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Exact Absorbing Boundary Conditions for Periodic
Three-Dimensional Structures: Derivation and

Implementation in Discontinuous Galerkin
Time-Domain Method

Kostyantyn Sirenko , Member, IEEE, Yuriy Sirenko , and Hakan Bağcı , Senior Member, IEEE

Abstract—A discontinuous Galerkin time-domain method
(DGTD) enhanced with exact absorbing boundary conditions
(EACs) for characterizing transient electromagnetic interactions
on periodic three-dimensional (3-D) gratings is proposed. The
EACs are derived rigorously and discretized using a high-order
scheme in space and time. The periodic boundary conditions
(PBCs) under oblique incidence are also discussed. Implementation
of the EACs and PBCs within the DGTD framework is described
in detail. Numerical results demonstrate that the accuracy of the
discretized EACs matches to that of the discretized Maxwell equa-
tions. Additionally, the accuracy and efficiency of the DGTD with
the EACs are found to be superior to that of the same DGTD with
the perfectly matched layers or approximate absorbing boundary
conditions.

Index Terms—Absorbing boundary conditions, diffraction grat-
ings, discontinuous Galerkin method, periodic structures.

I. INTRODUCTION

MANY of the widely used numerical methods for analyz-
ing electromagnetic wave interactions on gratings are

frequency domain techniques [1], [2]. Even though these meth-
ods have been proven useful as design tools, the complexity of
modern optical, photonic, and electronic devices calls for accu-
rate and efficient three-dimensional (3-D) time-domain solvers.
Indeed, 3-D gratings are indispensable components in many
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topical technologies [3]–[6]. Time-domain capabilities are as
important as 3-D modeling capabilities. They allow real-time
observations of physical processes, can account for nonlinear
materials, and provide broadband results in a single execution
of the simulation.

The most common time-domain techniques with 3-D
modeling capabilities are the finite-difference time-domain
(FDTD) [7] and finite-element methods (FEM) [8]. The FDTD
is straightforward to implement but typically low-order accu-
rate and works with a uniform/structured spatial discretization.
The FEM allows high-order and unstructured discretizations,
but it is computationally more expensive in the time domain [9],
[10]. Recently, the discontinuous Galerkin time-domain method
(DGTD) has become an attractive alternative to the FDTD
and FEM for analyzing transient electromagnetic wave inter-
actions [11]–[24]. The numerical flux between discretization el-
ements localizes spatial operations and equips the DGTD with
advantages [11] as follows.

1) The mass matrix is block diagonal; its inverse can be
obtained and stored very efficiently before time marching.

2) High-order discretizations are easier to implement.
3) Nonconformal discretizations are allowed.
4) h-, p-, and hp-adaptive meshing strategies are easier to

implement.
These advantages result in a very efficient solver when com-

bined with an explicit time integration method. Examples of
such methods include linear multistepping schemes (Adams-
Bashfort, Adams-Moulton, Glaser-Rokhlin [25]), and Runge–
Kutta methods [11].

Like any other differential-equation-based technique, the
DGTD requires an unbounded physical domain to be truncated
into a bounded computation domain. One can use the method of
perfectly matched layer (PML) for this purpose. This involves
wrapping the computation domain by a layer of lossy material
with intrinsic impedance matching that of the computation do-
main to absorb outgoing waves [21]–[23]. The PML is easy to
implement and error controllable up to a certain degree, but it
suffers from a couple of drawbacks as follows. It introduces non-
negligible errors, which tend to accumulate as the duration of
time marching increases [20], [23]. To match the accuracy of the
DGTD, the PML thickness should be increased, which in return
increases the computation time and memory requirement [20].
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The PML can be avoided if one uses exact absorbing boundary
conditions (EACs) to truncate unbounded domains [26]–[31].
The EACs are mathematically rigorous and fully error control-
lable, but their discretization often results in computationally ex-
pensive schemes since they require evaluation of “global” spatial
and temporal integrals over the computation domain boundaries
and the duration of the simulation, respectively. In this paper, the
EACs originally formulated in [29]–[31] are used. In contrast
to many other nonlocal absorbing boundary conditions, these
EACs’ efficiency can be improved using well-developed ana-
lytical spatial/temporal localization techniques [29]–[31]. One
can also use FFT-based acceleration techniques for fast compu-
tation of the (nonlocal) temporal convolutions [31]–[34]. These
improvements make the EACs an attractive alternative to the
PML, especially in simulations that require high accuracy and/or
extended time marching [35]–[37]. It should be noted here that
the boundaries, where the EACs are enforced, have to coincide
with coordinate planes (for example, plane surfaces in Cartesian
coordinate system or spherical surfaces in spherical coordinate
system). This could make computation domains larger than nec-
essary when the object being analyzed has a certain shape (e.g.,
a concave object). In this case, one can “hybridize” the DGTD
with a time-domain surface integral equation solver [9], [24].
This approach enables the truncation boundary to conform to the
surface of the object making the computation domain smaller.

In this paper, the EACs are used together with the periodic
boundary conditions (PBCs) to truncate unbounded domains.
First, the radiation condition is enforced on outgoing waves.
Then, the EACs are derived from the resulting relations by
bringing them into specific forms that relate field values to their
spatial and temporal derivatives [29]–[31]. The PBCs are de-
rived for obliquely incident fields using the constant wavenum-
ber approach [30], [38], [39]. Being mathematically exact, the
EACs do not introduce any errors in theory, but in practice
discretization errors are unavoidable. They are discretized us-
ing a high-order scheme in space and time, and the numerical
flux couples the resulting equations to those obtained by dis-
cretizing the Maxwell equations using the DGTD. The PBCs
are incorporated into the DGTD via the numerical flux between
discretization elements on periodic boundaries. The resulting
system of first-order ordinary differential equations is integrated
in time using the fourth-order Runge–Kutta method. Addition-
ally, to accelerate the computation of temporal convolutions
pertinent to the EACs, a numerically exact blocked FFT scheme
is used [31]–[34]. The order of the scheme used for discretiz-
ing the EACs matches to that of the DGTD that discretizes the
Maxwell equations. Both schemes use high-order polynomial
basis functions [20].

Numerical results demonstrate that increasing the order of
polynomial expansion increases the overall accuracy of the
DGTD with the EACs. Numerical experiments also compare
errors introduced by different domain truncation techniques,
namely, the EACs, PML, and approximate boundary conditions
(ABCs). It is shown that the DGTD with the EACs can obtain
five to six digits of accuracy using moderate orders of polyno-
mial expansion. This level of accuracy cannot be achieved by
the DGTD with the ABCs or the (thin) PML. Such accuracy is

Fig. 1. 3-D periodic grating.

required to avoid error build-up during long time marching re-
quired by resonant wave interactions on gratings [2], [35]–[37],
[40]. Numerical results also demonstrate the superiority of the
DGTD with the EACs over the DGTD with the PML in terms of
efficiency for a desired level of accuracy. Additionally, the accu-
racy of the DGTD with the EACs and (oblique) PCBs is verified
against the commercial solver COMSOL, which implements the
frequency-domain FEM.

To summarize, the contributions of this paper are threefold.
1) The EACs and (oblique) PBCs are rigorously derived for

3-D gratings.
2) Discretization and incorporation of those within the

DGTD framework are discussed in details.
3) Despite its growing popularity for simulations in vari-

ous branches of physics, the DGTD remains relatively
unknown in the optics and photonics communities with
only a few papers mentioning it [41]–[43]; and no papers
report on the use of the DGTD for analyzing electromag-
netic wave interactions on periodic structures.

