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Abstract—In this article, we present an optimization method
based on the hybridization of the genetic algorithm (GA) and gradi-
ent optimization (grad-opt) and facilitated by a physics-informed
machine learning model. In the proposed method, the slow-but-
global GA is used as a pre-screening tool to provide good initial
values to the fast-but-local grad-opt. We introduce a robust metric
to measure the goodness of the designs as starting points and use
a set of control parameters to fine tune the optimization dynamics.
We utilize the machine learning with analytic extension of eigen-
values (ML w/AEE) model to integrate the two pieces seamlessly
and accelerate the optimization process by speeding up forward
evaluation in GA and gradient calculation in grad-opt. We em-
ploy the divide-and-conquer strategy to further improve modeling
efficiency and accelerate the design process and propose the use
of a fusion module to allow for end-to-end gradient propagation.
Two numerical examples are included to show the robustness and
efficiency of the proposed method, compared with traditional ap-
proaches.

Index Terms—Design optimization, genetic algorithm, physics-
informed machine learning.

I. INTRODUCTION

A S WIRELESS systems increasingly find broader appli-
cations, the demand for high performance microwave

devices employed by these systems becomes more challenging
to fulfill. In order to accommodate a wide variety of function-
alities within a compact form factor, modern high-performance
electronics are packed with microwave devices with intricate
structures and numerous design variables, operating at high
speeds and across broad bandwidths. To meet the demands and
address the stringent constraints imposed by the commercial
deployment of these devices, efficient and robust design opti-
mization methods are highly desirable.

Optimization of microwave devices has been of great interest
to researchers in the EM community for decades [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18]. A wide variety of methods have been proposed, which
can be classified into two main categories [19]: search-based and
gradient-based methods. The genetic algorithm (GA) [20] is one
of the most popular search-based methods. While GA offers the
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potential to search for global optima in the presence of a large
number of design variables, the method can be prohibitively
expensive due to the repeated forward evaluations required.

Gradient-based optimization methods (grad-opt), on the other
hand, are based on the analytical evaluation of gradients of
the objective function with respect to design variables. Fast
convergence is expected when the initial design is in the vicinity
of the optimal solution. However, it is a local method whose
performance greatly depends on the starting point and has no
guarantee of reaching global optima [21].

In this work, we propose a hybrid algorithm for EM op-
timization which combines the slow-but-global GA with the
fast-but-local gradient optimization. In the proposed method, the
GA optimizer is used as a pre-screening tool to search for good
initial values. Once a good starting point is found, the gradient
optimizer is invoked to refine the solution in the hope of reaching
an optimum quickly. This is repeated until a given computational
budget is exhausted. We introduce a robust metric to measure the
goodness of the designs as starting points, and use a set of control
parameters to balance exploration versus exploitation and fine
tune the optimization process. To further facilitate the proposed
optimization scheme, we incorporate a neural network-based
surrogate model in both GA and gradient descent algorithm. The
neural net model can speed up the forward evaluation in GA by
several orders of magnitude, and can provide analytical gradients
using standard backpropagation in a very fast and accurate man-
ner. With the introduction of the neural net model, the most com-
putationally intensive part of the optimization is shifted to model
pre-training. To alleviate this computational burden, we propose
the use of a machine learning model that incorporates the physics
knowledge of analytic extension of eigenvalues (AEE) [22], to
improve modeling efficiency and reduce training data generation
cost. To further improve modeling efficiency and to accelerate
the design process, we employ the divide-and-conquer strategy
by cutting the device into sub-components and modeling each
individual component separately. A fusion module is introduced
to cascade the components’ responses numerically and allow
the gradient to propagate from the overall objective function to
the design variables. We apply our method to two numerical
examples to demonstrate its capability and efficiency.

II. FORMULATION

A. Genetic Algorithm and Gradient Optimization

GA is a global search algorithm based on the concept of
natural evolution [20]. Each possible solution in the design space
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Fig. 1. Flowchart of the proposed hybrid optimization framework.

is represented as a chromosome, and the design objective is cast
into a fitness function. There are three main operations upon indi-
vidual chromosomes, namely selection, crossover, and mutation,
which determine the transition from generation to generation.
In each generation, the fitness function is evaluated for each
individual in the entire population, which is computationally
intensive and presents as the main bottleneck of the method.
The cost of repeated forward evaluations can be alleviated by
using surrogate models, with which the computational burden
is shifted to model pre-training, which is conducted out of the
optimization loop.

