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Abstract—Being able to measure and track positions of mo-
bile systems is an important capability in many applications,
autonomous driving being one major example. With the Ro-
bust Radon Radar Odometry algorithm, this paper presents
an approach for estimating the odometry of vehicles based
on radar data only. The algorithm embodies a robust method
for estimating the change in orientation as a key feature. The
odometry algorithm is under the realm of direct methods, and
it exploits properties of the Fourier transform for decoupling
the changes in orientation from the changes in translation. In
the first step, the Radon transform along with phase-correlation,
outlier removal, robust measure of central tendency, keyframe
selection and graph optimization are used in order to achieve
a robust method for estimating the change in orientation, next
the translation is estimated with the support of phase-correlation.
The algorithm’s performance was evaluated with real world data.
Significant improvements in position and orientation error in
terms of relative pose error and the KITTI odometry error metric
are shown as compared to other direct methods for radar based
odometry.

Index Terms—Radar, Odometry, Au-

tonomous Vehicles, Phase-Correlation.

Radon Transform,

I. INTRODUCTION

HE progress of autonomy in vehicles comes with higher

demand for the sensors embedded on the vehicle as
well as the algorithms that use the sensors’ data. This is a
consequence of the fact that highly autonomous vehicles will
be required to be able to perform a myriad of tasks without
the active intervention of the driver.

Self-localization, i.e. self-determination of the position and
orientation with regards to a reference frame over time [1],
is among the many capabilities that are required for vehicles
to achieve highly automated driving (HAD), i.e. level 4 and
5 of autonomy. The usual choice of sensors in self-localizing
vehicles is through combining information from Global Nav-
igation Satellite Systems (GNSS) with Inertial Measurement
Units (IMU) [2]. However, GNSS-based estimation is impaired
in GNSS denied regions and under multi-path conditions.
Also, IMU-based odometry estimation has its pitfalls. For
example, drift error, which affects any odometry algorithm,
is aggravated with IMU due to the double integration required
to calculate the position from acceleration data [3].
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The aforementioned requirements with regards to a vehicle’s
autonomy as well as possible drawbacks with the common
methods for self-localization generate the motivation to ana-
lyze other possibilities for self-localization of vehicles. One
alternative is to consider radar sensors. Radar is a pivotal sen-
sor in the development of HAD due to, e.g., its high robustness
under many conditions and its long range capabilities [4].

Radar ego-motion estimation is currently a topic of intensive
research [5]-[21]. The approaches for calculating odometry
using radar data can be roughly divided into direct and indirect
odometry methods [6]. The first category relies on estimating
the change in orientation and position through using area-
based methods, while the latter falls under the realm of feature-
based methods. Direct and feature-based odometry methods
have their own advantages and disadvantages. For example,
one advantage of direct methods is that they do not need to
perform the feature detection step; conversely, one advantage
of feature-based methods is that they usually have lower
computational complexity.

In general, indirect radar odometry methods operate by
detecting features in at least a pair of radar images, followed
by associating the features common to the set of images, and
finally estimating the ego-motion. Examples of indirect radar
odometry methods include [S5]-[17].

In contrast, direct radar odometry methods usually calculate
the ego-motion by exploiting the decoupling between rotation
and translation of the magnitude spectrum of an image.

In this paper, we present an algorithm named Robust Radon
Radar Odometry (R30) which consists of a direct method
for calculating the odometry of an agent, e.g. a vehicle, by
exclusively using scanning radar data. R*0O combines the ad-
vantages of the direct radar odometry method with a procedure
for calculating the rotation between radar image pairs which
is more robust to interpolation errors, rotationally dependent
aliasing and noise. The improvement in robustness is achieved
by exploiting a property of the Radon transform along with
filtering steps for removing outliers and less reliable estima-
tions. The first step in R3Q’s rotation estimation consists of
finding multiple candidates for the rotation via using the Radon
domain images. Next, an outlier removal method is used
for removing anomalous candidates. Then, a robust location
estimator and a robust scale estimator are used for calculating
the rotation and its uncertainty. In addition, a keyframe method
is used which dismiss pairs with high uncertainty in their
rotation estimations. Finally, a local optimization is employed
in order to refine the orientation estimation. The benefits of
having a robust method for estimating the rotation are at least
twofold. First, clearly by improving the rotation estimation
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between pairs, the overall orientation estimation will tend to
be more accurate. Second, due to the fact that, in general,
in direct odometry methods one of the images is rotated
using the estimated rotation before the translation estimation,
a more reliable rotation estimation will likely lead to better
performance in the translation estimation which induces a
more reliable position estimation.

In particular, we judge that the innovative odometry pipeline
(see Fig. 1) in R30, the use of multiple candidates for rotation
estimation by exploiting the Radar transform and the subse-
quent steps based on the statistics of this candidates including
filtering the candidates as well as keyframe selection and graph
optimization based on the uncertainty estimated from the can-
didates, represents an important development for direct based
odometry algorithms. For example, rotation estimation and its
uncertainty estimation exploring other statistical methods are
some of the possibilities that our framework enables

This paper is organized as follows: in section II the related
work is discussed, followed by the theoretical foundations in
section III that are necessary for implementing the proposed al-
gorithm. After R30is explained in section IV, its performance
is evaluated in section V. In section VI an ablation study along
with computational complexity evaluation is presented and a
conclusion is provided in section VII.

II. RELATED WORK
A. Direct Odometry

The idea behind direct methods can be traced at least back
to [22]. In that canonical paper the goal was to calculate the
translation, rotation and scaling between a pair of images. For
that, the authors used the rotation and translation properties of
the Fourier transform (FT) which leads to the conclusion that
when comparing two images, where one is a reference image
I" and the second is a translated, rotated and scaled replica
of I" called I, the magnitude of the FT of I is invariant
to translation and therefore, it is a rotated replica of the FT of
I". Following this, the two magnitude spectra are converted
to their polar representation (when scaling estimation is not
relevant) or to log-polar representation (when both scaling
and rotation are desired to be estimated, which is in general
not the case in odometry estimation); then, the polar or log-
polar pair of images is phase-correlated and the resulting peak
represents the estimated rotation, or the estimated rotation and
scaling, respectively. Finally, one of the two Cartesian images
embodies the rotation (and scaling) compensated using the
estimations, and the translation between the pair of images is
estimated by phase-correlating them, where the peak from the
correlation represents the translation between the pair.

In [23] the authors used the aforementioned rationale for
performing scan matching of sonar data. In that work, since
scaling registration was not relevant, the author used the vari-
ant of the algorithm which converts the magnitude spectra to
polar representation. Moreover, that research group expanded
their algorithm for 3D mapping in [24]. Furthermore, in [25] it
is argued that it might be worth to use directly a polar image,
i.e. range-azimuth image, for estimating the rotation between
the two images. According to this work, when the translation

is relatively small, the error caused by the coupling between
translation and rotation in the spatial domain might be small
enough, so that the motion estimation can be done as follows:
estimate the rotation between the pair by phase-correlating the
image pair in the polar domain, next, convert the polar images
to Cartesian representation. Finally, compensate the rotation on
the Cartesian domain using the estimated rotation followed by
phase-correlating the Cartesian images in order to estimate the
translation between the pair.

B. Scanning Radar Odometry

In radar odometry we can classify the odometry approaches
between feature-based and direct [26], [27]. Further, we can
also group the radar odometry approaches based on the type of
radar that is used, i.e. single chip or scanning radar. Because
the scope of this paper is on scanning radar, on this section
we will discuss the related work with this kind of radar.

Feature-based odometry approaches utilizing a scanning
radar can be traced back to Cen et al. [5], [6]. Cen et al.
[5] algorithm consisted on finding features in each azimuth
bin by finding the peaks in the 1D signal combining low-
and high-frequency components of that signal and a scan-
matching approach tailored to radar data was also included.
Kung et al. [15] developed an algorithm based on the Normal
Distribution Transform along with a filter for radar images
which pixels below a threshold were not considered feature
candidates. Moreover, Hong et al. in [13] used SURF features
[28] for radar odometry and SLAM, and in [14] introduced
an odometry and SLAM approach based on radar data which
a blob feature detector was developed which is based on
a Hessian matrix for finding keypoint candidates and these
are further filtered by observing their homogeneous spatial
distribution. Moreover, in [14] a graph-based outlier rejection
for keypoints was proposed.

Additionally, Burnett et al. developed the MC-RANSAC al-
gorithm by extending the work of Cen et al. through exploiting
Random Sample Consensus in [29] for data association as well
as implementing a motion-distortion correction. In addition,
Burnett et al. proposed HERO in [30] using a deep neural-
network, unsupervised learning and Exactly Sparse Gaussian
Variation Inference for finding keypoints and estimating the
relative pose. Another approach using neural networks and
supervised learning was proposed by Barnes et al. [7]. Fur-
thermore, Aldera et al. proposed in [8] a mechanism to detect
failures patterns in the feature matching step and in [9] a
smooth-curvature constraint based on Ackermann drive model
was exploited. Recently, Hyungtae et al. presented the ORORA
algorithm which uses anisotropic component-wise translation
estimation and graduated non-convexity based rotation estima-
tion to estimate the rotation and translation separately. Finally,
Adolfsson et al. [10]-[12] developed the CFEAR algorithm
which is the current state of the art radar odometry algorithm.
In [12] the latest versions of CFEAR, namely CFEAR-3 and
CFEAR-3-s50, use the k-strongest filtering for pre-filtering the
radar image as well as motion compensation and surface point
distance minimization in the registration step.

