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Abstract—Computational tools for characterizing electromag-
netic scattering from objects with uncertain shapes are needed in
various applications ranging from remote sensing at microwave
frequencies to Raman spectroscopy at optical frequencies. Often,
such computational tools use the Monte Carlo (MC) method to
sample a parametric space describing geometric uncertainties. For
each sample, which corresponds to a realization of the geometry, a
deterministic electromagnetic solver computes the scattered fields.
However, for an accurate statistical characterization, the number of
MC samples has to be large. In this paper, to address this challenge,
the continuation multilevel Monte Carlo (CMLMC) method is used
together with a surface integral equation solver. The CMLMC
method optimally balances statistical errors due to sampling of the
parametric space, and numerical errors due to the discretization
of the geometry using a hierarchy of discretizations, from coarse
to fine. The number of realizations of finer discretizations can be
kept low, with most samples computed on coarser discretizations
to minimize computational cost. Consequently, the total execution
time is significantly reduced, in comparison to the standard MC
scheme.

Index Terms—Fast Fourier transform (FFT), fast multipole
method (FMM), integral equation, multilevel Monte Carlo method
(MLMC), numerical methods, uncertain geometry, uncertainty
quantification.
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I. INTRODUCTION

NUMERICAL methods for predicting radar and scattering
cross sections (RCS and SCS) of complex targets find en-

gineering applications ranging from microwave remote sensing
soil/ocean surface and vegetation [1], [2] to enhancing Raman
spectroscopy using metallic nanoparticles [3], [4]. When the
target size is comparable to or larger than the wavelength at the
operation frequency, the scattered field is a strong function of
the target shape. However, in many of the applications, whether
the target is a (vegetated) rough surface or a nanoparticle, its
exact shape may not be known and has to be parameterized us-
ing a stochastic/statistical model. Consequently, computational
tools, which are capable of generating statistics of a quantity
of interest (QoI) (RCS or SCS in this case) given a geometry
described using random variables/parameters, are required.

These computational tools often use the Monte Carlo (MC)
method [5]–[11]. The MC method is nonintrusive and straight-
forward to implement; therefore, its incorporation with an
existing deterministic EM solver is rather trivial. However,
the traditional MC method has an error convergence rate of
O(N−1/2) [12], where N is the number of samples in the para-
metric space used for describing the geometry. Provided more
regularity of the QoI w.r.t. the geometry parameters, quasi-MC
methods may have a better convergence rate, O(N−1) with a
multiplicative log-term that depends on the number of parame-
ters [12], [13]. Both the traditional MC and quasi-MC methods
require large N to yield accurate statistics of the QoI and are
computationally expensive since the function evaluation at each
sampling point, which corresponds to the computation of the
QoI for one realization of the deterministic problem, requires
the execution of a simulation. For practical real-life scattering
scenarios, each of these simulations may take a few hours, if not
a few days.

In recent years, schemes that make use of surrogate models
have received significant attention as potential alternatives to the
MC method [14]–[20]. The surrogate model is generated using
the values of the QoI that are computed by the simulator at a
small number of “carefully selected” (collocation) points in the
parametric space. The surrogate model is then probed using the
MC method to obtain statistics of the QoI. Consequently, the
surrogate model-based schemes are more efficient than the MC
method that operates directly on the computationally expensive
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simulator. The efficiency and accuracy of these schemes leverag-
ing generalized polynomial chaos expansion (gPCE) [21]–[23]
can be improved using a refinement strategy that adaptively
divides the parametric space into smaller domains, in each of
which a separate collocation scheme is used [16], [17]. Addi-
tionally, if the QoI can be approximated in terms of low-order
contributions from only a few of the parameters, one can use
high-dimensional model representation expansions to acceler-
ate the generation of the surrogate model [18]. The surrogate
model-based schemes and their accelerated variants have been
successfully applied to certain stochastic EM problems [24]–
[32]. On the other hand, for the problem of scattering from
geometries with uncertain shapes, all parameters and their high-
order combinations contribute significantly to the QoI limiting
the efficient use of a surrogate model [33]–[35].

Recently, the multilevel Monte Carlo (MLMC) methods have
seen increasing use due to their efficiency, robustness, and sim-
plicity [36]–[42]. The MLMC methods operate on a hierarchy of
meshes and perform most of the simulations using low-fidelity
models (coarser meshes) and only a few simulations using high-
fidelity models (finer meshes). By doing so, their cost becomes
significantly smaller than the cost of the traditional MC meth-
ods using only high-fidelity models. The continuation multilevel
Monte Carlo (CMLMC) algorithm [42] uses the MLMC method
to calibrate the average cost per sampling point and the corre-
sponding variance using Bayesian estimation, taking particular
notice of the deepest levels of the mesh hierarchy, to minimize
the computational cost. To balance discretization and statistical
errors, the CMLMC method estimates how the discretization
error and the computational cost depend on the mesh level and
uses this information to select optimal numbers of levels and
samples on each level.

Surrogate-model-based schemes leveraging gPCE [14], [15],
[43] (as briefly described above) could be an alternative to the
CMLMC method in general. If the response/surrogate model
is smooth and simple, then the collocation scheme used for
computing/finding the coefficients of the gPCE requires only
a few deterministic solver executions. However, gPCE-based
surrogate models suffer from several drawbacks: it is not clear
how to determine the number of terms in the gPCE, how to avoid
aliasing effects/errors by computing higher order polynomials,
and how to control the accuracy of the integration needed for
computing the gPCE coefficients. In addition, as mentioned
above, specifically for the scattering problem, surrogate models
lose their efficiency. Ideas from CMLMC and gPCE methods
could be combined, but it goes out of the scope of this paper.

