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A Simple and Efficient Method of Moments Solution
Procedure for Solving Time-Domain Integral
Equation—Application to Wire-Grid Model

of Perfect Conducting Objects
Sadasiva Rao , Fellow, IEEE

Abstract—In this paper, a straightforward method of moments
procedure to solve the time-domain integral equation is presented
and applied to a wire-grid model of an arbitrarily shaped conduct-
ing body. The conducting body is illuminated by a Gaussian plane
wave. Contrary to all the available time-domain algorithms, this
procedure does not involve marching in time thus eliminating error
accumulation, a major source for late-time instability problem. The
procedure presented in this paper is conceptually simple, numeri-
cally efficient, and handles multiple excitations in a trivial manner,
all the while remaining stable. The numerical procedure utilizes
pulse functions for space variable and time-shifted Gaussian func-
tions for time variable, respectively. Furthermore, the numerical
procedure adopts Galerkin method of solution implying the usage
of same time and space functions for both expansion and testing.
The numerical results obtained in the time domain are validated by
comparing with the data obtained from the frequency domain solu-
tion at several frequencies and performing inverse discrete Fourier
transform.

Index Terms—Electromagnetic scattering, method of moments,
time domain analysis.

I. INTRODUCTION

UNTIL recently, a time-stepping process, popularly known
as the Marching-on-in-Time (MOT) method [1], has been

the preferred technique for solving the numerical solution of
Time-Domain Integral Equation (TDIE) for electromagnetic
field problems. The main advantage of the MOT method is that,
when used as an explicit scheme, it requires no matrix inversion,
a computationally intensive step in any numerical algorithm [1].
Unfortunately, the MOT procedure is prone to late-time instabil-
ities. The primary source of instability seems to be the method
itself where the accumulation of error occurs at each time step.
Over the last 50 years, there have been several proposed reme-
dies to overcome this problem [2]–[20]. However, most of the
proposed remedies only try to arrest the instabilities, successful
only for simple problems, and invariably fail for complex ob-
jects. Even the implicit schemes in time domain, which require
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a matrix inversion, are vulnerable to the instability problem and
hence are of little use to a practicing engineer.

Recently, a new type of algorithm was developed and applied
to wire-grid models of arbitrary bodies to solve the TDIE using
the conventional method of moments (MOM) solution proce-
dure [21]. In the MOM numerical solution scheme, the arbitrary
wire was divided into subdomains and the standard pulse func-
tions were used to represent the space variable along the length
of the wire. The time variable is approximated by a set of time-
shifted Gaussian functions. Note that the time-shifted Gaussian
functions represent entire domain functions and decay as time
extends to infinity. As a result, the time-domain signature stays
stable even at a late time. For testing purposes, point match-
ing was used for both the space and time variables. Because of
the conventional MOM procedure, the new method can handle
multiple incident pulses, with varying frequency signature bands
and directions of incidence, necessary for monostatic RCS cal-
culations, with only a fractional additional cost as compared to
a single incident field.

The most important point to be noted regarding the work
presented in [21], and this paper, is the central idea is a depar-
ture from the time-marching methods of the previous 50 years.
It should be noted that the problem is solved by developing a
matrix equation over a fixed time interval and space domain uti-
lizing the standard MOM. Obviously, we have a lot of freedom
in selecting basis and testing functions for the MOM solution
which eventually dictates the structure of the MOM matrix and
the accuracy of the solution. The final matrix equation can be
solved in any suitable manner including inverting the matrix as
done in [21]. Also, because of this fact, one can solve multiple
right-hand sides unlike any previously available MOT methods.
However, one disadvantage of this new procedure is the required
inversion of large real matrix of dimension P = M × N , where
M and N represent the number of time functions and number
of wire subdomains, respectively. Thus, the matrix P could be
quite large even for moderately complex wire models.

In this paper, we alleviate this problem, i.e., storage and
inversion of a large matrix, by redefining the Gaussian func-
tions used for expressing the time variable in a controlled
manner and adopting Galerkin procedure as described in the
following sections. These modifications allow us to generate
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Fig. 1. Arbitrary body modeled by wire grid.

a blockwise lower triangular matrix, which is also blockwise
Toeplitz, instead of a full matrix as in [21]. Further, the block-
wise Toeplitz nature of the new matrix drastically reduces the
storage also. Finally, the solution is obtained by a trivial process
of back substitution resulting in an extremely efficient numerical
procedure.

