
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

Abstract—Path planning is an essential function in an
intelligent vehicle, especially when driving in scenarios cluttered
by large-scale static obstacles. Traditional path planners often
struggle to find a balance among speed, accuracy, and optimality
in their solutions. In this paper, we introduce an Adaptive Pure
Pursuit (APP) planner, which is designed to be fast and
near-optimal for autonomous driving in cluttered environments.
The APP planner generates feasible paths through a simulated
closed-loop tracking control process of a virtual vehicle. If a
derived path encounters obstacles, an adaptive refinement step is
taken to locally reduce these collisions. Unlike search-based
planners that suffer from the “curse of dimensionality” and
optimization-based methods that often run slowly, the APP
planner operates extremely fast. The high speed stems from the
fact that both the virtual controller simulation and the refinement
step involve computations with zero degrees of freedom. The
proposed APP planner outperforms the prevalent optimization-
based and search-based path planners, as shown by comparative
simulations. Real-world experiments were also conducted to
validate the APP planner, and its source codes are provided at
https://github.com/libai1943/Adaptive_Pure_Pursuit_Planner.

Index Terms—Path planning, autonomous driving, cluttered
environment, pure pursuit control, Adaptive Pure Pursuit (APP)

I. INTRODUCTION

UTONOMOUS vehicles (AVs) are responsible for
performing complicated tasks, such as exploration [1],

rescue [2], and surveillance [3]. These tasks often involve

Manuscript received June 11, 2023; revised July 13, 2023; accepted July 15,

2023. This work was supported by National Natural Science Foundation of
China under Grant 62103139 and 62003362, Natural Science Foundation of
Hunan Province under Grant 2021JJ40114, and the 2022 Opening Foundation
of State Key Laboratory of Management and Control for Complex Systems
under Grant E2S9021119. (Corresponding author: Xiaohui Li)

Bai Li is with the State Key Laboratory of Advanced Design and
Manufacturing for Vehicle Body, and with the College of Mechanical and
Vehicle Engineering, Hunan University, Changsha 410082, China (e-mail:
libai@zju.edu.cn).

Yazhou Wang, Hu Li, Tantan Zhang are with the College of Mechanical and
Vehicle Engineering, Hunan University, Changsha 410082, China (e-mails:
albert@hnu.edu.cn, lihu@hnu.edu.cn, zhangtantan@hnu.edu.cn).

Siji Ma is with the Faculty of Innovation Engineering, Macau University of
Science and Technology, Macau 999078, China (e-mail: sijima@ieee.org).

Xuepeng Bian is with the Tencent Automatic Drive Lab, Tencent.Com Inc.,
Beijing 100193, China (e-mail: waldronbian@tencent.com).

Xiaohui Li is with the College of Intelligence Science, National University
of Defense Technology, Changsha 410073, China (e-mail: xiaohui_lee@nudt.
edu.cn).

Youmin Zhang is with the Department of Mechanical, Industrial and
Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8,
Canada (e-mail: ymzhang@encs.concordia.ca).

driving in complex environments cluttered with numerous
small-sized obstacles. When an AV drives in a highly cluttered
environment, path planning is a crucial component that ensures
traverse safety [4]. In that case, the challenge of path planning
is to quickly identify a way that avoids massive obstacles while
ensuring that the path is kinematically feasible.

Broadly speaking, the complexity of path planning arises
from the need to simultaneously consider multiple constraints,
such as kinematic constraints and collision-avoidance
constraints, while exploring the vast solution space for the
optimal path [5,6]. There have been many path planners [7,8],
most of which struggle to balance solution speed, accuracy, and
completeness in cluttered environments filled with large-scale
obstacles. This paper aims to propose a path planner that offers
both speed and safety for autonomous driving in highly
cluttered environments.

A. Related Works

This subsection reviews the existing path planners suitable
for a car-like robot or wheeled robot in a cluttered environment.
The involved planners are divided into three categories, namely
reaction-based, sampling-based, and refinement-based methods,
the details of which are analyzed as follows.