The pivotal work in direct methods for odometry estimation
using scanning radar data can be traced back to Checchin
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et al. [19], where the authors followed the procedure previ-
ously explained in [22] in order to estimate the position and
orientation of the agent; the relative motion estimation was
further used for performing Simultaneous Localization and
Mapping (SLAM) using radar data. Moreover, Park et al. [31]
proposed a coarse to fine strategy for estimating the motion.
Also, a keyframe selection approach was employed as well
as pose graph optimization, resulting in a trajectory with pose
correction as well as a map of the traversed region.

Additionally, still within the scope of direct methods, Barnes
et al. [21] deployed a supervised learning approach which
employed a brute-force approach to find the pose between
frames using correlative scan matching along with a filter used
to reduce the effect of, e.g. noise and occlusion. Following the
work from [21], Weston et al. [32] proposed a faster algorithm
based on [21] by exploiting the Fourier-based registration. For
further discussion in the recent progress in radar odometry, we
refer the reader to [27], [33].

It can be noticed that most of the literature for radar
odometry has concentrated its efforts in developing feature-
based methods which can be justified because of, e.g. re-
duced computation requirements with a sparse number of
points/features. Nonetheless, a sparse set of features does not
use all the information available in the radar image (similar to
what happens in the mapping domain when one has to choose
between landmark and volumetric mapping). Moreover, its
computational performance is proportional to the amount of
features, leading to a trade-off between computational perfor-
mance and algorithm robustness. On the other hand, in our
paper we show that exploiting the analytical characteristics
of the direct approach, e.g. the decoupling between rotation
and translation, along with the Radon transform and a robust
framework for odometry estimation lead to results comparable
with the state of the art radar odometry algorithm and better
than all the previously documented direct radar odometry
approaches.

III. THEORY

In this section the fundamental theoretical aspects used in
order to develop R3O are explained.

A. Phase-Correlation

1) Introduction: The Generalized Cross-Correlation is fre-
quently used for estimating shifts between two 1D or 2D
signals [34], [35]. Among the numerous filters that can be
used in a Generalized Cross-Correlation framework, the Phase-
Transform filter is one of them. When such a filter is em-
ployed, the correlation method is named Phase-Correlation
(PC).

Consider two signals x1(m) and z2(m) such that z1, x5 €
R and m is the independent variable in spatial domain. Let
xo be a shifted copy of x1, shifted by A,,. By using the shift
property of the FT, we have that the spectra of the two signals
will be related by X(u) = e™727u4m X (u), where u is the
independent variable in the frequency domain, and X (u) and

Xo(u) are the spectra of x1(m) and z5(m), respectively. The
cross-spectrum is defined as

G(u) = Xz(u) X7 (u) = e 2787 | X, (u) (D

where (-)* is the conjugate of (-). Finally, their phase-
normalized cross-spectrum C(u) can be found by dividing
the cross-spectrum by its magnitude. Therefore, C'(u) can be
written as

— e—jQTruAm (2)

The next step for finding the shift consists of using the
inverse Fourier transform (IFT) of C(u) which results in the
phase-correlation vector denoted by T, or, by extending to
two dimensions, the phase-correlation matrix denoted by =.
To conclude, the shift A,, is found by locating the highest
peak in T or =.

Choosing the Phase-Transform filter for the Generalized
Cross-Correlation, i.e., the inverse of the magnitude of the
cross-spectrum as shown in (2), can be justified by several
reasons. For example, the peak resulting from the IFT of
(2) is theoretically a unit impulse function in comparison
to the usually broader peak resulting from IFT of the non-
filtered Generalized Cross-Correlation. Moreover, the PC gives
more emphasis to the location, e.g. spatial structures, than
energy [36]. Besides, in [37], the PC is evaluated as a robust
correlation method.

2) Enhancements to PC: Even though the PC may of-
fer advantages when compared to other Generalized Cross-
Correlation options, it is important to note that there are
also disadvantages within this approach. For example, while
PC has advantageous performance in the case of frequency-
dependent noise, it has degraded performance with frequency-
independent white noise [38]. Nonetheless, by applying some
signal processing techniques, the drawbacks can be mitigated.
In [39] it is suggested that limiting the bandwidth of C'(u)
leads to accomplishing better results. The justification is that
most of the artifacts that reduce the performance of the PC
are present in the higher frequency components and thus
employing a lowpass filter in the C'(u) improves PC results.
In this paper, we will make use of an ideal lowpass filter
designed in the frequency domain with a cutoff x = 0.3 and
k = 0.6 for the PC used for rotation and translation estimation
respectively, which implies that 70% and 40% of the higher-
frequency components are rejected by the filter respectively.

3) Subpixel Estimation: In many applications, the estima-
tion restricted to integer pixel positions using the PC demon-
strated in section III-A1 is not enough. As a consequence, a
multitude of subpixel methods for the PC have been developed
in literature. These methods diverge in many aspects. For
example, the subpixel method might estimate the subpixel
shift by using C(u) in the frequency domain or the = in
spatial domain. The reader may find an up to date review
of subpixel methods in [38]. In the present study, the authors
have employed the subpixel method explained in [40] because
of its relatively high performance reported in [38], [39].
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B. Fourier-Based Registration

1) Overview: Fourier-based registration is an efficient reg-
istration approach which is under the family of area-based
methods [38]. The original algorithm once proposed in [22]
consisted of registering images in which there was scaling,
rotation and translation between the pair. However, for the
purpose of this paper, the scaling estimation is not relevant
given that the radar images generated by a scanning radar can
be seen as a top view 2D image around the vehicle where
the height of the radar is fixed. Consequently, the theoretical
foundations for Fourier-based registration will be explained
only with regards to rotation and translation registration.

2) Polar Method: The polar method is the straightforward
approach for calculating the rotation and translation between
two images. Let the reference image represented in Cartesian
coordinates be called I"(x,y). The moved image I™(x,y)
evolves from I"(z,y) by applying a clockwise rotation by ¢
and a translation by (p, q). Hence, I"™(x,y) can be written as

I™(z,y) = I"(z - cos (¢) +y - sin (¢) — p,
—x-sin(¢) +y-cos(¢) —q)

Let then the FT of I"(x,y) be called F"(u,v) and the FT
of I"™(x,y) be called F™(u,v). By using the translation and
rotation property of the FT, the two spectra can be associated
by

F"(u,v) = F"(u-cos (¢) + v - sin (¢), @
—u-sin (¢) 4 v - cos (¢)) - e I (wptv-a)

3)

Therefore, in order to find the rotation between the reference
and moving image, one can represent both magnitude spectra
in polar coordinates, and finally the estimation of the rotation
qAS can be achieved by using the PC, where the peak in the angle
direction of the = will represent the rotation between the pair.
Finally, one compensates the rotation by rotating one of the
images using (;3 and the translation component can be found
by using the PC between the images in Cartesian coordinates,
where the peaks of this = will represent the estimation of the
translation: (p, Q).

3) Radon Method: Even though Fourier-based registration
using the polar (or log-polar) representation for estimation of
rotation is a straightforward option, it might not be the one
which will lead to the best estimation of ¢. The problems
mostly arise from the discrete nature of images and their
respectively discrete magnitude spectra which have shown
to be particularly detrimental to the performance of the
straightforward option. For example, because values have to
be interpolated onto different grids, larger interpolation errors
are typically present especially in the Cartesian to log-polar
conversion which has led to the design of filters in order to
mitigate these effects [22], [38]. Motivated by that, research
has been made in order to look for alternatives to the polar
representation option, and one that has shown positive results
is to use the Radon transform for obtaining the rotation
estimation [41]. The intuition behind the improvement in
performance when compared to the straightforward option, is
that the Radon transform alleviates the interpolation errors
because each “pixel” in the Radon domain comes from a

summation of pixels which represent an exact line in the mag-
nitude spectra image while in the (log)-polar representation
the conversion is done pixel to pixel [41] on interpolated grid
positions. Effectively, this implies that elements affected by
local interpolation errors have smaller influence because these
local errors are amalgamated under the summation.

