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Abstract—Path planning is an essential function in an 
intelligent vehicle, especially when driving in scenarios cluttered 
by large-scale static obstacles. Traditional path planners often 
struggle to find a balance among speed, accuracy, and optimality 
in their solutions. In this paper, we introduce an Adaptive Pure 
Pursuit (APP) planner, which is designed to be fast and 
near-optimal for autonomous driving in cluttered environments. 
The APP planner generates feasible paths through a simulated 
closed-loop tracking control process of a virtual vehicle. If a 
derived path encounters obstacles, an adaptive refinement step is 
taken to locally reduce these collisions. Unlike search-based 
planners that suffer from the “curse of dimensionality” and 
optimization-based methods that often run slowly, the APP 
planner operates extremely fast. The high speed stems from the 
fact that both the virtual controller simulation and the refinement 
step involve computations with zero degrees of freedom. The 
proposed APP planner outperforms the prevalent optimization- 
based and search-based path planners, as shown by comparative 
simulations. Real-world experiments were also conducted to 
validate the APP planner, and its source codes are provided at 
https://github.com/libai1943/Adaptive_Pure_Pursuit_Planner. 
 

Index Terms—Path planning, autonomous driving, cluttered 
environment, pure pursuit control, Adaptive Pure Pursuit (APP) 

I. INTRODUCTION 

UTONOMOUS vehicles (AVs) are responsible for 
performing complicated tasks, such as exploration [1], 

rescue [2], and surveillance [3]. These tasks often involve 
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driving in complex environments cluttered with numerous 
small-sized obstacles. When an AV drives in a highly cluttered 
environment, path planning is a crucial component that ensures 
traverse safety [4]. In that case, the challenge of path planning 
is to quickly identify a way that avoids massive obstacles while 
ensuring that the path is kinematically feasible. 

Broadly speaking, the complexity of path planning arises 
from the need to simultaneously consider multiple constraints, 
such as kinematic constraints and collision-avoidance 
constraints, while exploring the vast solution space for the 
optimal path [5,6]. There have been many path planners [7,8], 
most of which struggle to balance solution speed, accuracy, and 
completeness in cluttered environments filled with large-scale 
obstacles. This paper aims to propose a path planner that offers 
both speed and safety for autonomous driving in highly 
cluttered environments. 

A.  Related Works 

This subsection reviews the existing path planners suitable 
for a car-like robot or wheeled robot in a cluttered environment. 
The involved planners are divided into three categories, namely 
reaction-based, sampling-based, and refinement-based methods, 
the details of which are analyzed as follows. 

A reaction-based path planner is featured by modifying the 
ego vehicle’s motion according to its collision levels with 
surrounding obstacles reactively [9]. Typical reaction-based 
planners include the potential field method (PFM) [10] and 
vector field histogram (VFH) [11]. In PFM, obstacles are 
regarded as negative magnets to repel the ego vehicle while the 
goal is regarded as a positive magnet that attracts the ego 
vehicle; the motion of the ego vehicle at each step is influenced 
by both repulsive and attractive forces, leading to a path that 
balances traverse efficiency and collision safety. PFM runs fast 
because reactively simulating the adjustment forces is a 
zero-degree-of-freedom process. Similar with that in PFM, a 
polar histogram is deployed in VFH to model the repulsive 
force information. Li et al. [12] utilized the social force model 
to describe the agent-to-goal and agent-to-obstacle forces when 
generating coarse trajectories for multiple vehicles. Although 
reaction-based planners are remarkably fast, they have two 
common limitations. First, reaction-based planners focus on the 
microscopic behaviors of the ego vehicle but ignore the overall 
path/trajectory smoothness from a macroscopic viewpoint [13]. 
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Second, the paths derived by reaction-based planners do not 
guarantee to be kinematically feasible, especially when the 
derived paths are curvy. 

Sampling-based planners are widely used in AV navigation 
[14,15]. The sampling efficiency is enhanced to tackle cluttered 
workspaces enriched by obstacles. Qureshi and Ayaz [16] 
proposed a bi-directional rapidly-exploring random trees 
(Bi-RRT) method, which samples path primitives from both the 
initial and goal poses to promote runtime efficiency. Similarly, 
a multi-stage hybrid A* search algorithm [17] partitions the 
whole sampling process if there exist bottlenecks narrowed by 
cluttered obstacles halfway, which decouples a global sampling 
process into several local ones and thus saves runtime. A 
generalized Voronoi diagram (GVD) guided RRT is proposed 
by Chi et al. [18]. Since GVD is insensitive to the density of 
obstacles in a workspace, a global reference line provided by 
GVD facilitates the sampling process. Li et al. [19] noticed that 
massive obstacles would render massive homotopy classes, 
thus an optimal homotopy class deserves to be greedily selected 
in a parallel-computation architecture. Similarly, an 
optimality-enhanced hybrid A* search algorithm [20] is 
proposed, which continues to sample better paths even after a 
feasible one is already available. The output of a 
sampling-based planner is kinematically feasible and collision- 
free, but the derived path is commonly sub-optimal, jerky, and 
non-smooth [21]. The solution quality of a sampling-based 
planner is influenced by the search algorithm associated with 
the sampler, but a search algorithm typically suffers from the 
curse of dimensionality [22], thus making a sampling-based 
planner fail to balance planning quality and speed.  

Refinement-based methods are typically employed during 
the refinement stage of a coarse-to-fine planning process 
[23,24]. Numerical optimization is a common approach 
employed in the refinement stage [3,25,26]. However, 
numerical optimization has two limitations. First, it is 
computationally heavy, which degrades the time efficiency of a 
path planner. Second, the output of numerical optimization is 
deeply influenced by the initial guess because a gradient-based 
optimizer only finds a local optimum close to the initial guess. 
While non-optimization methods are also utilized for 
refinement [27,28], these methods primarily enhance the 
smoothness of a coarse path and offer limited capabilities for 
ensuring path safety. This indicates that a qualified 
refinement-based planner should be aware of collision risks, in 
addition to the basic smoothing-path duty. If a smoothed path 
involved collisions, the conflicting waypoints are repeatedly 
modified until a simulated tracking controller does not render 
collisions [29], or a B-spline curve is safe [30]. Particularly 
regarding how to modify the conflicting waypoints, a 
collision-based path deformation (CBPD) strategy was 
proposed by Hu et al. in [31], which pushes each conflicted 
waypoint in a direction that can reduce the collision level. 
However, CBPD has a few limitations. First, it works well on a 
circular robot but is inapplicable to a rectangular car-like robot. 

