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Driver Drowsiness Detection Using R-R Interval of
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Abstract—Drowsy driving detection is crucial for avoiding
serious traffic accidents. Changes in sleep conditions affect the
autonomic nervous system (ANS) and, subsequently, heart rate
variability (HRV), which is fluctuation in the R-R interval (RRI)
in an electrocardiogram (ECG). HRV is easy to measure with
a wearable sensor, and it may be possible to use HRV to
detect drowsy driving. In conventional HRV-based drowsy driving
detection methods, some HRV features are extracted from RRI
data for analysis, but it may result in the loss of time-series
characteristics of the RRI data. This study proposes a new driver
drowsiness detection method that can detect abnormal changes
in the RRI data caused by drowsiness. The proposed method
employs a self-attention autoencoder (SA-AE), which is a type
of neural network that can utilize time series characteristics. An
experiment with a driving simulator was performed to evaluate
the drowsiness detection performance of the proposed method. In
this experiment, RRI data were collected from 20 participants
(nonprofessional drivers) while driving, whose sleep conditions
were scored by a sleep specialist based on electroencephalography
(EEG) data. The experimental result showed that the proposed
RRI-based drowsiness detection method detected 16 out of 18
sleep-related events while driving (sensitivity of 88 %), and
a false-positive rate of 0.60 times per hour was achieved. In
addition, we validated the proposed method employing 18 middle-
aged professional drivers. The proposed drowsiness detection
method would contribute to preventing accidents caused by
drowsy driving in the future.

Index Terms—Drowsy driving, Sleep scoring, R-R interval,
Self-attention autoencoder, Electroencephalography

I. INTRODUCTION

Drowsy driving is a major cause of fatal traffic accidents,
with the risk of traffic accidents in drowsy driving estimated
as being four to six times higher than in awake driving [1].
Detecting drivers’ drowsiness and warning them are crucial
for preventing accidents caused by drowsy driving.

Some conventional methods for detecting driver drowsiness
have utilized electroencephalography (EEG) [2], [3]. Sleep
stages are defined based on EEG in sleep medicine [4], and
EEG recording is the gold standard method for sleep scoring.
This fact has motivated some to try to use EEG for the
purpose described above. However, EEG-based drowsiness
detection methods are not always feasible because it is difficult
to accurately record EEG while driving. In addition, EEG
recording is intolerant to motion artifacts caused by driving
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operations, electromagnetic noise caused by onboard equip-
ment and vibrations caused by the engine and the road surface
during driving.

Images of drivers’ faces and vehicle travel data have been
used in place of EEG [5]–[7]. These methods, however, have
the disadvantage that they require special equipment such as
cameras and data logging devices.

Physiological signals, particularly cardiac signals, can be
used for driver drowsiness detection because, as it is well-
known, the autonomic nervous system (ANS) and cardiac
activities are affected by sleep condition [8]. Chui et al.
developed a driver drowsiness detection system using elec-
trocardiogram (ECG) signals of drivers [9]. Photoplethys-
mography (PPG) signals have also been used for detecting
drowsiness [10]. However, motion artifacts prevent stable
measurement of ECG and PPG. In addition, ECG and PPG
signal processing requires a heavy computational load because
the required sampling rate is usually more than several hundred
Hz, which also leads to shortened battery life.

Heart rate variability (HRV) is a well-known physiological
phenomenon that reflects activities of ANS [11]. An ECG
trace consists of some peaks, as shown in Fig. 1, the highest
of which is an R wave. The R-R interval (RRI) [ms] is
defined as the interval between an R wave and the next R
wave. HRV is defined as the fluctuation in the RRI. HRV
analysis has traditionally been employed in the cardiovascular
field [12] and recently has been used for various types of
health monitoring. An HRV-based epileptic seizure prediction
system was developed and implemented as a wearable heart
rate sensor and a smartphone app [13], [14]. Sleep apnea
screening algorithms have been developed by monitoring HRV
during sleep [15], [16].