The Radon transform R(p, 6) of a continuous image f(x,y)
is defined as

R0 = [~ [ 5w0)iwcos ) +ysin(0) - p)dady

&)
with —oo < p < oo and 0 < 6 < 7 and where ¢ is the impulse
function. It should be noted that in the discrete case finite
sums substitute the integrals, and p becomes finitely bounded
according to the image size. By inspecting the definition of
the Radon transform, the aforementioned property is clear:
Every point defined by an angle 6 and a displacement p in the
Radon domain is constituted by a line integral (or summing
along a line in the discrete case) over the original image.
Moreover, a key property of the Radon transform is that if
an image is rotated by ¢, its Radon transform will be shifted
by ¢, leading to R(p,0 + ¢) [42]. By using this property,
one can then convert the magnitude spectra of the pair of
moving and reference image, earlier defined as I™(z,y) and
I"(z,y), to the Radon domain, and then the rotation can be
estimated by phase-correlating the two Radon domain images
in which the peak in the § dimension represents the estimated
rotation g% After that, analogous to the polar method, one can
then compensate the rotation on the Cartesian images in the
frequency or spatial domain and use the PC to estimate the
translation.

C. Outlier Removal

Outliers are observations which differ from the normal
behaviour of the rest of the observations. The Median Absolute
Deviation (MAD) is a viable and often attractive option for
identifying outliers. That might be explained by the simplicity
and effectiveness of the algorithm. For a data set Y with
elements Y,,, m € [l,...,M] the MAD of the data set,
denoted by MAD(Y'), is defined as

MAD(Y) = M (Y — M(Y)]) (6)

where M is the sample median, and according to [43], [44]
the standard deviation of normally distributed data using the
MAD can be estimated as

map(Y) = 1.4826 - MAD(Y) @)

Then, the following evaluation can be done to find outliers:

‘ Yy, — M(Y)
omap(Y)

’>C (®)

where ( is a threshold value, and Y, is an outlier when (8)
is evaluated as true, i.e. the left hand side is greater than (.
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Fig. 1. Diagram of the R3O algorithm. By looking at the diagram is possible to observe the importance of a good estimation of rotation is not only on the

estimation of that parameter itself, but also on the translation estimation.

D. Tukey-biweight

The final component of this section consists of the Tukey
biweight for location and scale estimation. This estimator
is under a family of estimators called M-estimators. These
estimators aim to attain efficiency, robustness and resistance
[45]. The tukey biweight location estimator, denoted by fiwkey,
of a set Z with elements Z,, i € [1,..., N] is defined as

D« (Zi = M(2))(1 — uf)?

prkey (Z) = M(Z) + ©)
e i<t (1= uf)?
where M is the sample median and u; is given by:
Z;— M(Z
_ (%) (10)

Y= U MAD(Z)

where ¢ is a constant that must be chosen. In all our location
estimations, we have set c equal to 6. Furthermore, the Tukey-
biweight scale estimator, denoted by oy, is defined as

Ve (Zi = M2(1 - ud)?
(S pger = ud)(A = 5ud))]

where u is defined in (10). We used ¢ equal to 9 for all scale
estimations.

Jtukey(Z) = \/,E (11)

IV. PROPOSED METHOD
A. Introduction

R3O0 employs a careful method for estimating the rotation.
First, this is inspirited by having in mind that usually radar
sensors have lower angular resolution when compared to other
sensors, e.g. lidar, which demands exceptional performance of
the registration algorithm. Second, this is motivated by noting
that the rotation estimation is a cardinal step for registering
the translation in the Fourier-based registration. This can be
considered true, because a poor rotation estimation does not
only imply a bad estimation of that variable on its own, but
also affects the estimation of the translation.

The proposed method takes advantage of the previously
documented improvement in performance of rotation estima-
tion by using the Radon domain instead of the (log)-polar
representation [41] along with a sequence of steps that are
performed for finding qAS (see Fig. 1 for a diagram of how
the relative motion is estimated by using R30). Note that we
will assume that the radar is placed looking forward and the
radar Cartesian image has its center collocated with the radar’s
center.

The robustness of the algorithm can be primarily explained
by the use of multiple candidates for the rotation estimation
using Radon domain slices. The use of different displacements
can be related to the work of [46] in the sense that the
multiple displacements can be understood to be resemblant
to different high pass filters, e.g., the higher the displacement
the less low frequency components are going to be used,
applied to the magnitude spectra, thus reducing the effects of
rotationally dependent aliasing. This kind of aliasing is caused
by artifacts that are introduced due to the discretization of
the FT, and its effect can deteriorate the performance of the
rotation estimation using the Fourier-based image registration.
For example, [46] has shown that this aliasing component
reduces the height of the peak corresponding to the correct
rotation. We noted in our evaluation that a selection of p values
which included displacements very close or equal to zero along
with displacements with relatively large magnitude (up to 66%
of maximum absolute displacement) had the most positive
impact in the algorithm performance. Nonetheless, note that
the larger number of displacement selected, the higher is the
computational requirements.

Moreover, the use of outlier removal can be thought as
a processing step which remove divergent estimations, e.g.
caused by interpolation errors and noise. Furthermore, the
Tukey-biweight location estimator, which is a robust measure
of central tendency, is used for the estimation of rotation
between two frames. This process is repeated over a window
of frames which keyframe selection is performed followed by
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graph-based local orientation optimization which refines the
rotation estimations. Finally, the optimized rotation between
frames is used for de-rotating images in the Cartesian spatial
coordinates and the relative translation is found by maximizing
the phase-correlation between each pair.

Note that is possible to restrict the range of displacement
values to choose in half due to the symmetry of the mag-
nitude spectra of real images and one of property of the
Radon transform, concretely that R(p, ) = R(—p, 60 £ 180°).
Also, we note that it is possible to achieve similar results
by removing the MAD outlier removal along with adjusting
the constant values in the Tukey-biweight location and scale
estimators. However, we decided to keep the outlier removal
and location/scale estimation as different modules, so that
other alternatives for location/scale estimation as well as other
outlier removal approaches can be straightforwardly tested
with the current algorithm’s pipeline.

B. Preprocessing

Scanning radar images are contaminated by a series of
unwanted artifacts, e.g. multipath, ghost targets and speckle
noise, which may reduce the performance of odometry algo-
rithms [5]. Therefore, before performing the odometry estima-
tion, it is sensible to try to reduce the influence of unwanted
components. In our algorithm, we have included as a prepro-
cessing step an adaptation of the k-strongest filter [12] tailored
for direct based odometry. In this filter, for every azimuth
bin on the radar polar image, the filter sets to zero all range
bins that have a power return smallest than the k-th greatest
power return in that azimuth bin, where k is a parameter.
Moreover a threshold, denoted by zn;,, is applied to filter out,
i.e. in our implementation this means set their pixel intensity
to zero, all the pixels in the range-polar image that have power
smaller than a threshold. In [12] it was shown that this filtering
method achieves better performance with scanning radar than
the constant false alarm (CFAR) filter. Nonetheless, we differ
from [12] because we employ afterwards a direct method
instead of a feature-based method. Consequently, we may
choose a larger number for the parameter k as well as a smaller
threshold for the smallest power return, i.e. we keep a larger
number of pixels/targets. The advantage of that is that while in
[12] it was necessary to select the parameters of the filtering
algorithm leveraging a trade-off between robustness of the
motion estimation against computational performance (it was
shown in [12] that a less conservative filtering leads to high
robustness while a more conservative filtering leads to higher
computation performance), in our approach we can select the
parameters solely based on the odometry performance. Finally,
after filtering, the polar image is interpolated to Cartesian
coordinates using bilinear interpolation.

C. R0

1) Rotation estimation: For every pair of radar images
which the relative motion is estimated, their relative-rotation
and the uncertainty of the estimation are calculated. In order to
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Fig. 2. Rotation estimation and its uncertainty estimation.
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Fig. 3. Example of how a relative rotation between two Cartesian images
becomes a shift in Radon domain. In this example we manually rotated one
Cartesian radar image by 45°. From left to right we have: (1) the images in
Cartesian coordinates; (2) the magnitude spectra of the images in dB (we
plot in dB to facilitate the visualization, but we use the linear scale for
calculations); (3) the Radon domain images of the magnitude spectra (note
that the p = 0 coincides with the middle/center row, and the rows above and
below the center are from negative and positive displacement respectively);
(4) magnitude vs. angle plots for some selected displacements.

explain the procedure for the rotation estimation, it is sensible
to define the phase-correlation operator, denoted by P, as

F(s1)F*(s2)
<|f<s1>f*<s2>|) (12

where F and F~! are the FT and IFT, respectively, s; and
so are 1D or 2D signals for which P is being calculated, and
« represents the arguments of the signals which can be either
a tuple of 2 arguments or a single argument corresponding
to 2D or 1D signals, respectively. Consequently, P’s output
will be either 2D or 1D depending on the dimension of the
evaluated signals.

