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Shared Control Up To The Limits of Vehicle
Handling

John Talbot1,2, Matthew Brown3, and J. Christian Gerdes1

Abstract—Despite significant advances in vehicle safety, road-
way accidents remain a substantial danger. To bring about safer
vehicles, researchers and manufacturers continue to develop
new systems to assist drivers in dangerous situations. Current
approaches often implement several independent systems, each of
which can assist in only specific situations, leaving open critical
paths for accidents to occur. We propose a general approach
to driver assistance based on nonlinear model predictive control
(NMPC). This system can intervene in both lateral and longitudi-
nal commands to keep the vehicle safely within the boundaries of
the road, but allows the driver freedom to maneuver the vehicle as
they wish when they act safely. This work builds on previous MPC
approaches by incorporating a notion of safe operating speed.
Properly modulating speed ensures the vehicle’s limits are never
exceeded, and not reached unless necessary. Experimental results
on a full-size steer-, brake-, and throttle-by-wire vehicle, validate
the performance of this system. These experiments show that
the controller effectively matches the driver’s commands when
possible but will deviate from those commands when necessary
for safe operation.

Index Terms—Driver Assistance, Model Predictive Control,
Shared Control, Vehicle Safety

I. INTRODUCTION

EVERY year, thousands of Americans lose their lives to
motor vehicle crashes [1]. Of the many factors that can

contribute to a crash, a study conducted by NHTSA showed
that human error accounts for 94% of the critical reasons for
pre-crash events [2].

To address driver shortcomings, manufacturers develop and
deploy many safety systems on consumer vehicles to reduce
traffic accidents. Anti-lock Braking Systems (ABS) were in-
troduced in passenger vehicles throughout the 1980’s and
early 1990’s. The system modulates brake pressures to prevent
wheel lockup while maintaining the maximum possible brake
force. Preventing front wheel lockup also aids the driver by
maintaining steering authority of the vehicle. Despite success
on the test track, Kahane and Dang found through a long
term study that the system had a negligible reduction in fatal
roadway crash risk [3]. While not pointing definitively to a
reason for the inefficacy of ABS, the authors suggest that while
ABS reduced fatalities on the road, it increased the risk of the
vehicle leaving the roadway and a fatality occurring.

Though not directly effective at reducing fatalities, ABS
technology became a fundamental component of Electronic
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Fig. 1. X1, the drive-by-wire, student build research vehicle. The drive-by-
wire capabilities are well suited to driver assistance system testing, allowing
the system to override driver commands when necessary for safety.

Stability Control (ESC) which has successfully improved
vehicle safety. Van Zanten et al. proposed an ESC system that
modulates brake pressures not just to prevent wheel lockup,
but to ensure the vehicle maintains stable operation in chal-
lenging maneuvers [4]. The system infers the driver’s intended
trajectory from steering wheel and pedal measurements. It
then stabilizes the vehicle around this intended trajectory by
modulating brake pressure to each wheel as needed to induce
a supplementary yaw moment. Adding a yaw moment through
braking also improves the steering authority of the driver in
an understeering condition. By including a concept of driver
intent, ESC performed much more effectively than previous
ABS concepts. Webb showed that ESC successfully prevented
over 7000 roadway fatalities in the United States between 2011
and 2015 [5].

Modern advanced driver assistance systems (ADASs) sig-
nificantly expand the ability of a vehicle to keep a driver safe
by including a notion of the vehicle’s environment. Collision
imminent braking systems apply brake pressure without input
from the driver to mitigate the effects of a front or rear-
end collision [6]. Lane keeping assist systems helps drivers
avoid drifting into an adjacent lane [7]. Taking the vehicle’s
environment into account marks a great improvement in safety;
however, each system utilizes only a specific concept of the
environment. This limited scope of the environment allows the
system to intervene only in specific situations, leaving open
the possibility that no system would have the authority or
knowledge to intervene appropriately in a complex emergency
scenario.

Ideally, an assistance system could reason more generally
about the safety of the vehicle alongside the wishes of the
driver. It is important that the vehicle always remains in a safe
state, so the system must be able to make significant corrective
actions when in an emergency. It must also allow the driver to
operate the vehicle unimpeded so long as their actions result
in safe operation. These objectives come into tension when the
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driver acts incorrectly or negligently, so the system must be
able to trade-off between them, overriding the driver’s actions
when necessary.

Many approaches have been proposed for such a system,
and one technique, Model Predictive Control (MPC), is pop-
ular among them. Borrelli et al. describe MPC as an optimal
control technique where an open-loop, finite time, constrained
optimization problem is repeatedly solved given the system’s
sampled states [8]. The first inputs of the resulting optimal
trajectory are executed, and after some finite time, the system’s
states are resampled and the process repeats. MPC typically
refers to optimization problems that constrain the problem’s
decision variables using only linear combinations of those
decision variables. See Rawlings’ tutorial of MPC for an
accessible reference on the topic [9].