In this paper, a computational framework, which makes use
of the CMLMC method to efficiently and accurately character-
ize EM wave scattering from dielectric objects with uncertain
shapes, is proposed. The deterministic simulations required by
the CMLMC method to compute the samples at different lev-
els are carried out using the Poggio–Miller–Chan–Harrington–
Wu–Tsai surface integral equation (PMCHWT-SIE) solver [44].
The PMCHWT-SIE is discretized using the method of mo-
ments (MoM) and the iterative solution of the resulting ma-
trix system is accelerated using a (parallelized) fast multipole
method (FMM)–fast Fourier transform (FFT) scheme [45]–[51].

Fig. 1. Description of the scattering problem.

Numerical results, which demonstrate the accuracy, efficiency,
and convergence of the proposed computational framework, are
presented. The developed computational framework is proven
effective not only in studying the effects of uncertainty in the ge-
ometry on scattered fields but also in increasing the robustness
of the FMM–FFT accelerated PMCHWT-SIE solver by testing
its convergence for a large set of scenarios with deformed ge-
ometries and varying mesh densities, quadrature rules, iterative
solver tolerances, and FMM parameters.

Remark 1: Reasons for this specific choice of SIE formu-
lation (namely PMCHWT) can be explained as follows. One
can define two types of “convergence” for the SIE formulation
used within the CMLMC framework: 1) convergence of the it-
erative solver, and 2) convergence of the solution as mesh is
made denser. The PMCHWT formulation produces a first-kind
SIE, and it is well known that there are other formulations that
produce second-kind SIEs, which are better behaved under con-
vergence type (2). However, results obtained by solving these
SIEs are less accurate than those of the PMCHWT formula-
tion [52]. Additionally, PMCHWT-SIE is better behaved under
convergence type (1), i.e., its solution gets more accurately con-
sistently as mesh is made denser. Having said that, it is clear
that the convergence type (1) might have a significant effect on
the efficiency of the CMLMC. Use of second-kind SIEs within
the CMLMC framework will be investigated elsewhere.

II. FORMULATION

This section describes a computational framework for charac-
terizing scattering from dielectric objects with uncertain shapes
(Fig. 1). It is assumed that the shape of the scatterer can be
parameterized by means of random variables. The QoI is the
SCS over a user-defined solid angle (i.e., a measure of far-field
scattered power in a cone). Section II-A describes the MLMC
and CMLMC methods, Section II-B formulates a scheme to
parameterize and generate objects with uncertain shapes, and
Section II-C outlines the FMM–FFT accelerated PMCHWT-
SIE solver used for computing the SCS of a given object.

A. MLMC and CMLMC Methods

This section describes elements of the MLMC and CMLMC
methods relevant to the characterization of scattering from ob-
jects with uncertain shapes. A more indepth description of these
techniques can be found in [42].
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Let ξ and g(ξ) represent the vector of random parame-
ters/variables and the QoI, respectively. The goal of the MLMC
method is to approximate the expected value, E [g], to a guar-
anteed tolerance TOL with predefined probability, and mini-
mal computational cost. To achieve this, the method constructs
a telescoping sum, defined over a sequence of mesh levels
� = 0, . . . , L as described next.

Let {P�}L
�=0 and {h�}L

�=0 be sequences of meshes that dis-
cretize the randomly generated object’s surface and their average
element edge sizes, respectively. It is assumed {P�}L

�=0 are gen-
erated hierarchically with h� = h0β

−� for h0 > 0 and a constant
β > 1. A method to such meshes for the purpose of illustrating
the proposed technique is described in Section II-B.

Let g�(ξ) represent the approximation to g(ξ) computed using
mesh P� . The MLMC method expresses E [gL ], the expected
value of the most accurate approximation gL , using

E [gL ] =
L∑

�=0

E [G� ] (1)

where G� is defined as

G� =

{
g0 if � = 0

g� − g�−1 if � > 0.
(2)

Note that g� and g�−1 are computed using the same input random
parameter ξ.

In the telescoping sum (1), the expected values in prac-

tice are replaced by sample averages, i.e., E [G� ] ≈
∼
G� =

M−1
�

∑M�

m=1 G�,m , where random variable G�,m have the same
distribution as G� and are independent identically distributed
samples. G�,m represents the mth random sample of the ran-
dom output G� . G� and G�,m are random variables because
they depend on random (input) parameters ξ, which is defined
in (17).

As � increases, the variance of G� decreases. As a result,
the total computational cost can be reduced by approximating
E [G� ] with a smaller number of samples.

The CMLMC algorithm is an improved version of the MLMC
method in that it approximates E [g] with a sequence of decreas-
ing tolerances [42]. In doing so, it continuously improves esti-
mates of several problem-dependent parameters, while solving
relatively inexpensive problems that by themselves would yield
large tolerances. The CMLMC algorithm assumes that the con-
vergence rates for the mean (weak convergence) and variance
(strong convergence) follow

E [g − g� ] ≈ QW hq1
� (3a)

Var [g� − g�−1 ] ≈ QS hq2
�−1 (3b)

for QW �= 0, QS > 0, q1 > 0, and 0 < q2 ≤ 2q1 [42]. Note that
variables q1 and q2 are solver- and problem-dependent.

For example, the CMLMC algorithm estimates q1 ≈ 2
and q2 ≈ 4, and q1 ≈ 3 and q2 ≈ 5 for the examples in
Sections III-B and III-C, respectively. These parameter esti-
mates are crucial to optimally distribute the computational ef-
fort, as shown below. The total computational cost of the adap-

tive algorithm is close to that of the MLMC method with correct
values of parameters given a priori.

For the sake of completeness, the main ingredients of the
CMLMC algorithm (described in full in [42]) are stated here.
To estimate the number of samples, the algorithm invokes of
cost per sample and total cost as described next.