The paper is organized as follows. Section II describes
the mathematical model, derives the EACs and the PBCs.
Section III details the DGTD discretization of the Maxwell
equations and the discretization and implementation of the
EACs within the DGTD framework. Section IV is devoted to
numerical experiments.

II. FORMULATION

This section details the mathematical model underlying the
proposed DGTD solver with the EACs and PBCs. Section II-A
introduces the geometry of interest constructed periodically re-
peating a unit cell. Sections II-B and II-C derive the PBCs under
oblique incidence and the EACs, respectively. Section II-D de-
scribes the simplified case of normal incidence. Section II-E
discusses an efficient way to introduce the excitation using the
EACs.

A. Geometry of the Unit Cell

Consider a 3-D diffraction grating shown in Fig 1. It is
constructed by repeating the unit cell Ω = {r = (x, y, z) ∈
R3 | 0 ≤ x < lx, −∞ < y < +∞, 0 ≤ z < lz} in x and z
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Fig. 2. Unit cell of 3-D periodic grating.

Fig. 3. Computation domain of 3-D grating.

directions with periods lx and lz . The grating profile is de-
fined by relative permittivity ε(r) and relative permeability μ(r),
and possibly by a perfect electrically conducting (PEC) surface
SPEC (see Fig. 2). PEC inclusions ε(r) and μ(r) are also peri-
odic in x and z directions with periods lx and lz .

To permit numerical modeling using the DGTD, the un-
bounded physical domain has to be truncated into a bounded
computation domain. Truncation in x and z directions from
R3 to Ω is accomplished by imposing the PBCs (see
Section II-B) on the side walls of Ω, i.e., at x = 0 and x = lx ,
and z = 0 and z = lz (see Fig. 2). Truncation in y direction
from Ω to the computation domain ΩL is accomplished by
imposing the EACs (see Section II-C) on the virtual bound-
aries LA and LB (see Fig. 2). ΩL , LA , and LB are defined as
ΩL = {r ∈ Ω |LB < y < LA}, LA = {r ∈ Ω | y = LA}, and
LB = {r ∈ Ω | y = LB}, respectively. The unbounded homo-
geneous regions external to top and bottom of ΩL are defined
as A = {r ∈ Ω | y > LA} and B = {r ∈ Ω | y < LB}. With
these definitions, Ω = ΩL ∪ A ∪ B ∪ LA ∪ LB . Additionally,
ΩL is divided into the total field (TF) and the scattered field
(SF) regions by surface STF/SF (see Fig. 3). It is assumed that
the grating profile is entirely embedded in the TF region and
STF/SF is placed between LA and the profile.

B. PBCs Under Oblique Incidence

The derivation of the PBCs enforced on the side walls of ΩL
is trivial when the electromagnetic field possesses the same peri-
odicity as the unit cell and material properties. But this happens
only when the excitation is normally incident on the unit cell
(see Section II-D). In the general case, a grating is excited by
an obliquely incident field; its direction of arrival is defined by
the angles ϕinc and θinc (see Fig. 1). Under obliquely incident
fields, the PBCs require “future” values of the fields, and there-
fore cannot be directly used in numerical simulations [38], [44].
If the incident field extends to infinity in space (as in excitation
with a plane-wave) and is obliquely incident, then this causality
problem cannot be alleviated. But if the incident field is bounded
in space, the issue of causality can be solved using various ap-
proaches. The most widely used is the transformed-variables
approach [44], [45]: the field components are imparted with
the periodicity via the transformation of variables, but this also
changes the governing equations. This change in the equations
makes the derivation of the EACs impossible. As an alternative,
in this paper, the constant wavenumber approach is used [30],
[38], [39]: the fields are represented in terms of time-dependent
quasi-periodic functions. This approach does not require any
variable transformation and, thus, does not avert the derivation
of the EACs as described next.

Let Uinc
phys(r, t) ∈ {Einc

phys(r, t),H
inc
phys(r, t)} represent the

physical incident electromagnetic field. It is assumed that
Uinc

phys(r, t) is bounded in space, arrives onto the grating from
A, and Uinc

phys(rLA , 0) = 0, rLA = (x,LA , z). Uinc
phys(r, t) is

expanded as

Uinc
phys(r, t) =

∫ ∞

−∞

∫ ∞

−∞
Uinc(r, t,Φx ,Φz ) dΦxdΦz

=
∫ ∞

−∞

∫ ∞

−∞
Ũinc(y, t,Φx ,Φz )e2πiΦx x/lx e2πiΦz z/lz dΦxdΦz.

Here, Uinc(r, t,Φx ,Φz ) is quasi-periodic in x and z directions
with periods lx and lz

Uinc(x + lx , y, z, t,Φx ,Φz ) = e2πiΦx Uinc(x, y, z, t,Φx ,Φz )

Uinc(x, y, z + lz , t,Φx ,Φz ) = e2πiΦz Uinc(x, y, z, t,Φx ,Φz )

Ũinc(y, t,Φx ,Φz ) represents y-dependent component of Uinc

(r, t, Φx ,Φz ), Uinc(r, t,Φx ,Φx) ∈ {Einc(r, t,Φx ,Φx),Hinc

(r, t,Φx ,Φx)}, and Einc(r, t,Φx ,Φx) and Hinc(r, t,Φx ,Φx)
are incident fields that satisfy the Maxwell equations. There-
fore, they can be used to excite Ω. The fields generated under
this excitation also satisfy the Maxwell equations and possess
the same periodicity as follows:

∇× H(r, t) = ε(r)∂tE(r, t)

∇× E(r, t) = −μ(r)∂tH(r, t)

U(r, t)|t=0 = 0, ∂tU(r, t)|t=0 = 0, r = (x, y, z) ∈ Ω

U(lx , y, z, t) = e2πiΦx U(0, y, z, t), 0 ≤ z < lz

U(x, y, lz , t) = e2πiΦz U(x, y, 0, t), 0 ≤ x < lx. (1)
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Here, U(r, t) ∈ {E(r, t),H(r, t)} and represents the total field
in the TF region and the scattered field in the SF region (see
Fig. 3). The explicit dependence on Φx and Φz is dropped
from here on, as problem (1) is solved for each given value
of Φx and Φz separately. Zero initial conditions are used since
it is assumed that Uinc(r, t) arrives onto the grating from A
and Uinc(rLA , 0) = 0. It is assumed that the boundary condi-
tions on SPEC are satisfied. It should be noted here that in (1),
unit-free normalized Maxwell equations are used [11]. Once
E(r, t) and H(r, t) are obtained by solving (1) for a set of
Φx and Φz , the solution of physical problem, Uphys(r, t) ∈
{Ephys(r, t),Hphys(r, t)} [which is generated due to the physi-
cal incident field Uinc

phys(r, t)] is reconstructed from E(r, t) and
H(r, t) using

Uphys(r, t) =
∫ ∞

−∞

∫ ∞

−∞
U(r, t,Φx ,Φz ) dΦxdΦz .

It should be noted here that for each value of Φx and Φz , each
frequency component of the excitation has its own direction
of arrival, ϕ and θ, given by Φx = klx sin ϕ cos θ/(2π) and
Φz = klz sin ϕ sin θ/(2π), where k is the wavenumber.