There are four control parameters in a typical GA, namely
population size (P ), selection probability weight (w), crossover
rate (p), and mutation rate (μ). A smaller value of w and larger
values of N , p, and μ will lead to more randomness in the GA
process, and thus making it more exploration-oriented and more
computationally expensive.

Gradient optimization is known for its fast convergence and
its proneness to getting stuck in local minima. The basic gradient
descent follows the update rule:

xi+1 = xi − α · ∂Ji
∂xi

, (1)

where x is the design variable, J is the objective function to be
optimized, and α is a parameter that determines the step size in
the gradient direction. A large α can provide fast convergence,
but can also lead to overshoot and high oscillation. A small α
can smooth out the optimization process, but can also make it
prohibitively slow.

The most costly part of grad-opt is gradient evaluation, which
can be greatly accelerated using neural networks, as proposed
in [23]. After the model is fully trained, we fix the weights of
the network and treat the inputs as the only tunable parameters.
The standard backpropagation algorithm [24] will then provide
us with the gradients with respect to design variables, which can
be used to perform gradient updates.

B. Hybrid GA and Gradient Optimization Framework

A flowchart of the proposed hybrid optimization method is
shown in Fig. 1, which consists of two components: GA (blocks
shown in purple), and grad-opt (blocks shown in green).

For the hybrid framework, we introduce two global control
parameters, the optimization ending criteria δ, and the threshold
β for initiating the gradient optimizer. The optimization process
will be terminated when either the maximum number of iter-
ations Nmax is reached or its objective function J satisfies the
condition:

J ≤ δ, (2)

where δ should be determined based on the design target. If no
satisfactory design is found after Nmax iterations, we can start
the process again with a new random population.

In order to control when to start gradient descent, we define
a metric |Jg | as the magnitude of the cost function J divided by
its exponentially weighted moving average of its past gradients
g, where g is defined as

gi = η · gi−1 + (1− η) · ∇Ji, (3)

where the subscript denotes the i-th iteration, and η ∈ (0, 1) is a
hyper-parameter that controls the number of past iterations taken
into consideration. When the following condition is satisfied,
a gradient optimization procedure is invoked with xi as the
starting point: ∣∣∣Ji

gi

∣∣∣ ≤ β. (4)

The idea is that when (4) is satisfied, the cost function value
is small and the accumulated gradient is large, corresponding
to regions close to optimality. The use of g instead of ∇J
comes from the idea of momentum in optimization [25], which
effectively replaces the instantaneous gradient by one that is
averaged over multiple past iterations, and allows us to avoid
highly oscillating regions where gradient descent can easily get
trapped.

The threshold β balances exploration versus exploitation.
In the extreme case where β = +∞, the hybrid optimization
reverts to pure gradient descent, whereas GA plays a greater
role as β decreases. In practice, β needs to be picked empirically
based on the problem, and may need to be adjusted based on the
results from a few test runs. Throughout experiments, we find
the following value to be a relatively good starting point:

β =
2δ

1
P

∑P
j=1

∣∣∣∇J
(
xj
1

)∣∣∣ , (5)

where one iteration of gradient evaluation needs to be performed.

C. ML w/AEE Integration

When neural networks are utilized to speed up fitness evalua-
tion in GA and gradient evaluation in gradient descent, the com-
putational burden is shifted to data generation and model pre-
training. To lower this cost, we propose to use the ML w/AEE
model [26], which incorporates a fast frequency sweep technique
called analytic extension of eigenvalues (AEE) [22], [27] into
surrogate modeling. This efficient modeling approach allows us
to reconstruct the full frequency response using solutions at only
a few sampling frequencies, reducing data generation cost by
more than an order of magnitude for most practical applications.
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Here we briefly cover the basics of the ML w/AEE model. A
more detailed formulation, including full derivative calculation
can be found in [28].