MPC offers a convenient way to encode trade-offs between
competing objectives like driver matching and safe operation.
Beal and Gerdes developed a linear convex MPC to enforce
vehicle stability while directly incorporating driver steering
commands into the optimization [10]. It effectively stabilized
the vehicle, but no environmental information was included.
Erlien and Gerdes extended Beal’s approach by adding a
safe driving corridor constraint to the problem [11]. This
constraint enforced that the vehicle’s trajectory could not
go off the roadway or through obstacles. Guo et al. went
further, dynamically varying the incentive to match the driver’s
steering input based on a metric of hazard [12]. Anderson et al.
developed a technique to blend the driver’s commands and the
output of a MPC path tracking controller based on a heuristic
metric of vehicle threat [13].

Importantly, these architectures only control steering angle
and have no way of influencing vehicle speed. While steering
control alone works well in many circumstances, effective
speed control becomes increasingly important as the vehi-
cle reaches its handling limits. Inagaki, et al., showed that
increasing speed through a maneuver decreases the size of
the stable convergence region of the vehicle’s yaw-rate and
lateral velocity states [14]. For this reason, production ESC
systems limit a driver’s ability to accelerate when active and
often provide braking specifically to reduce vehicle speed in
addition to providing a yaw moment [4].

Because MPC encodes a notion of time through its predic-
tion horizon, it naturally allows for temporal trade-offs such as
reducing speed now to avoid saturating cornering forces later.
This behavior offers a great advantage in automotive applica-
tions; however, the nonlinear interdependence of longitudinal
and lateral dynamics creates an obstacle to using a classic
linear MPC. Nonlinear Model Predictive Control (NMPC)
shares the fundamental idea of MPC, but generalizes the un-
derlying optimization problem to accept nonlinear constraints
and objectives. It can therefore incorporate coupled lateral
and longitudinal vehicle dynamics directly. Brown and Gerdes
showed that NMPC could be used to navigate a challenging
double lane change to avoid two obstacles leaving only a small
navigable path. [15]. In that work, coordinating longitudinal
and lateral forces throughout the maneuver was critical to
maintaining vehicle stability while avoiding the obstacles as
the tires on each axle were operating at their limits.
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Fig. 2. Single-Track vehicle model

The fullest treatment of applying NMPC for driver as-
sistance comes from Schwarting et al., who developed a
framework directly incorporating a driver’s steering and accel-
eration commands, while maintaining a safe trajectory [16].
They proposed a method of dynamically weighting the two
main objectives of the system, matching driver commands
and tracking a safe reference path, over the NMPC prediction
horizon which we adopt in this work. In their formulation, the
authors use a maximum speed objective through the NMPC
horizon as an approximate progress objective. This contrasts
with ESC and other proposed safety systems which look
to decrease vehicle velocity in emergency scenarios. While
showing promising results in simulation, pushing vehicles
nearer their limits can reduces the robustness of the system
in some situations and should be avoided when possible.

We propose a NMPC approach to driver assistance that
directly incorporates a driver’s steering and longitudinal force
commands while ensuring the vehicle maintains a safe trajec-
tory through its environment. We contribute a novel progress
objective matching a safe reference speed, allowing the system
to operate up to the limits of handling when necessary but
giving it no incentive to do so normally. We contribute a
method to mitigate delays between the driver’s commands and
the vehicle’s actions using their command rates. We contribute
an improved objective function for driver matching improving
upon similar approaches by eliminating small unnecessary
interventions while allowing significant interventions when
necessary.

This paper is structured as follows. Section II details the
dynamic model used to describe the vehicle’s behavior. Section
III explains the setup of the NMPC problem, in particular a
novel formulation for the driver matching and path progress
objectives. Section IV provides two sets of simulation results
verifying the selected objective parameters and the systems
response to different driving behaviors. Experimental results
in Section V demonstrate the effectiveness of this controller
on a full size vehicle on a closed test course.

II. MODELING

To adequately capture vehicle behavior up to the limits of
handling, we employ the planar single-track vehicle model
shown in Fig. 2. Three velocity states describe the vehicle’s
motion with respect to the vehicle body frame: the longitudinal
velocity ux, the lateral velocity uy , and the yaw rate r. Three
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position states locate the vehicle in the curvilinear frame of
the reference path: progress along the path s, lateral offset
from the path e, and heading offset ∆Ψ. κ represents the
instantaneous curvature of the path. The steering angle δ and
the longitudinal forces at each axle, Fxf and Fxr act as inputs
to the model. Fyf and Fyr are lateral tire forces as described in
Section II-B. The model is parameterized using the vehicle’s
mass m, the distances from the vehicle’s center of mass to it’s
front and rear axles a and b, respectively, and it’s yaw axis
moment of inertia Izz The following six equations describe
the behavior of the vehicle:

u̇x =
1

m
(Fxf cos δ − Fyf sin δ + Fxr) + ruy (1)

u̇y =
1

m
(Fyf cos δ + Fxf sin δ + Fyr)− rux (2)

ṙ =
1

Izz
(aFyf cos δ + aFxf sin δ − bFyr) (3)