The new procedure offers several advantages and makes the
algorithm computationally efficient. First of all, the MOM ma-
trix of dimension P is a blockwise lower triangular matrix and,
hence, easily solvable by back-substitution avoiding expensive
matrix inversion. Next, the lower triangular matrix is also a
block Toeplitz matrix with each block of dimension N . Thus,
we need to compute only P × N elements compared to P 2 el-
ements as in [21]. Since the matrix inversion step is eliminated,
the new algorithm is very efficient and remains stable for very
long solution times.

In the following sections, we present detailed mathematical
steps, numerical solution procedure, and numerical results com-
paring with data obtained using the frequency domain MOMs
(FD-MOM) solution plus IDFT procedure.

II. MATHEMATICAL FORMULATION

Consider an arbitrary shaped body, modeled as a wire-mesh as
shown in Fig. 1, illuminated by a time-domain pulse. Following
the mathematical procedure presented in [1], the TDIE may be
written as [

∂2A

∂t2
+ ∇Ψ

]
tan

=
[
∂Ei

∂t

]
tan

(1)

where

A(t, r) = μ

∫
�

ŝ′I(t − R/c, r′)
4πR

d�′ (2)

Ψ(t, r) =
−1
ε

∫
�

∂I(t − R/c, r′)/∂�

4πR
d�′ (3)

and R =
√
|r − r′| + a2 . (4)

In (1)–(4),
ŝ → Unit vector along the wire axis.
I → Induced current.
r → Observation point on the body.
r′ → Source point on the body.

Fig. 2. Wire segments connected to an ordinary node.

Ei → Incident electric field.
μ → permeability of the surrounding space.
ε → permittivity of the surrounding space.
a → radius of the wire.

Next, we consider the solution of (1) using the MOM.

III. MOM SOLUTION PROCEDURE

First of all, we note that the wire mesh consists of several
electrically short wires, referred to as wire segments, mutually
attached to each other to approximate the given body. The com-
mon point where several wire segments are attached is known as
a node. If only one segment is attached to a node, then that node
is referred to as a boundary node and removed from the solution
scheme. When only two wires are attached to a given node, the
node is referred to as an ordinary node and one unknown is
associated with this node as shown in Fig. 2. Further, if more
than two wire segments are attached to a given node, then we
have a junction node and the number of unknowns associated
with this junction node is one less than the total number of wires
connected to this node. We note that the junction node can be
easily handled in an identical manner as an ordinary node as
presented in [1] and [21].

Let us consider an ordinary node as shown in Fig. 2. Let the
position vector rn , defined with respect to the global coordinate
origin ©, represent the nth node. Two-wire segments S±

n , with
radii a±

n , are connected to this node and the induced current is
arbitrarily chosen as flowing from S−

n to S+
n .

Next, for numerical purposes, let us define the upper limit
on the time variable t = T , where T represents the time when
the incident pulse becomes negligible. Then, we divide the time
axis 0 → T into M uniform time intervals given by Δt and
denote tm = mΔt for m = 1, 2, . . . M . We note that, initially,
the MOM scheme is applied to a finite interval 0 → T . We also
note that extending the time interval to later times is trivial as
discussed later.

Now, we define the approximation to the induced current
I(t, r) as

I(t, r) ≈
M∑

m=1

N∑
n=1

Im,n fm (t) gn (r) (5)
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where

fm (t) ≡ e−( t−m Δ t
σ )2

0 < t < ∞ (6)

and

gn (r) ≡
{

1, r ∈ (rn− 1
2
, rn+ 1

2
)

0, otherwise.
(7)

In (6) and (7), σ represents the standard deviation of the Gaussian
function and rn± 1

2
represents the midpoint of segment S±

n . Here,
we note that the choice of σ is critical to obtain a blockwise
Toeplitz moment matrix as discussed later.