The impedance matrix of anN -port device can be represented
with its eigenvalues λi and eigenvectors vi. Without loss of
generality, let’s consider a two-port device, where we have:

Z =

[
Z11 Z12

Z21 Z22

]
=

2∑
i=1

λi

[
vi,1
vi,2

]
[vi,1vi,2]

v2i,1 + v2i,2
. (6)

We can use lumped equivalent circuits (LEC) to model the
behavior of these eigenvalues (λi = βi + jαi), with circuit pa-
rameters RLGC, which we note as modal equivalent circuit
parameters. Using a second-order LEC, the eigenvalues (α and
β) can be represented as [28]:

αi =
ωL1,i

1− ω2L1,iC1,i
+

ωL2,i

1− ω2L2,iC2,i
(7)

βi =
R1,i + ω2L2

1,iG1,i

(1− ω2L1,iC1,i)
2 +

R2,i + ω2L2
2,iG2,i

(1− ω2L2,iC2,i)
2 . (8)

The eigenvectors can also be modeled using RLGC, based
on the eigenvector-eigenvalue identity [29]. In particular, we
have [28]:

vi,j = ±
√

αi − γj
αi − α3−i

(i = 1, 2; j = 1, 2) (9)

γi =
ωLs

1,i

1− ω2Ls
1,iC

s
1,i

+
ωLs

2,i

1− ω2Ls
2,iC

s
2,i

, (10)

where the superscript in Ls and Cs denotes the corresponding
LEC parameters for the sub-circuits.

We can use a neural network to learn the mapping between a
device’s geometrical parameters x and its modal LEC parame-
ters. This can be written compactly as:

y = F (Θ,x) = f1(Θ1, f2(Θ2, f3(. . ., fn(Θn,x)))), (11)

where f1, f2, . . ., fn are the layers of the network; Θ denotes the
network parameters to be trained; inputx is a multi-dimensional
vector containing the geometrical profile of the device; and y
represents the modal LEC parameters RLGC.

During model training, we tune the model parameters Θ
to minimize a error function, such as the mean squared error
(MSE), between the model prediction y and the ground truth ŷ
over the training data set of size L. This objective is given as:

min
Θ

1

L

L∑
n=1

(ŷ(n) − y(n))2. (12)

Once the model is fully trained, it can be used for fast forward
evaluation, where the model is fed with a new input x∗ and will
output the corresponding response y∗ = F (x∗); it can also be
used for gradient calculation, where we obtain ∂y

∂x based on
backpropagation, and ∂J

∂x based on the chain rule. In particular,
we have:

∂J

∂x
=

∂J

∂S
· ∂S
∂y

· ∂y
∂x

, (13)

Fig. 2. Overview of the stacked ML w/AEE model, with the fusion module
introduced for end-to-end gradient propagation. Blue arrows indicate the forward
process, and orange arrows indicate the inverse process.

where S is the S-parameters of the device, which can be obtained
analytically from RLGC parameters based on AEE principles
and Z-to-S transformation. However, we will use a neural net
module to obtain S numerically, as will be illustrated in the next
section.

D. Divide-and-Conquer Modeling and the Fusion Module

To fully take advantage of the benefits of the ML w/AEE
model, and to further improve modeling efficiency and accel-
erate the design process, we propose to adopt the divide-and-
conquer strategy. The entire structure is divided into segments
and modeled individually. The output from each sub-model is
cascaded to obtain the overall response. Note that we should
divide at locations with smooth and continuous structures such
that they incur minimal higher order mode excitation and cou-
pling between segments. Moreover, we should avoid design
parameters around the segmentation boundaries, so that the
previous condition can be met within the entire design space.
The cascading process can be done analytically [30], but that
would make it difficult to propagate gradient from the objective
function to design variables of each individual segment, hinder-
ing its use in the hybrid optimization framework. To address
this issue, we propose to use a neural net block called the fusion
module that performs the cascading numerically. This makes the
overall model end-to-end interconnected and allows for efficient
gradient propagation. An illustration of this stacked ML w/AEE
model is shown in Fig. 2.