ṡ =
1

1− κe
(ux cos∆Ψ− uy sin∆Ψ) (4)

ė = ux sin∆Ψ+ uy cos∆Ψ (5)

∆Ψ̇ = r − κṡ (6)

A. Longitudinal Weight Transfer

During heavy braking and acceleration events, the weight
transferred between the front and rear axle significantly
changes the normal load at each axle. The change in normal
load then affects the force producing capability of that axle’s
tires as described in Section II-B. A static moment balance suf-
ficiently captures this phenomenon while maintaining model
simplicity. The instantaneous normal load on each axle is given
by

Fzf =
1

L
(mgb− hcmFx) (7)

Fzr =
1

L
(mga+ hcmFx) (8)

where g is acceleration due to gravity, hcm is the height of
the center of mass measured from the ground, and L = a+ b
is the total wheelbase of the vehicle.

B. Tire Model

The lateral tire forces, Fyf and Fyr, arise from the slip
angles, αf and αr, respectively. The angle from a tire’s
longitudinal heading vector to its velocity vector defines its
slip angle. The front and rear slip angles are given by (9) and
(10), respectively.

αf = arctan

(
uy + ar

ux

)
− δ (9)

αr = arctan

(
uy − br

ux

)
(10)

The lateral tire forces relate to the tire slip angles using a
modified Fiala brush tire model derived from models proposed
by Pacejka [17]. This brush tire model describes the lateral

force at a given slip angle using two parameters: the road-
tire friction coefficient, µ, and the cornering stiffness of the
tire Cα. The sliding slip angle, αsl characterizes the transition
from the unsaturated to the saturated operating region of the
tire model. Fmax

y is the maximum lateral force the tire can
produce.

Fy =



−Cα tanα . . .

+ C2
α

3Fmax
y

| tanα| tanα . . .

− C3
α

27(Fmax
y )2

tan3 α, if |α| < αsl (11a)

−Fmax
y sgnα, otherwise (11b)

αsl = arctan

(
3µFz

Cα

)
(12)

When operating at the limits, the maximum lateral and
longitudinal forces of the tire are coupled, limited by the total
force generation capacity of the tire. We describe this coupling
by derating the maximum lateral force capability of the tire
by the commanded longitudinal force as shown by Hindiyeh
and Gerdes [18]

Fmax
y =

√
(µFz)

2 − F 2
x (13)

III. NMPC PROBLEM FORMULATION

We formulate the proposed ADAS as a NMPC with N = 60
stages of ∆t = 50 milliseconds each for a total horizon length
of N∆t = 3 seconds. Converting the continuous vehicle
model from Section II to a discrete model using trapezoidal
integration over the stage duration yields a discrete temporal
mapping from current vehicle states and inputs to the vehicle
states at the next stage. Two variable changes are implemented
between the vehicle model proposed in Section II and the
NMPC formulation. First, the front and rear longitudinal force
are combined, Fx = Fxf +Fxr, to avoid competing front and
rear forces. Secondly, the inputs to the vehicle model δ and
Fx are treated as states in the NMPC formulation, and their
rates of change δ̇ and Ḟx are treated as inputs. This choice
of inputs allows the simple inclusion of actuator slew rate
constraints and penalties to ensure command feasibility and
smoothness. The state vector at stage k of the NMPC horizon

is z(k) =
[
u
(k)
x , u

(k)
y , r(k), s(k), e(k),∆Ψ(k), δ(k), F

(k)
x

]T
, and

the input vector is u(k) =
[
δ̇(k), Ḟ

(k)
x

]T
.

The complete NMPC formulation is given by (14). As is
typical in receding horizon controllers, the initial state vector
is constrained to the actual measured state of the vehicle and
actuators (14b). Each subsequent state is constrained by the
discretized dynamics described in Section II (14c). At each
time step the actuator position limits (14d) (14e) and slew
rate limits (14f) (14g) are constrained by their physical limits.
The total longitudinal force is mapped into a front and rear
longitudinal force using brake and drive biases at each axle.
The biases, χf for front axle bias, and χr for rear axle bias
are computed using the smooth approximation presented by
Laurense, et al., adapted for a rear wheel drive vehicle [19].
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Finally, the magnitude of the front and rear maximum longi-
tudinal tire force are constrained by their respective friction
limits (14j) (14k). As the lateral forces are constrained within
the derated brush tire model itself, this completely encodes
the friction limits of each of the tires.

min
z, u

J (14a)

s.t. z(1) = zmeasured (14b)

z(k+1) = fdyn(z
(k), u(k)) ∀k = 1, . . . , N − 1 (14c)

δ ≤ δ(k) ≤ δ ∀k = 1, . . . , N (14d)

Fx ≤ F (k)
x ≤ Fx

... (14e)

δ̇ ≤ δ̇(k) ≤ δ̇ (14f)

Ḟx ≤ Ḟ (k)
x ≤ Ḟx (14g)

F
(k)
xf = χ

(k)
f F (k)

x (14h)

F (k)
xr = χ(k)

r F (k)
x (14i)

|F (k)
xf | ≤ µ cos(αf )F

(k)
zf (14j)

|F (k)
xr | ≤ µ cos(αr)F

(k)
zr (14k)

The total objective J combines Jdriver(k), the objective to
match the driver’s commands (18), Jpath(k), the objective
to tracking the reference path (20), Jactuator(k), the objective
to minimize actuator slew rates (21), Jedge, the objective to
stay within the road boundaries (16), and Jterm, the terminal
objective of the NMPC problem (22). λ(k) is a dynamic
weighting function between matching the driver and track-
ing a reference path (17). The following sections detail the
individual components of the objective function.