HRV-based driver drowsiness detection methods have been
proposed based on the fact that HRV is altered at the time
of sleep stage transition [17]. Babaeian et al. proposed a
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Fig. 1. Example of ECG trace (standard lead II).
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drowsiness detection method combining HRV analysis and
wavelet analysis [18]. They specified characteristic changes
in HRV around drowsiness with continuous wavelet transform
(CWT), and the features extracted by CWT were discrimi-
nated whether drivers feel drowsy or not with an ensemble
logistic regression model. A drowsiness detection model using
the frequency-domain features of HRV was developed with
linear discriminant analysis [19]. Focusing on the relationship
between traffic accidents and fatigue or drowsiness of drivers,
Ito et al. developed a model for evaluating a future collision
risk based on HRV [20]. On the other hand, Fujiwara et al.
proposed an HRV-based driver drowsiness detection method
using an anomaly detection approach because collecting the
drowsy driving data is more difficult than the awake driving
data [21].

The use of HRV for drowsy driving detection may be
feasible since R wave detection and HRV analysis are much
more robust against artifacts than EEG, even in a vehicle,
because the amplitude of R waves in ECG signals is much
higher than in EEG signals. Additionally, ECG is easy to
measure using a simple wearable sensor. Since an R wave
in an ECG signal occurs every second, the processing load
thereof is much lighter than that of the ECG and PPG-
based methods, which require heavy signal processing. Thus,
HRV-based methods can reduce energy consumption when
implemented in mobile computers such as smartphones.

HRV feature extraction, however, may cause a loss of
important time information in the RRI data because it uses
a window function to clip the RRI data for several minutes.
Since falling asleep is an instantaneous event, standard HRV
features might not detect such events. Raw RRI data that
retain time information should be employed for drowsy driving
detection as an alternative to HRV features because RRI data
may retain time information of short-duration events. Iwasaki
et al. showed that the use of raw RRI data improved the
performance of a screening algorithm for sleep apnea, which is
also an instantaneous event like falling asleep, in comparison
with HRV features [16].

A new driver drowsiness detection method based on
anomaly detection is proposed in the present work. In the pro-
posed method, raw RRI data are utilized instead of HRV fea-
tures. The proposed method uses a self-attention autoencoder
(SA-AE) as an anomaly detection algorithm, which consists
of a self-attention mechanism for sequence data analysis [22],
and an autoencoder, which is a type of neural network for
representation learning and anomaly detection [23]. In order
to appropriately consider the time-series characteristics of the
RRI data, the SA mechanism is employed. In the proposed
method, abnormal changes in the RRI data due to drowsiness
during driving are detected with SA-AE. An experiment using
a driving simulator was performed to evaluate the drowsiness
detection performance of the proposed method.

A preliminary version of this work has been described
in [24], but this report did not include the SA-AE model.

II. DEFINITION AND SCORING OF DROWSINESS

According to somnology, sleep consists of rapid eye move-
ment sleep (REM) and non-REM sleep (NREM), the latter

of which is broken down into three stages: N1, N2, and
N3 [4]. N1 usually occurs between wakefulness and deeper
sleep. During N1, muscles are still active, and eyelids may
open and close moderately frequently. Thus, people in N1 can
be easily awakened by means of sensory stimuli. Fujiwara
et al. have reported that they were able to detect N1 onsets
by monitoring HRV [21]; however, other sleep-related events
should be considered in addition to N1 onsets in order to detect
drowsiness.

Slow eye movements (SEM) are often observed in the
transitional period from awake to N1 [25]. Microsleep is a
sudden, short sleep lasting for a fraction of a second or up
to a few seconds and is a well-known phenomenon in sleep
science [26]. People experiencing microsleep often remain
unaware of them. The occurrence of microsleep becomes
dangerous, particularly in situations that demand constant
alertness, such as driving or working with heavy machinery.

N1 onsets, SEMs, and microsleeps of the driver should be
detected because he/she can be easily awakened at the time of
these events by means of a light stimulus, which could prevent
accidents.

Sleep stages and sleep-related events are defined based on
EEG and electrooculogram (EOG) in somnology [27]. N1
onset (sleep onset) is defined by the epoch in which α wave
(8-13Hz) activity is attenuated and replaced by low-amplitude,
mixed-frequency activities that occupy more than 50% of a 30-
second epoch. SEM can be labeled based on EOG. Microsleep
is identified as a short awake α wave appearance on EEG in
this study. Since these sleep-related events cannot be visually
scored based on facial images of drivers, this study employed
the EEG scoring method used in somnology [27].

Jurysta et al. have reported that cardiac activities precede
EEG changes relating to sleep stage transition by 9–20 minutes
(mean 12 minutes) [28]. In addition, there is some uncer-
tainty in the detection timing of sleep-related events even
among well-trained experts [29]. Based on these prior reports,
“drowsy” is defined in this study as a period from fifteen
minutes before to three minutes after a sleep-related event
occurrence, and the remaining period is defined as “awake”.

