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Abstract—Left turn across path crashes with a vehicle traveling
from the opposite direction (LTAP/OD) are a common and often
fatal intersection crash scenario in the U.S. Intersection advanced
driver assistance systems (I-ADAS) are active safety systems
emerging in the vehicle fleet that are intended to help drivers
safely traverse intersections. The objective of this study was to ex-
amine the earliest detection opportunity for I-ADAS in LTAP/OD
intersection crashes. A total of 35 crashes were extracted for this
study’s analysis from the NASS/CDS crash database. EDR pre-
crash records taken from each vehicle were then used to determine
vehicle position with respect to time. Two scenarios are considered:
one with and one without potential sight occlusions. The results
suggest that, even if no sight obstructions are present, an I-ADAS
that warns drivers of an impending collision will be greatly limited
by perception–reaction time. Accordingly, systems that employ
automated emergency braking are expected to be substantially
more effective. Required detection distances and azimuth values
are presented. The results highlight the need for careful tuning of
sensor capabilities and the need to consider side-facing sensors for
ensuring vehicle tracking prior to any potential collision conflict.

Index Terms—Active safety system, automated vehicles, driver
assistance system, intersection, I-ADAS, sensors.

I. INTRODUCTION

INTERSECTION crashes are among the most frequent and
lethal crash scenarios in the U.S. each year [1], [2]. Inter-

section advanced driver assistant systems (I-ADAS) are active
safety systems that aim to help drivers safely navigate inter-
sections. These systems can detect oncoming vehicles using
onboard sensors and in the event of an imminent crash can pro-
vide a warning for the driver and/or automatically avoid/mitigate
the crash by using automatic emergency braking [AEB] [3], [4]
or acombination of AEB and autonomous emergency steering
[5], [6].

The left turn across path with a vehicle travelling from the
opposite direction (LTAP/OD) crash mode accounts for approx-
imately one-third (32%) of all fatal intersection crashes and
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Fig. 1. A depiction of an LTAP/OD crash scenario. The blue (left turning)
vehicle is equipped with hypothetical forward and side facing.

one-fourth (26%) of all intersection crashes. LTAP/OD crashes
are second only to straight crossing path (SCP) collisions in
terms of frequency and fatal outcomes in intersection crashes
[1], [2]. A schematic of a LTAP/OD crash is shown in Fig. 1.
These crashes almost always (99% [7]) occur when either (a)
both vehicles had a signal or (b) neither vehicle had a signal or
stop sign on their approach. These crashes tend to occur when
the turning driver either (a) failed to detect the oncoming vehicle
or (b) misjudged the gap required to successfully perform the
left turn. In fact, distraction (48%) and judgment errors (34%)
are overwhelmingly the most commonly cited critical reasons
for the crash having occurred [7].

Turning left at intersections with oncoming vehicles is an in-
herently complex maneuver. Drivers must scan for vehicles,
yield the right of way when appropriate, and make a deci-
sion on when the intersection can be safely traversed. Older
drivers have been found to be particularly vulnerable when per-
forming left turns at intersections [8]–[10]. Frequently cited
mechanisms for this susceptibility are that senior drivers tend to
misjudge whether they have adequate time to make a left turn
across another vehicles path in an intersection [11]–[13] or they
failed to see the oncoming vehicle altogether [11]. A number of
age-related deficiencies can explain this, including diminished
cognitive-motor abilities [14], inadequate visual scanning [13],
[15], and slower decision making [16]–[18]. The objective of I-
ADAS is to continuously scan and detect oncoming vehicles and
enhance the capacity for the crash to be avoided by either provid-
ing a warning or automatically evading the crash. Accordingly,
this technology may prove useful for these senior drivers, which
fail to detect or misjudge the location of a potential collision
partner.
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Fig. 2. A depiction of sensor orientation, maximum range, and field of view
for detecting oncoming vehicles.