The CMLMC estimator for the QoI, A, can be written as

A =
∑L

�=0

∼
G� . Let the average cost of generating one sample

of G� (cost of one deterministic simulation for one random
realization) be

W� ∝ h−dγ
� = h−dγ

0 β�dγ (4)

where d is the spatial dimension and γ is determined by the
computational complexity of the deterministic solver. For the
FMM–FFT-accelerated PMCHWT-SIE solver used here d = 2
(only surfaces are discretized) and γ ≈ 1 (Sections II-C and III-
B). Note that this solver calls for an iterative solution of the
MoM system of equations (Section II-C), and that the cost of
computing a sample of G� may fluctuate for different realiza-
tions depending on the number of iterations required. Finally, for
the method used for generating {P�}L

l=0 (Section II-B), β = 2.
The total CMLMC computational cost is

W =
L∑

�=0

M�W�. (5)

The estimator A satisfies a tolerance with a prescribed failure
probability 0 < ν ≤ 1, i.e.,

P [|E [g] −A| ≤ TOL] ≥ 1 − ν (6)

while minimizing W . The total error is split into bias and sta-
tistical error

|E [g] −A| ≤ |E [g −A]|︸ ︷︷ ︸
Bias

+ |E [A] −A|︸ ︷︷ ︸
Statistical error

where θ ∈ (0, 1) is a splitting parameter, so that

TOL = (1 − θ)TOL︸ ︷︷ ︸
Bias tolerance

+ θTOL︸ ︷︷ ︸
Statistical error tolerance

. (7)

The CMLMC algorithm bounds the bias, B = |E [g −A]|, and
the statistical error as

B = |E [g −A]| ≤ (1 − θ)TOL (8)

|E [A] −A| ≤ θTOL (9)

where the latter bound holds with probability 1 − ν. Note that
θ itself can be a variable [42].

To satisfy condition in (9), we require

Var [A] ≤
(

θTOL
Cν

)2

(10)

for some given confidence parameter, Cν , such that
Φ(Cν ) = 1 − ν

2 , (see more in [53]); here, Φ is the cumulative
distribution function of a standard normal random variable.

By construction of the MLMC estimator, E [A] = E [gL ],
and by independence, Var [A] =

∑L
�=0 V�M

−1
� , where V� =

Var [G� ]. Given L, TOL, and 0 < θ < 1, and by minimizing W
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subject to the statistical constraint (10) for {M�}L
�=0 gives the

following optimal number of samples per level � (apply ceiling
function to M� if necessary):

M� =
(

Cν

θTOL

)2 √
V�

W�

(
L∑

�=0

√
V�W�

)
. (11)

Summing the optimal numbers of samples over all levels yields
the following expression for the total optimal computational
cost in terms of TOL:

W (TOL, L) =
(

Cν

θTOL

)2
(

L∑

�=0

√
V�W�

)2

. (12)

The total cost of the CMLMC algorithm can be estimated using
Theorem 1 as follows [36], [39], [40], [54], [55].

Theorem 1: Let d = {1, 2, 3} denote the problem dimen-
sion. Suppose there exist positive constants q1 , q2 , γ > 0
such that q1 ≥ 1

2 min(q2 , γd), and |E [g� − g]| = O(hq1
� ),

Var [g� − g�−1 ] = O(hq2
� ), and W� = O(h−dγ

� ). Then for any
accuracy TOL and confidence level ν, 0 < ν ≤ 1, there exist a
deepest level L(TOL) and number of realizations {M� (TOL)}
such that

lim
TOL→0

inf P [(|E (g) −A| ≤ TOL)] ≥ 1 − ν (13)

with cost

W (TOL) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

O (
TOL−2), q2 > dγ

O
(
TOL−2 (log(TOL−1)

)2
)
, q2 = dγ

O
(

TOL−
(

2+ d γ −q 2
q 1

))
, q2 < dγ.

(14)

This theorem shows that even in the worst case scenario,
the CMLMC algorithm has a lower computational cost than
that of the traditional (single level) MC method, which scales
as O(TOL−2−dγ/q1 ). Furthermore, in the best case scenario
presented above, the computational cost of the CMLMC algo-
rithm scales as O (

TOL−2), i.e., identical to that of the MC
method assuming that the cost per sample is O (1). In other
words, for this case, the CMLMC algorithm can in effect remove
the computational cost required by the discretization, namely
O(TOL−dγ/q1 ).

Remark 2: Note that the numerical errors relevant to the de-
terministic solver, such as discretization error, error due to the
numerical integration used for computing the MoM matrix en-
tries, and error due to the FMM used for accelerating the matrix-
vector product, do not have a significant effect on the statistical
error, but they contribute to the bias error. Convergence of bias
and the statistical errors are essential for CMLMC.

B. Random Shape Generation

This section describes a method to generate the sequence of
meshes {P�}L

�=0 that are used in the numerical experiments
(Section III) to demonstrate the properties of the CMLMC
scheme. Alternative ways to generating random perturbations

can be found in [22], [56]–[59]. The method used here relies on
perturbing an initial mesh generated on a sphere and refining it
as level � is increased as described next.