III. DROWSY DRIVING DETECTION

This work proposes a new drowsiness detection method
based on a framework for detecting anomalies in RRI data
of drivers.

A. Anomaly Detection in RRI Data

Standard binary classification algorithms require almost the
same number of positive and negative samples. Collecting
sufficient negative (abnormal) samples is sometimes difficult
while collecting positive (normal) samples is much easier. In
this case, a model should be trained using normal samples
only, and samples that have different characteristics from the
normal data are detected as abnormal samples with the trained
model. This framework is called anomaly detection in machine
learning. Driver drowsiness detection is formulated as anomaly
detection because it is much easier to collect awake driving
data than drowsy driving data from drivers.
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Fig. 2. Structure of AE.

Fujiwara et al. proposed a driver drowsiness detection
method combining HRV analysis and multivariate statistical
process control (MSPC) [21], [30] which is a well-known
anomaly detection algorithm used in industrial process moni-
toring [31], [32] as well as health monitoring [13], [33]. MSPC
is a linear anomaly detection method because it is based on
principal component analysis (PCA). Although it is difficult
for MSPC to deal with nonlinearity, HRV is a nonlinear phe-
nomenon [34]. Hence, nonlinear anomaly detection algorithms
should be used.

An autoencoder (AE) is a neural network model that is
trained so that the outputs become close to the inputs [23].
A structure of an AE is illustrated in Fig 2. An AE model
consists of an input layer, a hidden layer, and an output layer.
x1, · · · , xM and x̂1, · · · , x̂M are the input variables and the
output variables of the AE model, respectively. In Fig 2,
circles denote units that express activation functions. The AE
is interpreted as a nonlinear expansion of PCA because the
AE model becomes PCA when all of the activation functions
in hidden layers are the identity function [35].

AE can also be used for anomaly detection [36]. It is
assumed that an AE is trained with normal data only. Re-
construction error (RE), which is the error between the input
and the output of the AE model, is small when the input is
a normal sample; on the other hand, RE becomes large when
an abnormal sample is input to the AE model. Since AE can
cope with nonlinearity, it may be more suitable than MSPC
for anomaly detection in RRI data. Thus, this work employs
AE for drowsy driving detection.

In addition, the time-series characteristics of the RRI data
should be taken into account. A self-attention (SA) net-
work [22], [37] is a type of neural network that can handle
time-series data with an attention mechanism. The SA network
can be combined with the AE for anomaly detection of time-
series data. This network architecture is referred to as SA-AE.

A graphical summary of the drowsiness detection model
with SA-AE is shown in Fig. 3. The input RRI data y ∈ RL is
expanded to multi-dimensional data by a first fully connected
layer (FC), and features are extracted in hidden layers from the
expanded multi-dimensional data with multi-head SA and the
FC. L is the length of the RRI data. The colored block in Fig. 3
is stacked multiple times. Each block has a skip connection
that is expected to promote training [38]. The output of the
last FC is the output RRI data ŷ ∈ RL.

An SA-AE model for anomaly detection is trained from
the RRI data of drivers collected during awake driving. The
RE stays small when the input is an awake RRI, and the RE
becomes large when a drowsy RRI is input to the trained SA-
AE model. The RE is defined as

RE = ∥y − ŷ∥2 =

L∑
l=1

(yl − ŷl)
2. (1)

Driver drowsiness is detected when RE exceeds a predefined
threshold RE.

B. Model Training

Before using the proposed method, a drowsiness detection
SA-AE model must be trained with the RRI data of drivers
collected during awake driving. A model training procedure is
described in Algorithm 1.

The RRI data collected from the ith driver (i = 1, . . . , I)
is denoted as

y[i] =
[
r
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2 , · · · , r

[i]
j , · · · , r
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]
∈ RLi (2)

where r
[i]
j is the jth RRI measurement of the ith driver, and Li

is the length of y[i]. In step 2, the ith RRI data y[i] is arranged
in an RRI data matrix Y [i] ∈ R(Li−M+1)×M as follows:
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Fig. 3. Schematic diagram of drowsiness detection model
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L is the length of input of SA-AE. Y [1], · · · ,Y [I] is merged
into one matrix Y ∈ RL×M in step 4

Y =


Y [1]

Y [2]

...
Y [I]

 . (4)

In step 5, the merged matrix Y is normalized to zero mean
and unit variance, which is denoted as Ỹ . Finally, a drowsiness
detection SA-AE model f is trained from Ỹ in step 6.