A reaction-based path planner is featured by modifying the
ego vehicle’s motion according to its collision levels with
surrounding obstacles reactively [9]. Typical reaction-based
planners include the potential field method (PFM) [10] and
vector field histogram (VFH) [11]. In PFM, obstacles are
regarded as negative magnets to repel the ego vehicle while the
goal is regarded as a positive magnet that attracts the ego
vehicle; the motion of the ego vehicle at each step is influenced
by both repulsive and attractive forces, leading to a path that
balances traverse efficiency and collision safety. PFM runs fast
because reactively simulating the adjustment forces is a
zero-degree-of-freedom process. Similar with that in PFM, a
polar histogram is deployed in VFH to model the repulsive
force information. Li et al. [12] utilized the social force model
to describe the agent-to-goal and agent-to-obstacle forces when
generating coarse trajectories for multiple vehicles. Although
reaction-based planners are remarkably fast, they have two
common limitations. First, reaction-based planners focus on the
microscopic behaviors of the ego vehicle but ignore the overall
path/trajectory smoothness from a macroscopic viewpoint [13].

Adaptive Pure Pursuit: A Real-time Path Planner
Using Tracking Controllers to Plan Safe

and Kinematically Feasible Paths
Bai Li, Yazhou Wang, Siji Ma, Xuepeng Bian, Hu Li,

Tantan Zhang, Xiaohui Li, Youmin Zhang, Fellow, IEEE

A

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

Second, the paths derived by reaction-based planners do not
guarantee to be kinematically feasible, especially when the
derived paths are curvy.

Sampling-based planners are widely used in AV navigation
[14,15]. The sampling efficiency is enhanced to tackle cluttered
workspaces enriched by obstacles. Qureshi and Ayaz [16]
proposed a bi-directional rapidly-exploring random trees
(Bi-RRT) method, which samples path primitives from both the
initial and goal poses to promote runtime efficiency. Similarly,
a multi-stage hybrid A* search algorithm [17] partitions the
whole sampling process if there exist bottlenecks narrowed by
cluttered obstacles halfway, which decouples a global sampling
process into several local ones and thus saves runtime. A
generalized Voronoi diagram (GVD) guided RRT is proposed
by Chi et al. [18]. Since GVD is insensitive to the density of
obstacles in a workspace, a global reference line provided by
GVD facilitates the sampling process. Li et al. [19] noticed that
massive obstacles would render massive homotopy classes,
thus an optimal homotopy class deserves to be greedily selected
in a parallel-computation architecture. Similarly, an
optimality-enhanced hybrid A* search algorithm [20] is
proposed, which continues to sample better paths even after a
feasible one is already available. The output of a
sampling-based planner is kinematically feasible and collision-
free, but the derived path is commonly sub-optimal, jerky, and
non-smooth [21]. The solution quality of a sampling-based
planner is influenced by the search algorithm associated with
the sampler, but a search algorithm typically suffers from the
curse of dimensionality [22], thus making a sampling-based
planner fail to balance planning quality and speed.

Refinement-based methods are typically employed during
the refinement stage of a coarse-to-fine planning process
[23,24]. Numerical optimization is a common approach
employed in the refinement stage [3,25,26]. However,
numerical optimization has two limitations. First, it is
computationally heavy, which degrades the time efficiency of a
path planner. Second, the output of numerical optimization is
deeply influenced by the initial guess because a gradient-based
optimizer only finds a local optimum close to the initial guess.
While non-optimization methods are also utilized for
refinement [27,28], these methods primarily enhance the
smoothness of a coarse path and offer limited capabilities for
ensuring path safety. This indicates that a qualified
refinement-based planner should be aware of collision risks, in
addition to the basic smoothing-path duty. If a smoothed path
involved collisions, the conflicting waypoints are repeatedly
modified until a simulated tracking controller does not render
collisions [29], or a B-spline curve is safe [30]. Particularly
regarding how to modify the conflicting waypoints, a
collision-based path deformation (CBPD) strategy was
proposed by Hu et al. in [31], which pushes each conflicted
waypoint in a direction that can reduce the collision level.
However, CBPD has a few limitations. First, it works well on a
circular robot but is inapplicable to a rectangular car-like robot.

Second, CBPD only deforms the waypoints once, thus it does
not guarantee the refined path is safe, especially in dealing with
complex cases. Therefore, the existing refinement-based
methods have room for improvement in time efficiency and
solution safety.

As a conclusion of the whole subsection, the prevalent path
planners for cluttered environments are imperfect in balancing
feasibility, safety, quality, speed, and completeness.