First, the unit sphere is discretized using a mesh P0 with trian-
gular elements, then the perturbations are generated by moving
the nodes of this mesh using

v(ϑm , ϕm ) ≈ ṽ(ϑm , ϕm ) +
K∑

k=1

akκk (ϑm , ϕm ) (15)

where ϑm and ϕm are angular coordinates of node
m, v(ϑm , ϕm ) is its (perturbed) radial coordinate, and
ṽ(ϑm , ϕm ) = 1 m is its (unperturbed) radial coordinate on the
unit sphere (all in spherical coordinate system). Here, κk (ϑ, ϕ)
are obtained from spherical harmonics by rescaling their argu-
ments and ak , which satisfy

∑K
k=1 ak < 0.5, are uncorrelated

random variables.
For the numerical experiments considered in this pa-

per, K = 2, and κ1(ϑ, ϕ) = cos(α1ϑ) and κ2(ϑ, ϕ) =
sin(α2ϑ) sin(α3ϕ), where α1 , α2 , and α3 are positive con-
stants. If a κk (ϑ, ϕ) depends on ϕ, then its dependence on ϑ
must vanish at the poles ϑ = {0, π}. Therefore, α2 must be an
integer. Additionally, α3 must be an integer to generate a smooth
perturbation.

Mesh P0 , which is now after the application of (15), is also
rotated and scaled using the simple transformation

⎡

⎢⎣
x′

m

y′
m

z′m

⎤

⎥⎦ = L̄(lx , ly , lz )R̄x(ϕx)R̄y (ϕy )R̄z (ϕz )

⎡

⎢⎣
xm

ym

zm

⎤

⎥⎦ . (16)

Here, (xm , ym , zm ) and (x′
m , y′

m , z′m ) are the coordinates of
node m before and after the transformation, matrices R̄x(ϕx),
R̄y (ϕy ), and R̄z (ϕz ) perform rotations around x, y, and z axes
by angles ϕx , ϕy , and ϕz , and matrix L̄(lx , ly , lz ) implements
(down) scaling along x, y, and z axes by lx , ly , and lz , respec-
tively.

The random variables used in generating the final version of
P0 are the perturbation weights ak , k = 1, . . . , K, the rotation
angles ϕx , ϕy , and ϕz , and the scaling factors lx , ly , and lz , mak-
ing the dimension of the stochastic space K + 6, i.e., random
parameter vector

ξ = {a1 , . . . , aK , ϕx, ϕy , ϕz , lx , ly , lz}. (17)

Note that P0 is the coarsest mesh used in CMLMC (� = 0)
[see Fig. 2(a) for an example]. The mesh of the next level (� = 1),
P1 , is generated by refining each triangle of the perturbed P0
into four (by halving all three edges and connecting midpoints)
[Fig. 2(b)]. The mesh at level � = 2, P2 , is generated in the same
way from P1 [Fig. 2(c)], and so on. All meshes P� at all levels
� = 1, . . . , L are nested discretizations of P0 . This method of
refinement results in β = 2 in (4). Note that no uncertainties are
added on meshes P� , � > 0; the uncertainty is introduced only
at level � = 0. It is assumed that P0 is fine enough to accurately
represent the variations of the highest harmonic in the expansion
used in (15).
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Fig. 2. Example of four nested meshes with (a) 320, (b) 1280, (c) 5120,
and (d) 20 480 triangular elements, which are generated for a perturbed shape
with α1 = 2, α2 = 3, α3 = 2, a1 = 0.04 m, a2 = 0.048 m, ϕx = 0.32 rad,
ϕy = 0.88 rad, ϕz = 0.81 rad, lx = 1.06, ly = 1.08, and lz = 1.07.

C. Electromagnetic Solver

This section briefly describes the PMCHWT-SIE solver used
for the RCS and SCS of a dielectric scatterer with surface S. It
is assumed that sources and fields are time harmonic, i.e., their
time dependence varies as ejωt , where t and ω are the time and
angular frequency, respectively.

Let V1 and V0 represent the space internal and external to
S, respectively. The permittivity, permeability, and characteris-
tic impedance in Vi , i ∈ {0, 1} are εi , μi , and ηi =

√
μi/εi ,

respectively. It is assumed that the scatterer is excited by an
external electromagnetic field with electric and magnetic com-
ponents Einc(r) and Hinc(r). Using the surface equivalence
theorem and enforcing the tangential continuity of total electro-
magnetic fields on S yield the PMCHWT-SIE [44].

n̂(r) × Einc(r) = n̂(r) ×
{
L0 [J](r) + L1 [J](r)

−K0 [M](r) −K1 [M](r)
}

, r ∈ S (18)

n̂(r) × Hinc(r) = n̂(r) ×
{
K0 [J](r) + K1 [J](r)

+ η−2
0 L0 [M](r) + η−2

1 L1 [M](r)
}

, r ∈ S.

(19)

Here, n̂(r) is the outward pointing unit normal vector, and
J(r) and M(r) represent equivalent electric and magnetic sur-
face current densities on S. The integral operators Li [.](r) and

Ki [.](r) in (18) and (19) are

Li [X](r) = jωμi

∫

S

[
Ī +

∇∇′

k2
i

]
· X(r′)gi(r, r′)ds′

Ki [X](r) = ∇×
∫

S

X(r′)gi(r, r′)ds′

where gi(r, r′) = e−jki |r−r ′ |/(4π|r − r′|) is the Green function
of the Helmholtz equation in the unbounded medium with wave
number ki = ω

√
εiμi .

To numerically solve (18) and (19) for the unknowns J(r)
and M(r), S is discretized by triangular elements, and J(r) and
M(r) are approximated as

J(r) =
N∑

n = 1

Īn fn (r) (20)

M(r) =
2N∑

n=N +1

Īn fn−N (r) (21)

where fn (r), n = 1, ..., N , represent Rao–Wilton–Glisson basis
functions [60], and I = [I1 , . . . , I2N ]T is the vector of unknown
coefficients. Substituting (20) and (21) into (18) and (19), and
testing the resulting equations with fm (r), m = 1, ..., N , yield
the MoM system of equations

V̄ = Z̄Ī (22)

where the entries of the vector V̄ and the MOM matrix Z̄ are

V̄m =

{〈
fm ,Einc

〉
, 1 ≤ m ≤ N

〈
fm−N ,Hinc

〉
, N + 1 ≤ m ≤ 2N

(23)

Z̄m,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈fm ,L0 [fn ] + L1 [fn ]〉
1 ≤ m ≤ N, 1 ≤ n ≤ N

−〈fm−N ,K0 [fn ] + K1 [fn ]〉
N + 1 ≤ m ≤ 2N, 1 ≤ n ≤ N

〈fm ,K0 [fn−N ] + K1 [fn−N ]〉
1 ≤ n ≤ N,N + 1 ≤ n ≤ 2N

〈
fm−N , η−2

0 L0 [fn ] + η−2
1 L1 [fn ]

〉

N + 1 ≤ m ≤ 2N,N + 1 ≤ n ≤ 2N.