One challenge when designing I-ADAS is selecting sen-
sor specifications that ensure that oncoming vehicles can be
consistently detected in a timely manner. Most crash avoidance
technologies rely on cameras or radar for vehicle detection [3],
[4], [19]–[23], and some future vehicles will use a 360-degree
lidar [24], [25]. The sensor specifications, such as detection
range, field of view, and orientation, will directly influence per-
formance of I-ADAS. These three parameters are depicted in
Fig. 2. Previous studies [26]–[28] have examined the sensor de-
sign requirements for I-ADAS in SCP and left turn across path
lateral direction (LTAP/LD) crashes. This study looks to expand
upon these prior studies by examining the sensor design require-
ments for I-ADAS in an LTAP/OD crash scenario. The sensor
design requirements for I-ADAS are unique in an LTAP/OD
type crash when compared to other common intersection crash
modes. In an LTAP/OD crash, vehicles are approaching one an-
other from the forward facing direction, as depicted in Fig. 3.
Most other intersection crash modes involve vehicles approach-
ing one another from the lateral direction. Additionally, in an
LTAP/OD crash, selecting appropriate sensor specifications are
complicated by (a) detection requirements depending on which
vehicle is equipped (i.e., the left turning or straight crossing)
and (b) potential sight obstructions [29]. Both of these elements
are explored in the current study.

I-ADAS technologies that utilize vehicle-based sensors to
detect oncoming vehicles can be viewed as a near-term crash
avoidance solution that is emerging in the vehicle fleet [3],
[30], [31]. Two other technologies that have been under de-
velopment and could prove useful to reduce the frequency of
intersection crashes are (a) vehicle-to-infrastructure (V2I) and
(b) vehicle-to-vehicle (V2V) communications. V2I relays infor-
mation from roadway infrastructure to vehicles [32]–[40], while
V2V exchanges information between vehicles [32]. These tech-
nologies have the capacity to transmit data being collected by
infrastructure-based sensors [33], [41] or vehicle-based sensors
[42], [43]. The types of messages being passed may include
the location of other vehicles or a traffic signal phase. By com-
municating relative positions and speeds of vehicles, V2I and
V2V communication can overcome many limitations caused by
sightline obstructions. Although these technologies have shown

Fig. 3. The scene diagram for NASS/CDS case 2014-4-55. The EDR speed
profile records are additionally included for both vehicles. The left turn-
ing vehicle (red) slowed down throughout the intersection approach and left
turn. The straight crossing vehicle (green) maintained a relatively constant
speed approximately 15 mph higher than the posted speed limit (speed limit
= 45 mph).

great promise [44], phase-in will be gradual. Deploying V2I
at all intersections will take time, and may be prohibitively
expensive at some locations [41]. V2V technology requires both
vehicles in a potential collision scenario to be equipped. Ac-
cordingly, effectiveness throughout the fleet will be a function
of V2V penetration.

One method for determining appropriate design specifications
is through the reconstruction of real-world crashes [26]–[28].
By tracing back the position of the vehicle throughout time,
crashes can then be simulated forward as if either vehicle had
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been equipped with I-ADAS. In doing so, design specifications
can be determined in the context of the real-world scenarios
that these technologies aim to prevent. Given the uncertainty
associated with impact speed, crash avoidance action [45], and
approach/traversal vehicle kinematics [46]–[48], the most reli-
able method for tracing back the pre-crash positions of vehicles
is with the use of Event Data Recorders (EDRs) which are
present in 96% of new U.S. passenger vehicles [49]. As an ex-
ample, consider the case depicted in Fig. 3, which was included
in this study’s case set. In the event of a crash, the EDR has the
potential to record a number of pre-crash parameters, such as
vehicle speed, brake application, yaw rate, and steering wheel
angle [50].