C. Drowsiness Detection

The proposed method detects driver drowsiness using the
drowsiness detection model f trained in Algorithm 1. f esti-
mates the driver condition as a binary state S ∈ {A,D}, which
denotes ‘awake’ and ‘drowsy’ respectively, and ¬A = D and
vice versa.

Before driver drowsiness detection starts, the initial RRI
data must be stored for more than the length of the RRI data
L in the SA-AE model. After the initial RRI data collection,
driver drowsiness is monitored by following Algorithm 2.
y[t] ∈ ℜ denotes the tth RRI where t is the number of samples
taken from the start of driver drowsiness detection. τ is a time
counter variable.

Because RE may fluctuate due to RRI artifacts, the driver
status is determined in this algorithm as ‘drowsy’ only when
RE continuously exceeds its threshold RE for more than the
predefined period τ̄ . Conversely, driver status transitions from
‘drowsy’ to ‘awake’ when RE continuously stays below its
threshold RE for more than τ̄ .

The threshold RE = max{RE0,RE
′} is adopted in this

study, where RE0 is a shared default threshold and RE
′

is
an individual threshold to consider individual differences in
the RRI data of drivers. The individual threshold RE′ can be
tuned for each driver using the α% confidence limit of the
RE, calculated based on the awake part of the RRI data of
each driver; in other words, RE′ is set so that α% of the RRI
data representing the awake condition is below, and the other
(100− α)% is above, RE.

IV. EXPERIMENT

This section reports the results of applying the proposed
drowsy driving detection method to experimental data.

Algorithm 1 Drowsiness Detection Model Training

Require: The RRI data of {y[1], y[2], · · · , y[I]}.
1: for i = 1, . . . , I do
2: Rearrange y[i] to Y [i].
3: end for
4: Merge Y [i] (i = 1, . . . , I) into one matrix Y .
5: Normalize Y , which is referred to as Ỹ .
6: Train the SA-AE model f from Ỹ .
7: return The trained f .

Algorithm 2 Drowsiness Detection
Require: The trained drowsiness detection model f .

1: S[0]←− A and τ [0]←− 0.
2: while do
3: Collect the newly measured tth RRI y[t].
4: Construct the ith input y[t] = [y[t−M + 1], . . . , y[t]].
5: Normalize y[t], which is referred to as ỹ[t].
6: Calculate the tth output ŷ[t] by inputting ỹ[t] into the

drowsiness detection model f .
7: Calculate the tth RE E[t] between ỹ[t] and ŷ[t].
8: if ((RE[t] > R̄E)∧(S = A))∨((E[t] ≤ Ē)∧(S = D))

then
9: τ [t]←− τ [t− 1] + yi

10: else
11: τ [t]←− 0
12: end if
13: if τ [t] ≥ τ̄ then
14: S[t]←− ¬S[t− 1] and τ [t]←− 0.
15: end if
16: Wait until the next RRI y[t+ 1] is measured.
17: end while
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Fig. 4. Electrode allocations for sleep scoring: EEG (left) and EOG (left)

A. Data Collection with Nonprofessional Drivers

The RRI and EEG data were collected from experiment
participants (drivers) while they drove a virtual vehicle on a
simulator. Although 31 persons participated in the experiment,
data collected from 11 participants were excluded due to
measurement failure or inappropriate health conditions. The
remaining 20 participants (male: 13, female: 7, 21.2±1.9 years
old) were used for analysis. The inclusion criteria for the
participants were nonprofessional drivers with valid driving
licenses. The exclusion criterion was having a confirmed
diagnosis of a chronic illness that may affect ECG, such as car-
diovascular disease, arrhythmia, epilepsy, or sleep disorders.
In addition, participants were asked to answer the Japanese
version of the Epworth sleepiness scale (ESS) [39] and the
patient health questionnaire 9 (PHQ-9) in order to assess the
participants’ daily sleepiness and mental conditions [40]. This
experiment and analysis were approved by the Research Ethics
Committee of the Graduate School of Informatics, Kyoto
University. Written informed consent was obtained from each
participant prior to the experiment.