C. EACs

In this section, the EACs enforced on LA and LB (see Figs. 2
and 3) are derived. The derivation of the EAC on LA is same
as that of the EAC on LB ; therefore, only the derivation of the
EAC on LA is detailed here.

In A ∪ LA , which is assumed to be entirely embedded in
the SF region, every component of the field U(r, t) satisfies
the homogenous wave equation with zero initial conditions as
follows:

∂2
t U(r, t) = ∂2

xU(r, t) + ∂2
y U(r, t) + ∂2

z U(r, t)

U(r, 0) = ∂tU(r, t)|t=0 = 0, r = (x, y, z) ∈ A ∪ LA

U(lx , y, z, t) = e2πiΦx U(0, y, z, t), 0 ≤ z < lz

U(x, y, lz , t) = e2πiΦz U(x, y, 0, t), 0 ≤ x < lx. (2)

To solve (2), U(r, t) is expanded in terms of spatial harmonics
as follows:

U(r, t) =
∞∑

n=−∞

∞∑
m=−∞

unm (y, t)fnm (x, z). (3)

Here, unm (y, t) are the unknown amplitudes and fnm (x, z)
are orthonormal transverse spatial harmonics (eigenfunctions).
Using the orthogonality of spatial harmonics, unm (y, t) can be
related to U(r, t) as follows:

unm (y, t) =
∫ lx

0

∫ lz

0
U(r, t)f ∗

nm (x, z)dxdz. (4)

Here, “∗” stands for the complex conjugate. Inserting (3) into (2)
yields, for each fnm (x, z), a set of homogenous equations that
are easily solved as

fnm (x, z) = eiαn xeiβm z /
√

lx lz (5)

where αn = 2π(n + Φx)/lx and βm = 2π(m + Φz )/lz with
λ2

nm = α2
n + β2

m being the eigenvalues corresponding to
fnm (x, z). Inserting (3) into (2) also yields an initial value
problem satisfied by unm (y, t) as follows:

− ∂2
t unm (y, t) + ∂2

y unm (y, t) − λ2
nm unm (y, t) = 0

unm (y, 0) = ∂tunm (y, t)|t=0 = 0, y ≥ LA . (6)

Solution of (6) is carried out in the spectral domain [29]–[31]:
taking the cosine Fourier transform of (6) yields a Cauchy
problem. This Cauchy problem is solved analytically using the
concept of generalized functions and fundamental solution. Fi-
nally, taking the inverse Fourier transform of the solution of the
Cauchy problem yields

unm (y, t) = −
∫ t−y+LA

0
J0

(
λnm

√
(t − τ)2 − (y − LA)2

)

× ∂yunm (y, τ)|y=LA
dτ, y ≥ LA . (7)

Here, J0(.) is the zeroth-order Bessel function. Setting y = LA
in (7) yields

unm (LA , t) = −
∫ t

0
J0(λnm [t − τ ])∂yunm (y, τ)|y=LA

dτ.

(8)

To obtain a relation between ∂tunm (LA, t) and
∂yunm (y, t)|y=LA

, which is compatible with the DGTD
implementation, (8) is mathematically manipulated. Taking
the Laplace transform of (8) and rearranging the terms in the
resulting expression yield

sũnm (LA , s) + ∂y ũnm (y, s)|y=LA

= −
(√

(s2 + λ2
nm ) − s

)
ũnm (LA , s). (9)

Here, ũnm (y, s) is the Laplace transform image of unm (y, t).
Taking the inverse Laplace transform of (9) yields the de-
sired relation between ∂tunm (LA, t) and ∂yunm (y, t)|y=LA

as
follows:

∂tunm (LA , t) + ∂yunm (y, t)|y=LA

= −λnm

∫ t

0

J1(λnm [t − τ ])
t − τ

unm (LA , τ)dτ . (10)

Here, J1(.) is the first-order Bessel function. Using (3) and (4),
a relation between ∂tU(rLA , t) and ∂yU(r, t)|r=rL A

on LA is
obtained from (10) as

∂tU(rLA , t) + ∂yU(r, t)|r=rL A

= −
∞∑

n=−∞

∞∑
m=−∞

λnm fnm (x, z)
∫ t

0

J1(λnm [t − τ ])
t − τ

×
∫ lx

0

∫ lz

0
U(r̃LA , τ)f ∗

nm (x̃, z̃)dx̃dz̃dτ

rLA = (x,LA , z), 0 ≤ x < lx, 0 ≤ z < lz

r̃LA = (x̃, LA , z̃). (11)
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Following the same steps, a similar relation can be derived
between ∂tU(rLB , t) and ∂yU(r, t)|r=rL B

on LB as

∂tU(rLB , t) − ∂yU(r, t)|r=rL B

= −
∞∑

n=−∞

∞∑
m=−∞

λnm fnm (x, z)
∫ t

0

J1(λnm [t − τ ])
t − τ

×
∫ lx

0

∫ lz

0
U(r̃LB , τ)f ∗

nm (x̃, z̃)dx̃dz̃dτ

rLA = (x,LB , z), 0 ≤ x < lx, 0 ≤ z < lz

r̃LB = (x̃, LB , z̃). (12)

Equations (11) and (12) establish a relation between the bound-
ary values of the field and its spatial and temporal derivatives.
Thus, they can be enforced on LA and LB as the EACs: fields
that arrive onto LA and LB from ΩL are neither deformed nor
reflected back into ΩL and behave as if they are absorbed by
LA and LB . EACs (11) and (12) are derived rigorously and
they are free from any approximations. This makes their error-
controllable discretization possible as described in Section III.

It should be noted here that the solution of problem (1) pro-
vides the field distribution inside ΩL in the close proximity of
grating profile. To obtain the far-field response, one must com-
pute the fields scattered in A and B. This can be achieved by
finding a transport operator that relates the fields on LA and
LB to the fields in A and B, respectively. The fields in A can
be expressed in terms of the fields on LA by using (3) and (4)
in (7) [30], [31]. The fields in B can be expressed in terms of
the fields on LB in a similar way.

D. Normal Incidence

Under a normally incident field (ϕinc = θinc = 0), prob-
lem (1) simplifies to

∇× H(r, t) = ε(r)∂tE(r, t)

∇× E(r, t) = −μ(r)∂tH(r, t)

U(r, t)|t=0 = 0, ∂tU(r, t)|t=0 = 0, r = (x, y, z) ∈ Ω

U(lx , y, z, t) = U(0, y, z, t), 0 ≤ z < lz

U(x, y, lz , t) = U(x, y, 0, t), 0 ≤ x < lx.

Here, U(r,t) ∈ {E(r, t), H(r, t)} directly represents the phys-
ical fields since Φx = Φz = 0. The EACs (11) and (12) also
hold with physical fields, but the transverse spatial harmonics
fnm (x, z) should be replaced with

fnm (x, z) = g(αnx)g(βm z)/
√

lx lz

where g(ax) = cos(ax) for a ≥ 0, g(ax) = sin(ax) for a <
0, αn = 2πn/lx , and βm = 2πm/lz . It should also be noted
here that the conjugation in (11) and (12) can be dropped since
fnm (x, z) are now real.