Thus, for a complex body approximated by a wire mesh, we
have N space basis functions including basis functions associ-
ated with junction nodes, M time functions, and P = M × N
unknowns in the MOM scheme. The induced current is cal-
culated for each unknown by solving (1) as described in the
following.

Considering the Galerkin testing procedure, we use the func-
tions defined in (6) for time variable and (7) for space variables,
respectively. Defining

< fm (t)gn (r)ŝ, fp(t)gq (r′)ŝ′ >

=
∫

t

∫
�

fm (t)fp(t)gn (r)gq (r′) ŝ · ŝ′ d� dt (8)

we can write (1) after testing as

< fm (t)gn (r)ŝ,
[
∂2A

∂t2
+ ∇Ψ

]
>

=< fm (t)gn (r)ŝ,
[
∂Ei

∂t

]
> (9)

for m = 1, 2, . . . M and n = 1, 2, . . . N .
Considering the integration on space variable, we can rewrite

(9) as

�n

∫
t

fm (t)
[
∂2A(t, rn , r′)

∂t2
· ŝn

]
dt

+
∫

t

fm (t)
[
Ψ(t, rn− 1

2
, r′) − Ψ(t, rn+ 1

2
, r′)

]
dt

= �n

∫
t

fm (t)
[
∂Ei(t, rn )

∂t
· ŝn

]
dt (10)

where ŝn and �n represent the unit tangential vector at r = rn

and length of the nth-wire segment, respectively [1].
Next, the integration on the time variable is carried out in the

following manner:
1) Divide the interval 0 → T into K uniform time intervals

given by Δtk and denote tk = (k − 1)Δtk + 0.5Δtk for
k = 0, 1, 2, . . . K. Note that, in general, Δtk 
= Δt which
also implies that K 
= M . However, for simplicity, we
may choose them to be same.

2) Applying the numerical integration on time variable and
using finite difference approximation, we can rewrite (10)

as

�n

Δtk

K∑
k=1

fm (tk ) [A(tk , rn , r′) · ŝn ]

− 2�n

Δtk

K∑
k=1

fm (tk ) [A(tk−1 , rn , r′) · ŝn ]

+
�n

Δtk

K∑
k=1

fm (tk ) [A(tk−2 , rn , r′) · ŝn ]

+
K∑

k=1

fm (tk ) Ψ(tk , rn− 1
2
, r′)Δtk

−
K∑

k=1

fm (tk ) Ψ(tk , rn+ 1
2
, r′)Δtk

= �n

K∑
k=1

fm (tk )
[
∂Ei(tk , rn )

∂t
· ŝn

]
Δtk . (11)

Considering the expansion procedure next, we have

A(tk , rn , r′) = μ

M∑
i=1

N∑
j=1

Ii,j fi

(
tk − Rn,j

c

)
ŝj κn,j (12)

for k = 1, 2, . . . ,K, where

κn,j =
∫

�j

d�′

4π Rn
(13)

Rn = |rn − r′|, Rn,j = |rn − rj |, and ŝj is the unit tangential
vector at � = �j .

Next, let us consider the evaluation of Ψ(tk , rn , r′). Consid-
ering (3), replacing the derivative operation with finite difference
approximation, and substituting (5), we have

Ψ(tk , rn , r′) =
−1
ε

M∑
i=1

N∑
j=1

Ii,j
1∣∣∣�j+ 1

2
− �j− 1

2

∣∣∣
×

[
fi

(
τk,n,j+ 1

2

)
κn,j+ 1

2
− fi

(
τk,n,j− 1

2

)
κn,j− 1

2

]
(14)

for k = 1, 2, . . . ,K where

κn,j± 1
2

=
∫

�j ± 1
2

d�′

4π Rn,j± 1
2

, (15)

Rn,j± 1
2

=
∣∣∣rn − rj± 1

2

∣∣∣ (16)

τk,n,j± 1
2

= tk −
Rn,j± 1

2

c
. (17)

Using the expansion and testing procedures described so far,
it is trivial to generate a matrix equation ZX = Y of dimension
P = M × N . The elements of Z-matrix are formed by using
(11), (12), and (14). Note that Zp,q represents a matrix element
of the Z-matrix, where

p = (m − 1)N + n, q = (i − 1)N + j

m, i = 1, 2, . . . ,M, n, j = 1, 2, . . . , N.
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Thus, we have