See Fig. 2 for an overview of how the rotation estimation
estimation and its uncertainty is calculated (the methods de-
scribed in Section III-B would consist of applying a 2D phase-
correlation after the transformation to Radon domain step or
to use the polar transform replacing the Radon transform and
them calculating the 2D phase-correlation). Having a moving
and reference image in Cartesian coordinates, denoted by 1™
and I" respectively, the first step consists of calculating the FT
of each image and the output of this step is the magnitude of
each spectrum. Next, the magnitude spectra are converted to
the Radon domain, let R (p, §) and R™(p, #) be the Radon do-
main image of the reference image’s magnitude spectrum and
moving image’s magnitude spectrum, respectively. Afterwards,
instead of performing the 2D P(R"(p, §),R™(p, #)) for finding
the estimated rotation, R3O calculates N 1D estimations of the

P(s1(a), s2(a)) = argmax}'—l

«
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rotation by selecting IV slices of the Radon domain images.
This is accomplished by noting that at a fixed p value the 2D
PC becomes 1D. For example, when p is fixed to a selected
displacement py, the 1D PC is calculated by

P(R"(pr, 0), R™ (pr,0)) = P (R, (6), Ry, (6))

where we use the subscript p; on each Radon domain image
to indicate the slice with all the 6 values of a selected py
displacement. Therefore, by defining a set W as the set with
elements Wy, k € [1,..., N] as the initial set of candidates for
rotation estimation, we have that every candidate is calculated
by finding the phase-correlation between the reference and
moving Radon domain images:

Wy =P (R}, (0), R (0))

13)

(14)

where py; is the selected p value coming from a list of selected
displacements which has length V. Fig. 3 shows an illustration
of how a rotation in the Cartesian domain becomes a shift in
the Radon domain.

Succeeding that, an outlier removal step comes into place
in which we have selected the outlier removal based on the
MAD as explained in section III-C for removing anomalous
candidates. The surviving candidates are defined as the set X
with elements Xy, k € [1,...,J], J < N.

Finally, the rotation between the frames is estimated by

¢ = Hrukey(X) (15)

Furthermore, we estimate the uncertainty of the rotation
estimation by calculating the Tukey-biweight scale estimation
on the final set of candidates X:

0 = Otukey (X) (16)

2) Keyframe Selection: The keyframe selection step aims
to dismiss radar images which generated high uncertainty
in rotation estimation with regards to the current reference
frame as well as to find the reference frame for the next
iteration. Given the current reference frame, denoted by Fy,
the algorithm estimates the relative rotation and its uncertainty
with regards to the frames F),, where n € [1,2,..., L] with
L being the length of the window. Each estimated rotation is
denoted by ¢q,, and its uncertainty is denoted by &, where
n € [1,2,...,L]. Next, in order to filter the estimations with
high uncertainty, a fixed and an adaptive threshold are used.
The fixed threshold, denoted by ~ysxed, removes all the frames
F,, where the corresponding 7g,, was greater than the threshold
value. In addition to it, an adaptive threshold is used. This is
calculated by

Yapt = min(a'On) ) ﬂapt a7

where B, is a constant with B, > 1 and min(do,) is the
smallest uncertainty in the current window. Analogous to the
fixed threshold, the adaptive threshold removes all the frames
F,, where the ¢, was greater than 7,,;. See Fig. 4 for a
graphical representation of the keyframe selection step as well
as for an example of how the relative rotations’ candidates
between Fj and F,, can be distributed after the MAD outlier
removal. In this example, frames 4 and 6 were removed
because their uncertainties were greater than the vq;.

The effect of the adaptive threshold is to avoid frames in the
current window which had a considerable greater uncertainty
than the smallest possible uncertainty in this window. On the
other hand, the fixed threshold assures that no frame with
uncertainty greater than what is determined to be acceptable
can be taken (this could come into place in the case that
the smallest estimated uncertainty is still high, then frames
with unacceptably high uncertainty could be kept). In the case
where all the frames’ uncertainties are greater than the fixed
threshold, the frame with the smallest uncertainty is the only
one kept and selected.

Finally, the surviving frame which is the furthest in time
from the current reference is selected as the reference frame
for the next iteration (see example in Fig. 4).

3) Local Orientation Optimization: We have used a graph-
based optimization with a robust loss function in order to
refine our local orientation estimation. For that we consider
all the pair-wise combinations of the remaining frames after
the keyframe selection step. The graph is formed by nodes
which represents the orientation at frames F), relative to the
reference frame F,,. We denote the nodes as o; where ¢ has
the same subscript of the surviving Frame F},; and the vector
with all the nodes is defined as o = (0;)7 Vi. Between each
node, there is a rotation factor with its uncertainty. These are
equal to the relative rotation estimation and its uncertainty
estimated following the steps shown in Section IV-C1. The
relative rotation constraint and its uncertainty are denoted by
@j and o;; respectively, where ¢ is the subscript of the node
where the edge starts and j is the subscript of the node where
the edge ends. An example of the orientation graph is shown
in 5.

The objective function of the local orientation graph-
optimization is written as [47]-[49]:

F(o) = Z Peauchy (\/6(07:,03',¢_>7:j)TZ{j1€(O¢,0j,¢_>ij)>

<ij>ev
(18)

where V is the set of pair of indices for which a constraint
in o exists, e is the error function which evaluates how much
the parameters satisfy the constraints, >;; is the uncertainty
of the measurement which is equal to 7;;, and pcauchy is the
Cauchy loss function defined by

c?auch x 2
== . In|1l+ ( ) (19)
2 Ccauchy

where cCeauchy 18 a constant. Finally, it is evident that in order
to get the relative rotation between each successive node
requires only the calculation of the difference between their
local orientation. For example, assuming an orientation vector
o = (09, 01,02)T, then the estimated rotation qAS between nodes
01 and o9 is ¢A> = 09 — 01. In order to solve the graph, we use
GTSAM! [49]

4) Global Orientation Estimation: Over the course, the
orientation ®,, (with a given initial orientation ®() of an agent

Pcauchy (-f ) =

Uhttps://github.com/borglab/gtsam
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Fig. 4. Keyframe selection starts by estimating the rotation and the uncertainty between the reference frame and the frames in the current window. In this
example, the uncertainties between Fy and Fy ¢ were greater than the defined threshold parameters. The reasoning for dismissing Fy ¢ is elucidated by
observing the boxplot (with the whiskers limits based on 1.5 times the interquartile range) where the larger dispersion on their estimations is clear. Therefore
F4,¢ were not used for this local orientation estimation. Note that F5 will be the reference frame in the next iteration. (a) Scatter-plot showing the distribution
of the surviving candidates after the MAD outlier removal. (b) Boxplot of the surviving candidates after MAD outlier removal. (c) A graphical representation
of the keyframe selection. (d) A graphical representation of the keyframe selection after the thresholds were applied.
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Fig. 5. Illustration of the orientation graph used in R30. In this example, the
keyframe window has length 3 and the frame F» was pruned in the keyframe
selection step. The nodes [0, 01, 03] represent the local orientation in the
iteration. Also, [¢01, 03, ¢13] are the rotation factors between each node.

with regards to an inertial frame at iAnstance k, for k > 0, is
then calculated by summing all the ¢ till n.

N A
Oy =Do+ ) o

n=1

(20)

D. Position Estimation

After the local orientation is estimated, we use a sequence
of the closest frames from the current reference frame to the
next reference frame in order to calculate the translation in
this window. For example, in the illustration shown in Fig
4, the translation would be computed between the following
pairs: Fy-F1,F-Fy,Fs-F5,F5-F5. By using the appropriate é
for each pair, the rotation is then compensated in the Cartesian
representation and the translation is estimated by using the

operator P on the Cartesian images. However, in order to
get the position, it is necessary to convert the displacement
from the local coordinates into the displacement with regards
to the inertial frame. We assume that p and § at instance k
represent the displacement between the instance k and £—1 in
the vehicle’s longitudinal and lateral directions, respectively.
Therefore, the position (x, yy) for £ > 0 and for a given x

and yo can be found by
—sin (Py) p}c} |:«75k1:|
- 21
cos () } {Qk - Yk—1 @

xg| _ |cos(Pg)
Yk sin (Pg)
V. EVALUATION

A. Introduction

The goals of this section are to evaluate and compare the
performance of the proposed algorithm with: (1) the current
state of the art radar-odometry algorithm [12] which reported
its results with the Oxford [50] and Mulran [20] datasets; (2)
the direct methods with best reported performance, namely
[21] in the Oxford dataset and [31] in the Mulran dataset.
Consequently, we have evaluated R*O using Mulran and
Oxford dataset.

In order to show that the algorithm did not have its pa-
rameters overly calibrated for one dataset or another, we kept
all the parameters of the core part of the algorithm fixed. All
in all, the only changes that happened between the datasets
occurred in the prepocessing stage which is explained by
noting that the two datasets use different scanning radars with,
e.g. different maximum range. For all the PC operations, the
previously mentioned subpixel method explained in section
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TABLE I
PARAMETERS USED FOR ALGORITHM’S EVALUATION

| Preproccessing |
Value |

80/200 (Oxf./Mulr.)
25.5 (scale 0-255)
0.319/0.39 (Oxf./Mulr.) pixel/m

| Parameter |

k-strongest: k
Zmin
Cart. Resolution

| RO |
| Parameter | Value |
K (rotation) 0.3
K (translation) 0.6
¢ 1.5
p [-54,—-53,...,0]
“Yfixed 1.8°
Bapt 3.5
Window length 6 frames
Ccauchy 0.01

III-A3 was used along with the enhancement described in
section III-A2. All the parameters used in the evaluation can
be seen in Table I. Over the datasets evaluated and with
the parameters described, our algorithm was implemented in
Python and tested in a computer with 2-Intel E5-2695 and 2-
Nvidia Quadro RTX-4000 (using a second thread to compute
all the steps after the keyframe selection run on a second
thread) obtaining an output rate of approx. 4.57Hz which
makes it suitable for online utilization given that both radars
have an output rate of 4Hz. Finally, because the radar was
attached to a car, we have used only the translation component
in the longitudinal direction for the position update.