E. Excitation Through the Virtual Boundary LA

If the excitation is introduced via the TF/SF formulation [20]–
[22] (see Section III-A), part of ΩL between LA and STF/SF

becomes “unused” space (see Fig. 3). Computation domain
ΩL can be shrunk further if STF/SF can be made to coincide
with LA , and the excitation is introduced using the EAC on
LA [30], [31] (ΩL coincides with the TF region). In this case,
the EAC (11) should be updated as

∂tU(rLA , t) − 2∂tU
inc(rLA , t) = −∂yU(r, t)|r=rL A

−
∞∑

n=−∞

∞∑
m=−∞

λnm fnm (x, z)
∫ t

0

J1([t − τ ]λnm )
t − τ

×
∫ lx

0

∫ lz

0

[
U(r̃LA , τ) − 2U inc(r̃LA , τ)

]

× f ∗
nm (x̃, z̃)dx̃dz̃dτ

rLA =(x,LA , z), 0 ≤ x < lx, 0 ≤ z < lz , r̃LA =(x̃, LA , z̃).
(13)

Here, U inc(r, t) and U(r, t) represent any one of the components
of the incident and total fields, respectively.

III. DISCRETIZATION

This section describes the discretization of the Maxwell equa-
tions supported with the time-domain PBCs and EACs as de-
rived in Section II.

A. Discretization of the Maxwell Equations

To solve problem (1) numerically, a nodal DGTD scheme
is used. The DGTD discretizes ΩL into Ne nonoverlapping
tetrahedral elements. On element k, each component of E(r, t)
and H(r, t) is expanded as

Eu (r, t) ∼=
Np∑
i=1

Ek
u (rk

i , t)
i(r) =
Np∑
i=1

Ek
u,i(t)
i(r)

Hu (r, t) ∼=
Np∑
i=1

Hk
u (rk

i , t)
i(r) =
Np∑
i=1

Hk
u,i(t)
i(r) (14)

where u ∈ {x, y, z}, k = 1, . . . , Ne , 
i(r) is the multidimen-
sional Lagrange interpolation polynomials of order p, Np =
(p + 1)(p + 2)(p + 3)/6 is the number of nodes in each el-
ement, and rk

i denotes the location of Gauss–Lobatto nodes
within element k [11]. Here, Ek

u,i(t) and Hk
u,i(t) are the un-

knowns to be solved for. Inserting (14) into the Maxwell equa-
tions in (1), testing the resulting equation with 
i(r), and apply-
ing integration by parts twice yields a strong form that can be
solved numerically using the DGTD [11] as follows:

εk∂tĒ
k (t) = D̄k × H̄k (t) + N̄k F̄ k

E (t)

−μk∂tH̄
k (t) = D̄k × Ēk (t) + N̄k F̄ k

H (t) (15)

where superscript k represents quantities associated with ele-
ment k. Here, μk and εk are relative permeability and permit-
tivity, which are assumed constant over element k, Ēk (t) =
[Ēk

x (t), Ēk
y (t), Ēk

z (t)]T and H̄k (t) = [H̄k
x (t), H̄k

y (t), H̄k
z (t)]T

are 3Np × 1 vectors consisting of three Np × 1 vectors
of the unknowns [Ēk

u (t)]i = Ek
u,i(t) and [H̄k

u (t)]i = Hk
u,i(t),
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Fig. 4. Numerical flux “connects” neighboring elements.

D̄k = [D̄k
x , D̄k

y , D̄k
z ] is a 3Np × Np matrix consisting of

three Np × Np differentiation matrices D̄k
u , and N̄k = diag

{[(M̄k )−1
L̄k , (M̄k )−1

L̄k , (M̄k )−1
L̄k ]} is a 3Np × 3Np block-

diagonal matrix, where each block is a matrix product of the
inverse of Np × Np mass matrix M̄k and Np × Np lift matrix
L̄k . Nonzero entries of D̄k

u , M̄k , and L̄k are [11]

[D̄k
u ]ij = ∂u
j (rk

i ), i = 1, . . . , Np , j = 1, . . . , Np

[M̄k ]ij =
∫

Ωk


i(r)
j (r)dr, i = 1, . . . , Np , j = 1, . . . , Np

[L̄k ]ij =
∫

∂Ωk


i(r)
j (r)dr, i = 1, . . . , Np

j ∈ {j | rk
j ∈ ∂Ωk , j = 1, . . . , Np}

where Ωk is the volumetric support of element k, and ∂Ωk is the
surface of Ωk . In (15), F̄ k

H (t) = [F̄ k
H,x(t), F̄ k

H,y (t), F̄ k
H,z (t)]

T

and F̄ k
E (t) = [F̄ k

E ,x(t), F̄ k
E ,y (t), F̄ k

E ,z (t)]
T are 3Np × 1 vectors,

each of which consists of three Np × 1 vectors F̄ k
E ,u (t) and

F̄ k
H,u (t), known as the upwind numerical flux between element

k and its neighbor. Entries of F̄ k
E ,u (t) and F̄ k

H,u (t) are [11]

[F̄ k
E ,u (t)]

j
= [nj × (ZlΔHk

j − nj × ΔEk
j )]u/(Zk + Zl)

[F̄ k
H,u (t)]

j
= [nj × (Y lΔEk

j − nj × ΔHk
j )]u/(Y k + Y l).

(16)

Here, j ∈ {j | rk
j ∈ ∂Ωk ∩ ∂Ωl , j = 1, . . . , Np}, l is the in-

dex of any neighbor of element k (see Fig. 4), Zv = 1/Y v =√
(μv/εv ), v ∈ {k, l}, nj is the outward unit normal of

∂Ωk at rk
j , (ΔEk

j )u = El
u,j ′(t) − Ek

u,j (t), and (ΔHk
j )u =

Hl
u,j ′(t) − Hk

u,j (t) for j′ ∈ {j′ | rl
j ′ = rk

j , j = 1, . . . , Np , j′ =
1, . . . , Np}, where j′ runs through the indices of element l’s
nodes and rk

j and rl
j ′ point to the same physical location that

belongs to elements k and l (see Fig. 4). The cross products
in (15) are defined as

D̄k × Ēk (t) =

⎡
⎢⎣

D̄k
y Ēk

z (t) − D̄k
z Ēk

y (t)
D̄k

z Ēk
x (t) − D̄k

x Ēk
z (t)

D̄k
x Ēk

y (t) − D̄k
y Ēk

x (t)

⎤
⎥⎦

D̄k × H̄k (t) =

⎡
⎢⎣

D̄k
y H̄k

z (t) − D̄k
z H̄k

y (t)
D̄k

z H̄k
x (t) − D̄k

xH̄k
z (t)

D̄k
xH̄k

y (t) − D̄k
y H̄k

x (t)

⎤
⎥⎦ .

Boundary conditions on SPEC are enforced by modifying
the numerical flux defined on the faces of elements that are in
contact with SPEC . This is achieved by setting in (16), Zl =
Zk , Y l = Y k , (ΔEk

j )u = −2Ek
u,j (t), and (ΔHk

j )u = 0, j ∈
{j | rk

j ∈ ∂Ωk ∩ SPEC} [11].
The numerical flux can be used to introduce an ex-

citation via the TF/SF formulation [20]–[22]. It is as-
sumed that profile is fully enclosed in the TF region (see
Fig. 3). Let Einc(r, t) = [Einc

x (r, t), Einc
y (r, t), Einc

z (r, t)] and
Hinc(r, t) = [H inc

x (r, t),H inc
y (r, t),H inc

z (r, t)] represent the
electric and magnetic field of the incident wave. The difference
in fields on STF/SF is accounted by modifying the numerical
flux on the faces of elements in contact with STF/SF . This
is achieved by setting in (16) (ΔEk

j )u = El
u,j ′(t) − Ek

u,j (t) ±
Einc

u (rl
j ′ , t), (ΔHk

j )u = Hl
u,j ′(t) − Hk

u,j (t) ± H inc
u (rl

j ′ , t), j ∈
{j | rk

j ∈ ∂Ωk ∩ ∂Ωl ∩ STF/SF}, j′ ∈ {j′ | rl
j ′ = rk

j }. Here,
the sign “+” is selected if element k is in the TF region, and
“−” if it is in the SF region. In this formulation, if element k
is in the TF region, then element l is in the SF region, and vice
versa (see Fig. 3).

