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 Abstract—The introduction of active safety systems and 

advanced driver assistance systems has enhanced the control 

authority over the vehicle dynamics through specialized actuators, 

enabling, for instance, independent wheel torque control. During 

emergency situations, these systems step in to aid the driver by 

limiting vehicle response to a stable and controllable range of low 

longitudinal tire slips and slip angles. This approach makes vehicle 

behavior predictable and manageable for the average human 

driver; however, it is conservative in case of driving automation. 

In fact, past research has shown that exceeding the operational 

boundaries of conventional active safety systems enables 

trajectories that are otherwise unattainable. This paper presents a 

nonlinear model predictive controller (NMPC) for path tracking 

(PT), which integrates steering, front-to-total longitudinal tire 

force distribution, and direct yaw moment actuation, and can 

operate beyond the limit of handling, e.g., to induce drift, if this is 

beneficial to PT. Simulation results of emergency conditions in an 

intersection scenario highlight that the proposed solution provides 

significant safety improvements, when compared to the 

concurrent operation of PT algorithms and the current generation 

of vehicle stability controllers. 

 
Index Terms—Automated vehicles, autonomous drifting, active 

safety, control allocation, nonlinear model predictive control. 

NOMENCLATURE 

𝐴𝑐𝑎𝑟: frontal area of the vehicle 

𝑎𝑥,𝑚𝑒𝑎𝑠: measured longitudinal acceleration 

𝑎𝑦,𝑒𝑠𝑡: estimated lateral acceleration 

𝑎𝑦,𝑚𝑒𝑎𝑠: measured lateral acceleration 

𝑏: track width 

𝐵𝑦 , 𝐶𝑦 , 𝐷𝑦: Pacejka coefficients 

𝐶𝑑: aerodynamic drag coefficient 

𝑐1, 𝑐2, 𝑐3: constant tunable parameter 

𝑑𝑠𝑓: safety distance 

𝐷𝑦,1, 𝐷𝑦,2, 𝐷𝑦,𝑖: Pacejka coefficients 

𝑒𝑦: lateral position error 

𝑒𝑦,𝑚𝑎𝑥: maximum lateral position error 

𝑒𝜓: heading angle error 

𝑓(): prediction model function 

𝑓𝑎𝑐𝑡: activation function 

𝐹𝑑𝑟𝑎𝑔: aerodynamic drag force 
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𝑓𝑖: primary function of the tire-road friction ellipse formulation 

𝐹𝑟: rolling resistance force 

𝐹𝑥, 𝐹𝑦 , 𝐹𝑧: longitudinal, lateral, and vertical tire forces 

𝐹𝑥,𝑚𝑖𝑛 , 𝐹𝑥,𝑚𝑎𝑥: lower and upper boundaries of the longitudinal 

tire force 

𝐹𝑥,𝑚𝑎𝑥,𝑝𝑤𝑡: maximum traction force delivered by the powertrain 

𝐹𝑥,𝑀𝑧: longitudinal tire force contribution of the direct yaw 

moment 

𝐹𝑥,𝑡𝑜𝑡: total longitudinal force 

𝐹𝑦0: lateral tire force in pure slip conditions 

𝐹𝑧
𝑠𝑡𝑎𝑡: static load contribution 

𝐹𝑧,𝑥, 𝐹𝑧,𝑦: longitudinal and lateral load transfers 

𝑓0, 𝑓2: rolling resistance coefficients 

𝑔: gravitational acceleration 

𝑔𝑜𝑢𝑡(): system output function 

𝐻𝑐: control horizon 

ℎ𝑖𝑐(): inequality constraints function 

ℎ𝑔: center of gravity height 

𝐻𝑝: prediction horizon 

𝐻𝑝𝑟𝑒𝑣: preview time 

ℎ𝑟: roll center height 

𝑖 = 𝑓, 𝑟: subscript indicating the front or rear axle 

𝑖𝑐ℎ: scaling factor 

𝑖̃𝑘: generic dimensionless variable 

𝐼𝑧: yaw mass moment of inertia 

𝑙𝑓 , 𝑙𝑟: front and rear semi-wheelbases 

𝐽: cost function 

𝑗 = 𝑙, 𝑟: subscript indicating the left or right sides 

𝑗𝑐: index referring to the current time step 

𝐽𝑠𝑡𝑎𝑔𝑒1 , 𝐽𝑠𝑡𝑎𝑔𝑒2: stage cost contributions 

𝐽𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 : terminal cost 

𝑘: discretization step along the prediction horizon 

𝑘𝛽: dynamic sideslip angle correction factor 

𝑘𝜇: fixed conversion factor 

𝐾𝜑: roll stiffness 

𝑚: vehicle mass 

𝑚𝑎𝑑𝑑: additional vehicle mass considered in the Monte Carlo 

simulations 

𝑀𝑧: direct yaw moment 
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𝑀𝑧,𝑚𝑖𝑛 , 𝑀𝑧,𝑚𝑎𝑥: lower and upper boundaries of the direct yaw 

moment 

𝑀𝑧,𝑟𝑒𝑙: relative direct yaw moment 

𝑁𝑐: number of steps of the control horizon 

𝑁𝑝: number of steps of the prediction horizon 

𝑁𝑝𝑟𝑒𝑣: number of steps of the preview time 

𝑝𝑏 , 𝑝𝑡: front-to-total longitudinal force distribution ratio in 

braking and traction 

𝑝𝑏,𝑚𝑖𝑛 , 𝑝𝑏,𝑚𝑎𝑥: lower and upper boundaries of the front-to-total 

longitudinal force distribution ratio in braking 

𝑃ℎ( ), 𝑃ℎ
′ ( ): coordinates of the vertices of the polygons defining 

the actuation limits 

𝑃𝑥: diagonal weight matrix of the terminal cost 

𝑄𝑥: diagonal weight matrix of the system output vector 

𝑅𝑢: diagonal weight matrix of the control action vector 

𝑟𝑤: wheel radius 

𝑅𝜀: slack variable weight 

𝑠: distance traveled along the path 

𝑠1, 𝑠2: initial and final points of the maneuver 

𝑠𝑎𝑡: constant parameter 

𝑡: time 

𝑇𝑎: computational time 

𝑇𝑏: braking torque 

𝑇𝑒𝑙: electric motor torque 

𝑇𝑠: sampling time 

𝑇𝑤: wheel torque 

𝑇𝑤,𝑚𝑖𝑛 , 𝑇𝑤,𝑚𝑎𝑥: lower and upper boundaries of the wheel torque 

𝑇1, 𝑇2: initial and final time instants of the maneuver 

𝑢: control action vector 

𝑈: decision variable vector 

𝑢𝑚𝑖𝑛 , 𝑢𝑚𝑎𝑥: lower and upper boundaries of the control action 

vector 

𝑣𝑥 , 𝑣𝑦: longitudinal and lateral speed components 

𝑣𝑥,𝑒𝑠𝑡: estimated longitudinal speed 

𝑣𝑥,𝑚𝑒𝑎𝑠: current longitudinal speed 

𝑣𝑥,𝑚𝑖𝑛: minimum longitudinal speed 

𝑣𝑥,𝑟𝑒𝑓: reference longitudinal speed 

𝑤: parameter vector 

𝑊𝐶𝑥: scaling factor of the longitudinal shape factor in the 

Pacejka model 

𝑊𝐶𝑦: scaling factor of the lateral shape factor in the Pacejka 

model 

𝑊𝑣𝑦: scaling factor of the lateral vehicle velocity 

𝑊𝜎: scaling factor of the tire relaxation length 

𝑤1: weight vector of the lateral acceleration 

𝑥: state vector 

𝑋, 𝑌: axes of the absolute reference system 

𝑥𝑖𝑛: initial value of the state vector 

𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥: lower and upper boundaries of the state vector 

𝑧: predicted system output vector 

𝑧𝑟𝑒𝑓: reference output vector 

𝛼: slip angle 

𝛽: sideslip angle 

𝛽𝑟𝑒𝑓: reference sideslip angle 

𝛽𝑆𝑆, 𝛽𝑘𝑖𝑛,𝑆𝑆, 𝛽𝑑𝑦𝑛,𝑆𝑆: quasi-steady-state sideslip angle value, and 

its kinematic and dynamic contributions 

𝛿, 𝛿𝑤: steering angle at the wheel and steering wheel angle 

𝛿𝑚𝑖𝑛 , 𝛿𝑚𝑎𝑥: lower and upper boundaries of the steering angle 

𝜀: slack variable 

𝜁: time derivative of the front longitudinal force 

𝜇: tire-road friction parameter 

�̅�𝑑𝑠𝑓: average safety distance 

𝜇𝑖𝑑: ideal friction coefficient 

𝜇𝑥, 𝜇𝑦: longitudinal and lateral tire-road friction coefficients 

𝜇𝑦0: lateral load coefficient 

𝜉: time derivative of the steering angle 

𝜌: effective curvature 

𝜌𝑎𝑖𝑟: air density 

𝜌𝑟𝑒𝑓: reference road curvature 

𝜚: time derivative of the direct yaw moment 

𝜎𝑑𝑠𝑓: standard deviation of the safety distance  

�̇�: yaw rate 

I.  LITERATURE REVIEW 

N 2018, the global road death toll amounted to 1.35 million 

per year, with road traffic injuries being the leading cause 

of fatalities for people aged from 5 to 29 years old, 

according to the World Health Organization [1]. In 2017, 

~10% of road accidents on the U.S. roads had fatal outcomes, 

and 94% of car crashes were estimated to be provoked by 

human errors, while vehicle component failure or degradation, 

environmental factors, and other unknown reasons were each 

responsible only for 2% of crashes [2]. In this context, 

automated vehicles (AVs) have the potential to drastically 

reduce the number of road accidents and casualties, by 

replacing humans with sophisticated control systems. This 

perspective has led several governments and organizations to 

set the ambitious target of reaching zero road fatalities by 2050 

[3]. 

Over the last few decades, significant advancements in vehicle 

safety have been achieved thanks to the introduction of active 

safety systems and advanced driver assistance systems 

(ADAS), such as anti-lock braking systems (ABS), vehicle 

stability controllers (VSC), and lane keeping assist systems. 

State-of-the-art VSCs intervene during emergency 

maneuvering by restricting the response of the vehicle within a 

stable regime of low wheel slip and vehicle sideslip angle, i.e., 

operating conditions that are predictable and easily controllable 

by the average human driver. However, this proposition is 

conservative in the context of automated vehicles, which could 

become more effective in avoiding accidents when operating 

outside the envelope enforced by current chassis controllers. 

For example, the implementation of path tracking (PT) 

controllers capable of imitating race driving techniques (e.g., 

trail-braking, pendulum turning, hand brake cornering, and 

power oversteer) could bring enhanced maneuverability, and 

enable trajectories that cannot be achieved through the slip 

angle limitations of conventional VSCs [4]-[5]. Nevertheless, it 

is expected that the first generation of automated vehicles will 

be characterized by PT control implemented through steering 

angle actuation, and conventional VSCs [6]-[8]. The recent 

survey in [9] provides an overview of PT controllers for 

autonomous racing, a few of them capable of inducing drifting; 

however, they do not directly target active safety 

enhancements. Model predictive control (MPC) is well-suited 

for PT at the limit of handling [10], see the autonomous drifting 

I 
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examples in [11]-[19]. In these MPCs, the lateral dynamics 

control through the steering angle is combined with different 

forms of longitudinal dynamics control. References [20] and 

[21] use a hierarchical architecture, including: i) a high-level 

controller, based on the combination of proportional integral 

derivative (PID) control and nonlinear maps or neural networks, 

which generate steady-state equilibrium states and feedforward 

inputs; and ii) a low-level MPC that corrects the inputs from i) 

to drive the vehicle towards the steady-state drift equilibrium. 