The utilized driving simulator (DS) is the UC-win/road
system (FORUM8 Co. Ltd., Japan), which consists of a PC, a
steering wheel, a driving seat, and four LCD monitors (three
for the front scene and one for the instrument panel).
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Fig. 5. Example of experimental scene.

To induce driver drowsiness, the experiment was performed
in a dark room, and the room air temperature was maintained
around 25 ◦C. The participants drove along a monotonous
circuit course consisting of long straight roads and gentle
curves for about three hours, and no extra tasks were not
assigned during driving. Although the maximum speed of
the virtual vehicle is 140 km/h, they were asked to maintain
a speed between 60 and 80 km/h. Simulated vehicle cruise
sounds and environmental sounds were played from speakers
of the DS; however, any music was not played during driving.
Each participant performed driving once. Figure 5 shows an
example of an experimental scene.

ECG, EEG, and EOG during driving were measured with
the Grapevine Neural Interface Processor system (Ripple
Neuro inc., USA), with a sampling frequency of 1,000 Hz.
Although the International 10-20 system is a standard scalp
electrode allocation of EEG recording, a reduced electrode
allocation was employed, as shown in Fig. 4 (left) because
this allocation is sufficient for sleep scoring. Fp1, Fp2, C3,
C4, O1, and O2 were EEG electrodes, earlobes A1 and
A2 were for reference, and Fpz was the body earth. EOG
was recorded during driving for SEM detection. The EOG
electrode allocation is shown in Fig. 4 (right), wherein the
left earlobe A1 was used for reference.

Figure 6 is an example of the ECG data of 60 beats during
the awake period measured by participant N9, which shows
that the quality of the ECG data measured in this experiment
was sufficiently high.

Since motion artifacts were generated when participants
moved during driving, data in which the EEG data were
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Fig. 6. ECG measured from participant 9

0 300 600 900
Time [s]

600

1000

1400

R
R

I 
[m

s
]

Sub9: Awake

0 300 600 900
600

1000

1400

R
R

I 
[m

s
]

Sub9: Drowsy

Time [s]

Fig. 7. RRI collected from participant N9: awake period (top) and drowsy
period (bottom)

contaminated with strong artifacts were eliminated before
analysis. Based on the collected EEG and EOG data, a sleep
specialist certificated by the Japanese Society of Sleep Re-
search scored sleep-related events–N1 onsets, microsleeps, and
SEM–in accordance with the standard sleep scoring method in
somnology [27]. Based on the definition of drowsy described
in Sec. II, nine participants had a total of 30 sleep-related
events during driving.

B. Data Preprocessing

The participants were divided into three groups in accor-
dance with the results of sleep scoring: training, validation,
and test groups for machine learning.

Drowsy RRI data are not needed in the training phase of a
drowsy detection model because the training of SA-AE only
requires normal (awake) data. The validation group was used
for hyperparameter tuning of the model so that a good balance
between sensitivity and specificity could be achieved. The
drowsiness detection performance of the trained model was
assessed with the test group. An overview of the data used
for analysis is shown in Table I. In the table, ‘W’ and ‘W/O’
denote the numbers of participants with and without sleep-
related events, respectively, and ‘#events’ means the number
of sleep-related events in each group.

The R waves were detected from the ECG data collected
during driving using a first derivative-based peak detection
algorithm, and the RRIs were calculated. Figures 7 and 8
illustrate examples of awake and drowsy RRI data collected
from participants N9 and N28. Orange-colored bands denote
the sleep-related events scored by the sleep specialist. These
figures show that it is difficult to detect drowsiness through
visual monitoring of the RRI data and, thus, that machine
learning techniques should be used.

TABLE I
DATASET PROFILE (NONPROFESSIONAL DRIVERS)

W/O W #events Awake [h] Drowsy [h]
Training 7 0 0 6.6 −

Validation 3 3 7 7.8 1.7
Test 2 5 18 5.0 4.7
Total 12 15 30 19.4 6.4
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Fig. 8. RRI collected from participant N28: awake period (top) and drowsy
period (bottom)
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Fig. 9. Input and output RRI data with the SA-AE model of participant N9

C. Model Training

An SA-AE model was trained with the training data. The
activation function in the FC was the rectified linear units
(ReLU), and the input length of the RRI data L was de-
termined as L = 60 in accordance with [16]. The adaptive
moment estimation (Adam) was used as the optimizer. The
hyperparameters of SA-AE were tuned with the Bayesian
optimization using the validation data. In Algorithm 1, τ̄ = 7
was determined, which was also determined by the Bayesian
optimization.