J =
∑
k

λ(k)Jdriver(k) +
∑
k

(1− λ(k)) Jpath(k)

+
∑
k

Jactuator(k) +
∑
k

Jedge(k) + Jterm

(15)

A. Safe Operation
Approximating the vehicle body as a set of circles as

presented by Brown and Gerdes [15] yields a computationally
inexpensive formulation to find the signed distance from the
vehicle to the road boundaries. A set of two circles, one at the
front axle and one at the rear approximates the vehicle body
in this work. Within the road boundaries, the signed distance
is positive and crossing a road boundary yields a negative
distance. We define the safe operating region for the vehicle as
the region where the distance to both road edges are positive.
At each stage, k, while within the limits of the safe operating
region, the vehicle incurs no cost. Violating these boundaries
incurs a high quadratic cost given by (16) where d

(k)
edge is the

signed distance to the road boundary at stage k, and Wedge is
the cost on crossing the road boundary.

Jedge(k) =

0 d
(k)
edge > 0 (16a)

Wedge

(
d
(k)
edge

)2

otherwise (16b)

B. Time Variable Secondary Objective

While the system must always keep the vehicle safe, to
be accepted, it must match the driver’s intent as closely
as possible. Because the driver may continuously vary their
driving inputs, predictions of their behavior lose validity
as they are made further into the future. To mitigate this
Schwarting proposed trading between two different secondary
objectives over the prediction horizon through an exponential
weighting function [16]. In the near term, predictions of the
driver’s steering and longitudinal commands are more certain,
making matching them directly more reasonable. Later in the
horizon as the uncertainty in those predictions grows, tracking
a predetermined safe path becomes more appropriate. We
employ the same strategy in this work, decreasing the weight
on matching the driver’s commands exponentially as a function
of time through the horizon according to (17) where γ is a
tuning parameter:

λ(k) = exp(−γk∆t) (17)

The relative contributions of driver matching and path
tracking over the prediction horizon are shown in Fig. 3.

C. Driver Intent

The system obtains the driver’s intended steering commands
by measuring their hand wheel angle directly. The driver’s
intended longitudinal commands cannot be measured directly,
so the system infers them through position measurements
of the throttle and brake pedals. These pedal positions map
linearly onto the force generating capabilities of the motor
and brakes, respectively. We assume that the current driver
steering rate and pedal position remain constant throughout the
NMPC horizon to illustrate this system performs well without
a complex model of the driver’s behavior. This is discussed in
greater detail in Section V-B.

Ideally, small, unnecessary deviations from the driver’s
commands would be eliminated from an ADAS while still
allowing for significant intervention when needed. A 1-norm

0 0.5 1 1.5

0

20

40

60

80

100

Fig. 3. Relative contribution of objective function terms. Further into the
prediction horizon, the projected driver intent becomes less valid. To mitigate
this, the objective of the NMPC formulation transitions from driver matching
to path tracking.
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or absolute value cost function eliminates small deviations
while allowing large deviations when needed, but is not
smooth which can make it difficult for numeric solvers to find
a feasible, optimal solution. We use a log cosh cost function as
shown in (18) where δdriver is the driver’s steering command,
Fdriver is the driver’s longitudinal force command, Wδdriver is the
cost on deviations from the driver’s steering commands, and
WFdriver is the cost on deviations from the driver’s longitudinal
force commands. This function approximates the 1-norm cost
function behavior well, while also being twice-differentiable
and smooth. A scaling factor ηδ is used to normalize the
relatively small value of steering angle in radians and ηFx

scales the relatively large values of longitudinal force in
newtons to kilonewtons.