Second, CBPD only deforms the waypoints once, thus it does 
not guarantee the refined path is safe, especially in dealing with 
complex cases. Therefore, the existing refinement-based 
methods have room for improvement in time efficiency and 
solution safety. 

As a conclusion of the whole subsection, the prevalent path 
planners for cluttered environments are imperfect in balancing 
feasibility, safety, quality, speed, and completeness. 

B.  Motivations and Contributions 

The aforementioned three types of planners, i.e. the reaction- 
based, sampling-based, and refinement-based planners, have 
their strengths and limitations. It is natural to grasp their merits 
and build an integrated planner that quickly finds kinematically 
feasible and safe paths. Concretely, a sampling-based planner 
can roughly generate a global path for homotopic guidance; a 
reaction-based planner can quickly enhance the kinematic 
feasibility along the global path; if the enhanced path involves 
minor collisions, then it is polished via a refinement planner. 
This idea motivates us to propose a three-stage planner with 
sampling-, reaction-, and refinement-based methods involved. 

The proposed path planning methodology is named the 
Adaptive Pure Pursuit (APP) planner, which has the following 
two contributions. 

First, a reaction-based method is proposed to find a 
kinematically feasible path in a fast and lightweight way. As 
opposed to the prevalent reaction-based planners that often 
involve potentials or forces, we deploy a controller to drive a 
virtual chassis, thereby ensuring that the tracked path is 
naturally feasible w.r.t. kinematics. The generation of such a 
feasible path is fast because driving a virtual chassis under 
certain control laws is a zero-degree-of-freedom simulation 
process. Users may even adopt a complicated model to obtain a 
dynamically feasible path in the framework of our proposed 
method. 

Now that kinematically feasible paths are available with ease, 
the remaining challenge is how to modify a kinematically 
feasible path to make it free from collisions. An adaptive 
refinement strategy is proposed to resolve the conflicts in a 
kinematically feasible path, which is the second contribution of 
this study. In the adaptive refinement strategy, locally 
conflicting segments of a path are nudged according to collision 
depth information, which brings sufficient flexibility to the 
APP planner in contrast with rigid-sampling-based planners. 
The adaptive refinement process is iterative, with increased 
emphasis on integrating locally conflicting segments, thereby 
enhancing the smoothness of the whole path and avoiding 
finding jerky paths. 

C.  Organization 

In the remainder of this paper, Section II formulates the 
concerned path planning problem, and Section III introduces 
our APP planner. Simulation results are discussed in Section IV. 
Real-world tests are reported in Section V before conclusions 
are drawn in Section VI. 
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II. PROBLEM STATEMENT 

This section formulates the path planning problem and 
provides definitions of necessary variables. As a fundamental 
assumption, the environment layout and obstacle locations are 
static and fully available while moving obstacles are not 
considered. The ego vehicle is designated to reach a goal pose 
from a specified initial pose, during which the ego vehicle 
drives with its kinematic capability and avoids collisions with 
obstacles in the cluttered environment. The concerned path 
planning scheme is stated as the following optimal control 
problem (OCP): 
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In this problem, variable maxs  denotes the length of the to-be- 
planned path (unknown a priori), variable max[0, ]s s  denotes 
the shift index, ( )sx  stands for state variables, and ( )su  refers 
to control variables. The cost function J is related to maxs , ( )sx , 
and ( ).su   kinematicsd ( ) d ( ),  ( )s s f s sx x u  denotes kinematic 
constraints. ( )su  and ( )sx  are bounded by u , u , x , and x . 
Two-point boundary-value constraints are imposed for ( )su  
and ( )sx  via initx , goalx , initu , and goal ,u  respectively.   is a 
mapping from the vehicle state to its footprint, i.e., the region 
that the ego vehicle occupies on the 2-dim ground space. obs  
denotes the region occupied by environmental obstacles on the 
2-dim ground space. Thus   obs( ) , s s   x   denotes the 
nominal collision-avoidance constraints. The details behind 
this OCP are presented as follows. 

A.  Vehicle Kinematic Constraints 

For non-extreme driving conditions, the well-known single- 
track model is capable of describing the kinematic principle of 
the ego vehicle [32]. Thus,  kinematicsd ( ) d ( ),  ( )s s f s sx x u  is 
presented as 
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These equations indicate that  ( ) ( ), ( ), ( )s x s y s sx  and ( )su  
( )s , wherein  ,x y  denotes the location of a reference 

point on the ego vehicle (we choose the midpoint of the rear 
axle in this study),   stands for yaw angle, and   is the 
steering angle. LW denotes the wheelbase of the ego vehicle. 
 As the sole control variable in this concerned problem, ( )s  
 max[0, ]s s  determines the overall shape of a planned path. It 
is required that the steering angle is mechanically bounded: 

max max( ) ,  [0, ],s s s            (3) 

where max  stands for the maximum allowable steering angle. 

B.  Collision-avoidance Constraints 

Let us define the four vertexes of the ego vehicle as A, B, C, 
and D.  ( )s x  denotes the rectangle ( ) ( ) ( ) ( ),A s B s C s D s  
which should not overlap with any of the static obstacles in the 
environment. This work assumes that each obstacle is convex. 
Concave obstacles, if exist, need to be divided into convex ones 
to meet this assumption. An overlap between any obstacle and 
the ego vehicle’s footprint is prohibited at any max[0, ].s s  A 
analytical method to model inter-polygon collision-avoidance 
constraints is the triangle-area criterion [33]. 