The objective of this study was to determine the required
sensing specifications to ensure that an I-ADAS could detect an
oncoming vehicle at the earliest possible opportunity. This study
was specifically interested in an I-ADAS that activates only
in a crash-imminent scenario. Our underlying assumption was
that LTAP/OD non-crashes would continue to be avoided if the
vehicles were equipped with an I-ADAS. Our target population,
therefore, was crashes. Three research questions were posed.
First, how much time is available for crash avoidance from
detection of an oncoming vehicle until impact? Second, what
detection range and azimuth is required for sensors to detect an
oncoming vehicle at the earliest opportunity? Third, how will
sensor specifications influence vehicle detection capacity?

II. METHODS

A. Data Source

This study was based on LTAP/OD crashes collected as a part
of the National Automotive Sampling System/Crashworthiness
Data System (NASS/CDS). This database is compiled annu-
ally by NHTSA with 4,000–5,000 tow away crashes collected
within the U.S. vehicle fleet. NASS/CDS additionally assigns
case weights, which allow for nationally representative esti-
mates to be made [51].

B. Case and EDR Module Selection Criteria

Several requirements were established for a case to be in-
cluded in this study. First, only LTAP/OD collisions between
two passenger vehicles were considered. Second, both vehicles
must have had extracted EDR records that contained pre-crash
vehicle speed. Third, each vehicle must have experienced either
(a) an airbag deployment or (b) a non-deployment event with a
change in velocity during the impact (delta-v) of over 5-mph.
In the event of an airbag deployment, the pre-crash record is
locked into the EDR module. However, with non-deployment
events, these records can be overwritten by later events. A
5-mph threshold was used, because this delta-v magnitude
would be unlikely to be associated with any event other than
that described in NASS/CDS. Fourth, as has been done in previ-
ous studies [52], cases with a national weighting factor greater
than 5,000 crashes were excluded to limit any potential skewing
of the results. Previous work by Kononen et al. [52] indicated
that cases with weights greater than 5,000 are typically extreme

outliers from the rest of the NASS/CDS survey data. Accord-
ingly, any estimates generated are dramatically influenced by
these excessively high case weights.

C. Precrash Reconstructions

The pre-crash positions of each vehicle from the beginning
of the EDR pre-crash records up until the point of impact were
reconstructed for each vehicle in each crash. Positions were
reconstructed using the scene diagram prepared by the crash
investigator. Methods employed in a prior study were used to
take measurements of the vehicle’s path leading up to the crash
[26]–[28], [53], [54]. These measurements, among others, in-
cluded any evasive steering the driver may have performed, any
turning on curved roads, any lane changes, and the turning path
while traversing the intersection.

The pre-crash time series of each vehicle was then recon-
structed using the EDR pre-crash vehicle speed records. As has
been detailed extensively in prior studies [26], [27], four main
steps were used to trace back the position of the vehicles with
respect to time. First, vehicle speeds were shifted with respect
to the impact time. EDR data is limited by uncertainty in when
the last recorded speed was collected with respect to the mo-
ment of impact. With the exception of Toyota EDR modules
which record vehicle speed at impact, the last recorded vehicle
speed was assumed to have been recorded at one-half the sam-
ple time prior to impact. Second, linear extrapolation was used
to determine vehicle impact speed. Third, because most EDRs
record vehicle speed at 1-Hz, intermediate speeds were deter-
mined using linear interpolation. Fourth, the distance travelled
by the vehicle with respect to the time was determined using
trapezoidal numerical integration.

D. Sensor Reconstructions

A primary objective of this study was to determine the re-
quired range, field-of-view, and orientation for on-board sen-
sors to detect oncoming vehicles. This study modeled I-ADAS
as monitoring for a potential collision partner only after the
left turning vehicle first left its initial travel lane. At this time
point, it was assumed the collision avoidance system would have
recognized that a left turn was being attempted.