In [22], the control approach consists of: i) a pure-pursuit (PP) 

algorithm for steering control; and ii) a nonlinear MPC (NMPC) 

for controlling the rear wheel speed. To decrease the 

computational effort, i) and ii) are then replaced with two deep 

neural networks, which are trained from data generated with the 

combined PP NMPC architecture during drifting maneuvers.  

With respect to (w.r.t.) autonomous drifting implementations 

not based on MPC, reference [23] uses a high-level fuzzy-

integral sliding mode controller, and a low-level constrained 

optimization for control allocation (CA). In [24] and [25], 

desirable lateral error and sideslip angle are imposed, resulting 

in reference course and yaw rates. From these, the target 

steering angle and thrust angle are generated through an 

inverted nonlinear vehicle model. The thrust angle is mapped to 

obtain the desired wheel speed, which is converted into a 

drivetrain torque by a feedback controller. A similar approach 

is presented in [26], where the target steering angle and wheel 

speeds are obtained via inverted dynamics, starting from 

reference longitudinal and lateral positions and yaw angle that 

prevent potential road accidents through vehicle drifting. The 

wheel speeds are then converted into a drivetrain torque by a 

controller combining feedforward and feedback contributions. 

In [27] and [28], the steering and torque inputs are selected 

through a switching strategy using either a rule-based open-

loop controller, or a linear quadratic regulator. Reference [29] 

proposes an adaptive drift control method enabling agile 

collision avoidance in the event of braking system failure. The 

algorithm computes the front and rear steering angles as well as 

the front longitudinal force through a reinforcement learning 

strategy. However, the absence of a reference trajectory does 

not allow to classify this implementation as a PT controller, 

which poses it outside the scope of this study. 

In summary, the available drifting PT controllers are based on 

desired sideslip angle and yaw rate profiles for the intended 

drifting maneuver, in addition to the reference trajectory, and 

are not designed to generate drifting only when required to track 

a challenging trajectory. 

II.  NOVEL CONTRIBUTIONS 

This paper targets the gap identified in Section I, with the 

following novel contributions: 

● PT controllers that determine whether, when and how to 

perform drifting, to facilitate trajectory tracking in extreme 

conditions, without following preset reference state profiles 

to purposely induce large sideslip angles. 

● Demonstration of the benefits of autonomous drifting in a 

realistic emergency scenario, i.e., an impending crash at a 

regular (i.e., 4-way) road intersection. 

Fig. 1 provides an example of relevant scenario, where two 

vehicles are about to collide at an intersection. This situation is 

fairly common, with ~40% of accidents reported by the UK 

Department of Transport happening at intersections [30]. The 

ego vehicle is the blue one, which is equipped with an 

automated driving system. In Fig. 1a the ego vehicle attempts 

to avoid the accident by turning and braking. The intervention 

of a conventional VSC prevents high sideslip angles and 

excessive levels of understeer or oversteer, but cannot provide 

collision avoidance. However, the only way for the ego vehicle 

to avoid the collision could be to perform a maneuver that 

significantly reduces the turning radius, see Fig. 1b, by 

mimicking a specialized driving technique, e.g., trail-braking. 

In this study, the identified research question is addressed by a 

novel PT implementation for emergency conditions, i.e., the so-

called advanced NMPC, referred to as NMPCadv in the 

remainder, which concurrently controls the front steering angle, 

braking force distribution, and DYM, without sideslip angle 

constraints. Its performance is compared with those of: i) 

NMPCemg, a simplified version of NMPCadv, which excludes the 

DYM contribution, but can still generate trail-braking in 

emergency conditions through the variation of the front-to-total 

braking force distribution and the total braking force; and ii) the 

baseline NMPC, indicated as NMPCbas, which only actuates the 

front steering angle and the overall longitudinal force, similarly 

to the controllers presented in [31]-[33]. In addition, an external 

conventional rule-based VSC prevents significant longitudinal 

and lateral tire slip. For fairness of comparison, the three 

controllers include the same prediction model.  

The remainder is organized as follows: Section III describes the 

simulation environment; Section IV deals with the proposed 

NMPC formulations; Section V discusses the CA algorithms 

that are implemented externally to the NMPCs; Section VI 

presents the testing scenarios and performance indicators; 

Section VII analyzes the simulation results; finally, the main 

conclusions are summarized in Section VIII. 

a)  b)  

Fig. 1. Emergency maneuvering of an automated ego vehicle (in blue) in a road 

junction scenario: a) combined steering and braking intervention, while keeping 
the vehicle within the operational domain of conventional stability controllers; 

and b) automated driving control including forms of expert driving actuation, 

to achieve vehicle operation beyond the limit of handling with lower trajectory 
radii for accident prevention. 

III.  SIMULATION FRAMEWORK 

The simulation environment consists of the following 

functional blocks, reported in Fig. 2: 

• The reference trajectory generator, which outputs: i) the 

road curvature of the reference path along the prediction 

horizon (note that the path planning layer is beyond the 

scope of this research); ii) the reference speed profile along 

the prediction horizon; and iii) a Boolean function, 𝑓𝑎𝑐𝑡.  
Normal driving conditions correspond to𝑓𝑎𝑐𝑡 = 0, and the 

vehicle operates with NMPCbas, in conjunction with a 

conventional ABS/VSC.  
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Fig. 2. Simplified schematic of the simulation framework. 

TABLE I. MAIN CASE STUDY VEHICLE PARAMETERS. 

Parameter Symbol Value 

Vehicle mass 𝑚 2586 kg 

Yaw mass moment of inertia 𝐼𝑧 4124 kgm2 

Front semi-wheelbase 𝑙𝑓 1.512 m 

Rear semi-wheelbase   𝑙𝑟 1.413 m 

Track width 𝑏 1.64 m 

Centre of gravity height ℎ𝑔 0.63 m 

Aerodynamic drag coefficient 𝐶𝑑 0.32 

Frontal area 𝐴𝑐𝑎𝑟 2.6 m2 

Emergency conditions correspond to 𝑓𝑎𝑐𝑡 = 1, and the PT 

controller is switched to NMPCemg or NMPCadv if these 

options are available, while the ABS/VSC intervention 

thresholds are relaxed, to allow high longitudinal slip ratios 

and sideslip angles. The transition between the two 𝑓𝑎𝑐𝑡 
values can be managed through the time-to-collision [34]-

[35], which is a well-known indicator of the likelihood of 

crashes. 

• The PT layer, which is the core of this study, and includes 

three alternative formulations: i) NMPCadv, with the 

following control inputs: 𝜉, the time derivative of the front 

steering angle; 𝜁, the longitudinal tire force rate on the front 

axle; 𝑝𝑏 , the front-to-total longitudinal force distribution 

ratio in braking; and 𝜚, the DYM rate; ii) NMPCemg, which, 

w.r.t. NMPCadv, excludes 𝜚 control; and iii) NMPCbas, 

which, w.r.t. NMPCemg, excludes 𝑝𝑏  control. 

• The control allocation layer, which computes the individual 

reference wheel torque levels, 𝑇𝑤,𝑖𝑗 , where the subscripts 

𝑖 = 𝑓, 𝑟 indicate the front or rear axles, and 𝑗 = 𝑙, 𝑟 the left 

or right vehicle sides. 

• A VSC including a rule-based direct yaw moment controller, 

and the PID-based ABS from [36], which outputs the 

reference electric motor and individual brake torque levels, 

𝑇𝑒𝑙,𝑖 and 𝑇𝑏,𝑖𝑗. 

• The IPG CarMaker model of an all-wheel-drive electric 

vehicle with one on-board powertrain per axle, connected to 

the wheels through a single-speed transmission and a 

mechanical differential. The vehicle, see its main 

parameters in Table I, served as a demonstrator for the 

European Horizon 2020 EVC1000 project [37], and is  
 

 
Fig. 3. Steering wheel angle 𝛿𝑤, sideslip angle 𝛽, and yaw rate �̇�, as a function of the lateral acceleration 𝑎𝑦, during a 40 m radius skidpad maneuver. Exp.: 

experimental results; Sim.: high-fidelity CarMaker model simulation results; Int.: internal model results. 

 
Fig. 4. Time profiles of 𝛿𝑤, �̇�, 𝛽, and 𝑎𝑦, during a transient steering maneuver at a vehicle speed of approx. 100 km/h. Exp: experimental results; Sim.: CarMaker 

model simulation results; Int.: internal model results. 

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3340992

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

 

equipped with a brake-by-wire system that allows 

individual braking torque control. The CarMaker model was 

experimentally validated in quasi-steady-state and transient 

conditions, see the skidpad test results in Fig. 3, and the 

steering test results in Fig. 4. The very good match between 

simulations and experiments makes the high-fidelity model 

a reliable tool for control system assessment. 

IV.  CONTROLLER FORMULATIONS AND IMPLEMENTATIONS 

A. Internal model 

Within the proposed NMPCs, the prediction is based on a 

nonlinear dynamic single track (ST) model, in a curvilinear 

reference system, see its schematic in Fig. 5. The internal (or 

prediction) model strikes a balance between simplicity and 

accuracy in predicting vehicle operation in limit handling 

conditions [38]. The states are the longitudinal velocity 𝑣𝑥, 

lateral velocity 𝑣𝑦, and yaw rate �̇�. The dynamics are described 

by the following longitudinal, lateral and yaw moment balance 

equations: 

�̇�𝑥 =
1

𝑚
[𝐹𝑥,𝑓cos𝛿 − 𝐹𝑦,𝑓sin𝛿 + 𝐹𝑥,𝑟 − 𝑓𝑎𝑐𝑡𝐹𝑥,𝑀𝑧

− 𝐹𝑑𝑟𝑎𝑔 − 𝐹𝑟] + 𝑣𝑦�̇� 

(1) 
�̇�𝑦 =

1

𝑚
[𝐹𝑥,𝑓sin𝛿 + 𝐹𝑦,𝑓cos𝛿 + 𝐹𝑦,𝑟] − 𝑣𝑥�̇� 

�̈� =
1

𝐼𝑧
[𝑙𝑓𝐹𝑥,𝑓sin𝛿 + 𝑙𝑓𝐹𝑦,𝑓cos𝛿 − 𝑙𝑟𝐹𝑦,𝑟 + 𝑓𝑎𝑐𝑡𝑀𝑧] 

where 𝑚 is the vehicle mass; 𝐼𝑧 is the yaw mass moment of 

inertia; 𝑙𝑓 and 𝑙𝑟  are the front and rear semi-wheelbases; and 

𝐹𝑥,𝑖 and 𝐹𝑦,𝑖 are the longitudinal and lateral tire forces. 

 
Fig. 5. Single track model schematic and sign conventions of the main variables. 

The aerodynamic drag force, 𝐹𝑑𝑟𝑎𝑔, is calculated as: 

𝐹𝑑𝑟𝑎𝑔 =
1

2
𝜌𝑎𝑖𝑟𝐶𝑑𝐴𝑐𝑎𝑟  𝑣𝑥

2 (2) 

where 𝜌𝑎𝑖𝑟 is the air density; 𝐶𝑑 is the aerodynamic drag 

coefficient; and 𝐴𝑐𝑎𝑟  is the frontal area of the vehicle. The 

rolling resistance force, 𝐹𝑟, is expressed as: 

𝐹𝑟 = [𝑓0 + 𝑓2𝑣𝑥
2]𝑚𝑔 (3) 

with 𝑓0 and 𝑓2 being the rolling resistance coefficients; and 𝑔 

the gravitational acceleration. 