B. Oxford

The Oxford Radar dataset uses a vehicle equipped with an
assortment of sensors including a Navtech CTS350-X scanning
radar with range resolution of 4.38cm, 0.9 degree azimuth
resolution, maximum range of 163m, and output rate of 4Hz.
This dataset has a total of 32 traversal over approximately the
same route in Oxford, UK under different weather, traffic and
lighting conditions. Moreover, ground-truth is provided based
on camera, GNSS, and inertial navigation system information
[50]. For evaluating the performance of the algorithm, we have
used the KITTI odometry evaluation [51] which consists of
computing the errors in translation and rotation from length
[100m, 200m, . .., 800m], followed by averaging the errors
over the errors obtained with different lengths. We used this
metric because this was the metric used by other radar-
odometry algorithms which assessed their performance using
this dataset. Finally, among the 32 possible traversals, we
selected the same 8 sequences used by [12], [14], [30].

A comparison between the trajectories estimated by our
algorithm and the ground truth can be seen in Fig. 6. Moreover,
in Table II a comparison between R30’s performance with
other radar-based odometry algorithms is shown. Among the
direct based methods, R3O obtained the best performance in
terms of translation and rotation error. In addition, comparing
with all algorithm (direct and feature based), R3O had the
second best performance in terms of rotation error.

C. Mulran

This dataset includes a variety of sequences which include,
e.g. dynamic scenarios over urban areas. The radar used on
the dataset was a Navtech CIR204-H which is a 360 degrees
scanning radar with 0.9 degrees angular resolution and 0.06m
range resolution. Also, this radar has a throughput frequency
of 4 Hz and 200 meters maximum range. Moreover, the
dataset provides a ground truth trajectory which is calculated
by performing SLAM using a fiber optic gyroscope (FOQG),
Virtual Reference Station Global Positioning System, and
iterative closest point (ICP) algorithm. More details of the
dataset can be found in [20]. Among the sequences provided
by the dataset, we have used the DCC, Riverside and KAIST
sequences (we selected the same 9 sequences evaluated in
[12], [14]) for evaluating our proposed algorithm. Riverside
is a sequence with straight runs along a river and two bridges,
DCC is a sequence which is structurally distinctive including
a mountain and crossroads, and KAIST is in a campus
environment.

For evaluating the performance of the algorithms in this
dataset, in addition to the KITTI odometry metric, we have
used the relative pose error (RPE) explained in [52], [53].
This was motivated by noting that both [12] and [31] used this
metric in their evaluation using the Mulran dataset. The RPE
consists of measuring the difference between the estimated
and the true motion in a fixed time, frame or spatial interval
following by averaging the errors. Because [12] and [31] use
different intervals for their RPE evaluation, it was necessary
to compute the RPE using different intervals: (1) for the
comparison with [12], we computed the RPE in translation
with an interval equal to 1 frame; (2) for the comparison
with [31], we computed the RPE in rotation angle and the
RPE in translation with 5 different spatial interval parameters
which corresponded to 10%, 20%, 30%, 40%, 50% of the total
trajectory length.

A comparison between the trajectories estimated by our
algorithm in contrast with the ground truth can be seen in
Fig. 7. In addition, in Table III a comparison between R3O’s
performance with other radar-based odometry algorithms using
the KITTTI evaluation is shown. The results in this table show
that the proposed algorithm achieved best performance in
terms of rotation error and the second best performance in
terms of translation error. Moreover, the results using the RPE
with step equal to 1 frame are displayed in Table IV which
shows that our algorithm overcame the state of the art [12] in
terms of translation RPE.

Furthermore, we calculated the RPE with the same steps as
Park et al. for the Riverside03 and DCCO2 trajectories (which
were the 2 trajectories from [20] used by [31]). The boxplots
for the RPE with different segments size of the estimators
are shown in Fig. 8. Finally, the comparison between the
performance of R30 and PhaRaO [31] is shown in Table V. It
is evident by observing Table V that our algorithm achieved
better performance than [31]. For example, in the DCC02
sequence, the proposed algorithm had 38% less translation
error than [31].
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TABLE 11
RESULTS WITH THE OXFORD DATASET
\ Algorithm \ 10-11-46 \ 10-12-32 \ 16-11-53 \ 16-13-09 \ 17-13-26 \ 18-14-14 \ 18-14-46 \ 18-15-20 \ Mean \

R30 2.02/0.57 | 1.89/0.56 | 2.17/0.60 | 1.95/0.60 | 2.09/0.58 | 2.06/0.61 1.96/0.57 | 2.18/0.65 2.04/0.59
MbyM-Dual Cart SCV [21] - - - - - - - - 2.784/0.85
F-MbyM [32] - - - - - - - - 2.06/0.63*
RadarSLAM-Odometry [14] 2.16/0.6 2.37/0.7 2.49/0.7 2.62/0.7 2.27/0.6 2.29/0.7 2.12/0.6 2.25/0.7 2.32/0.7
CFEAR-3 [12] 1.26/0.38 | 1.23/0.36 | 1.42/0.44 | 1.25/0.39 1.25/0.4 1.34/0.41 | 1.42/0.44 | 1.26/0.41 1.31/0.40
CFEAR-3-s50 [12] 1.05/0.36 | 1.05/0.34 | 1.18/0.36 | 1.08/0.34 | 1.07/0.36 | 1.11/0.37 | 1.11/0.37 | 1.03/0.37 1.09/0.36
HERO [30] 2.14/0.71 1.77/0.62 | 2.01/0.61 1.75/0.59 | 2.04/0.73 | 1.83/0.61 1.97/0.65 2.2/0.77 3.31/1.09
CC-Mean [9] 2.35/0.8 2.57/0.9 - - - - - - 2.53/0.82
MC-RANSAC [29] - - - - - - - - 3.31/1.09
Robust Keypoint [7] - - - - - - - - 2.05/0.67*
Cen et al. [5] - - - - - - - - 3.72/0.95

Kung et al. [15] - - - - - - - - 1.96/0.6

We compare the performance of different radar-based odometry algorithm in the Oxford dataset. The first three methods are dense/direct
methods while the other are indirect/feature-based algorithms. Results are displayed in (% translation error / deg/100m). Results marked
with ”*” are from supervised-learning algorithms which have only disclosed results without spatial-cross-validation. Note that Cen et

al. and MC-RANSAC results were evaluated in [30].

TABLE III
RESULTS WITH THE MULRAN DATASET: KITTI ODOMETRY EVALUATION

\ Algorithm | RivOl | Riv02 | Riv03 | KAISTOl | KAISTO2 | KAISTO3 | DCCOl | DCCO2 | DCCO3 | Mean |
R3O0 1.34/0.39 | 1.98/0.53 | 1.81/0.57 | 1.89/0.63 | 1.550.53 | 1.53/0.5 | 2.39/0.43 | 1.40/0.34 | 1.48/0.41 | 1.70/0.48
RadarSLAM-Odometry [14] | 2.0405 | 15105 | 17105 | 21307 | 20706 | 19905 | 2705 | 1904 | 16404 | 197/05
CFEAR-3 [12] 1.59/0.63 | 1.39/0.51 | 1.41/0.4 | 1.59/0.66 | 1.62/0.66 | 1.73/0.78 | 2.28/0.54 | 1.49/0.46 | 1.47/0.48 | 1.62/0.57
CFEAR-3-550 [12] 1.62/0.62 | 1.350.52 | 1.19/0.37 | 1.48/0.65 | 1.51/0.63 | 1.59/0.75 | 2.09/0.55 | 1.38/0.47 | 1.26/0.47 | 1.5/0.56
MC-RANSAC [29] 3.83/1.07 | 3.61/1.03 | 3.94/0.96 3.46/1 | 331/0.99 | 4.17/0.95 | 3.14/0.66 | 2.7/0.67 | 3.66/0.8
MC-RANSAC + DPLR [29] | 4.12/1.13 | 3.93/1.11 | 3.81/0.92 3.59/1.08 | 3.60/1.05 | 4.01/0.89 | 2.87/0.55 | 2.7/0.66 | 3.44/0.72
ORORA [16] 3.53/0.84 | 2.67/0.64 | 2.11/0.49 3.2800.82 | 3.04/0.7 | 3.1200.67 | 2.60/0.51 | 237/0.57 | 3.00.67

We compare the performance of different radar-based odometry algorithm in the Mulran dataset. Results are displayed in (% translation error /
deg/100m). The proposed algorithm is the only direct method in this table. Note that MC-RANSAC and MC-RANSAC + DPLR and ORORA are
using features based on [6]. Moreover, MC-RANSAC and MC-RANSAC + DPLR results were evaluated in [16].