With regard to the threshold RE, the shared default thresh-
old RE0 was determined with the validation data to be
RE0 = 27. In addition, the individual threshold was tuned
with the 99% confidence limit of the awake RRI data of each
driver. The 99% confidence is a standard setting of anomaly
detection [13].

D. Results

The sleep-related events, the N1 onset, SEM, and mi-
crosleep in the validation data of eight participants were
detected as driver drowsiness following Algorithm 2.

Figure 9 illustrates an example of the input and the output
RRI data with the trained SA-AE model of participant N9,
whose period corresponds to the ECG data shown in Fig. 6.
This figure shows the output data of the trained SA-AE model
followed the trend of the input data, although there were some
errors. Thus, it is concluded that the trained model functioned
successfully.

The drowsiness detection results of participants N9 and N28
are shown in Figs. 10 and 11. Orange and blue colored bands

0

60

120

R
E

0

60

120

R
E

0 300 600 900
Time [s]

Sub9: Awake

0 300 600 900

Sub9: Drowsy

Time [s]

Fig. 10. Drowsiness detection results of participant N9: awake period (top)
and drowsy period (bottom)
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Fig. 11. Drowsiness detection results of participant N28: awake period (top)
and drowsy period (bottom)

denote the sleep-related events scored by the sleep specialist
and drowsiness detection periods according to the trained
drowsiness detection model. These figures show that the
drowsiness detection model detected driver drowsiness around
occurrences of the sleep-related event, and false positives (FPs)
rarely occurred.

The results of each participant are listed in Table II. The
drowsiness detection model detected 16 out of 18 sleep-related
events; that is, the sensitivity was 89%. In addition, only three
FPs occurred in the awake periods (a total of 5.0 hours), and
the FP rate was 0.60 times per hour.

TABLE II
DROWSINESS DETECTION RESULT (NONPROFESSIONAL DRIVER)

Participant Sensitivity [%]∗ FP rate [times/h]
N9 50 (2/4) 0.00

N12 100 (2/2) 0.00
N24 100 (5/5) 0.00
N27 - (0/0) 0.00
N28 100 (1/1) 0.61
N30 100 (6/6) 0.00
N31 - (0/0) 1.27

Total 89 (16/18) 0.59
∗ Parentheses denote the numbers of detected sleep-related events and

occurring sleep-related events.
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E. Additional Experiment with Professional Drivers

In order to validate the proposed drowsiness detection
method, an experiment with 18 middle-aged professional
bus drivers (male: 18, female: 0, 49.3±7.7 years old) was
performed in addition to the experiment with the young
participants. The exclusion criterion was having a confirmed
diagnosis of a chronic illness that may affect ECG, such as
cardiovascular disease, arrhythmia, epilepsy, or sleep disor-
ders. The participants were all middle-aged males, reflecting
the employment trend in Japan.

The experiment and model training were conducted follow-
ing the same procedures described in Secs IV-A - IV-C. In
this additional experiment, a model was newly trained for
professional drivers because the physiological characteristics
between professional and nonprofessional drivers were signif-
icantly different. Table III shows an overview of the data used
for analysis.

Table IV lists the drowsiness detection results of each par-
ticipant. The trained model detected 9 out of 10 sleep-related
events; that is, the sensitivity was 90%. On the other hand,
11 FPs occurred in the awake periods (a total of 5.8 hours),
meaning the FP rate was 1.90 times per hour. Thus, more
FPs occurred in professional drivers than in nonprofessional
drivers, while the sensitivity was the same.

V. DISCUSSION

In the experiment with the nonprofessional drivers, 16 out
of 28 sleep-related events were detected with the drowsiness
detection model; however, two out of four sleep-related events
in participant N9 were not detected. Figure 12 shows the RRI
data and RE around the sleep-related event of participants 9
that were not detected by the drowsiness detection model.

The sleep-related events of participant N9 were all SEMs,
and the duration of SEM in Fig. 12 was very short (about 3
seconds). These points suggest that it is more difficult to detect
short SEM than N1 onsets and microsleep from the RRI data.