𝐹𝑥,𝑟 is expressed through a continuous nonlinear function, 

which depends on the front-to-total longitudinal tire force 

distribution coefficients in traction and braking, 𝑝𝑡  and 𝑝𝑏: 

𝐹𝑥,𝑟 = [
1 +

2
𝜋
atan(𝑐1𝐹𝑥,𝑓)

2

1 − 𝑝𝑡
𝑝𝑡

+
1 −

2
𝜋
atan(𝑐1𝐹𝑥,𝑓)

2

1 − 𝑝𝑏
𝑝𝑏

] 𝐹𝑥,𝑓 

(4) 

where 𝑐1 is a constant tunable parameter. 

The direct yaw moment, 𝑀𝑧, is generated through the friction 

brakes, and the corresponding longitudinal tire force 

contribution, 𝐹𝑥,𝑀𝑧, is calculated as: 

𝐹𝑥,𝑀𝑧 = |𝑀𝑧

2

𝑏
| ≈

2

𝜋
atan(𝑐1𝑀𝑧)

2

𝑏
𝑀𝑧 (5) 

where 𝑏 is the track width. 𝑀𝑧 and 𝐹𝑥,𝑀𝑧account for the 

differential braking effect, without the computational load 

associated with more complex formulations, such as a double 

track model [39]. 

The vehicle position w.r.t. the reference path is described in a 

curvilinear coordinate system, in terms of: i) distance along the 

path, 𝑠; ii) lateral position error, 𝑒𝑦, i.e., the distance of the 

center of gravity (CG) from the reference path; and iii) heading 

angle error, 𝑒𝜓, i.e., the body frame orientation w.r.t. the 

reference path. 𝑠, 𝑒𝑦, and 𝑒𝜓 are system states, whose dynamics 

are described by: 

�̇� =
𝑣𝑥 cos 𝑒𝜓 − 𝑣𝑦 sin 𝑒𝜓

1 − 𝜌𝑟𝑒𝑓𝑒𝑦
 

(6) �̇�𝑦 = 𝑣𝑥 sin 𝑒𝜓 + 𝑣𝑦 cos 𝑒𝜓 

�̇�𝜓 = �̇� − 𝜌𝑟𝑒𝑓 �̇� 

where 𝜌𝑟𝑒𝑓  is the reference road curvature, which is a function 

of 𝑠. 
Tire behavior has to be accurately accounted for in the highly 

nonlinear conditions typical of limit handling. The lateral tire 

forces in pure lateral slip conditions, 𝐹𝑦0,𝑖,, are calculated 

through a simplified version of the Pacejka magic formula: 

𝐹𝑦0,𝑖 = 𝜇𝑦0,𝑖𝐹𝑧,𝑖 (7) 

where 𝐹𝑧,𝑖 is the vertical axle load; and 𝜇𝑦0,𝑖 is the lateral load 

coefficient, which is given by: 

𝜇𝑦0,𝑖 = 𝜇𝑦𝐷𝑦,𝑖 sin{𝐶𝑦 atan(𝐵𝑦𝛼𝑖/𝜇𝑦)} (8) 

In (8), 𝜇𝑦 is the lateral tire-road friction coefficient, and 𝛼𝑖 is 

the slip angle, which, under reasonable assumptions, is 

expressed as: 

𝛼𝑓 = −𝛿 + tan
−1 (

𝑣𝑦

𝑣𝑥
+
�̇�𝑙𝑓

𝑣𝑥
) ≈ −𝛿 +

𝑣𝑦

𝑣𝑥
+
�̇�𝑙𝑓

𝑣𝑥
 

(9) 

𝛼𝑟 = − tan
−1 (

�̇�𝑙𝑟
𝑣𝑥

−
𝑣𝑦

𝑣𝑥
) ≈ −

�̇�𝑙𝑟
𝑣𝑥

+
𝑣𝑦

𝑣𝑥
 

𝐷𝑦,𝑖 is a linear function of 𝐹𝑧,𝑖: 

𝐷𝑦,𝑖 = 𝐷𝑦,1𝐹𝑧,𝑖 + 𝐷𝑦,2 (10) 

By neglecting the suspension dynamics in the longitudinal load 

transfer model, 𝐹𝑧,𝑖 is calculated as:  

𝐹𝑧,𝑓 = 𝐹𝑧,𝑓
𝑠𝑡𝑎𝑡 − 𝐹𝑧,𝑥 

(11) 
𝐹𝑧,𝑟 = 𝐹𝑧,𝑟

𝑠𝑡𝑎𝑡 + 𝐹𝑧,𝑥 

𝐹𝑧,𝑓
𝑠𝑡𝑎𝑡 =

𝑙𝑟𝑚𝑔

𝑙𝑓 + 𝑙𝑟
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𝐹𝑧,𝑟
𝑠𝑡𝑎𝑡 =

𝑙𝑓𝑚𝑔

𝑙𝑓 + 𝑙𝑟
 

𝐹𝑧,𝑥 =
ℎ𝑔𝑚𝑎𝑥,𝑚𝑒𝑎𝑠

𝑙𝑓 + 𝑙𝑟
 

where 𝐹𝑧,𝑓
𝑠𝑡𝑎𝑡 and 𝐹𝑧,𝑟

𝑠𝑡𝑎𝑡 are the static load contributions; 𝐹𝑧,𝑥 is 

the longitudinal load transfer; 𝑎𝑥,𝑚𝑒𝑎𝑠 is the measured 

longitudinal acceleration, i.e., 𝐹𝑧,𝑥 is assumed constant along the 

prediction horizon to reduce the computational load; and ℎ𝑔 is 

the center of gravity height. 

The model considers the coupling effect between longitudinal 

and lateral axle forces through a friction ellipse approximation: 

𝐹𝑥,𝑡𝑜𝑡,𝑓 = 𝐹𝑥,𝑓 −
2

𝜋
atan(𝑐1𝑀𝑧)𝑀𝑧

2

𝑏

𝐹𝑧,𝑓

𝐹𝑧,𝑓 + 𝐹𝑧,𝑟
 

𝐹𝑥,𝑡𝑜𝑡,𝑟 = 𝐹𝑥,𝑟 −
2

𝜋
atan(𝑐1𝑀𝑧)𝑀𝑧

2

𝑏

𝐹𝑧,𝑟
𝐹𝑧,𝑓 + 𝐹𝑧,𝑟

 

𝐹𝑦,𝑖 = 𝐹𝑦0,𝑖√1 − [
𝐹𝑥,𝑡𝑜𝑡,𝑖
𝜇𝑥𝐹𝑧,𝑖

]

2

 

(12) 

where 𝜇𝑥 is the longitudinal tire-road friction coefficient; and 

𝐹𝑥,𝑡𝑜𝑡,𝑖 is the total longitudinal axle force, consisting of two 

contributions, i.e., a symmetric component and a DYM-related 

contribution. In the ST model, the latter is assumed to be 

distributed between the front and rear axles according to the 

respective vertical loads. To avoid negative radicands in (12), 

the algorithm implementation imposes a saturation of the lateral 

axle force: 

𝐹𝑦,𝑖 = 𝐹𝑦0,𝑖√[1 − 𝑠𝑎𝑡]
1 − 𝑓𝑖

2

1 + 𝑐2𝑒
𝑐3[1−𝑓𝑖

2]
+ 𝑠𝑎𝑡 (13) 

where 𝑓𝑖 =
𝐹𝑥,𝑡𝑜𝑡,𝑖

𝜇𝑥𝐹𝑧,𝑖
 is the primary function; 𝑐2 and 𝑐3 are constant 

values to approximate the shape of the friction ellipse, 

according to a trade-off between accuracy and computational 

load; and the 𝑠𝑎𝑡 parameter (set to 0.05 in the remainder) is a 

constant saturation level.  

The lack of consideration of the wheel dynamics in the 

prediction model enables a significant increase of the numerical 

discretization time, e.g., from 1 ms to 25 ms, of the internal 

model within the NMPC algorithm. During the implementation 

phase, it was verified that NMPCadv with a prediction model 

discretized at 25 ms – rather than 1 ms – is characterized by a 

maximum 2.2% decay of the considered performance 

indicators, while providing a >8-fold reduction of the controller 

execution time, i.e., the time required to compute the control 

inputs, for the same sampling time and prediction horizon of the 

algorithm. This design choice makes the controller real-time 

implementable, see the following Section IV.E. 

Fig. 3 and Fig. 4 confirm that also the internal model – despite 

being based on a completely independent formulation from the 

CarMaker model for control system assessment – is well 

aligned with the experimental measurements. 

B. Nonlinear optimal control problem 

At each time step 𝑗𝑐, the MPC algorithm computes an optimal 

control input sequence that minimizes the cost function 𝐽, 
accounting for the prediction of the system dynamics over a finite 

horizon 𝐻𝑝, while considering system constraints [40]. The 

discrete form of the nonlinear optimal control problem (NOCP) 

is: 

min
𝑈
 𝐽: = 𝐽𝑡𝑒𝑟𝑚. + 𝐽𝑠𝑡𝑎𝑔𝑒1 + 𝐽𝑠𝑡𝑎𝑔𝑒2

=  
1

2
‖𝑧𝑁𝑝 − 𝑧𝑟𝑒𝑓,𝑁𝑝‖𝑃𝑥

2

+
1

2
∑ ‖𝑧𝑘 − 𝑧𝑟𝑒𝑓,𝑘‖𝑄𝑥

2

𝑗𝑐+𝑁𝑝−1

𝑘=𝑗𝑐

+
1

2
∑ [‖𝑢𝑘‖𝑅𝑢

2 + 𝑅𝜀𝜀𝑘
2]

𝑗𝑐+𝑁𝑐−1

𝑘=𝑗𝑐

 

(14) 

𝑥0 = 𝑥𝑖𝑛 (14a) 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘, 𝑤𝑘) (14b) 

𝑧𝑘 = 𝑔𝑜𝑢𝑡(𝑥𝑘 , 𝑢𝑘, 𝑤𝑘) (14c) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥  (14d) 

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥 (14e) 

ℎ𝑖𝑐(𝑥𝑘 , 𝑢𝑘) ≤ 0 (14f) 

where 𝐽 consists of a terminal cost, 𝐽𝑡𝑒𝑟𝑚., which aims to 

minimize the error at the end of the prediction horizon 𝐻𝑝, and a 

stage cost, corresponding to 𝐽𝑠𝑡𝑎𝑔𝑒1 + 𝐽𝑠𝑡𝑎𝑔𝑒2, which aims to 

optimize the response along 𝐻𝑝; 𝑁𝑝 is the number of steps of 𝐻𝑝, 

i.e., 𝐻𝑝 = 𝑁𝑝𝑇𝑠, with 𝑇𝑠 being the controller implementation 

time; 𝑁𝑐 is the number of steps of the control horizon 𝐻𝑐 , i.e., 

𝐻𝑐 = 𝑁𝑐𝑇𝑠; the subscript 𝑘 indicates the discretization step; 𝑧 is 

the vector of the predicted system outputs, while 𝑧𝑟𝑒𝑓  is the 

corresponding reference vector; 𝜀 is the slack variable, which is 

used to impose the soft constraints; 𝑃𝑥, 𝑄𝑥, and 𝑅𝑢 are positive 

diagonal weighting matrices, which, in the tuning phase, were 

scheduled as a function of the estimated tire-road friction level at 

𝑗𝑐; 𝑅𝜀 is the weight of the slack variable; 𝑥 is the state vector; 

𝑈 = [𝑢𝑗𝑐   𝑢𝑗𝑐+1… 𝑢𝑗𝑐+𝑁𝑐−1] is the decision variable vector, with 

𝑢𝑘 being the control input vector; 𝑥𝑖𝑛 is the initial value of the 

state vector; 𝑓 is the discretized vector field describing the 

internal model; 𝑔𝑜𝑢𝑡 is the function expressing the system 

outputs; 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥, and 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  are the bounds on 𝑢 

and 𝑥; and ℎ𝑖𝑐 is the inequality constraint function. 