TABLE IV
RESULTS WITH THE MULRAN DATASET - RPE WITH STEP EQUAL TO 1 FRAME

| Algorithm | Riv.01 | Riv.02 | Riv.03 | KAISTOl | KAIST02 | KAIST03 | DCCOl | DCCO2 | DCCO3 | Mean |
R0 654 | 404 | 467 476 433 47 6.44 355 455 | 4.84
CFEAR-3 59 | 538 | 45 6.37 6.01 6.21 7.83 454 516 | 577
CFEAR-3-s50 | 636 | 565 | 4.63 6.34 6.04 6.19 7.56 4.45 504 | 581

We compare our algorithm with [12] using the RPE metric. Results are displayed in centimeters.

TABLE V
RESULTS WITH THE MULRAN DATASET -
RPE WITH STEPS USED IN [31]

| Algorithm | Riv.03 | DCCO2 |
R30 1.56/4.59 | 1.18/2.29
PhaRaO [31] | 2.36/4.66 | 1.91/2.34

Results are displayed in (% translation
error / degrees).

VI. ANALYSIS

A. Introduction

In this section we evaluate the effect of each step of the
algorithm in its overall performance in terms of rotation
estimation. Along with that, we also compare our algorithm
with Fourier-based registration using polar representation of
magnitude spectra as well as by computing a 2D PC over the

Radon 2D image of the spectra which we will refer as the
Rad2D algorithm (the angle bins had a distance of approx.
0.35 degree for all algorithms). This is motivated on the
ground that we can not only assess the improvements of R3O
compared to Rad2D and polar, but also the impact of each
cardinal step in R3O algorithm. Furthermore, we include the
influence of the amount of p candidates in the algorithm’s
performance along with the rationale for appropriate selection
of candidates in R3O.

In this analysis, akin to [12], we have used the 32 se-
quences of the Oxford dataset which amounts to 240088
radar images. Moreover, the parameters of R*0 and prepro-
cessing concur with Table I and Section V. Finally, exactly
as we had in Section V, we have calculated the Radon
Transform of magnitude spectra of size 1023x1023 using
distance between displacements equal to one pixel. This
implies a total number of 1023 possible p candidates, i.e.
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Fig. 9. The rotation error using a single candidate using the KITTI evaluation.
It is possible to observe that candidates near the center have the smallest errors.

p=[-511,-510,...,0,...,510,511] .

B. Analysis of Individual Candidates

In this analysis, we used only one single p for estimating
the rotation, i.e. using the rotation estimate of each possible
candidate before the outlier removal stage (see Fig. 2). In
Fig. 9 the rotation error using the KITTI odometry metric
averaged over all sequences’ errors versus the displacements is
shown. The symmetry around zero is a known property already
alluded in Section IV-A; this implies that we can only use
effectively half of the displacements. Furthermore, it is also
visible in Fig. 9 that the candidates values near zero are those
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Fig. 10. The ratio which the single candidate rotation estimation was within
defined boundary. (a) The ratio over all available samples. (b) The ratio when
considering samples which at least 1 degree rotation occurred between the
pair of radar images.

which yield the lowest rotation error. Since the performance p
candidates is symmetrical, for simplicity, from now on we will
show the results only using one of the halves of candidates.

Moreover, we performed a complementary evaluation in
order to narrow down the candidates which are meaning-
ful for attaining the correct rotation estimation. For that,
using the RPE with step equal to 1 frame, we estimated
the ratio/frequency which each candidate estimates a rotation
with an error within £1 angle bin. Therefore, for each RPE
estimation, we evaluate whether the magnitude of the error
was smaller than 0.35 degree. Finally, we divide the sum of
occurrences of all the errors within the acceptable boundary by
the total amount of error evaluations. In Fig. 10a the results
of this experiment can be seen; it is noticeable that already
at displacement equal to 81, the ratio is below 0.5, also as
the displacement increases the ratio decreases. Moreover, by
observing Figs. 9 and 10a, we can observe that at the latest
displacement the error goes down and the ratio increases
respectively. This can be explained by noticing that at far-
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TABLE VI
RESULTS OF THE ABLATION STUDY

| Algorithm | Dearth Region | Optimal Region | Overall |

Full 1.1009 0.5952 0.7875
No-Graph 1.1010 0.5953 0.7877
No-KF 0.8234 0.7045 0.8229
Basic 0.8246 0.7108 1.2706

displacements the amount of pixels used in the sum for the
Radon transform are few and correspond only to the highest
frequency components of the magnitude spectra, thus the
sum approaches zero, consequently very often the rotation
estimation of pairs at the far-displacements are equal to zero.
Therefore, when no rotation actually occurred, these far-
displacements get the correct result. Fig 10b shows the ratio
over the single displacements considering only the samples
where there was at least 1 degree rotation between them. By
juxtaposing the two figures of Fig. 10, it becomes evident
the aforementioned rotation estimation characteristics at far-
displacements.

C. Ablation Study

After acquiring the information of the individual perfor-
mance in the preceding subsection, now we observe the
accumulative effect of the candidates as well as the impact
of each step in R3O0 rotation estimation. For that, we evaluate
the algorithm at its different stages with a different number
of candidates. The candidates are selected by always starting
from displacement zero till the number of candidates minus 1,
i.e. when the number of candidates is N, we use the p values of
[0,1,...,N—1]. In this study we evaluated the algorithm with

the number of candidates were [10, 11,12, ...,512]. Moreover,
we evaluated the algorithm in 4 different stages: (1) Full: R30
using all its stages; (2) No-Graph: which we do not use the
graph optimization; (3) No-KF: which we not use the graph
optimization as well as the keyframe selection; (4) Basic: No-
KF without outlier removal. In this study, we used the rotation
error estimation using KITTI odometry metric and averaged
over all sequences’ errors.

Fig. 11 shows the rotation error over the number of candi-
dates including also the rotation error of polar and Rad2D. In
Fig. 11 it is possible to note that:

o When few candidates are used, less than 27, the keyframe
selection and consequently the graph optimization fails to
improve the results. This can be understood by consid-
ering that the keyframe stage effectiveness requires that
the uncertainty estimation to be reliable, which at low
sampling numbers do not necessarily occurs. We denote
this region as the Dearth Region.

o As the number of candidates increase, there is likewise
an improvement in the rotation estimation until it reaches
a plateau. We denote this plateau as the Optimal Region.
Using the number of candidates within this region lead
to the best performance.

« After the plateau, we notice that increasing the number of
candidates do not lead to an improvement in performance.
This can be understood with the aid of Fig. 9 and Fig.
10. We believe that at this point, there is a high number
of candidates with estimations which are afar from the
correct rotation. Consequently, there is no consistent
improvement by using them. Moreover, as the number of
outliers become more prevalent, it increases the chance
that some will survive after the outlier removal which will
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also deteriorate the performance of the keyframe selection
and graph optimization.

o There is a relatively small but consistent improvement by
using the graph optimization.

o After the Optimal Region, as the number of candidates
increase, the importance of the outlier removal grows. It
is noticeable that at very large number of candidates, the
performance gap between the Basic and other versions
increases.

e Rad2d performance is better than polar. Nonetheless,
any version of R30 in the Optimal Region outperforms
Rad2d.

D. Computational Time

Finally, we compare the computational time of R3O using
different number of candidates with Rad2d and polar. For
all the evaluations, we use the same machine described in
Section V. In Fig. 12 the computational time is show. It can
be seen that R*0’s computational time grows as the number
of candidates increases. The preprocessing steps is almost
constant through time while the rotation estimation (before the
keyframe step) grows with the number of candidates. More-
over, the keyframe stage has constant and almost negligible
effect on the algorithm computational time and the last stages
in the algorithm (note that these stages run in a second thread
which explains the non-linearity in time complexity, i.e. they
can take shorter or longer time based on the resources which
the second and the main thread demand concurrently) also
have relatively small effect in the total computational time.
Furthermore, we see that the polar-based algorithm has a lower
computational time compared to Rad2d due to the additional
time complexity of the Radon transform. Moreover, we notice
that at the number of candidates used in Section V, R3O has
almost the same time complexity as Rad2d.

VII. CONCLUSION

A method for odometry estimation using radar sensors has
been proposed in this paper. The theoretical foundations of the

method and the details for its implementation were explained.
Moreover, R?0 was compared to other direct and indirect
odometry methods. It was shown that R3O surpasses all other
direct radar odometry methods, and it challenges the state
of the art radar odometry algorithm in the Mulran dataset.
Furthermore, by evaluating the algorithm across different
datasets allowed us to assess that the proposed algorithm
holds consistent performance when utilized with different
scanning radars under various environments, lightning, traffic
and weather conditions.

To conclude, we believe that the pipeline demonstrated in
this paper, especially the generation of multiple hypotheses for
the rotation estimation by exploiting the Radon transform, can
represent a new cornerstone for direct odometry methods. The
framework introduced in R3O can be incorporated in previous
approaches, e.g. [31], [32], as well as in a hybrid approach
combining dense and feature-based techniques. Moreover,
R3O0 can be also used with other sensor modalities, e.g. 2D
lidar, by adjusting the preprocessing step.