(24)

Here, the inner product is 〈fm ,a〉 =
∫

S fm (r) · a(r)dr.
Matrix equation (22) is solved iteratively for Ī . The com-

putational cost of multiplying Z̄ with a trial solution vector
scales as O(N iterN 2), where N iter is the number of iterations
required for the residual error to reach the desired level: typi-
cally N iter � N . Likewise, the storage costs of the unacceler-
ated/classical solution scale as O(N 2).

To minimize the computational and storage cost while exe-
cuting the MLMC algorithm, an FMM–FFT scheme is used. A
detailed formulation of FMM and its extension FMM–FTT can
be found in [45]–[51]. The scheme encloses the scatterer in a fic-
titious box that is embedded into a uniform grid of smaller boxes.
Two nonempty boxes (i.e., boxes containing at least a pair of
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patches) constitute a far-field pair if there is at least one box be-
tween them. Otherwise, they form a near-field pair. Interactions
between basis and test functions in near-field pairs (and same
boxes) are computed using (24) and stored in matrix Z̄near . The
contribution of near- and self-interactions to the matrix-vector
multiplication Z̄Ī is calculated by simply multiplying Z̄near

with Ī . The interactions between basis and test functions in far-
field pairs are represented using the radiation patterns of basis
and test functions (sampled over a solid angle of a sphere) and a
translation operator and their contributions to Z̄Ī are computed
using the FMM–FFT scheme. The computational cost and mem-
ory requirement of the FMM–FFT accelerated iterative solution
scale as O(N iterN 4/3 log2/3N) and O(N 4/3 log2/3N), respec-
tively [50], [51]. Note that these estimates are higher than those
of the multilevel FMM [61], [62]; the FMM–FFT scheme is
preferred here since its parallel implementation is significantly
simpler [47]–[51], [63]–[69]. The parallelization strategy imple-
mented here uses a hybrid message passing interface/open multi-
processing (MPI/OpenMP) standard to uniformly distribute the
memory and computational load among processors [47]–[51],
[63]–[69].

Note that the computational cost estimate provided above is
obtained under the assumption that the ratio of the wavelength
to the (average) element edge length stays the same as N is de-
creased/increased [47]–[51]. Within the CMLMC algorithm, the
mesh is refined from one level to the next, while the frequency is
kept constant. This means that the ratio of the wavelength to the
edge length increases and the computational cost of the FFT–
FMM-accelerated solver is expected to scale differently. Indeed,
numerical experiments in Section III show that the CMLMC al-
gorithm estimates the computational cost parameter as γ ≈ 1
for objects comparable to the wavelength in size.

To compute the RCS and SCS, the scatterer is excited by
a plane wave: Einc(r) = E0e

−jk0 û i n c ·r and Hinc(r) = (ûinc ×
E0)/η0e

−jk0 û in c ·r , where ûinc is the direction of propagation.
The unknown vector Ī is solved for under this excitation and
the RCS σrcs(ϑ, ϕ) along direction û(ϑ, ϕ) = x̂ sin ϑ cos ϕ +
ŷ sin ϑ sin ϕ + ẑ cos ϑ is computed using [70]

σrcs(ϑ, ϕ) =

∣∣F(ϑ, ϕ)
∣∣2

4π
∣∣E0

∣∣2 . (25)

Here, F(ϑ, ϕ) is the scattered electric field pattern in the far
field and computed using

F(ϑ, ϕ) = −jωμ0 û(ϑ, ϕ)

× û(ϑ, ϕ) ×
N∑

n = 1

Īn

∫

Sn

fn (r′)ejk0 û(ϑ,ϕ)·r ′dr′

− jk0 û(ϑ, ϕ) ×
2N∑

n=N +1

Īn

∫

Sn −N

fn−N (r′)ejk0 û(ϑ,ϕ)·r ′dr′.

The SCS Csca(Ω) is obtained by integrating σrcs(ϑ, ϕ) over the
solid angle Ω [70].

Csca(Ω) =
1
4π

∫

Ω
σrcs(ϑ, ϕ) sin ϑdϑdϕ. (26)

The integral in (26) is efficiently computed using the exact
quadrature rule in [71].

III. NUMERICAL RESULTS

In all numerical experiments considered in this section,
the scatterer resides in free space (vacuum) with μ0 = 4π ×
10−7 H/m and ε0 = c2

0/μ0 F/m, where c0 is the speed of light
in vacuum, and the scatterer’s permittivity and permeability are
μ1 = μ0 and ε1 = 4ε0 , respectively. For the plane wave excita-
tion,E0 = x̂, ûinc = −ẑ, and ω = 2πf with f = 300 MHz. The
QoI is the SCS Csca(Ω) computed over the cone Ω = [ϑ0 , ϑ1 ] ×
[ϕ0 , ϕ1 ] = [1/6, 11/36]π rad × [5/12, 19/36]π rad. For all ran-
dom perturbations, the parameters of the quasi-spherical har-
monics are α1 = 2, α2 = 3, and α3 = 2. Meshes P� at levels
� = 0, 1, 2, 3, 4, which are generated using the method described
in Section II-B, have {320, 1280, 5120, 20480, 81920} trian-
gles, respectively. Note that not all five mesh levels are required
in every experiment. Since the CMLMC algorithm is stochastic,
15 independent CMLMC runs are executed for each experiment
to statistically characterize the performance of the method.