The fusion module takes the RLGC parameters of each indi-
vidual segment as its input, and generates the S-parameters of
the entire device as:

S = H(y1,y2, . . .,yM ), (14)

where the subscript m ∈ [1,M ] denotes the p-th segment and
ym = Fm(xm). The fusion module is typically a model of
small size (3-layer in our applications) and can be trained
efficiently [31] after the sub-models F1 to Fm are fully trained,
requiring no additional cost for data generation.
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Algorithm 1: Hybrid GA + Gradient Optimization.
Define hyper-parameters α, β, η, δ, P , Nmax, w, ρ, μ
Initialize a population of individuals x1, . . ., xN in the
design space

while i ≤ Nmax do
Evaluate fitness for each individual in terms of the
objective function J(xj

i )

if J(xj
i ) ≤ δ then

End program and output xj
i

else
Evaluate gradient for each individual ∇J(xj

i )
if i=1 then
gi = ∇J(xi)

else
Calculate momentum gi = η · gi−1 +
(1− η) · ∇Ji

if
∣∣∣Ji

gi

∣∣∣ ≤ β then

Start gradient descent with initial point xj
i

if J ≤ δ during gradient descent then
End program and output design

else
Add gradient optimized design to population
and continue GA

end if
else

Perform GA operations: selection with
probability w, crossover with rate ρ, mutation
with rate μ

Update population
end if

end if
end while

The overall algorithm for the hybrid optimization method
is listed in the box below. Note that within each optimization
iteration, we need to evaluate the fitness for and calculate the
gradient with respect to every individual in the population. The
computational overhead will not be manageable without the use
of the stacked ML w/AEE model.

III. NUMERICAL RESULTS

We now consider two specific examples to illustrate the pro-
cess of the proposed hybrid optimization method and demon-
strate its better performance than the traditional optimization
methods.

A. Optimization of a Stepped-Impedance Low-Pass Filter

Here we present results on the optimization of a stepped-
impedance low-pass filter [27], as shown in Fig. 3. The fil-
ter consists of eight microstrip stubs and is divided into four
segments. The ports for each segment are fabricated with mi-
crostrip lines with two different characteristic impedances, 50
and 120 Ω. There are six design parameters, namely x =
[L1, L2, L3,W1,W2,W3]

T mm, where L1−3 and W1−3 are the

Fig. 3. Schematic of the stepped-impedance low-pass microstrip filter.

length and width of the middle microstrip stub in Segments 1-3,
respectively. A full-wave solver is used to simulate the frequency
response of sample designs and generate training and validation
data. The goal is to design the filter to have reflection below
−15 dB up to 2GHz. We define the objective function J as

J = Σf

[
R

(
S†
11 − Ŝ11

)2

+ I
(
S†
11 − Ŝ11

)2

+R
(
S†
21 − Ŝ21

)2

+ I
(
S†
21 − Ŝ21

)2
]

(15)

where Ŝ and S† are the design response and target response,
respectively. The target response is provided as a square-shaped
mask and we are enforcing both the real and imaginary parts
simultaneously.

For the GA optimizer used in this work, we use real-valued
encoding, with the population size P = 50, and the probability
of crossover and mutation being ρ = 0.6 and μ = 0.05, respec-
tively. The step size in grad-opt is set to α = 0.01, the inertia
parameter in momentum is set to η = 0.9, the overall ending
criteria is δ = 0.25, and the threshold isβ = 1. The optimization
will run for a maximum number of Nmax = 50 iterations.

For the experiments, we have two different initial designs,
denoted as configuration #1 and configuration #2, with the
design variables listed below.

1) Configuration #1: x = [2, 12, 7, 10, 6.5, 10]T mm
2) Configuration #2: x = [1.5, 9, 6.5, 9, 4.5, 9]T mm
We have chosen these two initial designs such that configu-

ration #1 is closer to the target design, whereas configuration
#2 is further away. This helps us compare the robustness and
efficiency of the the proposed method with GA and grad-opt.
The results for these two starting configurations are given in
Figs. 4 and 5, respectively.

For configuration #1, both the proposed method and standard
grad-opt are able to achieve the design target, as shown in
Fig. 4(a), which plots the magnitude of S11 for three designs,
namely the initial design and the optimized designs obtained
with grad-opt and the proposed method. In particular, as shown
in Fig. 4(b), it takes GA 50 iterations, 750 forward evaluations,
and 340 seconds to reach the optimal design; it takes grad-opt
44 iterations, 88 forward evaluations, and 84 seconds to reach
the optimal design; whereas for the hybrid method, it takes 31
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Fig. 4. Optimization results for the stepped-impedance filter example using
three different methods: GA, grad-opt, and the proposed method. The initial
design is given as configuration #1, where its response is relatively close to the
target response. (a) Magnitude ofS11 for optimized structures; (b) Loss function
versus iteration.