C.  Cost Function 

A cost function is deployed to encourage finding smooth and 
short paths: 

  max 2

max smoothness 0
w ( ) d ,

s
J s


  


           (4) 

wherein smoothnessw 0  is a weighting parameter. 

III. PRINCIPLE OF APP PLANNER 

This section introduces the proposed APP path planner. We 
present the overall framework before entering into the technical 
details of each module. 

A.  Overall Framework 

The overall framework is presented in Algorithm 1. Most 
procedures of the proposed planner lie in a while loop, where an 
intermediate path is iteratively updated until it becomes totally 
collision-free. 

Concretely, each iteration of the while loop ends with an 
intermediate path, which would be further checked for 
collisions in the next iteration. If an intermediate path involves 
collisions, then it is divided into local segments where 
conflicting waypoints are clustered. Herein, a conflicting 
waypoint refers to an invalid vehicular pose along the 
intermediate path that makes the ego vehicle collide with 
surrounding obstacles. After the local segments are defined, 
they should be polished sequentially. Alternatively, the local 
segments can be processed in a faster way via parallel 
computing because the segments are mutually independent. 
When all local segments are polished, a global path is generated 
via simulating a zero-degree-of-freedom tracking process, 
which is the end of the current iteration. If the derived global 
path still involves collisions, it deserves to be further processed 
in the next iteration, otherwise the algorithm should break out 
of the while loop. 

The core contribution of Algorithm 1 is the local refinement 
function ()PolishLocalSegment , where a local path is sampled 
by simulating the tracking process of a virtual vehicle chassis. 
This idea has the merit that a sampled path is naturally feasible 
w.r.t vehicle kinematics or even dynamics. The sampling 
process is embedded in an iterative framework so that the 
sampled path can adjust with sufficient flexibility to avoid 
collisions with the environmental obstacles. 

Algorithm 1 maintains two types of paths, namely the carrot 
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path and the smooth path. A carrot path refers to one that is 
tracked by a pure-pursuit controller. This controller determines 
the steering angle of our ego vehicle based on the relative 
position between the vehicle’s current pose and a point ahead 
on the carrot path. This forward point is referred to as the 
“carrot point”, a term inspired by the image of a donkey chasing 
a carrot that remains just out of reach. The movement of these 
carrot points creates a path called the carrot path. The smooth 
path, on the other hand, denotes the trajectory of a fixed 
reference point on the virtual chassis (typically the movement 
of the rear axle) when it tracks the carrot path. 

The next few subsections provide detailed principles of the 
functions that appear in Algorithm 1. 

B.  Find a Global Route 

This subsection outlines the principle of ()SearchA*Path  in 
Line 1 of Algorithm 1. The function’s input includes obstacle 
data from the environment (labeled as map) and the initial/goal 
positions (referred to as pose). We model the workspace as a 
map divided into grid cells, each marked as 1 (occupied) or 0 
(unoccupied). Following this, the map is dilated by a radius 
equivalent to the half-width of the ego vehicle. This dilation 
results in the expansion of the occupied grid cells. Compared 
with the original map, the dilated map expands the scale of 
those grids with the status of 1. For navigation, we utilize the 
A* search algorithm [34] to establish a path on the dilated map 
from the grid cell of the initial pose to the grid cell containing 
the goal pose. The derived path is denoted as global ,_carrot path  
which consists of a sequence of points defined by their x and y 
coordinates. 

C.  Sample a Smooth Path by Pure-pursuit Tracking Control 

The principle of ()SamplePurePursuitPath , which appears in 
Line 4 of Algorithm 1, is introduced in this subsection. The 
function’s input includes a carrot path global_carrot path  and the 
aforementioned pose. A virtual chassis is set up to model the 
kinematics of the ego vehicle. The virtual chassis is originally 

placed at the initial pose recorded in pose. Thereafter, the 
virtual chassis begins to move by tracking the carrot path via a 
pure-pursuit controller, which determines the ego vehicle’s 
front wheel steering angle based on the relative position 
between the vehicle’s current pose and a carrot point along the 
carrot path [35]. The principle of the basic pure pursuit 
controller is briefly presented in Appendix. 

In simulating the movement of the virtual chassis, the 
pure-pursuit controller updates the control demand in every 

simt  seconds. A smooth path is derived if one observes the 
motion of the virtual chassis until it is close to the goal pose. 
However, the obtained smooth path is not continuous in the 
curvature. This is because the continuity of curvature is directly 
related to the continuity of steering angle, which jumps to a 
different value at every simt  seconds. To guarantee the 
obtained smooth path is curvature-continuous, this study 
additionally requires that the derivative of steering angle is 
upper bounded by a user-specified parameter maxω 0.  
Specifically, suppose that a previous steering angle command is 

0  and a new steering angle command 1  is available at 1t .t   
We require that the virtual chassis responds during 

 sim1 1t , t tt    in the following way: the steering angle 
changes from 0  to 1  continually and quickly. This means 
that ( )t  is the solution to the following optimal control 
problem (OCP), where maxω  denotes the maximum allowable 
value of the steering angle derivative. 
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The analytical solution to OCP (5) can be easily found by 
Pontryagin’s Maximum Principle [36]. Notably, sim1(t t )    is 
not necessarily equal to 1 , but ( )t  would try its best to reach 