The matrix system in (22) is solved iteratively using the
transpose-free quasi-minimal residual method [72] with a toler-
ance (residual) of ε� = ε0β

−2� , where � = 0, 1, 2, 3, 4 represent
mesh levels, ε0 = 6.0 × 10−4 , and β = 2 (Section II-B). Using
a level-dependent tolerance is consistent with the dependence
of the discretization error in the QoI, which scales at a (heuristi-
cally determined) rate O (

h2
�

) ∝ O (
β−2�

)
and ensures that the

number of iterations is kept in check when analyzing coarser
meshes. The integrals in (23) and (24) are computed using the
Gaussian quadrature rules; the accuracy of the rule, i.e., number
of quadrature points, adjusts with the mesh level: it is seven
for � = 0, 1, 2 and six for � = 3, 4. For all levels of meshes, the
parameters of the FMM–FFT scheme are selected carefully to
ensure that it has six digits of accuracy [61], [62]. All simu-
lations are executed on Intel(R) Xeon(R) CPU E5-2680 v2 @
2.80-GHz DELL workstations with 40 cores and 128-GB RAM.

For the examples in Sections III-B and III-C, the performance
of the CMLMC is compared to that of the traditional MC method
for varying values of TOL. Note that the MC runs are not actually
executed, but their execution time is predicted using the results
of the CMLMC runs. More specifically, the variance Var(gL )
computed using the CMLMC method is used to predict the
number of required MC samples as NMC ∼ Var(gL )TOL−2 .
Also, note that, since 15 independent CMLMC runs are executed
for each experiment, 15 MC curves are obtained and confidence
intervals are used on plots to visualize the results obtained from
these 15 curves.

A. Single Realization of Random Variables

This section demonstrates that the scattered fields strongly
depend on the shape of the object for the scenarios considered
in the numerical experiments, i.e., f = 300 MHz, ε1 = 4ε0 , and
the size of the object is roughly 2 m. More specifically, J(r) and
M(r) induced on a (rotated and scaled) perturbed geometry and
its RCS are compared to the same quantities of the unit sphere.
The rotated, scaled, and perturbed surface is generated using
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Fig. 3. Amplitudes of (a) J(r) and (b) M(r) induced on the unit sphere
under excitation by an x̂-polarized plane wave propagating in −ẑ direction
at 300 MHz. Amplitudes of (c) J(r) and (d) M(r) induced on the perturbed
shape shown in Fig. 2(c) under excitation by the same plane wave. For all
figures, amplitudes are normalized to 1 and plotted in dB scale.

a1 = 0.04 m, a2 = 0.048 m, ϕx = 0.32 rad, ϕy = 0.88 rad,
ϕz = 0.81 rad, lx = 1.06, ly = 1.08, and lz = 1.07. The dis-
cretization is refined twice, resulting in the mesh with 5120
triangles [Fig. 2(c)]. A mesh with the same number of triangles
is generated on the unit sphere. Fig. 3(a) and (b) shows normal-
ized amplitudes of J(r) and M(r) induced on this unit sphere.
Fig. 3(c) and (d) plots the normalized amplitudes of J(r) and
M(r) on the perturbed shape. It is clear that there is a signifi-
cant difference between the current distributions induced on the
sphere and the perturbed shaped. Fig. 4(a) and (b) compares
σrcs(ϑ, ϕ) of the unit sphere and the perturbed shaped com-
puted on the xz− (ϑ ∈ [0, π] rad, ϕ = 0, and ϕ = π rad) and
yz− (ϑ ∈ [0, π] rad, ϕ = π/2 rad, and ϕ = 3π/2 rad) planes,
respectively.

As expected, the RCS of the perturbed geometry is signif-
icantly different than that of the unit sphere. The results pre-
sented in Figs. 3 and 4 clearly demonstrate the need for a
computational tool that can predict EM fields scattered from
objects with uncertain shapes parameterized using random
variables.

Next, convergence of the error in the SCS of the perturbed
object is demonstrated. The reference SCS value used in the
computation of the relative norm error is obtained using the
finest mesh at the highest level. Fig. 5 plots this error versus
N . A good convergence is observed. Having said that, the error
convergence depends on the specific random perturbation, i.e.,
the realization of the random input vector ξ, defined in (17).
For some realizations that result surfaces with large perturba-

Fig. 4. RCS of the unit sphere and the perturbed shape shown in Fig. 2(c)
computed on (a) xz and (b) yz planes under excitation by an x̂-polarized plane
wave propagating in −ẑ direction at 300 MHz. For (a), ϕ = 0 and ϕ = π rad
in the first and second halves of the horizontal axis, respectively. For (b), ϕ =
π/2 rad and ϕ = 3π/2 rad in the first and second halves of the horizontal axis,
respectively.

Fig. 5. Relative norm error in SCS versus N .

tions, the convergence of the SCS error might be poor. Large
number of such realizations results in nonoptimal identifica-
tion of CMLMC parameters q1 and q2 , and may slow down the
CMLMC method. A possible remedy is not to allow very large
perturbations.
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Fig. 6. (a) Computation times required by the CMLMC and MC methods
versus TOL. (b) Value of the computational cost estimate W [given by (5)] for
the CMLMC and MC methods versus TOL. Computation times are averaged
over 15 repetitions of the experiment.