Zp,q =
μ�n

Δtk
[ŝn · ŝj κn,j ]

×
K∑

k=1

fm (tk ) [fi(τk,n,j ) − 2fi(τk−1,n,j ) + fi(τk−2,n,j )]

+
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ε
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2
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(
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2 ,j− 1
2
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2

+
Δtk

ε
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2
− �j− 1

2

∣∣∣
K∑

k=1

fm (tk )fi

(
τk,n− 1

2 ,j− 1
2

)
κn− 1

2 ,j− 1
2
.

(18)

The right-hand side Y involves the incident field terms given
by

Y = [Y 1 ,Y 2 ,Y 3 , . . . ,Y M ]T (19)

where each Y m ,m = 1, 2, . . . M is a column vector of dimen-
sion N and the elements are given by

(Yn )m = �n

K∑
k=1

fm (tk )
[
∂Ei(tk , rn )

∂t
· ŝn

]
Δtk . (20)

At this stage, we note that multiple incident pulses with varying
frequency content can be easily accommodated by adding more
column blocks to the Y -matrix.

As mentioned earlier, the choice of σ defined in (6) is im-
portant for the generation of a block Toeplitz matrix. Consid-
ering (6) and with the choice of σ = Δt

6 , we observe that the
mth-Gaussian function is essentially nonzero only in the in-
terval t = (m − 1)Δt to t = (m + 1)Δt. Here, we note the
following.

1) Because of the nature of the retarded kernel, the matrix
generated is a lower triangular matrix given by

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z1,1 Ø Ø · · · Ø

Z2,1 Z2,2 Ø · · · Ø

Z3,1 Z3,2 Z3,3 · · · Ø
...

...
...

...
...

ZM,1 ZM,2 ZM,3 · · · ZM,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(21)

where each Zm,i , m = 1, 2, . . . M and i = 1, 2, . . . ,M
is a matrix of dimension N representing the mutual inter-
action between the spatial basis functions for a given pair
of testing time function m and source time function i.

2) Referring to (18), we note that for i > m, the matrix
blocks are zero. This is because, for time functions fm (tk )
and fi(τk,n,j ), the time intervals do not overlap resulting
in zero value of the product.

3) We further note that all the diagonal blocks are the
same and all off-diagonal blocks are given by Zm,i =
Z |m−i|+1,1 .

4) Because of the Toeplitz nature, only the blocks in the first
column of (21) need to be computed and stored. All other
blocks can be generated from the first column as needed.

5) Because of the lower triangular nature of the matrix, the
solution can be obtained in a trivial manner. To obtain the
solution, we need to invert and store the first block Z1,1 .
However, this needs to be done only once.

Further, the response to next M time steps, i.e., from T → 2T
can be easily obtained by only modifying the right-hand side. We
note that for this case, the right-hand side would be Y − ZXpre,
where Xpre represents the coefficients already calculated for
zero to M -steps and Z represents the matrix containing vector
and scalar potential terms contributing to zero to M time steps.
The Z-matrix is also Toeplitz and can be obtained in the same
manner as Z-matrix. Also note that the Z-matrix need not be
inverted and may be stored if several M -time steps are needed.

IV. NUMERICAL RESULTS

In this section, we present numerical results for several con-
ducting objects modeled by wire-grid with wire radius set equal
to 0.001 m. Further, for all examples, the incident field is given
by

Ei(t, r) = Eo
4

TP
√

π
e−γ 2

(22)

where

γ =
4

TP
(ct − cto − r · ak ). (23)

In (22) and (23), ak is the unit vector in the direction of propaga-
tion of the incident wave, TP is the pulsewidth of the Gaussian
impulse, Eo · ak = 0, r is a position vector relative to the origin,
c is the velocity of propagation in the external medium, and to is
a time delay which represents the time at which the pulse peaks
at the origin. Also, we have Eo = 120 πax , ct0 = 6.0 LM,
T − P = 4.0 LM, and k = −az . Note that 1 LM = 3.333 ns.
Further, for all examples, we have T = 2 ∗ ct0 = 12 LM, by
which time the incident pulse drops to negligible value. Finally,
we note that the number of time basis functions depend on the
maximum frequency content of the incident pulse and 30–60
time-shifted Gaussian functions are required for the given inci-
dent field to generate reasonable accuracy in the time-domain
solution.