The PBCs on the side walls of ΩL (see Fig. 2) are en-
forced by modifying the numerical flux on the faces of ele-
ments in contact with these side walls. Let Sx=0 , Sx= lx , Sz=0 ,
and Sz= lz represent the side walls of ΩL lying in the planes
x = 0, x = lx , z = 0, and z = lz . Assuming that elements k
and l are in contact with the opposite walls, (16) is modified
as (ΔEk

j )u = e±2πiΦv El
u,j ′(t) − Ek

u,j (t), (ΔHk
j )u = e±2πiΦv

Hl
u,j ′(t) − Hk

u,j (t), j ∈ {j | rk
j ∈ ∂Ωk ∩ Sv=0 or rk

j ∈ ∂Ωk ∩
Sv= lv }, j′ ∈ {j′ | (rl

j ′)y = (rk
j )y and (rl

j ′)v ′ = (rk
j )v ′ }, v, v′ ∈

{x, z}, v �= v′. The sign “+” is selected if element k is in contact
with Sx= lx or Sz= lz , and “−” if it is in contact with Sx=0 or
Sz=0 . It should be noted here that elements k and l are not in
physical contact, but still the numerical flux connects them.

B. Discretization of the EACs

To obtain the maximum efficiency and accuracy of the DGTD
with the EACs, the order of the discretization of the EACs should
match that of the DGTD. The EACs (11), (12), and (13) are
discretized in the same way; therefore, only the discretization
of the EAC (11) on LA is described step by step here next.

1) Let k represent the index of any element that have a face
on LA . It is assumed that LA is discretized by a surface
mesh generated from the faces of these elements. Let l
represent the index of the face that touches element k (see
Fig. 5). Each face has Ns = (p + 1)(p + 2)/2 nodes on
it, and each element has Np = (p + 1)(p + 2)(p + 3)/6
nodes in it, p is the polynomial order of the DGTD. The
locations of nodes on face l are represented with rl

j ′ , j′ =
1, . . . , Ns , and the locations of nodes within element k
are represented with rk

j , j = 1, . . . , Np (see Fig. 5).

2) Let ˆ̄Ul(t) ∈ { ˆ̄El
u (t), ˆ̄Hl

u (t)} represent an Ns × 1 vector
that stores exact boundary field samples accounted for
by the EAC (11) at rl

j ′ , j′ = 1, . . . , Ns . Additionally, let
Ū k (t) ∈ {Ēk

u (t), H̄k
u (t)} represent an Np × 1 vector that

stores samples of fields accounted for by the Maxwell
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Fig. 5. Numerical flux “enforces” EAC.

equations in (1) at rk
j , j = 1, . . . , Np . The boundary field

samples ˆ̄Ul(t) should not be confused with the samples
accounted for by the Maxwell equations at the nodes of
element k that are located on its face that coincides with
the face l, i.e., [Ū k (t)]j , j ∈ {j | rk

j ∈ ∂Ωk ∩ LA}. These
are two different sets even though the nodes refer to the
same physical locations.

3) To discretize the spatial derivative in (11), ∂yU
(r, t)|r=rL A

, DGTD’s differentiation matrix D̄k
y is used.

D̄k
y is an Np × Np matrix that computes the samples of

fields’ y-derivative at all nodes of element k, i.e., at rk
j ,

j = 1, . . . , Np , using the field samples at the same nodes.
Let

[ ˜̄Uk (t)]j =

{
[ ˆ̄Ul(t)]j ′ for rk

j = rl
j ′

[Ū k (t)]j otherwise
.

Then, the multiplication D̄k
y

˜̄Uk (t) produces an Np × 1

vector that stores samples of ˜̄Uk (t)’s y-derivatives at rk
j ,

j = 1, . . . , Np . Let

[Q̄k ]j ′j =

{
1 for rk

j = rl
j ′

0 otherwise

represent an Ns × Np sparse matrix that selects the field
samples at rl

j ′ , j′ = 1, . . . , Ns . Then, the samples of
∂yU(r, t)|r=rL A

at rl
j ′ , j′ = 1, . . . , Ns are approximated

by Q̄k D̄k
y

˜̄Uk (t).
4) The spatial integral in (11) over x̃ and z̃ is evaluated nu-

merically. To achieve this on each face discretizing LA ,
2-D quadrature rules are used [46]. It should be noted here
that the quadrature points and the DGTD nodes on these
faces do not coincide [47]. Therefore, an interpolation
scheme is used to compute the field samples at quadrature
points from the samples at the face nodes. Let Ī l rep-
resent an Nq × Ns interpolation matrix associated with
integration on face l as follows:

Ī l = V̄ l(W̄ l)−1

where V̄ l and W̄ l are Nq × Ns and Ns × Ns Van-
dermonde matrices with entries [V̄ l ]ii′ = 
i ′(ql

i) and
[W̄ l ]j ′i ′ = 
i ′(rl

j ′), respectively. Index i′ selects only those
DGTD polynomials 
(r) that are nonzero on face l (there
are Ns such polynomials [11]) and ql

i , i = 1, . . . , Nq

represent the quadrature points. Using the interpolation

matrix, the spatial integration in (11) is approximated as

∫ lx

0

∫ lz

0
U(r̃LA , τ)f ∗

nm (x̃, z̃)dx̃dz̃ ∼=
∑

l

w̄l Ī l f̄ l ∗
nm

ˆ̄Ul(τ).

Here, index l runs over the indices of all faces that dis-
cretize LA , w̄l is an Nq × Nq diagonal matrix that stores
the quadrature weights associated with ql

i , and f̄ l ∗
nm is

an Nq × 1 vector that stores the samples of conjugated
spatial harmonics at ql

i : [f̄ l ∗
nm ]i = f ∗

nm (ql
i). It should be

noted here that Nq determines the order of integration
rule, which is selected to match the order of the DGTD
polynomials.

5) The summations over m and n in (11) are truncated to
finite numbers of terms, 2Nm + 1 and 2Nn + 1, respec-
tively. Nm and Nn are chosen in such a way that the high-
est spectral content of outgoing waves passing through
LA are captured by the highest (fastest varying) harmonic
included in the summations. Spectral content of the outgo-
ing waves depends both on the properties of the excitation
and geometry. The evanescent harmonics should also be
included if the virtual boundaries are placed close to the
profile. The harmonic with index n and m is identified as
propagating if k2 ≥ λ2

nm , and as evanescent if k2 < λ2
nm .

Here, λnm is the eigenvalue defined in (5) and k is the
wavenumber. It should be emphasized here that setting
Nm and Nn arbitrarily large may introduce unexpected
errors in the solution since the discretization will not be
able to accurately resolve the spatial variations of higher
harmonics.