Other vehicles on the roadway in adjacent lanes could obstruct
the sightline to any oncoming vehicles for some proportion of
these crashes [29]. Two scenarios were considered for I-ADAS.
First, we considered a best-case scenario, where a clear line-of-
sight would have been available throughout the entire pre-crash.
In this scenario, the earliest detection opportunity would have
been the location where the left turning vehicle first departed its
initial travel lane (i.e., where I-ADAS would begin monitoring
for a collision partner). Second, we considered a worst-case sce-
nario. In this scenario, as shown in Fig. 4, vehicles in adjacent
lanes could obstruct the view from the left turning vehicle to the
straight crossing vehicle. A queue of stopped vehicles were mod-
eled as being present in the adjacent lane of the straight crossing
vehicle. For this scenario, the earliest detection opportunity was
modeled as occurring only after the left turning vehicle left
its initial travel lane and a clear line-of-sight was available. It
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Fig. 4. The opportunities for earliest vehicle detection given sight obstruc-
tions. The worst-case earliest detection opportunity represents a scenario where
(a) the left turning vehicle has begun initiating a left turn and (b) line-of-sight
was obstructed by a queue of vehicles.

TABLE I
SENSOR SPECIFICATIONS THAT WERE EXAMINED IN THE CURRENT STUDY

Wide Beam Intermediate Beam Narrow Beam

Range 30 m 90 m 150
Azimuth + /−45° + /−30° + /−15°

should be noted that not all LTAP/OD involve a straight crossing
driver with adjacent lanes that could obstruction line-of-sight.
Accordingly, for crashes such as those occurring on a two-lane
roadway, the best-case and worst-case earliest detection oppor-
tunities were assumed to occur at the same location (initial travel
lane departure by left turning vehicle). Additionally, in the event
that the left turning vehicle stopped beyond the earliest detection
opportunity (as determined using the EDR records), the instance
when the turning vehicle began accelerating was taken as the
earliest detection opportunity.

At both of these locations, the required detection range and
azimuth with respect to vehicle heading were of interest. For
example, a vehicle that was directly straight ahead and 20-m
away would have a required detection range of 20-m and a
required detection azimuth of 0°. All range and azimuth mea-
surements were taken from the front-center of the “equipped”
vehicle. Additionally, several hypothetical sensors were consid-
ered, including a wide-short beam, a long-narrow beam, and an
intermediate beam. Sensor characteristics that were used in this
study are shown in Table I. The specifications used are within
the capacity of several commercially available vehicle-based
radars, including Delphi Corporation’s Electronically Scanning
Radar, Smartmicro’s UMRR Automotive Radar Sensors, and
Eaton’s VORAD VS-400. All simulations were performed with
the assumption that the sensor would be oriented in the direction
of the vehicle heading.

III. RESULTS

A total of 44 crashes were considered for this study’s analy-
sis. One of the cases was excluded for missing a scene diagram

Fig. 5. The vehicle speed of the left turning vehicle at the best-case earliest de-
tection opportunity. Vehicles with speed of 0 kph stopped within the intersection
prior to accelerating into the path of the oncoming vehicle.

Fig. 6. The vehicle speed of the left turning vehicle at the best-case earliest de-
tection opportunity. Vehicles with speed of 0 kph stopped within the intersection
prior to accelerating into the path of the oncoming vehicle.

in the case documentation. An additional 6 cases were excluded
because at least one of the vehicles likely experienced wheel
slip (maximum deceleration greater than 1-g). Two cases were
removed because the EDR pre-crash records were not sufficient
for tracing the vehicle path back to the best-case detection op-
portunity. The final dataset consisted of 35 LTAP/OD crashes.

A. Dataset Composition: Speeds of Vehicles Leading up to
the Crash

As a first analysis, we examined the speeds of vehicles at
the time point when the left turning vehicle first crossed out
of their turn lane. This point was referred to as the best-case
earliest detection opportunity. Fig. 5 shows the distribution of
speeds for the left turning vehicle at this time point. A total
of 22% of left turning drivers stopped within the intersection
(after crossing out of their travelling lane) prior to accelerating
through the intersection. The median left turn vehicle speed was
19 kph (12 mph) and 95% of speeds fell below 38 kph (24 mph).



66 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 2, NO. 1, MARCH 2017

Fig. 7. Interval between detection and impact under best-case and worst-case
scenarios.