1  earlier than sim1t tt    . 
With the obtained ( )t  and a constant velocity const( ) vv t  , 

one can simulate the motion of the virtual chassis during 

Algorithm 1. Overall Framework of Proposed APP Planner 

Function global, ( ),PlanP_  _ ath  is completed smooth path map pose     

1. global ,( )SearchA*Path_  carrot path map pose ; 
2. Initialize init init

left left right right_ 0,  0,  bf ,  bfis completed iter buffer buffer    ; 
3. while maxouter _iter ,iter   do 
4.     global global global, ,( )smooth path carrot path carrot path pose    SamplePurePursuitPa h _  t_  _ ; 
5.     global( ),conflict id smooth path map IdentifyConflicting_ _  Points ; 
6.     left right, ,( ) conflict segms conflict id buffer buffer CreateConflictingSegments_ _ ; 
7.      if ,conflict segms  _  then 
8.         _ 1is completed  ; 
9.          return; 
10.      end if 
11.      Initialize _polished segms  ; 
12.      for each ,segm conflict segms _ do 
13.          local global global( , , ), ,carrot path map segm smooth path carrot path conflict id PolishLocalSegment_   _  _  _ ; 
14.          local_ _ _polished segms polished segms carrot path  ; 
15.      end for 
16.     global global , ,( )carrot path carrot path polished segms conflict segms StitchPoli_ _  shedSegm _s _e  nt ; 
17.     left left left right right rightbf ,  bfbuffer buffer buffer buffer      ; 
18.     ++iter ; 
19. end while 
20. return; 
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 sim1 1t , t t .t   The - -x y   state that the virtual chassis 

reaches at the moment sim1t tt     is recorded in a waypoint 
and further stored in a vector. The -x y  coordinate of the carrot 
point that the virtual chassis tracks during  sim1 1t , t tt    is 
recorded in another vector. 

The outputs of ()SamplePurePursuitPath  are the two vectors 
mentioned above, which are recorded as globalsmooth path_  and 

global.carrot path_  The waypoint number in globalsmooth path_  is 
identical to that in global_carrot path . Let us define the waypoint 
number as pathN  for future usage. 

D.  Identify Conflicting Local Segments along Global Path  

This subsection introduces ()IdentifyConflictingPoints  and 
()CreateConflictingSegments . 

The function IdentifyConflictingPoints  outputs the indices of 
the invalid waypoints in global.smooth path_  Concretely, the ith 
waypoint - -i i ix y   is regarded as invalid if the corresponding 
footprint involves collisions, i.e.,    obs, , .i i ix y     
Detailed principle of the collision checker is introduced in [37]. 
The output of this function is called conflict id_ . 

Invalid indices conflict id_  would be further processed in 
the function CreateConflictingSegments  to form local segments. 
Concretely, a one-dimensional array   is formed, which 
consists of as many as pathN  0-valued elements. As we have 
mentioned earlier, pathN  is the count of waypoints in 

global.smooth path_  All elements in   are initially set to 0, and 
the elements whose indices are recorded in conflict id_  would 
be called seeding elements. For a seeding element indexed as i , 
we trace backward to 1, 2, ...,i i    until we find ki  , which 
satisfies the following criterion: 

    lef1 1 t

k

1
, k 1 .

i

j j j jj i
x x by iry uffe


  
       (6) 

In this context, ( , )j jx y  represents the coordinate of the jth 
waypoint in global ,smooth path_  while leftbuffer  is the trace-back 
distance threshold. Specifically, (6) stipulates that the distance 
between the seeding element and the ( k) thi   waypoint along 
the smooth path should exceed leftbuffer , or alternatively, the 
( k) thi   waypoint is the first element in global.smooth path_  
Once k is determined, the elements in   at indices 1,i   

2, ..., ki i    are set to 1. 
A similar forward trace to 1, 2,i i   etc., is performed until 

an index mi   is found that satisfies (7), wherein rightbuffer  is 
the trace-forward distance threshold. The elements in   at 
indices 1, 2, ..., mi i i      are set to 1. 

    m

1 1 patri h1 ght, m .
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In essence, these operations ensure that the left and right 
neighboring elements of a seeding element are set to 1, akin to 
planting a seed that grows in both directions in array .  The 
seed growing intensity is determined by user-specified 
parameters left right,  0,buffer buffer   which are initialized in 
Line 2 of Algorithm 1 via user-specified parameters init

leftbf  and 
init
rightbf . leftbuffer  and rightbuffer  would further increase in Line 

17 of Algorithm 1, which is introduced in Section III.G. 
After all of the seeding elements are processed, we check   

and discard those 0-value elements, thus dividing the original 
array into local segments. Each segment contains an ascending 
sequence of indices. The output of CreateConflictingSegments  

is denoted as a vector conflict segms_ . If conflict segms_  is 
empty, then it indicates that all of the sampled waypoints along 
the globalsmooth path_  are collision-free, thus the entire planner 
exits with the current globalsmooth path_ , which is safe and 
kinematically feasible (Line 7–10). Particularly in Line 8 of 
Algorithm 1, _is completed  is a boolean variable that indicates 
whether the APP planner finds a valid path finally (1 = success, 
0 = failure). If conflict segms_  is not empty, then an extra 
procedure is needed to refine the conflicting local segments, 
which would be introduced in the next subsection. 

E.  Refine Local Segments via Adaptive Adjustments 

This subsection introduces Lines 11–15 of Algorithm 1, 
which are about how to refine each local segment in the vector 
conflict segms_  in a for loop. Without loss of generality, we 
focus on one local segment segm conflict segms _ .  

Local segment refinement is done in ()PolishLocalSegment , 
the pseudo-code of which is listed in Algorithm 2. 