These five steps result in spatially discretized version of the
EAC (11) as follows:

∂t
ˆ̄Ul(t) = −Q̄k D̄k

y
˜̄Uk (t)

−
Nn∑

n=−Nn

Nm∑
m=−Nm

λnm f̄ l
nm

∫ t

0

J1(λnm [t − τ ])
t − τ

×
∑

l ′
w̄l ′ Ī l ′ f̄ l ′ ∗

nm
ˆ̄Ul ′(τ)dτ (17)

where indices l and l′ run through the indices of all faces on
LA , and k is the index of the DGTD element that touches face
l. Similarly, the spatially discretized version of the EAC (12) is

∂t
ˆ̄Ul(t) = Q̄k D̄k

y
˜̄Uk (t)

−
Nn∑

n=−Nn

Nm∑
m=−Nm

λnm f̄ l
nm

∫ t

0

J1(λnm [t − τ ])
t − τ

×
∑

l ′
w̄l ′ Ī l ′ f̄ l ′ ∗

nm
ˆ̄Ul ′(τ)dτ (18)

where indices l and l′ run through the indices of all faces on LB .
The spatially discretized version of the EAC (13) is obtained in
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the same way as

∂t
ˆ̄Ul(t) − 2∂tŪ

l
inc(t) = −Q̄k D̄k

y
˜̄Uk (t)

−
Nn∑

n=−Nn

Nm∑
m=−Nm

λnm f̄ l
nm

∫ t

0

J1(λnm [t − τ ])
t − τ

×
∑

l ′
w̄l ′ Ī l ′ f̄ l ′ ∗

nm

[
ˆ̄Ul ′(τ) − 2Ū l ′

inc(τ)
]
dτ. (19)

Here, Ū l
inc(t) is an Ns × 1 vector that stores the samples of the

incident fields at rl
j ′ , j′ = 1, . . . , Ns .

The spatially discretized EACs (17)–(19) are coupled to the
spatially discretized Maxwell equations (15) using the numer-
ical flux. This is achieved by updating ΔEk

j and ΔHk
j in (16)

with the exact boundary field component samples provided
by (17)–(19). The values of ΔEk

j and ΔHk
j , where index k

runs through the indices of all elements that have a face on the
virtual boundaries, are set to (ΔEk

j )u = Êl
u,j ′(t) − Ek

u,j (t) and

(ΔHk
j )u = Ĥl

u,j ′(t) − Hk
u,j (t) for j, j′ ∈ {j, j′ | rl

j ′ = rk
j , j =

1, . . . , Np , j′ = 1, . . . , Np}, l is the index of face that touches
element k (see Fig. 5). Here, Êl

u,j ′(t) and Ĥl
u,j ′(t) are the sam-

ples of the boundary field components stored in ˆ̄Ul(t) and pro-
vided by (17)–(19), and Ek

u,j (t) and Hk
u,j (t) are the samples

of the DGTD boundary field components stored in Ēk (t) and
H̄k (t) and provided by the Maxwell equations (15).

The semidiscrete system of equations obtained by coupling
the discretized Maxwell equations (15) and (17)–(19) forms a
system of ordinary differential equations in time. This system of
equations is integrated to obtain the samples of Ēk (t), H̄k (t),
and ˆ̄Ul(t). In this paper, the fourth-order explicit Runge–Kutta
method is used [11]. The integral over τ in EACs (17)–(19) can
be computed using any numerical integration technique that has
the same order as the time integration of the ordinary differential
equation system. In this paper, the Simpson rule is used since
its order matches to that of the Runge–Kutta method.

It should be noted here that the EACs used in this paper
are nonlocal in space and time in their current form. How-
ever, their efficiency could be improved by using analytical spa-
tial/temporal localization techniques without sacrificing from
accuracy [29]–[31]. In this paper, since the number of (surface)
discretization elements on LA and LB is significantly smaller
than the number of (volume) discretization elements in ΩL , the
spatial localization is not utilized. However, the computation
of the temporal convolutions in (17)–(19) is accelerated using
a blocked-FFT scheme without introducing any additional er-
rors [31]–[34]. This reduces the cost of computing these convo-
lutions to O(Nt log2Nt) from O(N 2

t ), where Nt is the number
of time steps [31]–[34]. The application of this blocked-FFT
scheme does not change how the EACs (17)–(19) are coupled
to the Maxwell equations (15).

IV. NUMERICAL RESULTS

This section details numerical experiments that demonstrate
the accuracy and efficiency of the proposed DGTD with the
EACs and PBCs. Section IV-A characterizes the dependence of
the DGTD solution error on various parameters including the

Fig. 6. Unit cell profile of the grating studied in Section IV-A.

method of truncation (EAC, PML, or ABC), discretization order,
distance between absorbing boundaries and grating profile, and
length of simulation duration. It compares the accuracy and ef-
ficiency of introducing the excitation through the EACs to those
of the classical TF/SF approach. Additionally, in Section IV-A,
the accuracy of the DGTD with the EACs and (oblique) PCBs is
verified against the commercial solver COMSOL. Section IV-B
demonstrates the applicability of the proposed solver to geo-
metrically complicated structures. In all simulations, the exci-
tation is a quasi-periodic electromagnetic field, as described in
Section II-B. The components of the electric field of this excita-
tion are given by Einc

x (r, t) = Einc
y (r, t) = 0 and Einc

z (r, t) =
U inc

z (r, t,Φx ,Φz ) = E(t)e2πiΦx x/lx e2πiΦz z/lz , where E(t) is
the time signature of the excitation.

All simulations are carried out on an eight-core workstation
with 2.67 GHz CPUs and 23.4 GB of RAM. The DGTD is
implemented in C and parallelized using MPI.

A. Accuracy

The unit cell profile of the geometry analyzed in this section is
shown in Fig. 6. The profile is a truncated PEC pyramid centered
on a plane PEC substrate. The lengths of pyramid’s edges at
bottom and top bases are a = 0.42 and b = 0.28, the height of
pyramid is h = 0.5, and the distance between pyramid’s edge
at bottom base and side wall is c = 0.08. The periods are lx =
lz = 0.5.

Numerical simulations are carried out using the DGTD
with the following four different domain truncation techniques:
EAC (11); EAC (13); ABC; and PML. These solvers are named
“DGTD-EAC,” “DGTD-EACe,” “DGTD-ABC,” and “DGTD-
PML” in the rest of this section. The reference results are ob-
tained using the same DGTD with a large computation domain
truncated with PEC boundaries. This solver is named “DGTD-
ref.”

The DGTD-EAC and DGTD-EACe truncate the summations
in the EACs (11) and (13) with five terms, i.e., Nn = Nm = 2,
resulting in a total of 25 harmonics. Frequencies corresponding
to the cutoff wavenumbers of the harmonics with n = m = ±2
are always beyond the maximum frequency of E(t) used in
the simulations; thus, increasing Nn and Nm further does not
increase the accuracy of the EAC truncation.

The DGTD-ABC implements the first-order Engquist–Majda
ABC, i.e., it replaces the EAC (13) with ∂tU(rLA , t) =
−∂yU(r, t)|r=rL A

[20].
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Fig. 7. Computation domains. (a) For the DGTD-EAC and DGTD-ABC.
(b) For the DGTD-EACe, (c) For the DGTD-PML, and (d) For the DGTD-ref.