To simplify the design and ensure favorable numerical 

conditions, the NOPC is scaled and non-dimensionalized, i.e., its 

dependent (states, control inputs, and external parameters) and 

independent variables (time) are replaced with scaled quantities, 

where the scaling factors 𝑖𝑐ℎ are defined as the maximum values 

of the respective variable: 

𝑥𝑘 = 𝑥𝑐ℎ�̃�𝑘  

𝑢𝑘 = 𝑢𝑐ℎ�̃�𝑘 

𝑤𝑘 = 𝑤𝑐ℎ�̃�𝑘 

𝑡𝑘 = 𝑡𝑐ℎ �̃�𝑘 

(15) 

and 𝑖̃𝑘 indicates a generic dimensionless variable. In the 

reminder, the subscript 𝑘 is omitted from the individual variables 

for simplicity of notation, unless when it is especially 

meaningful. 

C. States, control inputs and online data 

In NMPCadv, the prediction model described by (1)-(13), and 

discretized and re-arranged according to the nonlinear state-space 

formulation in (14(b)), has the following state vector 𝑥:  

𝑥 = [𝑣𝑥    𝑣𝑦   �̇�    𝑒𝑦   𝑒𝜓   𝑠   𝛿   𝐹𝑥,𝑓  𝑀𝑧]
′
 (16) 

𝛿, 𝐹𝑥,𝑓 and 𝑀𝑧 are states, since their time derivatives are equal to 
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the respective control inputs 𝜉, 𝜁, and 𝜚: 

�̇� = 𝜉 

(17) �̇�𝑥,𝑓 = 𝜁 

�̇�𝑧 = 𝜚 

Hence, the control input vector is: 

𝑢 = [𝜉   𝜁  𝑝𝑏   𝜚]
′ (18) 

For given 𝐹𝑥,𝑓, the effect of 𝑝𝑏  is to vary the rear braking force, 

e.g., to emulate hand brake cornering in emergency conditions. 

The output vector, 𝑧, includes the PT error variables, and the 

states associated with the control inputs: 

𝑧 = [𝑣𝑥 𝑒𝑦 𝑒𝜓    𝛿    𝐹𝑥,𝑓    𝑀𝑧]
′
 (19) 

with the reference values being: 

𝑧𝑟𝑒𝑓 = [𝑣𝑥,𝑟𝑒𝑓   0   0   0   0   0]
′
 (20) 

The reference longitudinal speed, 𝑣𝑥,𝑟𝑒𝑓 , is assumed to be known 

a priori, and variable along 𝐻𝑝. The online data vector is: 

𝑤

= [𝜌𝑟𝑒𝑓,𝑘    𝑎𝑥,𝑚𝑒𝑎𝑠,𝑗𝑐    𝜇𝑥,𝑗𝑐   𝑀𝑧,𝑚𝑎𝑥,𝑘  𝑀𝑧,𝑚𝑖𝑛,𝑘   𝑓𝑎𝑐𝑡,𝑗𝑐]
′
 

(21) 

where 𝑎𝑥,𝑚𝑒𝑎𝑠, 𝜇𝑥 = 𝑘𝜇𝜇𝑦 (with 𝑘𝜇 being the fixed conversion 

factor to obtain the corresponding 𝜇𝑦 value), and 𝑓𝑎𝑐𝑡 are constant 

along 𝐻𝑝, while 𝜌𝑟𝑒𝑓  and the maximum and minimum DYM 

values (𝑀𝑧,𝑚𝑎𝑥  and 𝑀𝑧,𝑚𝑖𝑛, see Section V.C) can vary with 𝑘. 

As NMPCemg does not include DYM control, its state, control 

input and online data vectors are re-arranged as: 

𝑥 = [𝑣𝑥   𝑣𝑦   �̇�    𝑒𝑦   𝑒𝜓   𝑠   𝛿   𝐹𝑥,𝑓]
′
 

𝑢 = [𝜉   𝜁  𝑝𝑏]
′ 

𝑤 = [𝜌𝑟𝑒𝑓,𝑘    𝑎𝑥,𝑚𝑒𝑎𝑠,𝑗𝑐   𝜇𝑥,𝑗𝑐]
′
 

(22) 

NMPCbas also assumes constant braking force distribution, and 

thus, while 𝑥 and 𝑤 are the same as for NMPCemg, 𝑢 becomes: 

𝑢 = [𝜉   𝜁]′ (23) 

D. Actuation constraints 

For all proposed NMPCs, hard constraints are set on the steering 

angle and front longitudinal tire force and their variation rates, as 

well as on the rear longitudinal tire force: 

𝛿𝑚𝑖𝑛 ≤ 𝛿 ≤ 𝛿𝑚𝑎𝑥 

(24) 

−𝜇𝑖𝑑𝐹𝑧,𝑓 ≤ 𝐹𝑥,𝑓 − 𝐹𝑥,𝑀𝑧
𝐹𝑧,𝑓

𝐹𝑧,𝑓 + 𝐹𝑧,𝑟
≤ 𝜇𝑖𝑑𝐹𝑧,𝑓 

�̇�𝑚𝑖𝑛 ≤ 𝜉 ≤ �̇�𝑚𝑎𝑥 

�̇�𝑥,𝑓,𝑚𝑖𝑛 ≤ 𝜁 ≤ �̇�𝑥,𝑓,𝑚𝑎𝑥  

−𝜇𝑖𝑑𝐹𝑧,𝑟 ≤ 𝐹𝑥,𝑟 − 𝐹𝑥,𝑀𝑧
𝐹𝑧,𝑓

𝐹𝑧,𝑓 + 𝐹𝑧,𝑟
≤ 𝜇𝑖𝑑𝐹𝑧,𝑟 

where 𝜇𝑖𝑑 is an ideal friction coefficient that marginally 

overestimates the real one used in the CarMaker model, not to 

have underbraking, while the slip ratios are limited by the 

conventional ABS, if required; and 𝐹𝑥,𝑀𝑧 is only present in 

NMPCadv. NMPCadv and NMPCemg also include a hard constraint 

on 𝑝𝑏: 

𝑝𝑏,𝑚𝑖𝑛 ≤ 𝑝𝑏 ≤ 𝑝𝑏,𝑚𝑎𝑥  (25) 

Finally, in NMPCadv, a soft constraint limits the DYM, while a 

hard constraint is imposed on its rate: 

−𝜀 +𝑀𝑧,𝑚𝑖𝑛,𝑘 ≤ 𝑀𝑧,𝑘 ≤ 𝑀𝑧,𝑚𝑎𝑥,𝑘 + 𝜀 

𝜀 ≥ 0 (26) 

�̇�𝑧,𝑚𝑖𝑛 ≤ 𝜚 ≤ �̇�𝑧,𝑚𝑎𝑥 

where 𝑀𝑧,𝑚𝑖𝑛,𝑘 and 𝑀𝑧,𝑚𝑎𝑥,𝑘 are computed by the CA algorithm, 

based on the prediction of the control inputs at the previous time 

step, see Section V.C. In general, the constraints on the control 

input rates allow to account for actuator dynamics, and enhance 

control smoothness. 

E. Real-time implementation of the NMPC algorithms 

The proposed NMPC algorithms were implemented implicitly, 

i.e., online, through the ACADO toolkit, which provides a 

powerful interface for NMPC development [41]. The controller 

sampling time is set to 50 ms, and the prediction horizon consists 

of 20 steps, corresponding to 𝐻𝑝 = 1 s. The prediction model is 

discretized at 25 ms. The selected solver is QPOASES 3, running 

with 5 iterations. All controllers were set to run in real-time on 

the dSPACE MicroAutoBox III unit in Fig. 6, with a quad-core 

1.4 GHz ARM processor, and 64 Mb flash memory. Despite the 

highly nonlinear nature of its internal model, NMPCadv, which 

represents the most complex variant among the proposed 

NMPCs, has achieved a computational time, 𝑇𝑎, significantly 

below the controller sampling time 𝑇𝑠, i.e., the maximum 

computational time is 𝑇𝑎,𝑚𝑎𝑥 =10.3 ms < 50 ms = 𝑇𝑠. This 

successful demonstration highlights the effective real-time 

implementability of the proposed control logic, despite its 

computational complexity. 

 
Fig. 6. Real-time implementation of NMPCadv on a dSPACE MicroAutoBox III 
unit. 

V.  CONTROL ALLOCATION ALGORITHM 

The CA algorithms determine the wheel torque distribution that 

better approximates the longitudinal tire force and – where 

applicable – DYM demands computed by the NMPCs, while 

considering the individual tire-road friction limits defined in 

Section V.A. 

A. Longitudinal tire force and torque limits 

The maximum and minimum values of the individual wheel 

torque (𝑇𝑤,𝑖𝑗,𝑚𝑎𝑥  and 𝑇𝑤,𝑖𝑗,𝑚𝑖𝑛) and longitudinal tire force 

(𝐹𝑥,𝑖𝑗,𝑚𝑎𝑥 and 𝐹𝑥,𝑖𝑗,𝑚𝑖𝑛) are computed based on the available tire-

road friction and the lateral tire force 𝐹𝑦,𝑖𝑗,𝑘, through a friction 

ellipse approximation: 

𝑇𝑤,𝑖𝑗,𝑚𝑎𝑥,𝑘 = 𝜇𝑥𝑟𝑤𝐹𝑧,𝑖𝑗,𝑘√1 − [
𝐹𝑦,𝑖𝑗,𝑘

𝜇𝑦𝐹𝑧,𝑖𝑗,𝑘
]

2

= 𝑟𝑤𝐹𝑥,𝑖𝑗,𝑚𝑎𝑥,𝑘 

(27) 
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𝑇𝑤,𝑖𝑗,𝑚𝑖𝑛,𝑘 = −𝑇𝑤,𝑖𝑗,𝑚𝑎𝑥,𝑘 = 𝑟𝑤𝐹𝑥,𝑖𝑗,𝑚𝑖𝑛,𝑘 

where the subscript 𝑘 indicates the variables that are considered 

to be changing along the prediction horizon; 𝑟𝑤 is the wheel 

radius; and 𝐹𝑧,𝑖𝑗,𝑘 is the vertical load on each corner, which is 

calculated as: 

𝐹𝑧,𝑓𝑙,𝑘 =
𝐹𝑧,𝑓
𝑠𝑡𝑎𝑡

2
−
𝐹𝑧,𝑥
2
− 𝐹𝑧,𝑦𝑓,𝑘 

𝐹𝑧,𝑓𝑟,𝑘 =
𝐹𝑧,𝑓
𝑠𝑡𝑎𝑡

2
−
𝐹𝑧,𝑥
2
+ 𝐹𝑧,𝑦𝑓,𝑘 

𝐹𝑧,𝑟𝑙,𝑘 =
𝐹𝑧,𝑟
𝑠𝑡𝑎𝑡

2
+
𝐹𝑧,𝑥
2
− 𝐹𝑧,𝑦𝑟,𝑘  

𝐹𝑧,𝑟𝑟,𝑘 =
𝐹𝑧,𝑟
𝑠𝑡𝑎𝑡

2
+
𝐹𝑧,𝑥
2
+ 𝐹𝑧,𝑦𝑟,𝑘 

(28) 

where the static contributions (𝐹𝑧,𝑖𝑗
𝑠𝑡𝑎𝑡) and the longitudinal load 

transfer are half of those considered in the ST prediction model 

in (11); and the lateral load transfers are computed through the 

following static formulations: 

𝐹𝑧,𝑦𝑓,𝑘 =
𝑚𝑎𝑦,𝑒𝑠𝑡,𝑘

𝑏𝑓
[
𝑙𝑟ℎ𝑟,𝑓

𝑙𝑓 + 𝑙𝑟
+

𝐾𝜑,𝑓ℎ

𝐾𝜑,𝑓 + 𝐾𝜑,𝑟 − ℎ𝑚𝑔
] 