Initially, we consider the same examples presented in [21] for
comparison purposes and also to show that the present method
is more efficient. The time history is restricted to 30 LM in each
case to obtain proper measure of the efficiency.

As a first example, consider three straight wires, each 2.0 m
long, placed along the x-, y-, and z-axes and joined at the origin,
as shown in Fig. 3. Each wire is divided into ten segments
and the wire-junction is illuminated by a Gaussian plane wave
described by (22). The induced current at the center of the wire
placed along the x-axis is obtained using the present procedure
and shown in Fig. 3. The result is compared with [21]. There are
30 basis functions for space and time variables, respectively, for
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Fig. 3. Current induced on a 3-wire structure illuminated by a Gaussian plane
wave. The wire radius = 0.001 m.

Fig. 4. Current induced on a wire-mesh model of a square plate illuminated
by a Gaussian plane wave. The wire radius = 0.001 m.

the time-domain solution. The CPU times for this problem are:
0.024 s for the present method and 3.964 s for [21].

Next, consider a wire-mesh arranged in the shape of a square
plate of 1.0 × 1.0 m, located in the XY -plane. The mesh is
illuminated by a Gaussian plane wave described by (22). The
induced current at the center of the mesh, highlighted by a dot
in the inset of Fig. 4, is obtained using the new procedure and
compared with [21]. There are 377 and 30 basis functions for
space and time variables, respectively, for both time-domain
solutions. Both TD solutions compare very well, as shown in
Fig. 4. The CPU times for this problem are: 7.452 s for the
present method and 2126.2 s for [21].

Next, we consider a spherical wire-cage, 1.0 m radius, located
with the center of the wire cage coinciding with the coordinate
center. The mesh is illuminated by a Gaussian plane wave de-
scribed by (22). The induced current is obtained at the equator
of the sphere, highlighted by a dot in the inset of Fig. 5 using the
TD solution procedure and compared with the IDFT solution.
There are 449 and 30 basis functions for space and time vari-
ables, respectively, for both time-domain solutions. Both TD
solutions compare very well, as shown in Fig. 5. The CPU times
for this problem are: 9.68 s for the present method and 3813.2 s
for [21].

Fig. 5. Current induced on a wire-mesh model of a sphere illuminated by a
Gaussian plane wave. The wire radius = 0.001 m.

Fig. 6. Current induced on a wire-mesh model of a cube illuminated by a
Gaussian plane wave. The wire radius = 0.001 m.

As a fourth example, we consider a cubical wire-cage, 1.0 m
side. The mesh is illuminated by a Gaussian plane wave de-
scribed by (22). The induced current is obtained at the center
of the top surface using the TD solution procedures of [21]
and present procedure. There are 469 and 30 basis functions
for space and time variables, respectively, for the time-domain
solution. The numerical results for the present method and [21]
are shown in Fig. 6, and compared very well. The CPU time
for this problem are: 13.8 s for the present method and 4174.2 s
for [21].

Now, we consider a few more examples using only the present
procedure and compare the results with frequency domain so-
lution combined with inverse discrete Fourier transform (IDFT)
method.

Consider a conducting object shaped as an almond as shown
in the inset of Fig. 7. We note that this is an object with a low
radar cross section, and hence difficult to model. The object is
described mathematically as follows:

Let (s, t) represent two parametric coordinates. Then,
for the upper surface, we have − 5

12 < t < 0, x = Lt, y =
0.193333L

√
1−( 1 2 t

5 )2 cos s, and z = 0.064444L
√

1−( 1 2 t
5 )2 sin s.

For the lower surface, we have − 25
12 < t < 0, x =

Lt, y = 4.83345L[
√

1−( 1 2 t
2 5 )2 − 0.96] cos s, and z = 1.61115L

[
√

1−( 1 2 t
2 5 )2 − 0.96] sin s. Also, the parameter s changes from

−π to π and L = 1.4538 m. The induced current is sampled at
the center of the upper surface indicated by a dot in the figure.
There are 1079 and 60 basis functions for space and time vari-
ables, respectively. The TD solution procedure is compared with
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Fig. 7. Current induced on a wire-mesh model of an almond illuminated by a
Gaussian plane wave. The wire radius =0.001 m.