The DGTD-PML implements the uniaxial PML [22], [23],
where PML loss parameter increases linearly within the layer
from 0 to 20. Two different layer thicknesses are used: d = 0.25
and d = 0.5. Outer boundary of the layer is PEC.

For the DGTD-EAC, DGTD-ABC, DGTD-PML, and
DGTD-ref, the excitation is implemented using the TF/SF
method (see Section III-B) by introducing STF/SF between LA
and the profile. For the DGTD-EACe, the excitation is intro-
duced on LA (see Section II-E). All solvers use the same PBCs
(see Section II-B) and discretization of the computation domain.

As a measure of accuracy, the global L2-error is used as
follows:

err(t) =

√
1

Nerr

∫
Ω e r r

|Ez (r, t) − Eref
z (r, t)|2dr.

Here, Ez (r, t) is the solution computed by the DGTD-EAC,
DGTD-EACe, DGTD-ABC, or DGTD-PML, and Eref

z (r, t) is
the reference solution computed by the DGTD-ref in a computa-
tion domain with dimensions [0; 0.5] × [0; 6] × [0; 0.5], which
is truncated with the PEC boundary at y = 6. This domain is
large enough to prevent reflections coming back into the domain
of error computation Ωerr within the duration of the simulation.
Nerr is the number of discretization elements in Ωerr. This mea-
sure of accuracy accounts for the error of domain truncation and
does not take into account the error of the DGTD itself. Com-
putation domains for the DGTD-EAC, DGTD-ABC, DGTD-
EACe, DGTD-PML, and DGTD-ref are shown in Fig. 7(a)–(d),
respectively.

First, the dependence of the error on the polynomial or-
der p is characterized. For this set of simulations, E(t) =
2e−(t−1.5)2 /0.13 cos(15[t − 1.5]) is a modulated Gaussian pulse.
Two sets of values Φx = Φz = 0 (normal incidence) and
Φx = Φz = 0.1 (oblique incidence) are considered. The du-
ration of the simulations is 7.5. The computation domains for
the DGTD-EAC, DGTD-ABC, and DGTD-PML are [0; 0.5] ×
[0; 2] × [0; 0.5], [0; 0.5] × [0; 2] × [0; 0.5], and [0; 0.5] × [0; 2 +
d] × [0; 0.5]. STF/SF is located at y = 1.5. The numbers of the
elements in the computation domains are 3357, 3357, 3847
(d = 0.25), and 4357 (d = 0.5). Fig. 8 plots err(7.5) computed
on Ωerr = [0; 0.5] × [0; 2] × [0; 0.5] against p. It is clearly seen
that the error of the EAC truncation decreases with growing p,
while the errors of ABC and PML truncations remain virtually
the same for any p. This means that the accuracy of the EAC
truncation naturally matches the overall accuracy of the DGTD.

Fig. 8. err(7.5) computed by DGTD-EAC, DGTD-ABC, and DGTD-PML
versus p for normal and oblique incidence.

For larger values of p, the overall accuracy of the simulations
with the ABC or PML truncation is limited by the accuracy
of the truncation and increasing p does not result in more ac-
curate simulations. For smaller values of p, the PML accuracy
becomes excessively high since the overall accuracy is limited
by the error of the DGTD. Fig. 8 also shows that the errors are
on the same level for normal and oblique excitations.

Next, it is shown that the DGTD-EAC and DGTD-EACe
produce similar solutions. For this set of simulations, E(t) =
2e−(t−1.5)2 /0.13 cos(15[t − 1.5]) and Φx = Φz = 0 (normal in-
cidence). The duration of the simulations is 7.5. The com-
putation domains for the DGTD-EAC and DGTD-EACe
are [0; 0.5] × [0; 2] × [0; 0.5] and [0; 0.5] × [0; 1.5] × [0; 0.5],
STF/SF is located at y = 1.5 for the DGTD-EAC. The num-
bers of the elements in the computation domains are 3357
and 2457. The polynomial order changes from p = 2 to
p = 5. The time step size changes between 1.38 × 10−3 (for
p = 2) and 3.4 × 10−4 (for p = 5). Fig. 9(a) plots err(7.5)
computed on Ωerr = [0; 0.5] × [0; 1.5] × [0; 0.5] against p. As
expected both errors decrease as p is increased. Fig. 9(b)
plots Ez (0.25, 1.5, 0.255, t) computed by the DGTD-EAC and
DGTD-EACe and compares those to Eref

z (0.25, 1.5, 0.255, t)
computed by the DGTD-ref (p = 2). The result obtained by the
DGTD-EAC is closer to the reference one because both the
DGTD-EAC and DGTD-ref use the TF/SF excitation with
the same STF/SF .

Next, it is shown that LA can be located very close to the pro-
file without loss of accuracy. For this set of simulations, E(t) =
2e−(t−1.5)2 /0.13 cos(15[t − 1.5]) and Φx = Φz = 0. The du-
ration of the simulations is 7.5. The computation domains
for the DGTD-EAC, DGTD-EACe, DGTD-ABC, and DGTD-
PML are reduced to [0; 0.5] × [0; 0.7] × [0; 0.5], [0; 0.5] ×
[0; 0.6] × [0; 0.5], [0; 0.5] × [0; 0.7] × [0; 0.5], and [0; 0.5] ×
[0; 0.7 + d] × [0; 0.5]. STF/SF for the DGTD-EAC, DGTD-
ABC, and DGTD-PML is located at y = 0.6. The numbers of
the elements in the computation domains are 1097, 853, 1097,
1603 (d = 0.25), and 2091 (d = 0.5). The polynomial order
is set to p = 3 and the time step size is 8.4 × 10−4 . Fig. 10(a)
plots Ez (0.35, 0.6, 0.26, t) and Eref

z (0.35, 0.6, 0.26, t). The fig-
ure clearly shows that results obtained by the DGTD-ABC and
DGTD-PML with thin PML (d = 0.25) differ significantly from
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Fig. 9. (a) err(7.5) computed by DGTD-EAC and DGTD-EACe versus p.
(b) Ez (0.25, 1.5, 0.255, t) computed by DGTD-EAC, DGTD-EACe, and
DGTD-ref.

the reference result. Especially the difference becomes more
clear after the excitation leaves the computation domain, be-
tween t = 3.5 and t = 6. Fig. 10(b) provides a detailed view of
the plot in Fig. 10(a) around t = 7. The solution obtained with
the thick PML (d = 0.5) is rather accurate, but it is not better
than the one obtained by the DGTD-EAC or DGTD-EACe. The
CPU times and memory requirements are 603 s and 276 MB
for the DGTD-EAC, 540 s and 261 MB for the DGTD-EACe,
501 s and 111 MB for the DGTD-ABC, 813 s and 139 MB for
the DGTD-PML with d = 0.25, and 1028 s and 172 MB for
the DGTD-PML with d = 0.5. Despite the larger memory re-
quirement of the DGTD-EAC and DGTD-EACe, the CPU times
correlate with the number of the elements in the computation
domains. This demonstrates that the EAC truncations, which
require smaller computation domains, are more efficient than
the PML and also that the TF/SF excitation implemented on the
EAC is more efficient than the TF/SF excitation implemented
on STF/SF as expected.