𝐹𝑧,𝑦𝑟,𝑘 =
𝑚𝑎𝑦,𝑒𝑠𝑡,𝑘

𝑏𝑟
[
𝑙𝑓ℎ𝑟,𝑟

𝑙𝑓 + 𝑙𝑟
+

𝐾𝜑,𝑟ℎ

𝐾𝜑,𝑓 + 𝐾𝜑,𝑟 − ℎ𝑚𝑔
] 

(29) 

where 𝑎𝑦,𝑒𝑠𝑡,𝑘 is the estimated lateral acceleration profile; ℎ𝑟,𝑖 is 

the roll center height; and 𝐾𝜑,𝑖  is the axle roll stiffness. The 

distance ℎ between centre of gravity and roll axis is given by: 

ℎ = ℎ𝑔 −
𝑙𝑟ℎ𝑟,𝑓 + 𝑙𝑓ℎ𝑟,𝑟

𝑙𝑓 + 𝑙𝑟
 (30) 

In (27), the 𝐹𝑦,𝑖𝑗,𝑘 profiles are approximated based on 𝑎𝑦,𝑒𝑠𝑡,𝑘 and 

𝐹𝑧𝑖𝑗,𝑘, according to: 

𝐹𝑦,𝑓𝑗,𝑘 =
𝑚𝑎𝑦,𝑒𝑠𝑡,𝑘𝑙𝑟

𝑙𝑓 + 𝑙𝑟
 

𝐹𝑧,𝑓𝑗,𝑘

𝐹𝑧,𝑓𝑙,𝑘 + 𝐹𝑧,𝑓𝑟,𝑘
 

𝐹𝑦,𝑟𝑗,𝑘 =
𝑚𝑎𝑦,𝑒𝑠𝑡,𝑘𝑙𝑓

𝑙𝑓 + 𝑙𝑟

𝐹𝑧,𝑟𝑗,𝑘

𝐹𝑧,𝑟𝑙,𝑘 + 𝐹𝑧,𝑟𝑟,𝑘
 

(31) 

𝑎𝑦,𝑒𝑠𝑡,𝑘 changes during 𝐻𝑝. Since at the instant 𝑗𝑐 the lateral 

acceleration is available as an on-board sensor measurement 

(𝑎𝑦,𝑚𝑒𝑎𝑠), while in the following steps along 𝐻𝑝 it must be 

estimated based on the path ahead, in the implementation 𝑎𝑦,𝑒𝑠𝑡,𝑘 

is computed as the weighted sum of 𝑎𝑦,𝑚𝑒𝑎𝑠, and a second 

contribution based on the reference curvature and estimated 

longitudinal vehicle speed (𝑣𝑥,𝑒𝑠𝑡,𝑘
 ) profiles: 

𝑎𝑦,𝑒𝑠𝑡,𝑘 = [1 − 𝑤1,𝑘]𝑎𝑦,𝑚𝑒𝑎𝑠 + 𝑤1,𝑘𝑣𝑥,𝑒𝑠𝑡,𝑘
2 𝜌𝑟𝑒𝑓,𝑘 

𝑣𝑥,𝑒𝑠𝑡,𝑘
 = 𝑣𝑥,𝑚𝑒𝑎𝑠 + 𝑎𝑥,𝑚𝑒𝑎𝑠𝑇𝑠𝑘 

(32) 

where 𝑣𝑥,𝑚𝑒𝑎𝑠 is the current longitudinal speed; and the weight 

𝑤1 linearly increases along 𝐻𝑝, to prioritize the measurement at 

the beginning of 𝐻𝑝, and the prediction at the end of 𝐻𝑝. 

B. Control allocation for NMPCbas and NMPCemg 

NMPCbas and NMPCemg have the same CA algorithm, given the 

absence of an 𝑀𝑧 output from both. The algorithm symmetrically 

distributes the longitudinal tire forces in traction and braking, 

according to the respective distribution coefficients 𝑝𝑡  and 𝑝𝑏 , 

while including a saturation based on the tire-road friction level 

in (33). 

The resulting 𝑇𝑤,𝑖𝑗 can then be modified by the conventional 

VSC embedded in the simulation framework, see Fig. 2. 

𝑇𝑤,𝑓𝑗 =

{
 
 

 
 
𝐹𝑥,𝑓𝑟𝑤

2
, if 𝑇𝑤,𝑓𝑗,𝑚𝑖𝑛 ≤

𝐹𝑥,𝑓𝑟𝑤

2
 ≤ 𝑇𝑤,𝑓𝑗,𝑚𝑎𝑥

𝑇𝑤,𝑓𝑗,𝑚𝑖𝑛 , if
𝐹𝑥,𝑓𝑟𝑤

2
 < 𝑇𝑤,𝑓𝑗,𝑚𝑖𝑛

𝑇𝑤,𝑓𝑗,𝑚𝑎𝑥 , if
𝐹𝑥,𝑓𝑟𝑤

2
 > 𝑇𝑤,𝑓𝑗,𝑚𝑎𝑥

 

𝑇𝑤,𝑟𝑗

=

{
  
 

  
 
𝐹𝑥,𝑓𝑟𝑤

2
 
1 − 𝑝𝑡/𝑏

𝑝𝑡/𝑏
, if 𝑇𝑤,𝑟𝑗,𝑚𝑖𝑛 ≤

𝐹𝑥,𝑓𝑟𝑤

2
 
1 − 𝑝𝑡/𝑏

𝑝𝑡/𝑏
≤ 𝑇𝑤,𝑟𝑗,𝑚𝑎𝑥

𝑇𝑤,𝑟𝑗,𝑚𝑖𝑛 , if
𝐹𝑥,𝑓𝑟𝑤

2
 
1 − 𝑝𝑡/𝑏

𝑝𝑡/𝑏
< 𝑇𝑤,𝑟𝑗,𝑚𝑖𝑛

𝑇𝑤,𝑟𝑗,𝑚𝑎𝑥 , if
𝐹𝑥,𝑓𝑟𝑤

2
 
1 − 𝑝𝑡/𝑏

𝑝𝑡/𝑏
> 𝑇𝑤,𝑟𝑗,𝑚𝑎𝑥

 

(33) 

C. Control allocation for NMPCadv 

Computation of feasible region – Given the presence of a 

reference 𝑀𝑧, in limit handling the CA of NMPCadv needs to 

strive a trade-off between the total longitudinal force, 𝐹𝑥, and 

DYM, 𝑀𝑧, according to an approach similar to the one in [42]. 

 
Fig. 7. Feasible vehicle operating region during a left corner, in terms of total 

longitudinal tire force 𝐹𝑥 and direct yaw moment 𝑀𝑧. 

In braking conditions, which are typical of emergency 

maneuvering, since the brake actuators are always oversized 

w.r.t. the available tire-road friction level, the minimum 

longitudinal forces (𝐹𝑥,𝑗,𝑚𝑖𝑛) that can be generated on the left and 

right vehicle sides can be computed from 𝐹𝑥,𝑖𝑗,𝑚𝑖𝑛,𝑘 in (27): 

𝐹𝑥,𝑗,𝑚𝑖𝑛 = 𝐹𝑥,𝑓𝑗,𝑚𝑖𝑛 + 𝐹𝑥,𝑟𝑗,𝑚𝑖𝑛 (34) 

where the subscript ‘𝑘’ has been omitted for simplicity of 

notation. The region of feasible operation in the 𝑀𝑧(𝐹𝑥) plot is a 

rectangle with vertices 𝑃ℎ(𝐹𝑥,ℎ, 𝑀𝑧,ℎ), with ℎ =1,..,4, 

corresponding to the following coordinates, see Fig. 7, referring 

to a left turn scenario: 

𝑃1(0,0) 

𝑃2(𝐹𝑥,𝑙,𝑚𝑖𝑛 , 𝑀𝑧,𝑚𝑎𝑥) = 𝑃2 (𝐹𝑥,𝑙,𝑚𝑖𝑛 , −𝐹𝑥,𝑙,𝑚𝑖𝑛
𝑏

2
) 

𝑃3(𝐹𝑥,𝑚𝑖𝑛 , 𝑀𝑧,𝐹𝑥,𝑚𝑖𝑛
) = 𝑃3 (𝐹𝑥,𝑙,𝑚𝑖𝑛 +

𝐹𝑥,𝑟,𝑚𝑖𝑛 , −[𝐹𝑥,𝑙,𝑚𝑖𝑛 − 𝐹𝑥,𝑟,𝑚𝑖𝑛]
𝑏

2
)  

𝑃4(𝐹𝑥,𝑟,𝑚𝑖𝑛 , 𝑀𝑧,𝑚𝑖𝑛) = 𝑃4 (𝐹𝑥,𝑟,𝑚𝑖𝑛 ,  𝐹𝑥,𝑟,𝑚𝑖𝑛
𝑏

2
) 

(35) 

In Fig. 7, 𝑃1 corresponds to the absence of braking force and 

DYM; 𝑃2 and 𝑃4 correspond to the maximum and minimum 

DYMs (𝑀𝑧,𝑚𝑎𝑥 and 𝑀𝑧,𝑚𝑖𝑛), achieved through the brake 

actuation on the relevant vehicle side only, up to the tire friction 
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limit; and 𝑃3 corresponds to the actuation of the braking forces 

up to the friction limit on both vehicle sides. For a left turn, the 

DYM value corresponding to 𝑃2 has usually smaller magnitude 

than the one corresponding to 𝑃4, because of the effect of the 

lateral load transfer, under the assumption of symmetric friction 

level within the axle. For the same reason, 𝑃3 is associated with 

a negative 𝑀𝑧,𝐹𝑥,𝑚𝑖𝑛
. 

In the controller implementation, to prevent the risk of safety-

critical under-actuation, the DYM boundaries are adjusted 

through a relaxation term 𝑀𝑧,𝑟𝑒𝑙 , by which the values of 𝑀𝑧,𝑚𝑎𝑥  

and 𝑀𝑧,𝑚𝑖𝑛 are respectively increased and decreased, to obtain 

the relaxed vertices 𝑃2
′  and 𝑃4

′, from which also 𝑃3
′  can be derived. 

Such a relaxation approach permits not to over-constrain vehicle 

performance, but concurrently ensures that the algorithm does 

not produce unrealistic demands. 

In traction, the total maximum longitudinal tire force at the 

vehicle level, 𝐹𝑥,𝑚𝑎𝑥 , is the minimum between the maximum 

traction force that can be delivered by the two powertrains – each 

one corresponding to a maximum traction force 𝐹𝑥,𝑖,𝑚𝑎𝑥,𝑝𝑤𝑡 at 

the axle level – and the maximum longitudinal tire friction force: 

𝐹𝑥,𝑚𝑎𝑥 = min [∑𝐹𝑥,𝑖,𝑚𝑎𝑥,𝑝𝑤𝑡
𝑖

;∑𝐹𝑥,𝑖𝑗,𝑚𝑎𝑥
𝑖,𝑗

] (36) 

Similarly to conventional VSC algorithms, which apply a DYM 

nearly exclusively in braking [42], in traction conditions 

NMPCadv is allowed to generate only a very moderate yaw 

moment, equal to 𝑀𝑧,𝑟𝑒𝑙 , to provide continuity of the feasible 𝑀𝑧 

region as a function of 𝐹𝑥. During traction, the direct yaw moment 

is generated through the concurrent application of a traction 

torque, resulting into symmetric longitudinal force contributions 

on the two tires of the same axle, and a braking torque, whose 

maximum value is −2𝑀𝑧,𝑟𝑒𝑙/𝑏. 