In Algorithm 2, Line 1 defines the starting and ending 
indices, i.e., startid  and end.id  Line 2 defines the initial and goal 
poses in the local segment refinement scheme. Lines 3–5 cut 
variables global ,smooth path_  global ,carrot path_ and conflict id_  
to concentrate on the concerned local segment. A for loop, 
spanning from Lines 6 to 28 of Algorithm 2, is deployed to 
repeatedly refine the local path segment, up to a maximum of 

maxinner_iter  iterations. In each iteration, we assess whether 
each waypoint along the local smooth path (denoted as 

localsmooth path_  in Line 4) is conflicting (Line 24). If one 
waypoint is conflicting (Line 9), then we evaluate the collision 
rates on both halves of the vehicle footprint (Line 10), that is, 

left right, [0,1].rate rate   If the collision rate is higher on the 
vehicle’s left half side ( left rightrate rate , Line 13), then the 
local carrot path localcarrot path_  is nudged rightwards to reduce 

left .rate  Conversely, if left right ,rate rate  then the local carrot 
path nudged leftwards. The method for determining the nudge 
depth (Lines 10–19) is a key innovation of this paper and will 
be introduced in more details later. The nudging effects of all 
conflicting waypoints are integrated into localcarrot path_  
before a virtual chassis is used to track this local carrot path in 
Line 22 of Algorithm 2. Notably, the derived localsmooth path_  
and localcarrot path_  are resampled to ensure the number of 
elements in the local smooth path or local carrot path always 
equals end start( ).id id  Maintaining a consistent path scale is 
crucial, as it enables the local carrot path localcarrot path_  to 
perfectly replace the corresponding segment in the global carrot 
path later (Line 16 of Algorithm 1). Line 24 of Algorithm 2 
examines the resampled local smooth path localsmooth path_  for 
potential collisions. If no collision is found (Line 25), then the 
function ()PolishLocalSegment  exits, otherwise a new iteration 
is executed until the maximum iteration count maxinner_iter  is 
reached. 

The principle to define the nudge depth is introduced at the 
end of this subsection. As depicted in Fig. 1, the function 

 ,map wpMeasureCollisio ates  nR  measures the overlap rates 
between the two halves of the vehicle body and the obstacles if 
the vehicle stays at a pose wp. As defined in Line 8 of 
Algorithm 2, wp denotes the configuration of one specified 
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waypoint along local .smooth path_  The two halves are formed 
by dividing the ego vehicle along its longitudinal axle. Suppose 
that the vehicle length is LL, vehicle width is LB, the overlapped 
area in the left half is Sleft, and the overlapped area in the right 
half is Sright, then leftrate  and rightrate  are defined as 

left
left

right
r

L

g
L

i h
B

t

B0.5L L
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.

L

,

5L

S
rate

S
rate 






 

        (8) 

Eq. (8) indicates that left right, [0,1].rate rate   
,tb  a variable representing the trace-back distance, is 

defined in Line 11 of Algorithm 2, where left rightrate rate  
ranges from 0 to 1 and maxtraceback_length 0  is a 
user-specified parameter defining the maximum trace-back 
length. The reason why left axr might traceback_lengthrate rate   
is used is given as follows. 

When one waypoint wp  is found conflicting, a natural idea 
is to adjust the carrot point cp  associated with wp . This idea is 
intuitively correct because a conflict that happens on wp  is 
exactly caused by tracking cp . However, we notice that 
adjusting cp  is empirically ineffective because it is “too late” 
to avoid a collision. Therefore, we anticipate by adjusting an 
earlier carrot point (denoted as newcp ) that is ahead of cp  along 
the local carrot path local.carrot path_  Suppose that cp  is 
indexed i  in the localcarrot path_  while newcp  is indexed 

 (1 ),id id i   id  is determined as follows: 

 1

1 1arg min ,  ,
idid

i

k k k kk
tb x x y y


 

         (9) 

where ( , )k kx y  denotes the coordinate of the kth point along 

local.carrot path_  Eq. (9) indicates that tb  determines the 
anticipation intensity, that is, the distance between newcp  and 
cp . Recall that tb defined in Line 11 of Algorithm 2 is in 
proportion to the collision degree. At this point, our idea is that, 
a more severe conflict degree left rightrate rate  deserves a 
longer trace-back length tb . The aforementioned procedure 
defines the function ()FindMatchedCarrotPointID  in Line 12 of 
Algorithm 2. Once id  is determined, newcp  could be identified 
accordingly. Lines 13–19 present the nudging rule to adjust 

newcp  along the local carrot path. Let us take the branch 

left rightrate rate  for example. Given that the collision degree is 
higher on the left side, newcp  should be moved rightward. As 
illustrated in Fig. 2, the nudging direction   is orthogonal to 
the orientation angle of the ego vehicle at wp, that is, 

. π / 2.wp    Fixing the unit nudging distance to a user- 
specified parameter Δs > 0  yields that 

 new new

new new

. . Δs cos ,

. . Δs sin ,

cp x cp x

cp y cp y




  
  

      (10) 

which is in accordance with Lines 14 and 15 if one replaces   

Sleft

Y

O X

Sright

obstacle

obstacle

wp.x

wp.y

wp.θ
 

Fig. 1. Schematics on overlap regions between ego vehicle’s two haves and
environmental obstacles. 
 

wp.θ

carrot_pathlocal

smooth_pathlocal

wp

wp.θ
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n

ew
.y

Fig. 2. Schematics on nudging procedure for reshaping local carrot path. 

Algorithm 2. Local Segment Refinement 

Function local

global global

( ,

, )

,

,

carrot path map segm

smooth path carrot path conflict id

 Polish_  LocalSegment

    _  _  _
 

1. start [1]id segm , end [end]id segm ; 
2. local global start global end[ ], [ ]pose smooth path id smooth path id   _  _ ; 
3. Initialize local start end[ : ]conflict id conflict id id id_ _ ; 
4. Initialize local global start end[ : ]smooth path smooth path id id_ _ ; 
5. Initialize local global start end[ : ]carrot path carrot path id id_ _ ; 
6. for max( 1; inner_iter ; ),iter iter iter      do 
7.     for end start( 1; ; + + ),i id id ii      do 
8.         local[ ]smooth pathwp i _ ; 
9.         if local[ ] 1,conflict id i _  then 
10.              left right[ , ] ,rate rate map wp MeasureCollisionRat s  e ; 
11.             left right maxtraceback _lengthtb rate rate  ; 
12.              local , ,id carrot path i tb FindMatchedCarrotPointI _   D ; 
13.             if left right ,rate rate  then 
14.                 local local_ [ ]. _ Δs sin( )[ ]. .carrot path id x carrot path id x wp  ;
15.                 local local_ [ ]. _ Δs cos( )[ ]. .carrot path id y carrot path id y wp  ;
16.             else 
17.                 local local_ [ ]. _ Δs sin( )[ ]. .carrot path id x carrot path id x wp  ;
18.                 local local_ [ ]. _ Δs cos( )[ ]. .carrot path id y carrot path id y wp  ;
19.             end if 
20.         end if   
21.     end for 