Fig. 6 shows the speeds of the non-turning vehicles at the best-
case earliest detection opportunity. The median speed for these
non-turning drivers was 63 kph (39 mph). The 95th percentile
of oncoming vehicles was 88 kph (55 mph).

B. How Much Time Is Available for Crash Avoidance From
Detection of an Oncoming Vehicle Until Impact?

This study’s second analysis examined the time available
to avoid a crash after an oncoming vehicle could have been
potentially detected. Two time points were considered. First, the
best-case scenario was taken, i.e., a clear sightline was available
at the instant the left turning vehicle initially departed in its initial
travel lane. Second, the worst-case scenario was considered,
where a queue of cars would have obscured the view to any
oncoming vehicles. The time from crossing these time points
until impact can be seen in Fig. 7. For the best-case scenario,
50% of the intervals from detection to impact fell below 1.8 s
and 95% of the intervals fell below 3.6 s. For the worst-case
scenario, the median time to impact was 1.2 s and 95% of times
fell below 2.7 s.

One concern of these active safety systems is whether there
would be sufficient time for a driver to respond to a warning. One
major limitation of using a warning is perception-reaction time.
In a previous simulator study at Monash University Research
Center (MUARC) in Australia [55], researchers had participants
drive down a stretch of road that consisted of several signalized
intersections. While driving, right turning drivers (Australia has
left-hand traffic) occasionally turned across the path of the sub-
ject vehicle at which point the driver would receive an audible
or visual warning and respond by either braking or steering.
The median reaction time (interval between warning and eva-
sive action start) for these straight crossing drivers was 1.5 s. In
a second simulator study performed by BMW Group Research
and technology [56], forty males participated in a driving sim-
ulator study that replicated the participant being an occupant
in a vehicle being driven by another person. Similar to that
of a driving instructor, the participant was instructed to press

Fig. 8. Detection distance between the front-center of the vehicles at the
best-case and worst-case earliest detection opportunities.

a brake pedal if they judged a situation to be potentially dan-
gerous. These drivers then experienced several scenarios where
the subject vehicle instead took a left turn across the path of a
straight crossing driver and a visual warning was delivered. The
median perception-reaction time (interval between warning and
brake pedal press) for these drivers was also 1.5 s. In the current
study, because 72% of best-case scenario times exceed 1.5 s, if
every driver was to respond after 1.5 s we would expect these
drivers to have the potential to begin reacting following a warn-
ing. This does not imply, however, that these drivers would have
been able to successfully avoid the crash. Additionally, a mere
22% of drivers would have had 1.5 s to react if they received a
warning at the worst-case earliest detection opportunity.

A second method for I-ADAS crash avoidance would be for
the system to automatically evade the crash. The previous few
years have seen the emergence of AEB and autonomous steering
systems are also being developed and considered by designers
[5]. The major advantage of automated crash evasion is a faster
reaction than that of a driver. Although this technology is most
commonly installed in frontal crash avoidance systems [23],
Volvo released an updated version of “City Safety” in 2014 [4],
[30], which is a combination of crash avoidance functions that
aim to prevent a number of crash modes commonly occurring
in cities, including LTAP/OD intersection crashes. The system
specifically employs AEB if the equipped vehicle begins to turn
left across the path of an opponent.

C. What Detection Range and Azimuth Is Required for Sensors
to Detect an Oncoming Vehicle at the Earliest Opportunity?

This study’s second analysis examined the required detection
range and azimuth for detecting the opposing vehicle. As in
the prior analysis, both the best-case and worst-case scenarios
were considered. Fig. 8 shows the distance between the vehicles
given the best and worst cases. The median detection range
for the worst-case detection scenario was 20.5 m and 95% of
distances fell below 61.0 m. In the best-case scenario, the median
range was 33.5 m and 95% of distances fell below 86.5 m. This
result suggests that in the absence of potential sight occulsions
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Fig. 9. Detection azimuth between the front-center of the vehicles for the left
turning vehicle at the best-case and worst-case earliest detection opportunities.