Hence, in Fig. 7, the polygon vertices in traction are: 

{
 
 
 

 
 
 

𝑃5(0,−𝑀𝑧,𝑟𝑒𝑙)

𝑃6 (𝐹𝑥,𝑚𝑎𝑥 −
2𝑀𝑧,𝑟𝑒𝑙

𝑏
, −𝑀𝑧,𝑟𝑒𝑙)  

𝑃7(𝐹𝑥,𝑚𝑎𝑥 , 0) 

𝑃8 (𝐹𝑥,𝑚𝑎𝑥 −
2𝑀𝑧,𝑟𝑒𝑙

𝑏
,𝑀𝑧,𝑟𝑒𝑙)

𝑃9(0,𝑀𝑧,𝑟𝑒𝑙)

 (37) 

As a result, the overall feasible vehicle operating region is given 

by the area of the polygon 𝑃2
′𝑃3

′𝑃4
′𝑃5𝑃6𝑃7𝑃8𝑃9, whose boundaries 

are described by linear equations that vary along 𝐻𝑝.  

A priori control input limitation – By using the prediction of the 

total longitudinal force, 𝐹𝑥 = 𝐹𝑥,𝑓 + 𝐹𝑥,𝑟 − 𝐹𝑥,𝑀𝑧 , from the 

previous time step 𝑗𝑐 −1 along 𝐻𝑝, the CA algorithm outputs the 

𝑀𝑧,𝑚𝑎𝑥,𝑘 and 𝑀𝑧,𝑚𝑖𝑛,𝑘 profiles, which are provided as online data 

to NMPCadv, to set the DYM constraints in (26). This approach 

does not compromise the computational efficiency of the online 

solution of the optimal control problem, and is justified by the 

small sampling time and usually negligible variation of the main 

variables for consecutive time steps. 

A posteriori control input saturation – NMPCadv outputs 𝐹𝑥, 

which is computed from the control inputs, and the reference 

DYM, 𝑀𝑧. The desired control input corresponds to a point of 

coordinates (𝐹𝑥; 𝑀𝑧) in Fig. 7. At each step of 𝐻𝑝, if (𝐹𝑥;𝑀𝑧) is 

inside the feasible area in Fig. 7, which is the case of point A, no 

modification is applied. Vice versa, if the point is outside the area, 

two conditions can occur: 

• If sign(𝑀𝑧) = sign(�̇�), which corresponds to a destabilizing 

DYM, the algorithm tends not to vary 𝐹𝑥 where possible, and 

calculates a corresponding feasible DYM, 𝑀𝑧,𝑠𝑎𝑡 , i.e., point 

B in Fig. 7 translates into B1. 

• If sign(𝑀𝑧) ≠ sign(�̇�), which corresponds to a stabilizing 

DYM, the CA prioritizes 𝑀𝑧, which is kept unaltered if 

possible, and modifies 𝐹𝑥, which becomes 𝐹𝑥,𝑠𝑎𝑡, i.e., point C 

translates into C1. 

Wheel torque control allocation – For the computation of the 

individual wheel torque levels, the symmetric longitudinal force 

contribution from NMPCadv is distributed according to 𝑝𝑡  and 𝑝𝑏 , 

while the direct yaw moment contribution is allocated to one or 

two wheels on the same side according to the following chain 

rule: 

{
 
 

 
 

  1st 2nd

𝑀𝑧 > 0
sign(𝑀𝑧) = sign(�̇�)

sign(𝑀𝑧) ≠ sign(�̇�)

𝑟𝑙 𝑓𝑙
𝑓𝑙 𝑟𝑙

𝑀𝑧 < 0
sign(𝑀𝑧) = sign(�̇�)

sign(𝑀𝑧) ≠ sign(�̇�)

𝑟𝑟 𝑓𝑟
𝑓𝑟 𝑟𝑟

 (38) 

where the notations ‘1st’ and ‘2nd’ denote the priority level of the 

wheel, i.e., the brakes are actuated on the ‘1st’ corner until its 

longitudinal force is saturated, after which the ‘2nd’ corner on the 

same side is actuated.  

For example, in a left turn braking scenario with sign(𝑀𝑧) =

sign(�̇�), the reference wheel torque levels are given by (39), 

where 𝑇𝑤,𝑖𝑙,𝐿1−3 indicate intermediate variable torque levels to 

reduce notation complexity. From (39), if the left rear wheel 

reaches saturation because of 𝑝𝑏 , the 𝑀𝑧 contribution is entirely 

allocated to the left front corner. If the saturation is caused by 𝑀𝑧, 

the DYM term allocated to the left front wheel is adjusted by 

adding the contribution that cannot be generated by the left rear 

corner, until the saturation level 𝑇𝑤,𝑓𝑙,𝑚𝑖𝑛  is reached also on the 

front corner. 𝑇𝑤,𝑓𝑟  and 𝑇𝑤,𝑟𝑟 are computed through (33). The 

same method is applied to traction conditions and the other three 

cases in (38). 

𝑇𝑤,𝑟𝑙 = {

𝐹𝑥,𝑓𝑟𝑤

2
 
1 − 𝑝𝑡/𝑏

𝑝𝑡/𝑏
− |𝑀𝑧

2𝑟𝑤
𝑏
| = 𝑇𝑤,𝑟𝑙,𝐿1 − |𝑀𝑧

2𝑟𝑤
𝑏
| = 𝑇𝑤,𝑟𝑙,𝐿2, if 𝑇𝑤,𝑟𝑙,𝐿2 ≥ 𝑇𝑤,𝑟𝑙,𝑚𝑖𝑛

𝑇𝑤,𝑟𝑙,𝑚𝑖𝑛, if 𝑇𝑤,𝑟𝑙,𝐿2 < 𝑇𝑤,𝑟𝑙,𝑚𝑖𝑛

 

𝑇𝑤,𝑓𝑙 =

{
 
 
 

 
 
 

𝐹𝑥,𝑓𝑟𝑤

2
= 𝑇𝑤,𝑓𝑙,𝐿1, if (𝑇𝑤,𝑟𝑙 ≥ 𝑇𝑤,𝑟𝑙,𝑚𝑖𝑛)and(𝑇𝑤,𝑓𝑙,𝐿1 ≥ 𝑇𝑤,𝑓𝑙,𝑚𝑖𝑛) 

𝐹𝑥,𝑓𝑟𝑤

2
− |𝑀𝑧

2𝑟𝑤
𝑏
| − 𝑇𝑤,𝑟𝑙,𝑚𝑖𝑛 = 𝑇𝑤,𝑓𝑙,𝐿2, if(𝑇𝑤,𝑟𝑙,𝐿1 ≥ 𝑇𝑤,𝑟𝑙,𝑚𝑖𝑛)and(𝑇𝑤,𝑟𝑙 < 𝑇𝑤,𝑟𝑙,𝑚𝑖𝑛)and(𝑇𝑤,𝑓𝑙,𝐿2 ≥ 𝑇𝑤,𝑓𝑙,𝑚𝑖𝑛)

𝐹𝑥,𝑓𝑟𝑤

2
− |𝑀𝑧

2𝑟𝑤
𝑏
| = 𝑇𝑤,𝑓𝑙,𝐿3, if(𝑇𝑤,𝑟𝑙,𝐿1 < 𝑇𝑤,𝑟𝑙,𝑚𝑖𝑛)and(𝑇𝑤,𝑓𝑙,𝐿3 ≥ 𝑇𝑤,𝑓𝑙,𝑚𝑖𝑛) 

𝑇𝑤,𝑓𝑙,𝑚𝑖𝑛 , else

 

(39) 
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a)                        

b)     
Fig. 8. a) Top view of the considered road intersection scenario; and b) Reference 

paths and speed profiles for high (𝜇 = 1) and low (𝜇 = 0.55) tire-road friction 

conditions. 

VI.  PERFORMANCE ASSESSMENT 

A. Considered scenarios 

The case study maneuver is an emergency scenario at a road 

intersection, with an impending crash between vehicles, i.e., an 

automated ego vehicle that aims to steer left, and a column of 

vehicles traveling at constant speed in straight line, see Fig. 8a. 

The scenario is simulated for two tire-road friction factors, i.e., 

𝜇 = 1 and 𝜇 = 0.55. The reference path curvature and speed 

profiles, 𝜌𝑟𝑒𝑓  and 𝑣𝑥,𝑟𝑒𝑓 , are generated through look-up tables, as 

functions of 𝑠. 𝜌𝑟𝑒𝑓  and 𝑣𝑥,𝑟𝑒𝑓 change along the preview time 

𝐻𝑝𝑟𝑒𝑣 = 𝑁𝑝𝑟𝑒𝑣𝑇𝑠, which is considered to be equal to the 

prediction horizon 𝐻𝑝, with 𝑁𝑝𝑟𝑒𝑣 being the number of preview 

points.  

The considered reference paths and speed profiles for the two 

friction levels are depicted in Fig. 8b, and are inspired by the trail-

braking maneuvers in [4] and [43], with very aggressive 

trajectories and speed/acceleration profiles to purposely bring 

vehicle response beyond the limit of handling. Given the focus 

on the innovative PT function for emergency conditions, and to 

prevent interactions with the path planning layer, which could 

compromise the objectivity of the PT algorithm assessment, the 

reference profiles do not vary throughout the maneuver (i.e., 

absence of path re-planning). For 𝜇 = 1, four reference 

trajectories, T1-T4, are considered for PT assessment, see Fig. 

8b. T1 follows the center line of the road out of the corner, which 

minimizes the risk of collision with upcoming traffic. T2 involves 

a U-shape to approach the left side of the roadway, while T3 and 

T4 have smaller curvature radii, respectively following the lane 

center line or its inner side at the exit of the turn. For 𝜇 = 0.55, 

T1-T3 and the speed profile are selected to resemble the shape of 

those for high-friction conditions, with appropriate re-

parametrization accounting for the lower 𝜇 level. However, the 

most aggressive reference trajectory, i.e., T4, is deliberately 

avoided for 𝜇 = 0.55, as it is unrealistic for the specific tire-road 

friction condition. 

B. Key performance indicators 

The following set of key performance indicators (KPIs) is used 

to evaluate control system performance: 

• 𝑑𝑠𝑓, which is the safety distance between the controlled 

vehicle and the oncoming vehicles, see Fig. 8a, computed as 

the minimum gap maintained between the controlled 

vehicle and the obstacles represented by the oncoming 

vehicles, throughout the test. 

• 𝑒𝑦,𝑚𝑎𝑥 and 𝑅𝑀𝑆𝑒𝑦, i.e., the maximum and root mean square 

values of the lateral error: 

𝑒𝑦,𝑚𝑎𝑥 = max(𝑒𝑦) 

(40) 
𝑅𝑀𝑆𝑒𝑦 = √

1

𝑇2 − 𝑇1
∫ 𝑒𝑦

2
𝑇2

𝑇1

𝑑𝑡 

where 𝑇1 and 𝑇2 are the times at which the vehicle reaches 

the initial and final points of the maneuver, 𝑠1 and 𝑠2 in Fig. 

8b.  

• 𝑣𝑥,𝑚𝑖𝑛 and 𝑅𝑀𝑆𝑒𝑣𝑥
, i.e., the minimum longitudinal vehicle 

speed and the root mean square value of the longitudinal 

speed error along the maneuver: 

𝑣𝑥,𝑚𝑖𝑛 = min(𝑣𝑥) 

(41) 
𝑅𝑀𝑆𝑒𝑣𝑥

= √
1

𝑇2 − 𝑇1
∫ [𝑣𝑥 − 𝑣𝑥,𝑟𝑒𝑓]

2
𝑇2

𝑇1

𝑑𝑡 

Remark: In general, the significant tracking errors visible in the 

results in the following Section VII are caused by the extreme 

nature of T1-T4, involving vehicle operation well beyond its 

lateral acceleration capabilities. During the study, it was also 

verified that, for operation within the limit of handling, the 

considered controllers involve a typical PT error of the order of 

magnitude of a few cm. Similar considerations apply to the 

speed tracking error. 