ACKNOWLEDGMENTS

This work has been supported by the COMET-K2 Center
of the Linz Center of Mechatronics (LCM) funded by the
Austrian federal government and the federal state of Upper
Austria.

Furthermore, we would like to thank the authors of [31] for
their valuable feedback with regards to their paper.

REFERENCES

[11 S. A. S. Mohamed, M.-H. Haghbayan, T. Westerlund, J. Heikkonen,
H. Tenhunen, and J. Plosila, “A survey on odometry for autonomous
navigation systems,” JEEE Access, vol. 7, pp. 97466-97 486, 2019.

[2] A. Chalvatzaras, I. Pratikakis, and A. A. Amanatiadis, “A survey
on map-based localization techniques for autonomous vehicles,” IEEE
Transactions on Intelligent Vehicles, pp. 1-23, 2022.

[3] O. J. Woodman, “An introduction to inertial navigation,” 2007.

[4] C. Waldschmidt, J. Hasch, and W. Menzel, “Automotive radar — from
first efforts to future systems,” IEEE Journal of Microwaves, vol. 1,
no. 1, pp. 135-148, 2021.

[5] S. H. Cen and P. Newman, “Precise ego-motion estimation with
millimeter-wave radar under diverse and challenging conditions,” in
2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 6045-6052.

[6] ——, “Radar-only ego-motion estimation in difficult settings via graph
matching,” in 2019 International Conference on Robotics and Automa-
tion (ICRA), 2019, pp. 298-304.

[7] D. Barnes and I. Posner, “Under the radar: Learning to predict robust
keypoints for odometry estimation and metric localisation in radar,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 9484-9490.

[8] R. Aldera, D. D. Martini, M. Gadd, and P. Newman, “What could go
wrong? introspective radar odometry in challenging environments,” in
2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019,
pp. 2835-2842.

[9] R. Aldera, M. Gadd, D. De Martini, and P. Newman, “What goes around:
Leveraging a constant-curvature motion constraint in radar odometry,”
IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7865-7872,
2022.

[10] D. Adolfsson, M. Magnusson, A. Alhashimi, A. J. Lilienthal, and H. An-
dreasson, “Cfear radarodometry - conservative filtering for efficient and
accurate radar odometry,” in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021, pp. 5462-5469.

, “Oriented surface points for efficient and accurate radar odome-

try,” 2021.

[11]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3324941

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

——, “Lidar-level localization with radar? the cfear approach to ac-
curate, fast, and robust large-scale radar odometry in diverse environ-
ments,” IEEE Transactions on Robotics, vol. 39, no. 2, pp. 1476-1495,
2023.

Z. Hong, Y. Petillot, and S. Wang, “Radarslam: Radar based large-scale
slam in all weathers,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020, pp. 5164-5170.

Z. Hong, Y. Petillot, A. Wallace, and S. Wang, “Radarslam:
A robust simultaneous localization and mapping system for all
weather conditions,” The International Journal of Robotics Research,
vol. 41, no. 5, pp. 519-542, 2022. [Online]. Available: https:
//doi.org/10.1177/02783649221080483

P-C. Kung, C.-C. Wang, and W.-C. Lin, “A normal distribution
transform-based radar odometry designed for scanning and automotive
radars,” in 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2021, pp. 14417-14423.

H. Lim, K. Han, G. Shin, G. Kim, S. Hong, and H. Myung, “Orora:
Outlier-robust radar odometry,” 2023.

Y. Almalioglu, M. Turan, C. X. Lu, N. Trigoni, and A. Markham, “Milli-
rio: Ego-motion estimation with low-cost millimetre-wave radar,” IEEE
Sensors Journal, vol. 21, no. 3, pp. 3314-3323, 2021.

C. D. Monaco and S. N. Brennan, “Radarodo: Ego-motion estimation
from doppler and spatial data in radar images,” IEEE Transactions on
Intelligent Vehicles, vol. 5, no. 3, pp. 475-484, 2020.

P. Checchin, F. Gérossier, C. Blanc, R. Chapuis, and L. Trassoudaine,
“Radar scan matching slam using the fourier-mellin transform,” in Field
and Service Robotics, A. Howard, K. Tagnemma, and A. Kelly, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 151-161.

G. Kim, Y. S. Park, Y. Cho, J. Jeong, and A. Kim, “Mulran: Multimodal
range dataset for urban place recognition,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 6246-6253.
D. Barnes, R. Weston, and 1. Posner, “Masking by moving: Learning
distraction-free radar odometry from pose information,” CoRR, vol.
abs/1909.03752, 2019. [Online]. Available: http://arxiv.org/abs/1909.
03752

B. Reddy and B. Chatterji, “An fft-based technique for translation,
rotation, and scale-invariant image registration,” /EEE Transactions on
Image Processing, vol. 5, no. 8, pp. 1266-1271, 1996.

H. Biilow, M. Pfingsthorn, and A. Birk, “Using robust spectral
registration for scan matching of sonar range data,” [FAC Proceedings
Volumes, vol. 43, no. 16, pp. 611-616, 2010, 7th IFAC Symposium
on Intelligent Autonomous Vehicles. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S1474667016351254

H. Buelow and A. Birk, “Spectral registration of noisy sonar data for
underwater 3d mapping,” Auton. Robots, vol. 30, pp. 307-331, 04 2011.
N. Hurtés, D. Ribas, X. Cufi, Y. Petillot, and J. Salvi, “Fourier-
based registration for robust forward-looking sonar mosaicing in
low-visibility underwater environments,” Journal of Field Robotics,
vol. 32, no. 1, pp. 123-151, 2015. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/rob.21516

D. Louback da Silva Lubanco, T. Schlechter, M. Pichler-Scheder, and
C. Kastl, “Survey on radar odometry,” in Computer Aided Systems The-
ory — EUROCAST 2022, R. Moreno-Diaz, F. Pichler, and A. Quesada-
Arencibia, Eds. Cham: Springer Nature Switzerland, 2022, pp. 619—
625.

K. Harlow, H. Jang, T. D. Barfoot, A. Kim, and C. Heckman, “A
new wave in robotics: Survey on recent mmwave radar applications in
robotics,” 2023.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346-359, 2008, similarity Matching in Computer Vision
and Multimedia. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1077314207001555

K. Burnett, A. P. Schoellig, and T. D. Barfoot, “Do we need to
compensate for motion distortion and doppler effects in spinning radar
navigation?” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
771-778, 2021.

K. Burnett, D. J. Yoon, A. P. Schoellig, and T. D. Barfoot, “Radar
odometry combining probabilistic estimation and unsupervised feature
learning,” CoRR, vol. abs/2105.14152, 2021. [Online]. Available:
https://arxiv.org/abs/2105.14152

Y. S. Park, Y.-S. Shin, and A. Kim, “Pharao: Direct radar odometry using
phase correlation,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), 2020, pp. 2617-2623.

R. Weston, M. Gadd, D. De Martini, P. Newman, and 1. Posner, “Fast-
mbym: Leveraging translational invariance of the fourier transform for

(33]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

efficient and accurate radar odometry,” in 2022 International Conference
on Robotics and Automation (ICRA), 2022, pp. 2186-2192.

A. Venon, Y. Dupuis, P. Vasseur, and P. Merriaux, “Millimeter wave
fmcw radars for perception, recognition and localization in automotive
applications: A survey,” [EEE Transactions on Intelligent Vehicles,
vol. 7, no. 3, pp. 533-555, 2022.

C. Knapp and G. Carter, “The generalized correlation method for
estimation of time delay,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 24, no. 4, pp. 320-327, 1976.

G. Carter, “Coherence and time delay estimation,” Proceedings of the
IEEE, vol. 75, no. 2, pp. 236-255, 1987.

Q.-S. Chen, M. Defrise, and F. Deconinck, “Symmetric phase-only
matched filtering of fourier-mellin transforms for image registration
and recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 16, no. 12, pp. 1156-1168, 1994.

J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl.
Opt., vol. 23, no. 6, pp. 812-816, Mar 1984. [Online]. Available:
http://opg.optica.org/ao/abstract.cfm?URI=a0-23-6-812

X. Tong, Z. Ye, Y. Xu, S. Gao, H. Xie, Q. Du, S. Liu, X. Xu, S. Liu,
K. Luan, and U. Stilla, “Image registration with fourier-based image
correlation: A comprehensive review of developments and applications,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 12, no. 10, pp. 4062—4081, 2019.

A. Alba, J. F. Vigueras-Gomez, E. R. Arce-Santana, and R. M. Aguilar-
Ponce, “Phase correlation with sub-pixel accuracy: A comparative
study in 1d and 2d,” Computer Vision and Image Understanding, vol.
137, pp. 76-87, 2015. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1077314215000685

M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient
subpixel image registration algorithms,” Opt. Lett., vol. 33, no. 2,
pp. 156158, Jan 2008. [Online]. Available: https://opg.optica.org/ol/
abstract.cfm?URI=o0l-33-2-156

T. Fujisawa and M. Ikehara, “High-accuracy image rotation and scale
estimation using radon transform and sub-pixel shift estimation,” JEEE
Access, vol. 7, pp. 22719-22728, 2019.