B. Motivations and Contributions

The aforementioned three types of planners, i.e. the reaction-
based, sampling-based, and refinement-based planners, have
their strengths and limitations. It is natural to grasp their merits
and build an integrated planner that quickly finds kinematically
feasible and safe paths. Concretely, a sampling-based planner
can roughly generate a global path for homotopic guidance; a
reaction-based planner can quickly enhance the kinematic
feasibility along the global path; if the enhanced path involves
minor collisions, then it is polished via a refinement planner.
This idea motivates us to propose a three-stage planner with
sampling-, reaction-, and refinement-based methods involved.

The proposed path planning methodology is named the
Adaptive Pure Pursuit (APP) planner, which has the following
two contributions.

First, a reaction-based method is proposed to find a
kinematically feasible path in a fast and lightweight way. As
opposed to the prevalent reaction-based planners that often
involve potentials or forces, we deploy a controller to drive a
virtual chassis, thereby ensuring that the tracked path is
naturally feasible w.r.t. kinematics. The generation of such a
feasible path is fast because driving a virtual chassis under
certain control laws is a zero-degree-of-freedom simulation
process. Users may even adopt a complicated model to obtain a
dynamically feasible path in the framework of our proposed
method.

Now that kinematically feasible paths are available with ease,
the remaining challenge is how to modify a kinematically
feasible path to make it free from collisions. An adaptive
refinement strategy is proposed to resolve the conflicts in a
kinematically feasible path, which is the second contribution of
this study. In the adaptive refinement strategy, locally
conflicting segments of a path are nudged according to collision
depth information, which brings sufficient flexibility to the
APP planner in contrast with rigid-sampling-based planners.
The adaptive refinement process is iterative, with increased
emphasis on integrating locally conflicting segments, thereby
enhancing the smoothness of the whole path and avoiding
finding jerky paths.

C. Organization

In the remainder of this paper, Section II formulates the
concerned path planning problem, and Section III introduces
our APP planner. Simulation results are discussed in Section IV.
Real-world tests are reported in Section V before conclusions
are drawn in Section VI.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

II. PROBLEM STATEMENT

This section formulates the path planning problem and
provides definitions of necessary variables. As a fundamental
assumption, the environment layout and obstacle locations are
static and fully available while moving obstacles are not
considered. The ego vehicle is designated to reach a goal pose
from a specified initial pose, during which the ego vehicle
drives with its kinematic capability and avoids collisions with
obstacles in the cluttered environment. The concerned path
planning scheme is stated as the following optimal control
problem (OCP):

max
max

(), (),

kinematics max

max

init init

max goal max goal

obs max

Minimize (), (), ,

. .

d ()
(), () , [0,];

d
() , () , [0,];

(0) , (0) ,

() , () ;

() , [0,].

s s s
J s s s

s t

s
f s s s s

s
s s s s

s s

s s s

x u
x u

x
x u

x x x u u u

x x u u

x x u u

x

 (1)

In this problem, variable maxs denotes the length of the to-be-
planned path (unknown a priori), variable max[0,]s s denotes
the shift index, ()sx stands for state variables, and ()su refers
to control variables. The cost function J is related to maxs , ()sx ,
and ().su kinematicsd () d (), ()s s f s sx x u denotes kinematic
constraints. ()su and ()sx are bounded by u , u , x , and x .
Two-point boundary-value constraints are imposed for ()su
and ()sx via initx , goalx , initu , and goal ,u respectively. is a
mapping from the vehicle state to its footprint, i.e., the region
that the ego vehicle occupies on the 2-dim ground space. obs
denotes the region occupied by environmental obstacles on the
2-dim ground space. Thus obs() , s s x denotes the
nominal collision-avoidance constraints. The details behind
this OCP are presented as follows.

A. Vehicle Kinematic Constraints

For non-extreme driving conditions, the well-known single-
track model is capable of describing the kinematic principle of
the ego vehicle [32]. Thus, kinematicsd () d (), ()s s f s sx x u is
presented as

max
W

d ()
cos (),

d
d ()

sin (),
d

d () tan ()
, [0,].

d L

x s
s

s
y s

s
s
s s

s s
s

 (2)

These equations indicate that () (), (), ()s x s y s sx and ()su
()s , wherein ,x y denotes the location of a reference

point on the ego vehicle (we choose the midpoint of the rear
axle in this study), stands for yaw angle, and is the
steering angle. LW denotes the wheelbase of the ego vehicle.
 As the sole control variable in this concerned problem, ()s
 max[0,]s s determines the overall shape of a planned path. It
is required that the steering angle is mechanically bounded:

max max() , [0,],s s s (3)

where max stands for the maximum allowable steering angle.