Next, the dependence of error on the simulation duration is
characterized. For this set of simulations

E(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t < 0.2
s(t)

(
3[m(t)]2 − 2[m(t)]3

)
, 0.2 ≤ t < 2

s(t), 2 ≤ t < 13
s(t)

(
3[n(t)]2 + 2[n(t)]3

)
, 13 ≤ t < 15

0, t ≥ 15

Fig. 10. Ez (0.35, 0.6, 0.26, t) computed by DGTD-EAC, DGTD-EACe,
DGTD-ABC, DGTD-PML, and DGTD-ref. (a) For t between 0 and 8.
(b) For around t = 7.

where s(t) = 2 cos(10[t − 0.2]), m(t) = (t − 0.2)/1.8, and
n(t) = (t − 15)/2, and Φx = Φz = 0. The duration of the sim-
ulations is 25. The computation domains for the DGTD-EAC
and DGTD-PML with d = 0.5 are [0; 0.5] × [0; 0.7] × [0; 0.5],
and [0; 0.5] × [0; 0.7 + d] × [0; 0.5]. STF/SF is located at y =
0.6. The numbers of the elements in the computation do-
mains are 1097 and 2091. The polynomial order is set to
p = 3 and the time step size is 8.4 × 10−4 , which results in
a total of 35 819 time steps. The error err(t) is computed on
Ωerr = [0; 0.5] × [0; 0.7] × [0; 0.5]. Fig. 11 plots err(t); it is
clearly seen that in contrast with the EAC truncation, the error
of the PML truncation constantly grows throughout the whole
simulation. Even the absence of excitation (t > 15) has no effect
on this tendency. This means that the accuracy of long duration
simulations could be affected by the PML-induced error. Thus,
the EAC is a more reliable domain truncation technique, espe-
cially for long duration simulations. The CPU times and memory
requirements are 2 205 s and 401 MB for the DGTD-EAC, and
4 420 s and 211 MB for the DGTD-PML. Again, the differ-
ence in CPU times correlates with the size of the computation
domains.

Next, the accuracy of the DGTD-EACe is verified
against the commercial solver COMSOL, which implements
the frequency-domain FEM. For this simulation, E(t) =
2e−(t−1.5)2 /0.13 cos(15[t − 1.5]), which covers the frequency
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Fig. 11. err(t) computed by DGTD-EAC, DGTD-EACe, and DGTD-PML
versus t.

Fig. 12. Fourier transform of Ez (0.25, 0.6, 0.25, t) computed by the
DGTD-EACe [after normalization by the Fourier transform of E(t)] and
Ẽz (0.25, 0.6, 0.25, k) computed by COMSOL.

band k ∈ [4, 25], and Φx = 0.25 and Φz = 0. As explained in
Section II-B, each frequency component of the excitation has
its own direction of arrival when the constant wavenumber ap-
proach is used to treat an oblique incidence. This means that
θinc = 0, and ϕinc varies between 7.2◦ for k = 25 and 51.7◦ for
k = 4 (see Fig. 1). The duration of the simulation is 7.5. The
computation domain is [0; 0.5] × [0; 0.6] × [0; 0.5]. The number
of elements in the computation domain is 853, the polynomial
order is set to p = 3, and the time step size is 8.4 × 10−4 .
The time-domain electric field Ez (0.25, 0.6, 0.25, t) is com-
puted by the DGTD-EACe. For the COMSOL simulations, the
domain truncation and excitation are implemented using the
“port” boundary condition. A total of 106 simulations are ex-
ecuted to cover the frequency band k ∈ [4, 25] with 0.2 step.
The relation between {θinc , ϕinc} (direction of arrival) and fre-
quency of excitation is applied for each value of k. The inci-
dent electric field has the unit amplitude. The frequency-domain
electric field Ẽz (0.25, 0.6, 0.25, k) is computed by COMSOL.
Fig. 12 compares the Fourier transform of Ez (0.25, 0.6, 0.25, t)
(computed by the DGTD-EACe), which is normalized by the
Fourier transform of E(t), to Ẽz (0.25, 0.6, 0.25, k) (computed
by COMSOL). Good agreement is observed between the results,
demonstrating the reliability of the DGTD with the EACs and

Fig. 13. (a) Computation domain for the mushroom-shaped grating. (b) Dis-
cretization of the computation domain. Snapshots of Ez (r, t) at (c) t = 1.3,
(d) t = 4, (d) t = 6.6, and (f) t = 10.6.

(oblique) PCBs. The CPU time and memory requirements are
930 s and 309 MB for the DGTD-EACe, and 7 200 s and 10.6 GB
for COMSOL. Note that the CPU time for COMSOL is the total
time required to run all 106 frequency-domain simulations.

B. Large and Complex Geometry

In this section, applicability of the proposed DGTD with the
EACs to the characterization of electromagnetic field interac-
tions on complex geometries is demonstrated. The computation
domain of the grating is shown in Fig. 13(a). The mushroom-
shaped structure is centered on a plane substrate. The substrate
is made of dielectric with ε = 2.5 and has a thickness of 0.5.
The mushroom stem is made of dielectric with ε = 7.5. The
stem’s bottom base is an ellipse with major and minor semiaxes
of length 1.3 (in x direction) and 1 (in z direction). The stem’s
top base is an ellipse with major and minor semiaxes of length
0.65 (in x direction) and 0.5 (in z direction). The stem’s height
is 3. The mushroom cap is made of dielectric with ε = 4.5. The
cap’s bottom is a circle with radius 1.8. The cap’s height is 0.6.
The cap’s top coincides with a sphere centered at (0, 0.6, 0)
with radius 3. The cap is doped with four spherical PEC in-
clusions. The radius of each PEC inclusions is 0.2, and they



SIRENKO et al.: EACs FOR PERIODIC THREE-DIMENSIONAL STRUCTURES 119

are centered at (0, 3.4, 0.9), (0.6, 3.5, 0), (−0.9, 3.2,−0.85),
and (0.66, 3.1,−1.5). The periods in x and z directions are
lx = lz = 2.

The grating is excited by a normally incident plane wave
(Φx = Φz = 0), E(t) = 2 e−4(t−1.5)2

cos(13[t − 1.5]). The du-
ration of the simulation is 13, the time step size is 8.4 × 10−4

resulting in 15 432 time steps. The computation domain is
[0; 2] × [−0.7; 3.9] × [0; 2]; LA with EAC (13) and LB with
EAC (12) are located at y = 3.9 and y = −0.7 [see Fig. 13(a)].
The distance between the bottom of the substrate and LB is
0.2. The summations in EACs are truncated to 15 terms each,
i.e., Nn = Nm = 7. The mesh has Ne = 80 150 elements in the
computation domain. The polynomial order is p = 2 resulting
in 4 809 000 unknowns.

Fig. 13(c)–(f) show snapshots of Ez (r, t) inside the compu-
tation domain at different times. Although the simulation of the
mushroom-shaped grating is designed for demonstration pur-
poses. Fig. 13 allows to observe some interesting effects. It is
seen that the stem acts as a guiding structure for downward
travelling waves [see Fig. 13(d)]. A resonance is formed inside
the cap [see Fig. 13(e)]. A rise of the field amplitude could be
observed outside the cap [see Fig. 13(f)].

V. CONCLUSION

Time-domain periodic and EACs under obliquely incident
fields are derived and their discretization within a DGTD method
is described. The resulting solver allows for accurate and effi-
cient analysis of transient electromagnetic wave interactions on
3-D periodic structures. Indeed, numerical results demonstrate
that the domain truncation with EACs is more accurate and effi-
cient than with approximate absorbing boundary conditions or
perfectly matched layers.
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