D. Sundararajan, Digital Image Processing: A Signal Processing and
Algorithmic Approach, 10 2017.

P. J. Rousseeuw and C. Croux, “Alternatives to the median
absolute deviation,” Journal of the American Statistical Association,
vol. 88, no. 424, pp. 1273-1283, 1993. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476408
C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting
outliers: Do not use standard deviation around the mean, use
absolute deviation around the median,” Journal of Experimental Social
Psychology, vol. 49, no. 4, pp. 764-766, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022103113000668
T. C. Beers, K. Flynn, and K. Gebhardt, “Measures of Location and
Scale for Velocities in Clusters of Galaxies—A Robust Approach,” ,
vol. 100, p. 32, Jul. 1990.

H. S. Stone, B. Tao, and M. McGuire, “Analysis of image registration
noise due to rotationally dependent aliasing,” Journal of Visual
Communication and Image Representation, vol. 14, no. 2, pp. 114—
135, 2003. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1047320303000026

R. Kimmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G20: A general framework for graph optimization,” in 20/1 IEEE
International Conference on Robotics and Automation, 2011, pp. 3607—
3613.

G. Grisetti, R. Kiimmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 3143, 2010.

F. Dellaert and M. Kaess, Factor Graphs for Robot Perception.
Foundations and Trends in Robotics, Vol. 6, 2017. [Online]. Available:
http://www.cs.cmu.edu/~kaess/pub/Dellaert1 7fnt.pdf

D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner, “The
oxford radar robotcar dataset: A radar extension to the oxford robotcar
dataset,” arXiv preprint arXiv: 1909.01300, 2019. [Online]. Available:
https://arxiv.org/pdf/1909.01300

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the Kkitti vision benchmark suite,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, 2012, pp. 3354-3361.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012, pp.
573-580.

Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory eval-
uation for visual(-inertial) odometry,” in 2018 IEEE/RSJ International

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3324941

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

Conference on Intelligent Robots and Systems (IROS), 2018, pp. 7244—
7251.

VIII. BIOGRAPHY SECTION

Daniel Louback S. Lubanco Daniel Louback S.
Lubanco received the B.Sc. in Control and Automa-
tion Engineering from the Instituto Federal Flumi-
nense, Brazil in 2018 and the M.Sc. in Automotive
Mechatronics and Management from the University
of Applied Sciences Upper Austria, Austria in 2020.
Since 2019, he is with the Linz Center of Mecha-
tronics and since 2022 he is also with the University
of Applied Sciences Upper Austria and the Johannes
Kepler University. He is currently working towards
the PhD degree in Engineering Sciences - Mecha-
tronics at the Johannes Kepler University, Austria. His research interests
include radar signal processing, robotics and image processing.

Ahmed Hashem Ahmed Hashem is a PhD candidate
at the Johannes Kepler University, Linz, Austria.
In the research institute for Communications Engi-
neering and RF-systems, he is developing autonomy
and navigation algorithms for small aircraft and
autonomous drones in GPS denied environments us-
ing Synthetic Aperture Radar. His research interests
include: autonomy systems and algorithm develop-
ment, environment perception for self-driving cars,
drones and robots, state-estimation for autonomous
vehicles and robots, computer vision, and Synthetic-

Aperture Radar (SAR).

Markus Pichler-Scheder Markus Pichler-Scheder
(Member, IEEE) was born in Linz, Austria, in 1976.
He received the Dipl.-Ing. degree in mechatronics
and the Dr.techn. degree from Johannes Kepler Uni-
versity, Linz, in 2002 and 2007, respectively. He was
with the Institute for Communications and Informa-
tion Engineering, University of Linz, Austria, and
joined the Linz Center of Mechatronics GmbH, Aus-
tria, in 2002. He has also been a lecturer for signal
processing, systems theory, and communications at
the Johannes Kepler University and the University
of Applied Sciences Upper Austria. He has authored or co-authored over 60
publications. His research interests include systems design, signal generation,
digital signal processing, and estimation theory for radar and positioning
systems.

Andreas Stelzer Andreas Stelzer (M’00) received
the Diploma Engineer degree in electrical engi-
neering from the Technical University of Vienna,
Vienna, Austria, in 1994, and the Dr. techn. degree
(Ph.D.) in mechatronics (with honors sub auspiciis
praesidentis rei publicae) from the Johannes Kepler
University (JKU) Linz, Austria, in 2000. In 2003,
g he became Associate Professor with the Institute
A for Communications Engineering and RF Systems,
‘/’ > Johannes Kepler University Linz. Since 2008, he has
been a key researcher for the Austrian Center of
Competence in Mechatronics (ACCM), where he is responsible for numerous
industrial projects. In 2007 he was granted a Christian Doppler Research
Laboratory for Integrated Radar Sensors and since 2011 he is full Professor
at the Johannes Kepler University Linz, heading the Department for RF-
Systems. He is co-founder of company Inras, meanwhile taken over by Joby-
Austria, where radar sensors for urban air mobility are developed. Since
2020 he is also head of the joint Linz Institute of Technology (LIT) and
Silicon-Austrian-Labs (SAL) Millimeter-Wave Lab working on combined
sensing and communication applications for future 6G. He has authored or
coauthored over 430 journal, conference and workshop contributions. His
research is focused on microwave sensor systems for industrial and automotive
applications, integrated radar sensor concepts, SiGe based circuit design,
microwave packaging in eWLB, RF and microwave subsystems, surface
acoustic wave (SAW) sensor systems and applications, as well as digital signal
processing for sensor signal evaluation. Dr. Stelzer is a member of the Austrian
OVE. He has served as an associate editor for the IEEE MICROWAVE
AND WIRELESS COMPONENTS LETTERS. He was chair of MTT-27
Wireless-Enabled Automotive and Vehicular Applications. He was recipient
of several awards including the 2008 IEEE Microwave Theory and Techniques
Society (IEEE MTT-S) Outstanding Young Engineer Award, the 2011 IEEE
Microwave Prize, and the Best Paper Award of the International Journal of
Microwave and Wireless Technologies (IIMWT) 2016. Furthermore, he was
co-recipient of the 2012 European Conference on Antennas and Propagation
(EuCAP) Best Measurement Paper Prize, the 2012 Asia Pacific Conference
on Antennas and Propagation (APCAP) Best Paper Award, the 2011 German
Microwave Conference (GeMiC) Best Paper Award, as well as the EEEfCOM
Innovation Award and the European Microwave Association (EuMA) Radar
Prize of the European Radar Conference (EuRAD) 2003. He is a member of
the IEEE MTT, IM, and CAS Societies and he served as IEEE Distinguished
Microwave Lecturer for the period 2014 to 2016 and was chair of IEEE
International Conference on Microwaves for Intelligent Mobility (ICMIM)
2020.

Reinhard Feger Reinhard Feger was born in Kuf-
stein, Austria, in 1980. He received the Dipl.-Ing.
(M.Sc.) degree in mechatronics and the Dr. Techn.
(Ph.D.) degree in mechatronics from Johannes Ke-
pler University Linz, Linz, Austria, in 2005 and
2010, respectively. In 2005, he joined the Institute
for Communications and Information Engineering,
Johannes Kepler University Linz, as a Research
Assistant. In 2007, he became a member of the
Christian Doppler Laboratory for Integrated Radar
Sensors, Johannes Kepler University Linz. He is
currently an Associate Professor with the Institute for Communications Engi-
neering and RF-Systems, Johannes Kepler University Linz. His research topics
are radar signal processing, as well as radar system design for industrial and
automotive radar sensors. Dr. Feger was recipient of the 2011 Microwave Prize
and the 2011 German Microwave Conference Best Paper Award. In 2012, he
received the Best Measurement Paper Prize at the European Conference on
Antennas and Propagation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3324941

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

Thomas Schlechter Thomas Schlechter (M’07) was
born in Germany in 1979. In 2007 he earned a
Dipl.-Ing. degree in electrical engineering, elec-
tronics and information technology and in 2010 a
master’s degree in economical sciences, psychology,
and slavonic studies, both from the FAU Erlangen-
Nuremberg. By the year 2012 he was working to-
wards his PhD in the field of embedded systems and
signal processing at the University of Klagenfurt,
where he also received another master’s degree in
information management in 2016, both with distinc-

tion.

After some years in industry, he joined the University of Applied Sci-
ences Upper Austria as Professor for Automotive Mechatronics in 2018. He
published around 30 conference papers and journal articles and is author
of more than 50 patents, delivering an H-index of 6. His research interest
covers multiple fields, including mechatronics, algorithms, and especially
communication theory and technology. As a special field of interest, cyber
security topics may be mentioned as well.

Prof. Schlechter has been part of the organizing committee of the ICMRE
conference since 2019 and the ISM conference until 2021.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