iterations, among which 25 are GA iterations and 2 are gradient
updates, 637 forward evaluations, and 181 seconds in total. From
these results, we can see that the hybrid approach is much more
efficient than traditional GA, achieving the design target in half
as much time. However, it is more costly than the standard
grad-opt. As expected, this is typically the case when the initial
design is already close to the design target. Fig. 5 shows the
results for configuration #2. In this case, grad-opt improves
only slightly from the starting point and fails to achieve the
design target, whereas the hybrid method successfully reaches
a viable solution. Fig. 5(b) shows the progression of the cost
function over iterations. For grad-opt, the cost function decreases
in the beginning but quickly saturates. For GA, the cost func-
tion heavily fluctuates, but is trending downwards. For hybrid
optimization, the cost function behaves like GA in the first few
iterations, but drops quickly once good starting points are found
and the gradient optimizer is invoked. Further testing shows that
for this example, GA is able to reach a solution in around 80
iterations, whereas grad-opt would fail even with smaller step
size. This shows the robustness of the proposed method, where
it can reach an optimal solution regardless of the initial design.

To better evaluate the robustness of the proposed method,
we conducted an additional experiment, where we perform 100

Fig. 5. Optimization results for the stepped-impedance filter example using
three different methods: GA, grad-opt, and the proposed method. The initial
design is given as configuration #2, where its response is further away from the
target response. (a) Magnitude ofS11 for optimized structures; (b) Loss function
versus iteration.

runs of the optimization using different methods with random
initial designs. For each run we set the maximum number of
iterations to 50, and record the objective function value during
the process. In Fig. 6, we plot the means as the solid lines,
and one standard deviation confidence intervals as the shaded
areas. We can see that gradient optimization has a huge trial-to-
trial variation, and can get trapped in local minima resulting in
sub-optimal designs. This is one major issue that our proposed
method aims to overcome.

Table I shows a comparison of the computational costs using
five different approaches, namely HFSS with GA, HFSS with
gradient descent, the hybrid method with standard neural-net-
based surrogate model, and the hybrid method with ML w/AEE.
We include the data generation and model pre-training cost for
the two ML-based methods, and calculate the average cost per
design for 100 optimization runs. Note that we only run the
two HFSS-based methods for one trial to record the time per
iteration. The average numbers of iterations for these meth-
ods are estimates based on their counterparts that incorporate
ML w/AEE. Also note that for HFSS with gradient descent, a
significant portion (42 out of 100) of the experiments do not
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TABLE I
COMPARISON OF COMPUTATIONAL COST FOR DIFFERENT METHODS FOR THE STEPPED-IMPEDANCE FILTER EXAMPLE

Fig. 6. Comparison of the proposed method with GA and gradient descent
in the robustness experiment for the stepped-impedance filter example. We plot
means and one standard deviation confidence intervals of the objective function
value across 100 trials.

result in a design that meets the design target. The average
number of iterations for this method is calculated based on those
experiments that successfully converged. HFSS-based methods
do not involve any cost for data generation or model pre-training,
but they need to incur multiple full-wave simulations at each
design iteration, which makes them very expensive. Moreover,
for each new design, they have to start from the ground up as
there is no information shared from run to run. On the other hand,
ML-based methods scale much better in that the model can be
re-used and the one-time cost for data generation and model
training will be thinned out through multiple runs. This makes
them perfect for applications where repeated design is needed,
e.g., microwave filters that have the same topology but with
different target responses. We also note the two major benefits
of using ML w/AEE compared to standard neural net models.
1) The data generation cost for ML w/AEE is greatly reduced
compared to the standard NN; 2) Because ML w/AEE models
have superior generalization performance, they serve as more
robust surrogate models and facilitate a faster convergence when
used in optimization. Due to these benefits, the hybrid method
with ML w/AEE is overall much more efficient.

B. Optimization of a Hairpin-Line Band-Pass Filter

In the second example, we consider the design optimization
of a hairpin-line band-pass filter [32], as shown in Fig. 7. This
period-symmetric microstrip hairpin-line filter consists of two
components: Component 1 and Component 2, and has seven de-
sign variables, i.e., x = [L1 W1 d1 L2 W2 d2 S]T(mm). Here,

Fig. 7. Schematic of the hairpin-line band-pass filter.