C. Benchmarking controller 

The performance of the proposed PT controllers has been 

compared with that of the well-known feedforward and 

feedback (FF+FB) steering controller in [44], which has been 

developed and assessed for applications at the limit of handling. 

The feedback contribution is given by a proportional setup 

accounting for the heading angle error and the lateral error, 

including consideration of a look-ahead distance. 

 
Fig. 9. Block diagram of the benchmarking PT architecture inspired by [44], 

consisting of a FF+FB steering controller and a PI speed tracking controller. 
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TABLE II. MAIN NMPCADV PARAMETERS. 

Parameter Symbol Value 

Sampling time 𝑇𝑠 50 ms 

Discretization time 𝑇𝑑𝑖𝑠𝑐 25 ms 

Number of steps of the 

prediction horizon 
𝑁𝑝 20 

Control input weighting matrix 𝑅𝑢 diag([1 0.03 1 0.006]) 

Slack variable weight 𝑅𝜀 15 

Terminal cost weighting matrix 𝑃𝑥, diag([0.11 0 0 0 0 0]) 

𝜇 = 1 

Stage cost weighting matrix 𝑄𝑥 diag([11 3 0 0.01 0.02 0.06]) 

𝜇 = 0.55 

Stage cost weighting matrix 𝑄𝑥 diag([8 0.5 0.05 0.01 0.02 0.06]) 

The tracking of the reference speed profile is achieved through 

a proportional integral (PI) controller. The wheel torque 

distribution is based on the same algorithm presented in Section 

V.B for NMPCbas, whose outputs can be modified by the 

conventional VSC. Fig. 9 shows the overall architecture of the 

benchmarking control structure, referred to as FF+FB in the 

remainder. 

VII.  SIMULATION RESULTS 

The main controller parameters for NMPCadv are listed in Table 

II. The sampling time 𝑇𝑠, discretization time 𝑇𝑑𝑖𝑠𝑐, and number 

of prediction horizon steps 𝑁𝑝 are the same across all NMPC 

formulations. The weighting matrices 𝑄𝑥 and 𝑅𝑢 have been 

appropriately modified by removing the terms linked to the 

DYM contribution in the emergency formulation NMPCemg, as 

well as the term related to the braking force distribution in the 

baseline formulation NMPCbas. 

 

A. High-friction simulations along T1 

Fig. 10 shows the resulting trajectories for T1, with the vehicle 

positions being captured at constant time intervals for the 

different control solutions. The notation ‘ABS’ refers to the 

case of straight line emergency braking of the ego vehicle, with 

activation of the anti-lock braking system. The lateral and speed 

tracking error profiles as well as the vehicle sideslip angle and 

yaw rate responses are displayed in Fig. 11. Fig. 12 compares 

the steering angle, the total front and rear longitudinal tire 

forces, and the direct yaw moments from the CA algorithm, 

together with those actually generated by the longitudinal tire 

forces. 

The ABS braking case avoids the impact, see Fig. 10 and the 

safety distance, 𝑑𝑠𝑓,𝐴𝐵𝑆 = 0.569 m, in Table III, but leaves the 

vehicle stranded in the middle of the road, with a 90 deg 

heading angle error w.r.t. the traffic direction, thus increasing 

the risk of a crash with approaching vehicles. With FF+FB and 

NMPCbas, the VSC applies asymmetric braking torque levels, 

e.g., see the left braking torque reduction to generate a 

stabilizing direct yaw moment, thus preventing |𝛽| values in 

excess of 5 deg. Without the pre-emptive information on the 

road curvature ahead, FF+FB tends to generate an initial 

significant braking action, followed by a substantial steering 

input. On the contrary, NMPCbas takes a more aggressive 

cornering approach, and ‘cuts’ the curve. Nevertheless, in both 

cases, the car cannot track the reference path, and collides with 

the oncoming vehicles, at the longitudinal speeds of 32 km/h 

and 30 km/h respectively, see the crosses in Fig. 11. 

Interestingly, drifting enables low radius cornering, see Fig. 10. 

This is the case for NMPCemg and NMPCadv, where the 

relaxation of the conventional VSC thresholds, and the control 

of the available actuators with the only purpose of trajectory 

tracking (without a sideslip reference profile) bring: i) collision 

avoidance; ii) safe heading angle response w.r.t. the ABS 

braking case; and iii) high |𝛽|, with peaks respectively 

exceeding 27 and 20 deg, see Fig. 11, which is not an objective 

by itself, but a means to better track the reference trajectory. 

The addition of 𝑀𝑧 control leads to: i) a more agile corner entry 

phase, corresponding to larger heading angle magnitude, 

followed by a stabilization; ii) an 𝑒𝑦,𝑚𝑎𝑥  reduction by >1.1 m  

(see Table III) for NMPCadv w.r.t. NMPCemg; and iii) improved 

𝑣𝑥,𝑟𝑒𝑓 tracking, with a 𝑣𝑥,𝑚𝑖𝑛 increase from 22.4 to 24.7 km/h. 

In NMPCadv, the sideslip angle is restricted to lower magnitudes 

than in NMPCemg in the central part of the maneuver, after 

which 𝑀𝑧 is no longer required, and the vehicle is brought back 

to normal operation. Although the NMPCemg formulation does 

not imply any reference direct yaw moment, a non-zero 𝑀𝑧 

profile is visible in Fig. 12, both at the CA output and at the tire 

level. This is caused by the lateral load transfer effect, which 

significantly limits the maximum applicable braking torque 

levels on the inner corners, as the respective tires tend to lock. 

In NMPCadv, the actual direct yaw moment closely tracks the 

one predicted by the CA, except for the central part of the 

maneuver, during which the operational boundaries in Fig. 7 

cannot be generated, due to the tire friction limits. Fig. 13 

provides an insight into the NMPCadv operation, by reporting 

the region of feasible 𝑀𝑧 as a function of the total longitudinal 

force 𝐹𝑥, for three equally spaced steps along the prediction 

horizon, starting from a time 𝑡𝑗𝑐 corresponding to the corner 

entry, where the lateral load transfer is limited, due to the 

relatively low lateral acceleration 𝑎𝑦 = 3.2 m/s2. In the last 

prediction step, i.e., at 𝑡𝑗𝑐+𝑁𝑝 , the predicted 𝑎𝑦 reaches ~9 m/s2, 

corresponding to high lateral load transfers. As a result, the left 

(i.e., inner) wheels are unloaded, which significantly reduces 

the maximum possible destabilizing direct yaw moment 

through the actuation of the friction brakes.  

 
Fig.10. Comparison of the resulting trajectories along T1, for 𝜇 = 1. 
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Fig. 11. 𝑒𝑦, 𝑣𝑥, 𝛽 and �̇� profiles along T1, for 𝜇 = 1. 

 
Fig. 12. Control inputs along T1, for 𝜇 = 1. 

Although the high lateral load transfer facilitates the application 

of a stabilizing yaw moment (i.e., preventing turning) and 

increases the asymmetry of the feasible region, the 

consideration of the tire friction ellipse (coupling between 

longitudinal and lateral tire forces) within the CA algorithm still 

brings a reduction of the maximum stabilizing 𝑀𝑧 (point P4 in 

the plot) w.r.t. to 𝑡𝑗𝑐. 

TABLE III. KPIS FOR THE CONTROLLER CONFIGURATIONS THAT MANAGE TO 

PREVENT THE COLLISION WITH THE ONCOMING VEHICLES. 

Case Configuration 
𝑑𝑠𝑓 𝑒𝑦,𝑚𝑎𝑥 𝑅𝑀𝑆𝑒𝑦 𝑣𝑥,𝑚𝑖𝑛 𝑅𝑀𝑆𝑒𝑣𝑥 

[m] [m] [m] [km/h] [km/h] 

𝜇 = 1 

𝑑𝑠𝑓,𝐴𝐵𝑆 = 0.569 m 

T1 
NMPCemg 0.256 2.373 1.005 22.4 12.7 

NMPCadv 0.210 1.271 0.500 24.7 12.5 

T2 
NMPCemg 0.129 1.664 0.683 23.0 12.8 
NMPCadv 0.627 0.908 0.380 23.8 12.2 

T3 
NMPCemg 0.189 2.482 1.127 23.9 12.7 

NMPCadv 0.835 1.523 0.663 21.7 12.8 

T4 
NMPCemg 0.518 2.773 1.247 20.1 12.7 

NMPCadv 1.354 1.582 0.676 20.3 12.6 

𝜇 = 0.55 

𝑑𝑠𝑓,𝐴𝐵𝑆 = 0.471 m 

T1 NMPCadv 0.187 3.822 1.857 13.0 18.1 
T2 NMPCadv 0.132 3.483 1.643 13.1 17.7 

T3 
NMPCemg 0.313 3.800 1.940 9.0 17.8 

NMPCadv 0.861 3.630 1.758 12.9 17.7 

 

 
Fig. 13. Variation of the operational boundaries for three time instants along 

𝐻𝑝. 

B. High-friction simulations along T2-T4 

For assessing controller robustness and verifying the generality 

of the trends in Section VII.A, Fig. 14 depicts the resulting 

trajectories for T2-T4, with the reference speed profile in Fig. 

8b. NMPCbas fails to avoid the impact with the proceeding 

vehicles, regardless of the considered trajectory, while 

NMPCemg and NMPCadv always manage to prevent the crash. 

Moreover, NMPCadv consistently delivers better tracking 

performance than NMPCemg, which becomes increasingly 

apparent with the reference trajectories associated with the 

highest curvature values (T3 and T4). The benefits of NMPCadv 

w.r.t. NMPCemg also cover the other vehicle performance 

aspects, such as the minimum longitudinal speed during the test, 

see Table III. For T3 and T4, w.r.t. the straight line ABS braking 

case in Fig. 10, NMPCadv also provides a 𝑑𝑠𝑓 increase (e.g., 

amounting to 0.785 m along T4, see Table III), with negligible 

difference between the two trajectories. 
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(T3) 

 

(T4) 

Fig. 14. Comparison of the resulting trajectories along T2-T4, for 𝜇 = 1. 

C. Low-friction simulations 

The low-friction simulations are carried out for the reference 

paths and speed profile in Fig. 8b, see the results in Figs. 15-17, 

referring to T1. In the controller tuning for low-𝜇 conditions, 

the heading angle error has been marginally penalized w.r.t. the 

high-friction case, to improve the vehicle behavior at the corner 

exit. 

The general trends are similar to those observed in high-friction 

conditions. For FF+FB and NMPCbas, the VSC intervention 

limits |𝛽| to values below 2 deg, see Fig. 16, which are typical 

of VSC operation in low-friction scenarios [7]. This causes the 

vehicle to significantly understeer, and fail to avoid the impact, 

which occurs at 𝑣𝑥 = 18 km/h and 𝑣𝑥 = 20 km/h, respectively. 

In the emergency and advanced formulations, the relaxation of 

the VSC thresholds leads to sideslip angles exceeding 40 deg. 

Differently from the high-friction case, because of the reduced 

tire-road friction level, the NMPCemg vehicle tends to slide 

outside the turn trajectory, and thus cannot avoid colliding with 

the proceeding vehicles, while traveling at a longitudinal speed 

of ~12 km/h. The inclusion of the DYM contribution, which 

purposely destabilizes the vehicle at the beginning of the 

maneuver, enables NMPCadv to prevent the impact and achieve 

similar 𝑑𝑠𝑓 (see Table III) to straight line ABS braking. 

For T2 and T3, the relative performance of the different 

configurations is generally similar to the T1 case, see the KPIs 

in Table III. However, in T3 NMPCemg is able to avoid the 

collision, and NMPCadv also guarantees a ~0.4 m 𝑑𝑠𝑓 increase 

w.r.t. the straight line ABS maneuver. 