Fig. 8. Current induced on a wire-mesh model of a sphere of 0.5 m radius
illuminated by a Gaussian plane wave. The wire radius = 0.001 m.

the IDFT solution. The IDFT solution is obtained by solving the
frequency domain MOM problem at 256 equally spaced fre-
quency points in the 0–400-MHz frequency band and perform-
ing the inverse Fourier transform. We note a good comparison
between the two solutions.

To illustrate the absence of late time instabilities, the mag-
nitude of the current is plotted as a function of time using log
scale and shown in the same figure. Note that the base of the
logarithm is 10. We note that the current reaches a value of
10−300 at around 25 LM and set to zero beyond.

Next, consider a sphere of 0.5 m radius, with center coincid-
ing with the coordinate origin, modeled by thin wires, as shown
in the inset of Fig. 8. This example is presented to illustrate
the capability of the present method to handle multiple incident
fields. The object is illuminated: 1) by a Gaussian impulse as in

Fig. 9. Current induced on a wire-mesh model of an aircraft-like object illu-
minated by a Gaussian plane wave. The wire radius = 0.001 m.

the previous example (case 1), and 2) by a similarly polarized
pulse with half the pulse width (case 2). The time-domain solu-
tion results are compared with the IDFT solution and presented
in the Fig. 8. There are 524 and 60 basis functions for space and
time variables, respectively. We note good comparison for both
cases.

Next, we consider an aircraft-like object, as shown in Fig. 1.
The object is symmetrically placed in the XY-plane such that the
center of the lower side (belly) approximately coincides with the
coordinate origin. The object dimensions are: 0.97 m, 0.86 m,
and 0.25 m along the X-, Y -, and Z-axes, respectively. There
are 1700 and 30 basis functions for space and time variables,
respectively, for the time-domain solution. The current is sam-
pled at the middle of an edge shown by a dot in the Fig. 1. The
IDFT solution is obtained in a similar manner as in the previ-
ous example. The results obtained by FD-IDFT, [21], and the
present method are shown in Fig. 9. Although there is a good
comparison for all solutions, some discrepancies are apparent.
These discrepancies may be attributed to possible insufficient
sampling at the higher frequencies for the IDFT solution and
may be corrected by a denser grid. However, we did not at-
tempt developing a denser grid since it involves considerable
effort. The CPU times for this problem are: 452.89 s, 4834.7 s,
and 173,750 s for the present method, IDFT method, and [21],
respectively.

Also, as in the case of almond, the magnitude of the current
is plotted as a function of time using log scale and shown in the
same figure. Note that the base of the logarithm is 10. We note
that the current reaches a value of 10−300 at around 60 LM and
set to zero beyond.
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Fig. 10. Wire-grid model of a ship-like object.

Fig. 11. Current induced on a wire-mesh model of a ship-like object illumi-
nated by a Gaussian plane wave. The ship is 5.56 m long, 0.716 m wide, and
0.387 m height and placed such that the origin is approximately coinciding with
center of the top deck. The wire radius = 0.001 m.

Finally, we consider a ship-like object, shown in Fig. 10. The
ship is 5.56 m long, 0.716 m wide, and 0.387 m height and
placed such that the origin is approximately coinciding with
center of the top deck. There are 22 694 and 30 basis functions
for space and time variables, respectively, for the time-domain
solution. The current is sampled at the middle of the upper-
deck approximately coinciding with x = y = 0. The numerical
results obtained by the method presented in this paper is shown
in Fig. 11. Also, note that IDFT solution for this example is
prohibitively expensive and hence not attempted.

V. CONCLUSION

In this paper, a stable procedure is to solve the TDIE for
conducting bodies using MOM solution procedure is presented.
Note that the MOM matrix generated in this procedure is lower
triangular and blockwise Toeplitz. Hence, solution of this matrix
is extremely efficient.
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