On the other hand, three FPs occurred in the awake periods.
One FP was in participant 28, and two were in participant

TABLE III
DATASET PROFILE (PROFESSIONAL DRIVERS)

W/O W #events Awake [h] Drowsy [h]
Training 6 0 0 5.7 −

Validation 4 2 9 2.4 2.5
Test 2 3 11 5.2 3.0
Total 13 5 20 13.3 5.5

TABLE IV
DROWSINESS DETECTION RESULT (PROFESSIONAL DRIVER)

subject Sensitivity [%]∗ FP rate [times/h]
P2 100 (1/1) 2.02
P9 - (0/0) 0.00

P16 - (0/0) 0.00
P21 100 (8/8) 16.0
P22 0 (0/1) 0.00

Total 90 (9/10) 1.90
∗ Parentheses denote the numbers of detected sleep-related events and

occurring sleep-related events.
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Fig. 12. RRI data (top) and RE (bottom) around the sleep-related event of
participants 9

N31. It is confirmed that their RRI data did not contain any
artifacts due to ECG electrode contact failure or arrhythmia.
The ESS scores of participants N28 and N31 were 14 and 8,
respectively, which indicates that participant N28 had mild
sleepiness while participant N31 was healthy because the
cutoff value of the ESS score is usually 11 [41]. The causes
of the FPs of participant N31 are unknown.

In this study, the threshold RE varied depending on each
participant because the individual threshold RE

′
was used

instead of the shared default threshold RE0 when RE
′
> RE0.

In order to verify this setting, we checked the performance
of the drowsiness detection algorithm so that the threshold
RE was defined as the shared default threshold RE0 or the
individual threshold RE

′
only. The sensitivity and the FP rate

were 70% and 1.60 times/hour, respectively when RE0 was
adopted, and the use of RE

′
achieved a sensitivity of 100%

and the FP rate of 6.6 times/hour. These results suggest that
the combination of RE

′
and RE0 was effective for achieving

a well-balanced performance that can deal with individual
differences in the RRI data collected from drivers.

The self-attention (SA) network is employed in order to take
the time-series characteristics of the RRI data into account.
Other types of networks have been proposed to handle time-
series data, long short-term memory (LSTM) being one such
network [42]. LSTM autoencoder (LSTM-AE) was tried as
the drowsiness detection model to compare with SA-AE. The
LSTM-AE model detected 12 out of 18 sleep-related events
(sensitivity of 67%), and the FP rate was 0.4 times/hour.
Thus, the sensitivity of the LSTM-AE model was inferior to
that of the proposed SA-AE model, while its FP rate was
better than that of the SA-AE model. From the viewpoint of
preventing accidents caused by drowsy driving, the SA-AE
model is preferable to the LSTM-AE model; however, further
performance improvements of the LSTM-AE model may be
achieved when appropriate hyperparameters are found.

Iwasaki et al. developed an RRI-based sleep apnea screening
model, whose length of input RRI data is 60 [16]. Based
on their study, L = 60 was also employed as the length of
input RRI data in the drowsiness detection model. In order
to investigate the effect of L on the drowsiness detection
performance, other lengths of the input RRI data were tested
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Fig. 13. Sensitivities and FP rates with L = 30, 60, 90, 120, 150, 180

in addition to the original L = 60: 30, 90, 120, 150, and 180.
Figure 13 shows changes in the sensitivities and the FP rates.
A sensitivity of 100% was achieved when L = 150; however,
its FP rate was more than three times/hour, and the FP rate
was best when L = 60. Considering the balance between the
sensitivity and the FP rate, RRI vectors with L = 60 were
appropriate.

The additional experiment employing the professional
drivers was conducted to validate the proposed method, which
shows that many FPs occurred while the sensitivity did not
deteriorate in comparison with the nonprofessional drivers.
The age of the professional drivers was higher than that
of nonprofessional ones. The prevalence of sleep disorders,
such as sleep apnea and insomnia, or cardiovascular diseases
like arrhythmia increases with age [43], [44]. These disorders
significantly affect ANS and cardiac activities [45], which
might increase FP occurrences in nonprofessional drivers.
According to Table IV, participant P21 (44 years old), who had
many sleep-related events, also had many FPs. This indicates
that he might have an unconfirmed and unaware sleep disorder.
According to a report from the US, about 80% of patients with
apnea remain undiagnosed and untreated [46]. Thus, it may
become difficult to detect drowsiness for middle or older-aged
participants.