 

 
Fig. 15. Comparison of the resulting trajectories along T1, for 𝜇 = 0.55. 

 
Fig. 16. 𝑒𝑦, 𝑣𝑥, 𝛽 and �̇� profiles along T1, for 𝜇 = 0.55. 
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Fig. 17. Control inputs along T1, for 𝜇 = 0.55. 

D. Robustness analyses 

The target is to verify controller robustness w.r.t. model 

uncertainties and disturbances.  

The first analysis was conducted via Monte Carlo simulations 

to evaluate NMPCadv in several challenging scenarios. To 

generate the Monte Carlo test cases, six critical parameters are 

varied only in the CarMaker model for control system 

assessment along T2 in high-friction conditions, whilst they are 

kept constant and equal to their nominal value in the internal 

model of NMPCadv. The selected parameters are: i) an 

additional mass, 𝑚𝑎𝑑𝑑, w.r.t. the nominal vehicle mass, 

together with the corresponding plausible variation of yaw mass 

moment of inertia; ii) the tire-road friction factor, 𝜇; iii) the 

scaling factor of the longitudinal shape factor in the Pacejka 

model, 𝑊𝐶𝑥 , which mainly affects the longitudinal slip stiffness 

of the tires; iv) the scaling factor of the lateral shape factor, 𝑊𝐶𝑦 , 

which mainly modifies tire cornering stiffness; v) the scaling 

factor of tire relaxation, 𝑊𝜎; and vi) a scaling factor on the 

lateral vehicle velocity, 𝑊𝑣𝑦 , emulating a sideslip angle 

estimation error. The Monte Carlo analysis consists of 500 test 

scenarios, defined by a combination of parameter values 

randomly drawn from the respective normal probability 

distribution, see Fig. 18. The NMPCadv performance is 

evaluated through the concept of collision rate, defined as the 

percentage of scenarios where a collision is detected, i.e., in 

which 𝑑𝑠𝑓 is negative. As a term of comparison, the same 

analysis is carried out with the benchmarking FF+FB controller. 

The safety distance distribution in Fig. 19 highlights that, 

regardless of the randomly selected parameter combinations, 

FF+FB has a 100% collision rate.  

 
Fig. 18. Parameters values distribution for the Monte Carlo analysis. 

 
Fig. 19. Safety distance distribution resulting from the Monte Carlo analysis. 

 
TABLE IV. RESULTS OF THE MONTE CARLO ANALYSIS. 

Case 

No. of 

simulated 
scenarios 

Config. 

Collision 

rate 
𝑑𝑠𝑓,𝑚𝑎𝑥 𝑑𝑠𝑓,𝑚𝑖𝑛 �̅�𝑑𝑠𝑓  �̅�𝑠𝑓 

[%] [m] [m] [m] [m] 

T2 500 
FF+FB 100 -0.766 -3.045 -1.405 0.307 

NMPCadv 19.6 1.021 -1.143 0.440 0.484 

 
Fig. 20. Comparison of the resulting trajectories along T1, for 𝜇 = 1, for a 

different case study vehicle. 

All the FF+FB tests are located in the red region of the plot, 

with 𝑑𝑠𝑓 < -15 cm, corresponding to high-severity impacts. 

This results in an average safety distance �̅�𝑑𝑠𝑓  = -1.405 m, and 

a corresponding standard deviation 𝜎𝑑𝑠𝑓 = 0.307 m, see Table 

IV. In contrast, NMPCadv shows significant robustness, with a 

collision rate of ~20%. Among the cases corresponding to an 
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accident, 29 result in low-severity impacts, with -0.15 m ≤
𝑑𝑠𝑓 ≤ 0 m (orange part of the plot).  

The second robustness analysis involves the assessment of the 

controllers with a second vehicle, simulated in CarMaker, 

characterized by significantly reduced vehicle mass (𝑚 = 1463 

kg) and yaw mass moment of inertia, and different tire and 

suspension parametrizations w.r.t. the case study vehicle of the 

previous simulations. Such vehicle was artificially generated 

through plausible downsizing of the parameters of the 

experimental demonstrator in Table I. The trend in the results 

in Fig. 20, referring to T1 in high tire-road friction conditions, 

is consistent with that in Fig. 10, and highlights the collision 

avoidance benefits of the proposed formulations, regardless of 

the specific vehicle. 

E. Demonstrating the benefits of operating at non-imposed high 

sideslip angles 

The target is to demonstrate the advantage of operating at non-

imposed high sideslip angles. To address this point, a new 

control strategy, the so-called NMPCadv−𝛽𝑟𝑒𝑓 , has been 

introduced, which is based on NMPCadv, but incorporates the 

tracking of a reference sideslip angle profile. The NOCP 

formulation in (14) has been modified by introducing an 

additional term in both the output and reference output vectors, 

specifically focused on tracking the reference sideslip angle: 

𝑧 = [𝑣𝑥 𝑒𝑦 𝑒𝜓    𝛽    𝛿    𝐹𝑥,𝑓    𝑀𝑧]
′
 

𝑧𝑟𝑒𝑓 = [𝑣𝑥,𝑟𝑒𝑓    0   0   𝛽𝑟𝑒𝑓    0   0   0]
′
 

(42) 

where 𝛽 is computed in the prediction model as 𝛽 =

atan(𝑣𝑦/𝑣𝑥). 

To generate the reference sideslip angle, 𝛽𝑟𝑒𝑓 , ramp steer 

maneuvers were conducted offline, at different vehicle speeds. 

During postprocessing, the kinematic sideslip angle in quasi-

steady-state cornering, 𝛽𝑘𝑖𝑛,𝑆𝑆, is obtained from [45]: 

𝛽𝑘𝑖𝑛,𝑆𝑆 = 𝑙𝑟𝜌 (43) 

where 𝜌 is the effective curvature during each instant of the ramp 

steer. The corresponding quasi-steady-state dynamic sideslip 

angle contribution, 𝛽𝑑𝑦𝑛,𝑆𝑆, is calculated as [46]: 

𝛽𝑑𝑦𝑛,𝑆𝑆 = 𝛽𝑆𝑆 − 𝛽𝑘𝑖𝑛,𝑆𝑆 (44) 

where 𝛽𝑆𝑆 is the actual sideslip angle, varying with time, from 

the high-fidelity model during the quasi-steady-state cornering 

conditions of the ramp steer maneuver.  

In the online implementation of NMPCadv−𝛽𝑟𝑒𝑓 , the quasi-

steady-state kinematic and dynamic sideslip angle contributions 

are then mapped in two-dimensional look-up tables, 

𝛽𝑘𝑖𝑛,𝑆𝑆(𝛿, 𝑣𝑥) and 𝛽𝑑𝑦𝑛,𝑆𝑆(𝛿, 𝑣𝑥), which are functions of the 

steering angle and longitudinal speed, see Fig. 21. The profile 

of the reference sideslip angle, 𝛽𝑟𝑒𝑓 , provided to 

NMPCadv−𝛽𝑟𝑒𝑓, is obtained online by combining the outputs of 

the two maps: 

𝛽𝑟𝑒𝑓(𝑡) = 𝛽𝑘𝑖𝑛,𝑆𝑆(𝛿(𝑡), 𝑣𝑥(𝑡))

+ 𝑘𝛽𝛽𝑑𝑦𝑛,𝑆𝑆(𝛿(𝑡), 𝑣𝑥(𝑡)) 
(45) 

where 𝑘𝛽 is a corrective factor of the dynamic contribution. 

Two NMPCadv−𝛽𝑟𝑒𝑓  set-ups of have been introduced: i) 

NMPCadv−𝛽𝑟𝑒𝑓,1, with 𝑘𝛽 = 1, which corresponds to the natural 

sideslip response of the vehicle in quasi-steady-state cornering 

conditions, in which the kinematic contribution prevails for 

low-to-medium speeds and lateral accelerations; and ii)  

 
Fig. 21. Maps of the quasi-steady-state kinematic and dynamic sideslip angle 

contributions, obtained from ramp steer tests for 𝜇 = 1. 

a)  

b)  

Fig. 22. Comparison of the NMPCadv formulations along T1 for 𝜇 = 1: a) 

Resulting trajectories; and b) 𝑒𝑦, 𝑣𝑥, 𝛽 and ψ̇ profiles (the colors of the line are 

consistent with those in subplot a). 
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NMPCadv−𝛽𝑟𝑒𝑓,2, in which the dynamic contribution is 

prioritized (𝑘𝛽 = 5) to purposely induce drifting, in line with the 

currently available approaches from the literature.  

The controllers’ comparison is depicted in Fig. 22a,b, along T1 

in high tire-road friction conditions (𝜇 = 1). NMPCadv−𝛽𝑟𝑒𝑓,1 

and NMPCadv−𝛽𝑟𝑒𝑓,2 exhibit satisfactory tracking of the 

reference sideslip angle, considering their need to strike a 

balance between tracking the reference sideslip angle, 

trajectory, and speed, while operating in typical emergency 

conditions. However, both NMPCadv−𝛽𝑟𝑒𝑓 configurations, 

differently from the proposed NMPCadv, fall short in preventing 

the accident, resulting in collisions at approximately 21 km/h 

and 31 km/h. This achievement further highlights the collision 

avoidance benefit of operating with non-imposed high sideslip 

angle magnitudes. 

 

VIII.  CONCLUSION 

The study presented real-time nonlinear model predictive 

controllers (NMPCs) over the steering angle, total longitudinal 

tire force and its distribution between the axles, and direct yaw 

moment, to achieve effective path tracking (PT) in emergency 

conditions, with the option of pushing the vehicle beyond the 

constraints set by conventional vehicle stability controllers 

(VSCs). The results, covering emergency maneuvering with 

different reference trajectories for an intersection scenario in 

high and low tire-road friction conditions, highlight that: 

• Conventional VSCs, in conjunction with advanced PT 

algorithms actuating the front steering angle and total 

longitudinal tire force, referred to as FF+FB and NMPCbas, 

provide conservative cornering behavior, and cannot avoid 

collision with the oncoming vehicles in any of the assessed 

scenarios. 

• The relaxation of the longitudinal and lateral slip constraints 

at the individual tire and vehicle levels enables the 

emulation of race driving techniques by the PT layer when 

necessary, and the tracking of otherwise unachievable 

trajectories, which enhances the collision avoidance 

capability. 

• The NMPC formulation concurrently controlling all the 

available actuators, NMPCadv, prevents road accidents in all 

scenarios, and brings the vehicle to a desirable heading 

angle condition at the end of each test, differently from the 

actuation of straight line ABS braking, which avoids the 

primary impact, but then leaves the ego vehicle stranded in 

the middle of the road. 

• The emergency NMPC formulation (NMPCemg) without 

direct yaw moment control, but including the option of high-

slip maneuvering through longitudinal tire force distribution 

to emulate the hand brake effect, prevents the collision in 

the four high-friction scenarios and in one low-friction case, 

with degraded key performance indicators (KPIs) w.r.t. 

NMPCadv. Nevertheless, in all tests NMPCemg provides 

significantly better KPIs than NMPCbas and FF+FB. 

• NMPCadv is robust and flexible in handling uncertainties 

related to tire-road friction conditions and tire parameters, 

as well as disturbances related to sideslip angle estimation 

errors, with consistently superior performance w.r.t. 

FF+FB. Also, NMPCadv is easily adaptable to very different 

vehicles in terms of inertial, suspension, and tire properties. 

• NMPCadv performs drifting only when necessary to follow 

a reference path, showcasing superior collision avoidance 

capability w.r.t. the considered benchmarking 

NMPCadv−𝛽𝑟𝑒𝑓   implementations for controlled drifting, 

which – consistently with the available literature – track an 

imposed sideslip angle profile. 
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