B. High Variability

In this example, the CMLMC algorithm is executed for
random variables a1 , a2 ∼ U [−0.14, 0.14] m, ϕx , ϕy , ϕz ∼
U [0.2, 3] rad, and lx , ly , lz ∼ U [0.9, 1.1]; here, U [a, b] is the
uniform distribution between a and b. The CMLMC algorithm
is run for TOL values ranging from 0.2 to 0.008. At the lowest
value of TOL, the CMLMC algorithm requires five mesh levels,
i.e., P� , � = 0, 1, 2, 3, 4.

Fig. 6(a) compares computation times for the CMLMC and
MC algorithms as a function of TOL. The figure reveals three
convergence regimes (TOL zones).

The first zone, 0.1 � TOL � 0.3, covers the range where
TOL is larger than the sum of bias and statistical error. No addi-
tional samples and no additional mesh refinements are required
by the CMLMC algorithm. The MC and CMLMC methods
consume similar computational resources.

The second zone, 0.012 � TOL � 0.1, corresponds to a
preasymptotic regime. Both convergence rates are approxi-

mately 2. The statistical error is dominant, and many new sam-
ples on existing meshes P� , � = 0, 1, 2 (by default) are required.
The MC and CMLMC methods again consume similar com-
putational resources. To achieve higher accuracy, both the bias
and the statistical error should be reduced. The statistical error
could be reduced by taking more samples, and the bias by using
finer meshes (i.e., increasing �).

The third zone, 0.008 � TOL � 0.012, corresponds to the
start of the asymptotic regime. The bias becomes important
and finer meshes are required. MC computation time increases
rapidly and for the smallest TOL used, the CMLMC algorithm
becomes almost 10 times faster than the MC method. Note that in
the first and second regimes, the MC method may outperform the
CMLMC algorithm since the latter carries some initial overhead.

For example, for TOL � 0.012, only P� , � = 0, 1, 2, 3 are
required, but for TOL � 0.012 an additional finer mesh, P� ,
� = 4, is required. Sampling on level � = 4 is more expen-
sive; therefore, the MC computation time increases rapidly for
TOL � 0.012. On the other hand, the CMLMC algorithm re-
quires only very few samples on level � = 4, and is, therefore,
significantly faster.

The computational cost estimate W is an indicator of com-
putation time. It depends on how the computational cost of the
deterministic solver changes from level � − 1 to � [as indicated
by parameters γ and β in (4)] and on the order of decay for
the mean and the variance [parameters q1 , q2 in (3a)]. Fig. 6(b)
plots the values of W versus TOL. The curve is similar to that of
the CMLMC computation time given in Fig. 6(a) demonstrating
that γ ≈ 1, q1 ≈ 3, and q2 ≈ 5 are reasonably accurate.

Fig. 7(a) shows the time required to compute G� = g� − g�−1
versus �. Computation times vary roughly as 22� , which ver-
ifies that γ ≈ 1 [since d = 2 and β = 2 in (4)]. Fig. 7(b)
shows E� = E [G� ] versus �, revealing that E� ∼ 2−3� (as-
sumed weak convergence obtained with q1 = 3). Fig. 7(c) shows
V� = Var [G� ] versus �, demonstrating that V� ∼ 2−5� (assumed
strong convergence with q2 = 5).

The results presented in Fig. 6(a) and (b), and Fig. 7(a)–(c)
confirm the assumptions stated in Section II-A as well as the
CMLMC scheme’s quasi-optimality.

Fig. 8 shows θ versus TOL and demonstrates the complex
relationship between TOL and the bias and statistical error. θ
decreases from 1 to ≈ 0.7. θ = 1 implies that the ratio of bias
to the total error is negligible, i.e., that the ratio of of statistical
error to the total error is 1. Such variability in θ is one of the
differences between the CMLMC algorithm and the MLMC
method where θ = 0.5. The blue dots show that for TOL ≈ 0.2,
θ ≈ 1, meaning that the impact of the bias is negligible and that
there is no need to further extend the mesh hierarchy by adding
finer mesh levels.

A higher accuracy can be achieved by decreasing either the
bias or the statistical error (i.e., smaller TOL). θ ≈ 1 means
that the bias is negligible and that the statistical error should
be decreased to achieve a smaller TOL. Only when introducing
a sufficient number of new samples will the statistical error
decrease and the ratio of bias to TOL becomes higher. The
bias can be decreased by including an additional mesh level.
After that, the ratio of bias to TOL is dropping again, and the
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Fig. 7. (a) Time required to compute G� versus �. (b) E� = E [G� ] versus
� and assumed weak convergence curve 2−3� (q1 = 3). (c) V� = Var [G� ]
versus � and assumed strong convergence curve 2−5� (q2 = 5). The experiment
is repeated 15 times independently and the obtained values are shown as error
bars on the curves.

statistical error becomes dominant and should be decreased,
etc. For TOL ≈ 0.01, the present mesh hierarchy is not sufficient
anymore, and the CMLMC algorithm adds one more mesh level.

Another way to study the behavior of G� is to look at its
probability density function (pdf). Fig. 9(a) and (b) plots em-
pirical pdfs of G� from {2000, 400, 50} samples for � = 1

Fig. 8. Value of θ used by the CMLMC algorithm versus TOL. Computation
time is averaged over 15 repetitions of the experiment, i.e., there are 15 values
of θ for a given value of TOL.