In this study, two different drowsiness detection models
were trained for professional and nonprofessional drivers,
respectively, by considering the difference in physiological
characteristics. When a model was trained from the data
consisting of both professional and nonprofessional drivers,
its sensitivity and the FP rate were 62% and 3.2 times per
hour. This result suggests that the drowsiness detection model
should be trained by each age group.

In order to use the conventional HRV-based drowsiness
detection methods, drivers need to wait at least two minutes
before the start of operation since calculating HRV indexes
requires at least two minutes of RRI data according to the
clinical guideline of HRV analysis [47]. Fujiwara et al. used
three minutes of RRI data for HRV analysis. The latency
time of their method is three minutes [21]. In the proposed
method, drivers also must wait until the initial RRI data are
stored. The input of the proposed method is the RRI data
with L = 60, which can be converted to about a one-minute
duration because one RRI (one beat-to-beat interval) is almost

one second. Hence, the latency time of the proposed method
is about one minute, which is shorter than the HRV-based
methods. When an HRV-based model is built, appropriate HRV
features should be selected because multiple HRV features can
be simultaneously extracted in typical HRV analysis; however,
the input of the proposed method is RRI data only. Thus,
the proposed method does not require feature selection. In
addition, the proposed method improved the performance,
particularly the FP rate in comparison with the conventional
HRV-based method; the sensitivity and the FP rate of the
conventional HRV-based method were 91% and 1.7 times per
hour, respectively.

Camera-based drowsiness detection methods achieved ac-
curacies of 70%-90% [5], which are slightly better than the
proposed method; however, most of them use facial expression
evaluation by referees or subjective evaluation by question-
naires instead of EEG-based sleep scoring for driver sleepiness
evaluation. Such an evaluation cannot detect sleep-related
events observed in EEG only, such as SEM and microsleep.
Thus, there is a possibility that previous studies overlooked
sleep-related events and that the performance evaluation may
have been inadequate.

In this experiment, the participants were required to attach
some electrodes for ECG measurement on the skin before
driving because ECG was measured with the EEG interface
to measure EEG and ECG simultaneously. Although it is
burdensome for drivers to attach electrodes in real driving,
easy-to-wear ECG devices are currently available for use. For
example, wearable textile electrodes using conductive fibers
and smart shirts into which textile electrodes are woven have
been developed for ECG measurement [48], [49]. Arquilla
et al. demonstrated that there was no significant difference
in the R wave detection accuracy between the conventional
ECG electrodes and the textile electrodes [48]. Patch-typed
ECG sensors also have been developed [50], [51]. VitalPatch
(VitalConnect Inc., USA), which is an FDA-cleared, patch-
typed commercial device, has already been used for Out-Of-
Hospital clinical trials [52]. Thus, these easy-to-wear wearable
devices can be used with the proposed method in real driving
because the input of the proposed method is the RRI data only,
and other signals are not needed.

The proposed method is not limited to drowsy driving and
may be applied to drowsiness detection in other situations,
such as working in an office because it requires only RRI
data for detecting drowsiness.

The achievable drowsiness detection performance in other
situations might be limited due to the low quality of ECG
data. In the experiment, significant motion artifacts in RRI data
rarely occurred since drivers did not move significantly. We
will try the proposed method in various situations to confirm
its applicability in situations other than driving.

Based on the foregoing, it is concluded that the proposed
drowsiness detection method combining RRI data and SA-AE
is more promising than conventional methods with respect to
accuracy as well as practical use.
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VI. CONCLUSION AND FUTURE WORK

An RRI-based driver drowsiness detection method utilizing
an anomaly detection algorithm has been proposed. In the
proposed method, abnormal changes in the RRI data caused
by drowsiness are detected by means of a self-attention
autoencoder. The experimental results showed that 16 out of
18 sleep-related events during driving were correctly detected
(sensitivity of 89 %), and the false-positive rate was 0.60 times
per hour.

Limitations of the study come from the characteristics of
the experimental data, i.e., the laboratory environment was
highly controlled, the number of participants was limited, all
participants were young Japanese persons, and the data were
collected under a well-controlled experimental environment.
Additional studies are required to confirm our results, in
particular, whether alarms occur due to factors other than
driver drowsiness or not, by using well-matched groups of
participants in a real driving environment.

In future works, additional experimental data will be col-
lected in order to improve the performance of the drowsiness
detection model, which will be tested in a real driving environ-
ment. In addition, the proposed drowsiness detection method
will be applied in other fields, such as office workers.
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