Fig. 10. Detection azimuth between the front-center of the vehicles for the
straight crossing vehicle at best-case and worst-case earliest detection opportu-
nities.

I-ADAS sensors with a maximum range capacity of 90 m would
have the capacity to detect all oncoming vehicles in the dataset.
Although sight occlusions are expected to be a limiting factor
for I-ADAS, it is important that these systems have adequate
sensing capacity for the ideal scenario (i.e., no sight occlusions).
Failing to design for these more extreme scenarios could lead to
failed crash avoidance in an otherwise avoidable scenario.

Fig. 9 shows detection angle values for the left turning vehi-
cles at the best- and worst-case possible detection opportunities.
At the best-case earliest time point, the left turning vehicle had a
median required detection azimuth of 10.8° and 95% of azimuth
values fell below 26.7°. As the vehicle continues its left turn, we
would expect the azimuth values to grow. Accordingly, at the
worst-case time point, the median required detection azimuth
was 17.0° and 95% of azimuth values fell below 30.4°.

Fig. 10 shows required detection angle values for the straight
crossing driver. At the best-case earliest detection time point, the
median azimuth was 7.9° and 95% of values fell below 19.5°.
Similarly at the worst-case earliest detection time point, the me-
dian azimuth was 9.2° and 95% of values fell below 21.8°. Two
competing factors that dictate azimuth for the straight cross-

Fig. 11. Convention used to describe relative location of oncoming vehicle
(blue vehicle) with respect to the equipped vehicle (red vehicle).

ing driver are (1) the proximity of the left turning vehicle and
(2) the lateral position of the left turning vehicle. If the left
turning vehicle never turned across the path of the straight cross-
ing driver, the azimuth value would inherently become larger
due to a narrowing of the longitudinal distance between the ve-
hicles. Because these are all LTAP/OD crashes, the left turning
driver is moving laterally into the path of the straight crossing
driver, which is working to decrease the detection azimuth of
the non-turning vehicle. These two competing mechanisms led
to only slightly higher azimuth values at the worst-case earliest
detection time point.

1) How will sensor specifications influence vehicle detec-
tion capacity?: The next objective was to determine the capac-
ity for an onboard sensor to detect an oncoming vehicle. It is
important, of course, to consider the perspective of both ve-
hicles, because either vehicle could in theory take avoidance
action. The convention shown in Fig. 11 was used to trace the
position of the oncoming vehicle from the perspective of the
equipped vehicle. The straight ahead position was taken to be
the longitudinal direction. The origin was taken as the front-
center of the equipped vehicle. The position of the oncoming
vehicle with respect to the wide, intermediate, and narrow sen-
sors orientated in the longitudinal direction was considered.

The perspective of the left turning driver was first consid-
ered. The position of the oncoming straight crossing vehicle
from the best-case detection opportunity until impact is shown
in Fig. 12. The specifications of three sensor beams oriented in
the direction of the vehicle heading are also shown. A total of
83% of trajectories stayed within the intermediate beam from
the best-case detection opportunity until the vehicles were 5-m
from impact. Conversely, only 32% and 13% of the trajecto-
ries stayed within the wide and narrow beams, respectively. A
sensor with at least a sensor azimuth 62 degrees was estimated
to be required to detect all oncoming vehicles until 5-m from
impact.

An “arc” was observed from the perspective of some of the
left turning drivers. This arc is caused by (a) the changing head-
ing of the left turning and (b) the increasing proximity of the
straight crossing vehicle. Because of this arcing, the maximum
required detection azimuth occurs at some point in the middle
of the left turn. Accounting for the time-dependent relation of
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Fig. 12. The position of the straight crossing vehicle (oncoming) from the
perspective of the left turning vehicle (equipped). The red dot indicates the
best-case detection opportunity, while the blue dot represents the worst-case
detection opportunity. The trace terminates at the point of impact. Three sensor
beams are considered with the assumption that the sensor was oriented in the
direction of the vehicle heading.