Fig. 9. CMLMC pdfs of g� − g�−1 for (a) � = 1 and (b) � = {2, 3}.

and � = {2, 3}, respectively. Fig. 9(a) shows that Var [G1 ] =
Var [g1 − g0 ], where g0 and g1 are computed using the meshes
P0 and P1 , varies roughly in the range (0, 2.5), i.e., this vari-
ance is large. Note that E [g1 − g0 ] ≈ 1.0, but the following
E [g� − g�−1 ] are close to zero, that is why we show two
plots. Fig. 9(b) shows that G2 = g2 − g1 , where g2 are g1
are computed using the meshes P2 and P1 , varies in the inter-
val (−0.1, 0.1) and E [g2 − g1 ] ≈ 0.02. Finally, G3 = g3 − g2 ,
where g3 are g2 are computed using the meshes P3 and P2 ,
varies in the interval (−0.02, 0.02) and E [G3 ] ≈ 0. The pdfs
of G� concentrate more and more around zero [with the rates
shown in Fig. 7(b) and (c)] as � increases.
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Fig. 10. (a) Computation times required by the CMLMC and MC methods
versus TOL. (b) Value of the computational cost estimate W [given by (4)] for
the CMLMC and MC methods versus TOL. Computations times are averaged
over 15 repetitions of the experiment.

C. Low Variability

In this example, the CMLMC algorithm is executed for
random variables a1 , a2 ∼ U [0.014, 0.49] m, ϕx , ϕy , ϕz ∼
U [0.2, 1.0] rad, and lx , ly , lz ∼ U [0.8, 1.2]. The variability of
these random variables is lower than that of the variables used
in the previous example. The value of TOL is changed from
0.2 to 0.02. For the lowest TOL value, the CMLMC algorithm
requires four mesh levels, i.e., P� , � = 0, 1, 2, 3 are the only
meshes levels used for this experiment.

Fig. 10(a) compares the computation time of the CMLMC and
MC methods as a function of TOL. There are two zones in the
figure. The first zone, 0.07 � TOL � 0.15, describes the regime
when TOL is higher than the sum of the bias and statistical error.
No additional samples or refinements are needed.

The second zone, TOL � 0.07, describes the preasymptotic
regime. As TOL gets smaller, the CMLMC algorithm becomes
more efficient than the MC method. For values of TOL close
to 0.02, the CMLMC algorithm is roughly 10 times faster than

Fig. 11. (a) E� = E [G� ] versus � and assumed weak convergence curve 2−2�

(q1 = 2). (b) V� = Var [G� ] versus � and assumed strong convergence curve
2−4� (q2 = 4). The experiment is repeated 15 times and error bars are shown
on the curves.

MC. Fig. 10(b) shows the values of the computational cost
estimate W versus TOL. The curve is similar to that of the
CMLMC computation time given in Fig. 10(a) validating the
model developed for the CMLMC algorithm. Fig. 11(a) and (b)
shows E� = E [G� ] and V� = Var [G� ] versus �, respectively,
revealing dependencies on � that vary as 2−2� (assuming weak
convergence obtained with q1 = 2) and 2−4� (assuming strong
convergence obtained with q2 = 4). Note that in the previous
example these parameters are 3 and 5, respectively, demonstrat-
ing that the dependence of q1 and q2 on the variability of the
random variables used to described the geometry. Convergence
in Fig. 11(a) and (b) is faster than the predicted rates of 2−2�

and 2−4� , respectively. A possible reason is that we are still in a
preasymptotic regime and we were excessively pessimistic with
factors q1 = 2 and q2 = 4. Although we tried to avoid “outliers”
in generating the random sphere-like geometries, we could not
completely avoid them. So some shape samples which were
used for “training” of the CMLMC method, were “bad” and the
deterministic solver produced solutions which were very differ-
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ent from others. As a result, we were forced to give pessimistic
a priori estimates for q1 and q2 (we remind that the CMCLMC
method computes 10–20 samples on each of the first three nested
meshes). Later samples were better than ones used for “train-
ing” the CMLMC method. The remedy to get a better fitting
of curves in Fig. 11(a) and (b) is a more accurate preliminary
estimates of q1 and q2 . For this, we need either to take more
samples for training or to generate “smoother” perturbations of
the original shape.

IV. CONCLUSION

A computational framework is developed to efficiently and
accurately characterize EM wave scattering from dielectric ob-
jects with uncertain shapes. To this end, the framework uses the
CMLMC algorithm, which reduces the computational cost of
the traditional MC method by performing most of the simula-
tions with lower accuracy and lower cost (using coarser meshes)
and smaller number of simulations with higher accuracy and
higher cost (using finer meshes). To increase the efficiency fur-
ther, each of the simulations is carried out using the FMM–FFT
accelerated PMCHWT-SIE solver. Numerical results demon-
strate that the CMLMC algorithm can be 10 times faster than
the traditional MC method depending on the amplitude of the
perturbations used for representing the uncertainties in the scat-
terer’s shape. This paper confirms that the known advantages
of the CMLMC algorithm can be observed when it is applied
to EM wave scattering: nonintrusiveness, dimension indepen-
dence, better convergence rates compared to the classical MC
method, and higher immunity to irregularity w.r.t. uncertain pa-
rameters, than, for example, sparse grid methods.

For optimal performance (for a given value of accuracy pa-
rameter TOL), the CMLMC algorithm requires the mean and the
variance to have reliable convergence rates (i.e., one should be
able estimate q1 and q2 without much difference from one level
to next). However, some random perturbations may affect the
convergence rates. With difficult-to-predict convergence rates,
it is hard for the CMLMC algorithm to estimate the computa-
tional cost W , the number of levels L, the number of samples
on each level M� , the computation time, and the parameter θ,
and the variance in QoI. All these may result in a suboptimal
performance. Indeed, numerical results demonstrate that there
is a significant preasymptotic regime where the performance
is not optimal. Additionally, it is observed that the settings of
the FMM–FFT accelerated PMCHWT-SIE solver, which regu-
late the computation time and the accuracy (such as the itera-
tive solver threshold, the number of quadrature points, and the
FMM–FFT parameters), have a significant effect on the perfor-
mance of the CMLMC algorithm.
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