Jdriver(k) = Wδdriver log cosh
(
ηδ(δ

(k) − δdriver)
)

+WFdriver log cosh
(
ηFx

(F (k)
x − Fdriver)

) (18)

D. Path Tracking and Safe Progress Objective

As the influence of the driver’s current commands dimin-
ishes throughout the horizon, the main objective changes
to maintaining a safe and continuously feasible trajectory
on the roadway. In this region of the NMPC horizon, a
progress objective throughout the horizon ensures the horizon
continuously recedes, rather than simply stopping the vehicle
whenever approaching an environmental boundary. Schwart-
ing’s approach relies on a maximum speed objective as a proxy
for maximum progress [16]. While such an objective performs
adequately in many situations, it can unnecessarily incentivize
the system to operate the vehicle near its operating limits, thus
reducing the robustness of the system. In contrast, the pro-
posed formulation incentivizes matching a predetermined safe
speed profile as a progress objective. In this implementation,
the maximum speed a point mass could navigate a given corner
with the modeled friction limits and road curvature given by
(19) determines the safe reference speed.

vsafe =
√

µg/κ (19)

To accomplish path tracking, the NMPC formulation in-
cludes an objective to follow a predetermined reference path.
A deviation from the reference lateral position, heading, or
speed incurs a quadratic cost given in (20) where We is the
cost on lateral path tracking error, W∆Ψ is the cost on heading
tracking error, and Wux is the cost on speed tracking error.

Jpath(k) = We

(
e(k)

)2

+W∆Ψ

(
∆Ψ(k)

)2

+Wux

(
v
(k)
safe − u(k)

x

)2
(20)

E. Actuator Rates

A penalty on actuator slew rates helps minimize sharp
changes in steering and acceleration and smooth the final
trajectory. The slew rate objective is given in (21) where Wδ̇

is the cost on steering slew rate, and WḞx
is the cost on

longitudinal force slew rate. These costs, in addition to the cost
on matching driver commands, influence the aggressiveness
of an intervention maneuver. Increasing the penalty on large
actuator slew rates incentivizes the controller to deviate from
the driver’s commands sooner when an unsafe condition is
predicted to avoid a sudden large sudden deviation. The
actuator slew rate costs thus provide a method to tune the
invasiveness of the system to fit the skill and comfort level of
an individual driver. A less skilled driver or one that desires
an earlier but smoother intervention can increase the slew rate
costs and achieve that behavior from this system. A more
skilled driver or one that desires less intervention can decrease
these costs, yielding fewer but more aggressive and abrupt
interventions.

Jactuator(k) = Wδ̇

(
ηδ δ̇

(k)
)2

+WḞx

(
ηFx

Ḟx
(k)

)2

(21)

F. Terminal State

The NMPC formulation includes a strong incentive to keep
the vehicle in a known safe state at the end of the prediction
horizon by including a large terminal cost on the path tracking
terms at the terminal stage of the controller. This promotes the
feasibility of future solves. The terminal objective is given
in (22) where k = N is the final stage of the NMPC
prediction horizon, We,N is the cost on lateral path tracking
error, W∆Ψ,N is the cost on heading tracking error, and Wux,N

is the cost on speed tracking error, all at the final stage of the
NMPC prediction horizon.

Jterm = We,N

(
e(N)

)2

+W∆Ψ,N

(
∆Ψ(N)

)2

+Wux,N

(
v
(N)
safe − u(N)

x

)2
(22)

IV. SIMULATION RESULTS

In the following simulations, we show firstly that our choice
of optimization parameters is appropriate for the stated goal.
Secondly, we compare progress objective formulations to show
the advantages of matching a safe reference speed rather than
maximizing speed.

A. Validating Optimization Parameters

A capable ADAS must respond appropriately to the full
range of possible driver commands while maintaining the
safety of the vehicle. In this section, we show that the proposed
system effectively responds to different driver steer angles
given the parameters listed in Table I. All simulations and
experiments presented in this paper make use of these param-
eters. The following simulations show the system’s response
to five equally spaced driver steering commands from the left-
most to the right-most steering limits. In each simulation,
the vehicle travels down a straight road near the right road
boundary at 8 m/s. Because the vehicle is nearer the right
road boundary, the system will need to intervene significantly
when the driver steers right, but very little when they steer
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TABLE I
OPTIMIZATION PARAMETERS

Parameter Value Description
γ 8 decay rate of driver matching
Wedge 1000 path overrun cost
Wδdriver

1/ (π/180) driver steering angle cost
WFdriver

1/0.2 driver longitudinal force cost
Wux 1/302 speed tracking cost
We 1/162 path tracking error cost
W∆Ψ 1/ (300π/180)2 path heading error cost
Wux,N 1 terminal speed tracking cost
We,N 1/0.52 terminal path tracking error cost
W∆Ψ,N 1/ (0.5π/180)2 terminal path heading error cost
Wδ̇ 1/ (500π/180)2 steering slew rate cost
WḞx

1/102 longitudinal force slew rate cost
ηδ 10 steering angle normalization factor
ηFx 1/1000 force normalization factor

left. The initial steer angle state is set to match the driver’s
input, and the driver’s steering rate is set to zero.

Figure 4 shows the optimal NMPC horizon of steer angles
for each of the driver’s commanded steering angles. The driver
may freely steer the vehicle toward the left boundary, as
there is no danger of the vehicle leaving the roadway in that
direction. As the driver steers right, however, the system takes
significant action to keep the vehicle on the road. In each case,
the system responds appropriately to the driver’s commands.
The incurred cost of the driver steer angle matching term in
(18) provides a metric for the severity of the intervention.