22.     
 local local

local local(

,

, )

smooth path carrot path

carrot path pose



SamplePurePursuitPa _  th

_  _
; 

23.     
 local local

local local

,

,( )

smooth path carrot path

smooth path carrot path



ResamplePaths

_  _

_  _
; 

24.     local local( ),conflict id smooth path map IdentifyConflictingPoi _  nts_ ; 

25.     if local[ ] 0,
j

conflict id j  _  then 

26.         break; 
27.     end if 
28. end for 

29. return; 
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with . π / 2.wp   The opposite case in Lines 17 and 18 could 
be analyzed in the same way. 
 The output of ()PolishLocalSegment  is local ,carrot path_  
which consists of end start( )id id  elements. All of the adjusted 
local carrot paths are gathered in a vector called 
polished segms_  (Line 14 of Algorithm 2). 

F.  Integrate Refinements in Local Segments 

The function ()StitchPolishedSegments  is used to update the 
global carrot path globalcarrot path_  by integrating the local 
refinement achievements stored in polished segms_  (Line 16 
of Algorithm 1). As stated in the preceding subsection, the scale 
of each local carrot path is not altered after the polishment, thus 

()StitchPolishedSegments  simply uses each refined local carrot 
path to replace the corresponding segment along the global 
carrot path. The pseudo-code is listed in Algorithm 3. 

Algorithm 3. Locally Refined Segment Integration 

Function global global

)

,

,

(carrot path carrot path

polished segms conflict segms

_ _  

                 

StitchPolishedSegments

                         _  _
 

1. for ( 1; .size(); + + ),i i polished segms i  _   do 
2.     [ ]conflict segm conflict segms i_ _ ; 
3.     start [1]id conflict segm _ , end [end]id conflict segm _ ; 
4.     global start end[ : ] [ ]carrot path id id polished segms i_ _ ;  
5. end for 

6. return; 

G.  Prepare for a New Iteration in Outer Loop 

Once globalcarrot path_  is updated in Line 16 of Algorithm 1, 
one needs to make preparations for the next iteration. As shown 
in Line 17 of Algorithm 1, leftbuffer  and rightbuffer  are 
increased by leftbf  and rightbf , respectively. Herein, leftbf  
and rightbf  are user-specified parameters that decide how fast 
the variables leftbuffer  and rightbuffer  should increase during the 
while-loop iteration. When leftbuffer  and rightbuffer  are larger, 
the conflicting waypoints identified by the function 

()IdentifyConflictingPoints  tend to gather in a smaller number of 
segments in ().CreateConflictingSegments In Line 18 of 
Algorithm 1, the index iter  is added by 1 to record the iteration 
cycle. If a maximum cycle is reached (Line 3 of Algorithm 1), 
the entire planning algorithm exits with a failure flag 

_ 0is completed  . 

IV. SIMULATION RESULTS AND DISCUSSIONS 

Simulations are conducted to investigate the efficiency of the 
proposed APP planner.  

A.  Simulation Setup  

Simulations are executed on an i9-9900 CPU that runs at 
2×3.10GHz. Basic parametric settings are listed in Table I. A 
typical curvy road scenario containing a right-turn and two 

Fig. 3. Planned paths and corresponding footprints of two simulation cases. This figure is seen more clearly if zoomed in. 
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Fig. 4. Curvatures of planned paths in two simulated cases. 

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 

 
U-turns is defined, where static obstacles are irregularly placed 
to clutter the drivable area along the road [38]. 

TABLE I. PARAMETRIC SETTINGS FOR SIMULATIONS 

Parameter Description and unit Value

LW Wheelbase of the ego vehicle (m) 2.800 

LB
 

Width of the ego vehicle (m) 1.942 

LL Gross length of the ego vehicle (m) 4.689 

LR Rear hang length of the ego vehicle (m) 0.929 

max  Upper bound of ( )t (rad) 0.7 

maxω  Upper bound of d ( ) / dt t  (rad/s) 2.5  

maxouter _iter  Maximum iteration number of the while 
loop in Algorithm 1 

10 

init init
left rightbf ,  bf  

Initial values of trace-back and track- 
forward thresholds used for determining 
conflicting local segments (m) 

4.0, 4.0

left rightbf ,  bf   Additional values of trace-back and 
track-forward thresholds (m) 

5.0, 5.0

simt  Unit time step in simulating pure pursuit 
control process (s) 

1.0 

constv
 

Constant velocity in simulating tracking 
control process (m/s) 

1.0 

maxinner_iter  Maximum iteration number of the for 
loop in Algorithm 2 

200 

maxtraceback _length
 

Maximum trace-back length used for 
determining the matched carrot point in 
Line 11 of Algorithm 2 (m) 

4.0 

Δs  Unit nudging step length (m) 0.1 

B. On the Efficiency of APP Planner 

This subsection presents the efficiency of the proposed APP 
path planner in dealing with cluttered environments. We 
defined two distinct path-planning scenarios by placing 16 and 
20 static polygonal obstacles in a randomized pattern. Fig. 3 
visually illustrates the generated paths along with the 
corresponding vehicle footprints, demonstrating the APP 
planner’s capability to maneuver around environmental barriers. 
Fig. 4 further validates that the path curvatures in both cases are 
not only continuous but also within reasonable limits. This 
indicates that the paths planned by our APP planner can be 
easily tracked by a low-level controller. 