Fig. 13. The position of the left turning vehicle (oncoming) from the per-
spective of the straight crossing vehicle (equipped). The red dot indicates the
best-case detection opportunity, while the blue dot represents the worst-case
detection opportunity. The trace terminates at the point of impact. Three sensor
beams are considered with the assumption that the sensor was oriented in the
direction of the vehicle heading.

detection distance and azimuth is important for ensuring contin-
uous tracking of the oncoming vehicle. In practice, an I-ADAS
would constantly be reassessing the need for crash avoidance
action. Accordingly, any gap in vehicle tracking could diminish
system performance.

The perspective of the straight crossing vehicle was then
considered in Fig. 13. The oncoming vehicle was within the

intermediate beam from the best-case time point to 5-m from
impact for all crashes. For the narrow beam 83% of oncoming
vehicles remained within the beam. The wide beam was less
effective as only 31% of vehicles were within the sensor beam
throughout this time period.

There are several important findings from this analysis. First,
if a forward facing sensor was used, the intermediate beam
specifications seem most appropriate for detecting oncoming
vehicle. These sensors should, of course, be tuned to accommo-
date vehicle sensing throughout the encroachment. Second, only
a forward facing sensor is considered in this analysis. Currently
some of the I-ADAS technology used by vehicles on the market
[3], [4] utilize a forward facing radar. I-ADAS designers should
consider incorporating side-facing sensors to ensure continuous
vehicle detection.

It is important to note that these results were generated ex-
clusively from scenarios that resulted in a crash. The range
and azimuth specifications described should be interpreted ac-
cordingly. The I-ADAS technology described throughout this
paper only takes action (warning or automated crash avoidance)
in crash-imminent scenarios. As this vehicle-based technology
begins to take over other driving functions, such as performing
the left turn through the intersection without driver intervention,
the system may need to be able to detect vehicles additionally
within the context of “normal” driving, i.e., non-crashes.

IV. LIMITATIONS

There are a number of limitations to note in the current study.
First, path reconstructions were made based on the depiction of
pre-crash vehicle locations in the scene diagram prepared by the
crash investigator. Some geometrical assumptions were made in
order to interpolate vehicle position between these depicted po-
sitions. Second, EDR data is limited in recording duration, res-
olution, and sampling rate. Third, other roadway traffic which
could limit sensor capacity was considered for only two discrete
locations (best-case and worst-case). In a real-world scenario,
we would expect earliest sensor detection to occur at some point
between these two locations. Third, for an EDR record to be in-
cluded in this study, the vehicle must have experienced an airbag
deployment or a delta-v greater than 5-mph. Additionally, one
of the vehicles had to have been towed from the scene to have
been included in NASS/CDS. This dataset has some bias toward
more severe intersection crashes, which should be considered
when interpreting results or trying to translate these results to
lower-speed collisions. Lastly, the results from this study were
generated from a relatively small dataset. As more data becomes
available, estimates will become more representative of the en-
tire crash population and factors influencing the results can be
explored.

V. CONCLUSION

This study reconstructed 35 real-world LTAP/OD crashes that
occurred in the U.S. vehicle fleet. The results suggest that sight
occlusions due to other vehicles on the roadway will substan-
tially limit the available time from detection to avoidance action.
The time interval from detection to impact is, in general, well
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below typical perception-reaction times observed for drivers in
previous simulator studies. Accordingly, this finding indicates
that I-ADAS has the potential to be limited if utilizing a warning
for the driver rather than taking automated evasive action, such
as with AEB. Required detection specifications, specifically the
required detection distance and azimuth, are highlighted in the
results. For left turning vehicles, maximum required detection
azimuth tends to occur near the midpoint of the left turn. An
intermediate sensor beam (90 m, +/−30°) was found to per-
form superior to both a wide or narrow beam sensor. The results
highlight the need for careful tuning of sensor capabilities and
the need to consider side-facing sensors for ensuring vehicle
tracking prior to any conflict.
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