B. Maximum Speed vs. Safe Speed Matching

Increasing the speed of a vehicle in a challenging maneuver
increases the risk of dangerous outcomes including loss of
vehicle control. As illustrated by Brown and Gerdes, naively
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right road boundary. Note the incurred costs are colored based on a logarithmic
scale.
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Fig. 5. Turn ten of the west track at Thunderhill Raceway Park. This
hairpin corner will be used in the simulations detailed below as well as the
experiments in Section V.

operating near the vehicle’s limits can reduce robustness to
unmodeled disturbances in MPC implementations [20]. Main-
taining a buffer between the vehicle’s operating states and its
modeled limits improves the robustness of the controller. To
do this, it is important to reduce the vehicle’s speed before
entering a maneuver that would challenge its limits.

Potentially in conflict with this objective of lowering speed
during challenging maneuvers is the progress objective of
the NMPC formulation. As described in Section III, this
formulation incentivizes the vehicle to match a safe reference
speed rather than maximizing speed as a proxy for progress
along the reference path. We show the significance of how
to influence the vehicle’s speed with two sets of simulations
implementing both NMPC formulations through a challenging
hair-pin turn maneuver, turn ten of Thunderhill Raceway
Park’s west track. The simulations assume icy conditions with
a nominal road-tire friction value of µ = 0.3. Each simulation
also demonstrates the performance of two conventional lane
keeping assistants as a baseline. The first implements the
potential field lane keeping assistant proposed by Rossetter,
et al. [21], which is a reasonable proxy for a production lane
keeping assist. The second adds a simple speed limit monitor
to the potential field lane keeping assistant. This monitor
augments the driver’s force command with a linear feedback
term between the vehicle’s current speed and the speed limit.
The monitor will only become active when the vehicle’s speed
exceeds the speed limit, and then may only use up to twenty
percent of the vehicle’s maximum braking capability to reduce
it’s speed. The speed limit for this controller is identical to the
safe reference speed used in the NMPC formulation presented
in this work. These two systems differ fundamentally from the
NMPC formulations as they actively nudge the driver toward
the center of the lane.

The vehicle begins each simulation aligned with the road
at its lateral center near the entry of the corner. The initial
position of the vehicle and one candidate trajectory is show in
Fig. 5. The safe reference speed of this corner is determined
as 7 meters per second using (19). The vehicle’s initial speed
is 9.2 meters per second (5 miles per hour greater than the
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Fig. 6. Comparison of different driver assistance formulations maneuvering
through the hairpin corner shown in Fig. 5. Both NMPC formulations and the
lane keeping assistant implementing a speed limit perform well with perfect
knowledge of road-tire friction. The classic lane keeping assistant cannot
maintain a safe trajectory through the corner. The lane keeping assistant with
speed limit monitoring is much more invasive, restricting the driver’s speed
more than the other systems.

safe speed), and the driver commands zero steer angle and
250 newtons of longitudinal force throughout each simulations
representing a very light acceleration. In the maximum speed
objective formulation, the stage-wise cost on tracking the safe
reference speed as shown in (20) becomes a maximum speed
objective. Additionally, the terminal cost in (22) on matching
the safe reference speed becomes a maximum speed objective.
All other parameters remain equal for both NMPC based
systems.

In the first set of simulations, each system has perfect
knowledge of the friction between the vehicle’s tires and the
roadway. As shown in Fig. 6, the difference in behaviors of
two NMPC formulations with different progress objectives is
small. The classic lane keeping assistant that cannot influence
speed is unable to keep the vehicle safely on the roadway.
The lane keeping assistant with speed limit monitoring does
successfully keep the vehicle near the center of the lane, but as
shown in Fig. 6, it enforces a very conservative speed which
can be frustrating to a driver.

In real-world operation, there are often slight differences
in the modeled and true behavior. One example, described
by Martin et al., is winter conditions where friction between
vehicle tires and the road varies with several conditions [22].
To highlight the sensitivity to unmodeled disturbances, we
introduce a relatively small but typical mismatch in the friction
coefficient used in the NMPC formulation and in the simulator.
The modeled friction coefficient each of the systems at both
tires is µ = 0.3; however, the friction actually available to the
front tire is µactual = 0.28.

Figure 7 illustrates the improved robustness of the safe
reference speed objective over a maximum progress objective.
Like the previous simulation results, the conventional lane
keeping assistant cannot keep the vehicle safely on the road
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Fig. 7. Comparison of different driver assistance formulations maneuvering
through the hairpin corner shown in Fig. 5 with a mismatch in modeled
and experienced friction. The safe reference speed progress objective is more
resilient to this model mismatch and keeps the vehicle safely on the road,
while the maximum speed progress objective exits the roadway. The classic
lane keeping assistant again cannot maintain a safe trajectory through the
corner, and the lane keeping assistant with speed limit monitoring does keep
the vehicle safely on the road, but is much more restrictive than the other
systems.

because it cannot influence the vehicle’s speed. The lane
keeping assistant with speed limit monitoring again does well
to keep the vehicle safe, but it is much more invasive in
restricting the driver’s desired speed. The simulated vehicle
implementing the NMPC formulation with the maximum
progress objective exited the roadway, while the simulated
vehicle with the safe reference speed objective remained safely
on the road. This improvement in robustness comes without
introducing conservatism because the safe reference speed is
based on the modeled friction value, so the NMPC will allow
the driver to take the vehicle up to the modeled limits. The
proposed controller has similar performance to the maximum
speed objective controller when the vehicle is operating near
the safe reference speed with no model mismatch; however,
under even a small amount of friction variation, the proposed
controller has much better performance, marking one novel
contribution of this work.