It's worth noting, as Fig. 3 illustrates, that the APP planner is 
not able to reach a predefined goal pose strictly. This inherent 
limitation arises because the proposed APP planner indirectly 
manipulates the smooth path via the carrot path without an 
explicit strategy to fix the end of the smooth path to a specific 
pose. One potential solution is to define an adaptive strategy 
similar to how the planner deals with obstacles. Specifically, a 
simulated smooth path that ends with an incorrect goal pose 
would be considered invalid, prompting adjustments to the 
carrot path. However, we have opted not to incorporate this 
modification into the APP planner, as it would add complexity 
to the entire algorithm. More importantly, this is not a serious 
issue if the proposed planner is utilized for online planning in a 
receding-horizon manner. 

In both of the aforementioned cases, Fig. 5 depicts the 
progression of the smooth path globalsmooth path_  during the 
iterations within Algorithm 1’s while loop, with the path color 

transitioning from red to purple. This evolution of the smooth 
path demonstrates the APP planner’s ability to concentrate on 
the conflicting local segments and dynamically adjust the 
waypoints. As opposed to processing the entire path, the change 
to focusing only on local segments as needed guarantees that 
the APP planner runs fast. Similar to Fig. 5, Fig. 6 depicts the 
evolution of the carrot path globalcarrot path_  during Algorithm 
1’s iterative process, aligning with the aforementioned analysis.  

C.  Comparisons with State-of-the-art Path Planners 

This subsection evaluates the performance of the APP 
planner by comparing it with some existing path planners. We 
selected the Dynamic Programming (DP) path planner [39] and 
the Lightweight Iterative Optimization Method (LIOM) [38], 
respectively representing the sampling- and refinement-based 
planners. Concretely, the DP method samples equidistant layers 
of equidistant nodes and uses quantic polynomials to connect 
two nodes in adjacent layers. LIOM refines a coarse path via 
numerically solving an OCP. As a refinement-based planner, 
LIOM depends heavily on the initial guess quality. To make 
comparisons fair, the coarse path derived by ()SearchA*Path  in 
Section III.B is used to warm-start LIOM. 

A benchmark set consisting of 1,000 simulation cases was 
established to ensure the comparisons would be thoroughly 
made. The number of environmental obstacles in each case was 
randomly set between 10 and 27 (averaging at 16.77), and these 
obstacles were distributed randomly within the drivable region 
of the road scene. Notably, some of the path planning cases in 
the established benchmark set might be invalid, i.e., no path 
efficiently connects the initial and goal poses. We deliberately 
designed the benchmark set like this because a qualified 
planner should be fail-fast, i.e., terminates quickly when it 
encounters an invalid path planning case. Table II reports the 
comparative simulation results. Fig. 7 provides a direct 
comparison among the planned paths of the three involved 
planners in a typical benchmark case. 

TABLE II. COMPARATIVE SIMULATION RESULTS 

Planner 
ID 

Success 
rate 

Average CPU 
runtime (ms) 

Average collision 
check times 

APP 89.20% 51.3327 13,738.203 

DP 21.10% 413.0506 86,044.101 

LIOM 2.90% 976.8490 63,372.333 

 
The DP planner runs slowly due to the exhaustive collision 

checks required by the DP search strategy. The success rate of 
DP planner is low because it lacks the flexibility to explore 
every inch of the drivable region. As pointed out by [40], the 
lack of sampling flexibility is a typical limitation of 
sampling-based planners with rigidly sampled nodes. 
Increasing the sampling resolution to improve the success rate 
would exacerbate the curse of dimensionality issue, leading to 
more runtime consumed. A comparison between the DP 
planner and the proposed APP planner highlights the 
importance of sampling flexibility. 

The average CPU runtime consumed by LIOM is obviously 
longer than that of the proposed APP planner. The long runtime 
consumed on safe travel corridor construction and NLP 
solution is a contributing factor to the limited widespread 
application of optimization-based planners in the research area 
of path planning for intelligent vehicles. LIOM failed in most of  
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the cases because the safe travel corridor construction renders 
buffers around the ego vehicle, which easily blocks the tiny 
road in our benchmark cases. Therefore, LIOM is not 
efficacious in dealing with scenarios narrowed by cluttered 
obstacles. This conclusion is also reflected in Fig. 7, where the 
path derived by LIOM is more conservative than the one 
derived by APP. 

D.  Limitation of APP Planner 

A typical limitation of the APP planner is that the planner 
does not guarantee to reach the goal pose (including the 
location and orientation) strictly. This is intuitively 
understandable because sampling in the control space cannot 
guarantee to reach a specified state. Another similar example is 
the hybrid A* search algorithm, which cannot reach a specific 
goal pose without the embedded Reeds-Shepp primitive 
connection step. Thus the APP planner is suitable for planning 
schemes that do not care much about the planning errors in the 
goal pose. 

V. FIELD TESTS 

Indoor experiments were carried out on a 1.700m × 2.900m 
track, uniquely characterized by straight lines in the middle and 
circular arcs at both ends. A car-like robot of dimensions 
0.211m × 0.191m was utilized as the ego vehicle. Six infrared 
sensors from the NOKOV Motion Capture System were 
deployed for precise vehicle and obstacle localization. Data 
from these sensors were compiled on a desktop computer with 
an AMD Ryzen 5 4600H CPU that runs at 6×3.00GHz, where 
the proposed APP planner was also implemented (Fig. 8). 
Driving commands were wirelessly dispatched to the car-like 
robot via ZigBee. Proportional-derivative control was adopted 
for longitudinal tracking while a pure-pursuit controller was 
used to mitigate lateral deviations. 

A 14-minute field test was executed, during which 
environmental obstacles were intermittently relocated to 
impede the robot’s path. The planning module was 

Fig. 5. Evolution of smooth path in using APP planner. The iteration numbers are 7 and 9 in the two simulation cases, respectively. This figure is seen more clearly 
if zoomed in. 
 

Fig. 6. Evolution of carrot path in using APP planner. This figure is seen more clearly if zoomed in. 