L1 and W1 are the length and width of the coupled line in Com-
ponent 1, respectively. d1 is the distance between the coupled
line in Component 1 and the dividing boundary of Component
1 and Component 2. L2 and W2 are the length and width of the
coupled line in Component 2, respectively. d2 is the distance
between the coupled line in Component 1 and the dividing
boundary of Component 2 and Component 2. S is the distance
between the two coupled lines in Component 2. W is the line
width of the two ports of Component 1 and Component 2, and
the corresponding port impedance is designed to be 50Ω. We use
HFSS for the full-wave EM simulation of each part and generate
training and test data. The goal is to design a band-pass filter
with below −10 dB reflection loss between 3.5 and 4.5 GHz.
The overall model consists of six sub-models, and the objective
function is given as (15), where the design target is provided as
a square-shaped mask response. All the hyper-parameters have
the same value as the previous example, except for β = 2 and
δ = 0.5, indicating that the proposed method is not sensitive to
the choice of hyper-parameters.

For the experiments, we again choose two different initial
designs, denoted as configuration #1 and configuration #2, with
the design variables listed below.

1) Configuration #1: x = [9.2, 1, 1, 9.5, 1.2, 0.9, 0.4]T

mm
2) Configuration #2: x = [8.5, 0.9, 0.9, 9, 1, 0.7, 0.3]T

mm
These two initial designs are chosen such that configuration

#1 is closer to the target design, whereas configuration #2 is
further away. The results are given in Fig. 8. We can see that
for configuration #1, both the proposed method and standard
grad-opt are able to achieve the design target. However, for con-
figuration #2, grad-opt only improves slightly from the starting
point and fails to achieve the design target, whereas the hybrid
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TABLE II
COMPARISON OF COMPUTATIONAL COST FOR DIFFERENT METHODS FOR THE HAIRPIN-LINE FILTER EXAMPLE

Fig. 8. Optimization results for the hairpin-line filter example using gradient
optimization and the proposed method. (a) The initial design is given as config-
uration # 1, where its response is relatively close to the target response. (b) The
initial design is given as configuration # 2, where its response is further away
from the target response.

method successfully reaches a viable solution. This again shows
the robustness of the proposed method.

We conduct a similar experiment for this example with 100
random runs of the optimization using different methods. The
results are shown in Fig. 9, where the means are plotted as
the solid lines, and one standard deviation confidence intervals
as the shaded areas. We observe a similar pattern where the
performance of gradient optimization heavily depends on the
starting point, making it very prone to getting trapped in local
minima. On the other hand, the proposed method is able to
reach the design target much more consistently. Table II lists
a comparison of the computational costs using five different
approaches for this example. We observe a similar pattern where
HFSS-based GA and gradient-opt methods are much more costly
when repeated designs are needed. In addition, for this more

Fig. 9. Comparison of the proposed method with GA and gradient descent
in the robustness experiment for the hairpin-line filter example. We plot means
and one standard deviation confidence intervals of the objective function value
across 100 trials.

complicated example, the benefit of using ML w/AEE compared
to standard neural net model is even more significant.

IV. CONCLUSION

In this article, we presented an efficient and robust hybrid
optimization method that combines GA and gradient descent op-
timization. In this approach, GA is used to start the optimization
with random search and heuristics-based evolution. During the
GA process, individual designs that satisfy a certain goodness
criteria are seeded as the starting point for gradient-based up-
dates, where an optimal solution can be reached quickly within
only a few iterations. To facilitate the optimization process, we
proposed the use of a neural network model that can speed up
fitness evaluation in GA and gradient calculation in grad-opt. To
further improve modeling efficiency and accelerate the design
process when dealing with large number of design variables, we
adopted the divide-and-conquer strategy, which is fully compat-
ible with the ML w/AEE model. We introduced a special neural
network block called the fusion module to perform component
cascading numerically, allowing the gradients to be passed from
the objective function to design variables.

By leveraging the advantages of both global and local meth-
ods, our proposed approach has been found to be robust and
efficient, achieving optimal solutions more consistently than
gradient-based methods, and in fewer iterations than traditional
GA. The incorporation of ML w/AEE model greatly alleviates
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the computational burden, both during the iterative design loop,
and during model pre-training. The hybrid method can be used
as an off-the-shelf optimizer for various design optimization
problems. We have made available a Python implementation
of the proposed method at https://github.com/ynngliu/Hybrid_
Optimization_with_MLAEE.
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