V. EXPERIMENTAL RESULTS

In this section, real-world experiments performed on a full-
sized test vehicle will show firstly that the vehicle responds
naturally to driver commands other than a simulated constant
input. Secondly, the experiments will validate our choice of
dynamic model, and the system architecture performs ade-
quately amid real-world conditions on a test track. Keeping
an instrumented vehicle safe up to its handling limits adds
confidence that this system can perform its safety tasks in a
dynamic and challenging environment.

In these experiments, information about the environment,
namely the position of road boundaries and the safe reference
speed of the track are determined a priori and embedded into
the NMPC formulation. For simplicity, in these experiments,
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Fig. 8. Example of delay between driver commands and NMPC output. In
this example, the driver’s current steering inputs are held constant over the
prediction horizon. The driver’s commands are effectively delayed by roughly
100 milliseconds.

the nominal trajectory is the centerline of the racetrack, and
the road bounds were set at 2.8 m to either side of the center
line for a total navigable width of 5.6 m. These values enforce
a physical safety buffer when experimenting on track but are
easily adjustable to values appropriate for the scenario at hand,
e.g. the lane width of a road. For production implementations
this information could come from surveyed maps of the
roadways being used along with their posted speed limits.
An online perception stack could augment this information
improving reliability and adding adaptability for a changing
environment as shown by Wille, et al. [23]

A. Experimental Setup

The driver assistance system in this paper was experi-
mentally validated using X1, the student designed and built
electric test platform shown in Fig. 1. X1 relies on steer-,
brake-, and throttle-by-wire systems to control the on-board
actuators. Sensors measure the position and speed of the
steering handwheel as well as the position of the throttle
pedal. A dSpace MicroAutoBoxII provides low-level actuator
control and communications between all measurement and
actuation systems and the PC described below. An OxTS
RT4003 dual antenna RTK GNSS unit produces precision
estimates of the vehicle’s position and velocity states in real
time. The nonlinear program (14) was implemented using the
open-source automatic differentiation package Casadi [24],
and solved using IPOPT, an open source interior point method
solver [25]. The generated solver was run on a conventional PC
with an Intel i7 CPU running Ubuntu 20.04 and the Robotic
Operating System, (ROS) [26].

B. Improving Responsiveness to Driver Commands

Assumptions on the driver’s future behavior become im-
portant when employing this framework on an experimental
vehicle where it must run in real-time. Average solve times
during the experiments performed range between 50 to 100

Fig. 9. Delay mitigated using first-order-hold. Assuming the driver’s input
rates remain constant over the horizon mitigates the delaying effects and
improves responsiveness to the driver.

milliseconds. Solves of this length introduce a delay between
when current values are sampled and the solution which results
from them. To mitigate this delay for vehicle stability and
control, we adopt the replanning strategy proposed by Brown
and Gerdes [15]. This strategy reduces the effect of delays
caused by the relatively large solve time in two ways. First, it
linearly interpolates the previously solved trajectory to supply
commands to low-level controllers operating at a faster rate.
Second, it uses the previously solved trajectory to project the
current state of the vehicle forward in time by 50 milliseconds
to become the initial conditions of the next solved trajectory.

Such solve times also introduce a delay between the driver’s
commands and those executed on the vehicle. This delay
leads to confusion and frustration and may ultimately lead to
the driver’s rejection of the safety system. To mitigate these
delays, we assume the driver’s steering rate remains constant
throughout the horizon, rather than assuming their current

Fig. 10. Vehicle position for skilled driving behavior. The driver remains near
the center of the road throughout, so no intervention is necessary.
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Fig. 11. Driver inputs vs ADAS commands for skilled driving behavior.
Notice the commands output by the ADAS system follow the driver’s
commands closely while the driver operates the vehicle safely.

command will remain constant.
Experiments performed on X1, implementing different as-

sumptions on driver behavior, illustrate the effect of these
assumptions on system performance. In these experiments,
the driver manually inputs an oscillating steering input to
the handwheel, and measurements of the handwheel and road
wheel positions were captured. The first experiment assumes
that the driver will hold their steer angle constant over the
full prediction horizon. Figure 8 shows the delay in steering
between the driver’s handwheel position and the position of
the road wheels. This delay between the driver and vehicle
results from a few aspects of the NMPC formulation, namely:

1) Solve times taking at least 50 milliseconds
2) The first stage of the NMPC prediction horizon is

constrained to the current measured actuator state
3) The driver’s commands are assumed constant throughout
These factors effectively delay the driver’s commands by

approximately 50 to 100 milliseconds. Assuming the driver
will hold a constant steering rate over the horizon yields
a significant improvement in system responsiveness, making
driving feel much more natural. Figure 9 shows the same
experiment with the constant steering rate assumption. Impor-
tantly, though the predictions made using either assumption
quickly lose accuracy compared to the driver’s actual future
inputs, the driver predictions only have a significant effect
on the NMPC solution very early in the prediction horizon.
As described in Section III, the objective transitions from
driver matching to path tracking after the first few hundred
milliseconds. It is also important to note that this assumption
does not affect the safety objective of the formulation.

While this assumption tends to work quite well, it can
cause a temporary deviation from the driver’s intentions in
some situations. Specifically, if the driver changes the direction
of steering rate at the same time the solver experiences an
especially long solve, the constant rate assumption will lead to
a greater deviation from the driver’s command than a constant
position assumption.

Fig. 12. Lateral tire forces for skilled driving behavior. Even though the driver
approaches the modeled tire limits, the system does not intervene, because
their commands result in a safe trajectory for the vehicle.

Because this delay stems from the significant amount of
time it takes to solve the optimization problem, it could also be
mitigated with greater computing resources. We provide this
solution as a means to implement this algorithm in a situation
where computing resources may be constrained, which is often
the case in production vehicles.

C. Driver Matching and Safety

Two experiments demonstrate the proposed system’s actions
given two different driving behaviors, that of a skilled driver
and of a worst-case unskilled driver. In both experiments, the
vehicle enters turn ten of the Thunderhill Raceway Park west
track at a high speed.

The first experiment illustrates the systems reaction to
skilled driving behavior. At the entry of the corner, the driver

Fig. 13. Vehicle position for unskilled driving behavior. The vehicle nears and
eventually touches the right road boundary. The driver does not take action to
keep the vehicle on the road, so the ADAS system must make a significant
intervention.
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Fig. 14. Driver inputs vs. ADAS commands for unskilled driving behavior.
Notice the ADAS must make a significant intervention in both longitudinal
and lateral commands to keep the vehicle safely on the road.

releases the throttle, applies moderate brake pressure, and
steers to navigate through the corner while stabilizing the
vehicle. By braking before entering the corner, the driver can
navigate safely without reaching the limits of the vehicle.
While the controller does include a cost on tracking the path
later in the horizon, the driver is able to control the vehicle
as desired while they are driving safely and effectively. Figure
10 shows the driver moving freely within the road boundaries.

With the driver acting appropriately, both maintaining op-
eration within the vehicle’s limits and the road boundaries,
the assistance system does not need to intervene. Indeed Fig.
11 shows that the driver’s commands are effectively passed
through the assistance system with no modification. Figure
12 shows the estimated limits of the tires and utilized tire
forces according to the model in Section II. Even though the

Fig. 15. Lateral tire forces for unskilled driving behavior. The system must
operate at the modeled limits of tire friction for a short time to keep the
vehicle on the road, but does not remain at the tire limits when it is not
necessary to.

driver operates the vehicle near the modeled friction limits,
the vehicle remains safe and does not approach the road
boundaries.

The next experiment illustrates the system’s reaction to
unskilled driving behavior in the same scenario. This provides
an intuitive worst-case driver to benchmark the controller.
Approaching the corner, the driver maintains full throttle and
applies no steering to navigate through the corner. The vehicle
would leave the roadway at a high speed if no intervention
occurred, likely leading to a serious accident. In this case,
the assistance system deviates significantly from the driver’s
commands as shown in Fig. 14. The assistance system both
applies brake pressure to slow the vehicle down and turns
left to compensate for the driver’s lack of steering. Figure
13 shows that the assistance system succeeds in keeping the
vehicle within the safe operating boundaries of the roadway.

Figure 15 shows the tire force utilization through the worst-
case driver test. The controller successfully drives the vehicle
at the limits of handling as required to safely navigate the turn
at speed. This behavior represents the most important feature
of this system: while it does not push the vehicle up to its
limits during normal operation, the system effectively operates
at the limits when necessary to keep the vehicle safe.

VI. CONCLUSION

In this paper we have presented a novel approach to ADAS
using NMPC. This controller tries to directly match driver
commands until those commands would result in an unsafe
situation for the vehicle. To do this effectively, the controller
modulates the lateral and longitudinal inputs of the vehicle to
ensure the tire limits are not exceeded and indeed not reached
unless necessary. Simulations show the importance of choos-
ing an appropriate progress objective that does not incentivize
the vehicle to operate near its limits when unnecessary, as this
reduces the robustness of the system. Two experiments on a
test vehicle demonstrate the effectiveness of this system with
two distinct driving behaviors: one of an experienced driver
who can successfully navigate the vehicle on their own, and
one of an unskilled driver who would run the vehicle off the
road without intervention.
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