; therefore, the
intraband transitions become dominant over interband transi-
tions. As a result, a simplified steady-state model making use of
the intraband contribution in Kubo formula is commonly used
to describe graphene’s conductivity. This Drude-type model
is from the Boltzmann transport equation and the Ohm law
under several assumptions. However, it has been recently re-
ported that for high-frequency simulation of Cu-G hybrid nano-
interconnects (which are orders of magnitude smaller than regu-
lar interconnects), this model is not accurate [110], [111]. This is
because graphene’s skin depth becomes comparable to its mean
free path, the carriers are no longer influenced by a constant
field between collisions, and the current at a given point also
depends on the electric field at other points. To address this
challenge, in [110] and [111], a first-principles-based solver
has been developed to solve a coupled system of Maxwell
and Boltzman equations to characterize EM interactions on
graphene. This solver provides more accurate results as com-
pared to the numerical scheme that account for graphene with
an effective conductivity model. It is worth mentioning here that
this approach is fully aligned with recent research directions in
other branches of computational sciences where development of
multiphysics and multiscale simulations are deemed important.

Another challenging direction is to develop numerical
schemes that can accurately account for the nonlinearity of
graphene’s susceptibility. This is especially important with
graphene becoming a building block in plasmonic device de-
sign. In such designs, highly localized and strong EM fields
“activate” the nonlinear response of the graphene. For example,
in [112], a graphene metasurface has been studied using FDTD
that accounts for the nonlinear susceptibility effects using a
homogenization scheme. In [29], Maxwell equations are com-
plemented by a nonlinear auxiliary equation (describing current-
field relationship on graphene sheet), and this coupled system is
solved using FDTD to analyze EM/plasmonic interactions on a
nanoantenna with the metal-insulator-graphene configuration.
In [113] and [114], the nonlinear properties of graphene is
studied again using FDTD, which is developed based on the
quasi-classical (Boltzmann) approach [115], [116].

V. CONCLUSION

In the last decade, graphene’s excellent electrical and me-
chanical properties have made it a focus of significant research
interest. A scientific literature has been flooded with theoretical
studies of graphene’s properties and the physical mechanism
behind those as well as investigations of its practical use in
various fields of engineering.
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In this article, we review a few of the most popular numerical
algorithms from the research field of CEM and some of their
recent adaptations formulated and implemented for efficient and
accurate simulation of graphene-based devices.
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