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 

 

implemented in an event-triggered way, i.e. the path planner 
would be implemented only when environmental obstacles 
update. The field test performance is shown at 
https://www.bilibili.com/video/BV1MP411y7oF/. As we 
observed, the average planning runtime of the APP planner was 
3.909ms and the success rate is 100% among 21 triggered times 
(Fig. 9). This indicates the proposed planner is fast, efficacious, 
and stable. Particularly, the average runtime to sample a global 
smooth path in the while loop was 0.180ms, which indicates 
that the proposed planner archives kinematic feasibility in real 
time. 

TABLE III. COMPARATIVE CLOSED-LOOP TRACKING CONTROL RESULTS 

maxω
 

(rad/s) 

Closed-loop lateral tracking error (mm) 

Maximum Average Median 99% percentile

0.60 22.0269 3.6181 2.6645 20.3909 

  69.3837 10.4562 3.7599 67.1326 

 
Recall that the cost function (4) contains a weighted term 

about path smoothness. The APP planner cannot manipulate the 
path smoothness by changing the parameter smoothnessw .  Instead, 
the APP planner determines the path smoothness by making 
changes in the function ().SamplePurePursuitPath  Concretely, 
one may set a lower maxω  to make the virtual chassis steer the 

front wheels in a lower speed, thus improving the smoothness 
of the tracked path global.smooth path_  With the purpose of 
investigating how path smoothness would influence the 
tracking performance, we conducted tests under different 
settings of maxω .  Results are reported in Table III and Fig. 10. 
Setting maxω  to infinity means that the virtual chassis is 
allowed to steer its front wheels discontinuously. Tracking with 
such a virtual chassis makes our modified tracking controller 
regrades to the conventional pure pursuit controller. As Table 
III indicates, the conventional pure pursuit controller caused 
more tracking errors and inevitably renders curvature- 
discontinuous paths, which are hard to track (Fig. 10a). This 
indicates that our proposal in Section III.C makes sense. Setting 

maxω  to a small value would improve the smoothness of the 
planned path and reduce the tracking error (Fig. 10b). 

VI. CONCLUSIONS 

This paper has proposed a real-time path planning method, 
named Adaptive Pure Pursuit (APP) planner, for autonomous 
driving in cluttered environments. Efficiency of the proposed 
planner has been validated through comparative simulations 
and field tests. 

Our contribution in this paper goes beyond the mere 

Fig. 7. A typical comparison among APP, DP, and LIOM planners. 

 
Fig. 8. Field test scenario layout and device setups. 

 
(a) 

 
(b) 

Legend
         Obstacle(s)
         Ego vehicle
         Reference line
         Planned path
         Carrot path

 
(c) 

Fig. 9. Typical experimental operations and results: (a) relocation of an obstacle
during the real-time tracking process; (b) evasive maneuvers of ego vehicle
captured via time-lapse photography; (c) environmental layout and technical
details of APP planner visualized in ROS Rviz monitor. 
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formulation of an algorithm; it introduces a fresh paradigm to 
tackle path planning problems. Traditionally, path planning 
faced challenges in striking a balance between vehicle 
kinematic constraints and collision-avoidance constraints. In 
contrast to widely-used refinement-based planners like LIOM, 
which prioritize collision-avoidance constraints while 
attempting to regain kinematic feasibility, our proposed APP 
planner shows a paradigm shift. It effortlessly satisfies vehicle 
kinematic constraints, while collision avoidance is achieved 
adaptively via a series of trials and errors. When compared with 
sampling-based planners that generate kinematically feasible 
path candidates/primitives before sorting or searching, the APP 
planner stands out. The flexibility during the sampling process 
and the local focus on conflict resolution provide the APP 
planner with a distinct advantage. The proposed paradigm is 
generic because it accommodates a variety of vehicle 
kinematic/dynamic models and tracking controllers other than 
the pure pursuit controller considered in this work. If the ego 
vehicle drives at a high speed, then the vehicle dynamics should 
be considered when modeling the virtual chassis. Our proposed 
APP planner supports the usage of vehicle dynamic models. 

 Further advancements in this path-planning paradigm are 
needed to incorporate the ability to plan backward maneuvers. 
A theoretical convergence analysis is needed to guide the 
optimal parametric settings in ().PolishLocalSegment A 
limitation of the APP planner is that it cannot guarantee finding 
paths with strict satisfaction of goal-pose constraints. Future 
work is needed to improve the APP planner at that point. 

APPENDIX 

This section provides the basic principle of pure pursuit 
controller. As depicted in Fig. A1, the ego vehicle is currently 
staying at point P and tracking the carrot path. A look-ahead 
carrot point Q along the carrot path is determined by a distance 
Lfc ahead of point P. Once the carrot point Q is determined, one 
can derive the steering angle profile ( )t  so that the ego 
vehicle would track point Q in the next simt  seconds. 

The carrot point Q is determined by exploring along the 
carrot path for a qualified point such that the distance between 
that point and P is Lfc, which is a user-specified parameter that 
sets the look-ahead distance. The pure pursuit controller 
expects that the ego vehicle would reach Q with a circular path 
segment. Due to the geometrics presented in Fig. A1, the radius 
of the aforementioned circular arc R satisfies 

fcL R
,

πsin(2 ) sin( )
2

 



         (A1) 

which yields that 
fcL R

.
2sin( ) cos( ) cos( )  




         (A2) 

With an assumption that cos( ) 0  , one has 

fcL
R ,

2sin( )
             (A3) 

and thus 
W W

fc

L 2L sin
arctan( ) arctan( ).

R L

α 
         (A4) 

The ego vehicle would track Q for simt  seconds, which 
indicates the steering angle is set constant during that period. 
The longitudinal velocity is a user-specified constant value 
then. 

 
Fig. A1. Schematic of the pure pursuit tracking controller. 
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Fig. 10. Comparative open-loop and closed-loop tracking paths under different
settings of maxω : (a) maxω 0.6rad/s ; (b) maxω   . 
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