B. Collision-avoidance Constraints

Let us define the four vertexes of the ego vehicle as A, B, C,
and D. ()s x denotes the rectangle () () () (),A s B s C s D s
which should not overlap with any of the static obstacles in the
environment. This work assumes that each obstacle is convex.
Concave obstacles, if exist, need to be divided into convex ones
to meet this assumption. An overlap between any obstacle and
the ego vehicle’s footprint is prohibited at any max[0,].s s A
analytical method to model inter-polygon collision-avoidance
constraints is the triangle-area criterion [33].

C. Cost Function

A cost function is deployed to encourage finding smooth and
short paths:

 max 2

max smoothness 0
w () d ,

s
J s

 (4)

wherein smoothnessw 0 is a weighting parameter.

III. PRINCIPLE OF APP PLANNER

This section introduces the proposed APP path planner. We
present the overall framework before entering into the technical
details of each module.

A. Overall Framework

The overall framework is presented in Algorithm 1. Most
procedures of the proposed planner lie in a while loop, where an
intermediate path is iteratively updated until it becomes totally
collision-free.

Concretely, each iteration of the while loop ends with an
intermediate path, which would be further checked for
collisions in the next iteration. If an intermediate path involves
collisions, then it is divided into local segments where
conflicting waypoints are clustered. Herein, a conflicting
waypoint refers to an invalid vehicular pose along the
intermediate path that makes the ego vehicle collide with
surrounding obstacles. After the local segments are defined,
they should be polished sequentially. Alternatively, the local
segments can be processed in a faster way via parallel
computing because the segments are mutually independent.
When all local segments are polished, a global path is generated
via simulating a zero-degree-of-freedom tracking process,
which is the end of the current iteration. If the derived global
path still involves collisions, it deserves to be further processed
in the next iteration, otherwise the algorithm should break out
of the while loop.

The core contribution of Algorithm 1 is the local refinement
function ()PolishLocalSegment , where a local path is sampled
by simulating the tracking process of a virtual vehicle chassis.
This idea has the merit that a sampled path is naturally feasible
w.r.t vehicle kinematics or even dynamics. The sampling
process is embedded in an iterative framework so that the
sampled path can adjust with sufficient flexibility to avoid
collisions with the environmental obstacles.

Algorithm 1 maintains two types of paths, namely the carrot

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

path and the smooth path. A carrot path refers to one that is
tracked by a pure-pursuit controller. This controller determines
the steering angle of our ego vehicle based on the relative
position between the vehicle’s current pose and a point ahead
on the carrot path. This forward point is referred to as the
“carrot point”, a term inspired by the image of a donkey chasing
a carrot that remains just out of reach. The movement of these
carrot points creates a path called the carrot path. The smooth
path, on the other hand, denotes the trajectory of a fixed
reference point on the virtual chassis (typically the movement
of the rear axle) when it tracks the carrot path.

The next few subsections provide detailed principles of the
functions that appear in Algorithm 1.

B. Find a Global Route

This subsection outlines the principle of ()SearchA*Path in
Line 1 of Algorithm 1. The function’s input includes obstacle
data from the environment (labeled as map) and the initial/goal
positions (referred to as pose). We model the workspace as a
map divided into grid cells, each marked as 1 (occupied) or 0
(unoccupied). Following this, the map is dilated by a radius
equivalent to the half-width of the ego vehicle. This dilation
results in the expansion of the occupied grid cells. Compared
with the original map, the dilated map expands the scale of
those grids with the status of 1. For navigation, we utilize the
A* search algorithm [34] to establish a path on the dilated map
from the grid cell of the initial pose to the grid cell containing
the goal pose. The derived path is denoted as global ,_carrot path
which consists of a sequence of points defined by their x and y
coordinates.

C. Sample a Smooth Path by Pure-pursuit Tracking Control

The principle of ()SamplePurePursuitPath , which appears in
Line 4 of Algorithm 1, is introduced in this subsection. The
function’s input includes a carrot path global_carrot path and the
aforementioned pose. A virtual chassis is set up to model the
kinematics of the ego vehicle. The virtual chassis is originally

placed at the initial pose recorded in pose. Thereafter, the
virtual chassis begins to move by tracking the carrot path via a
pure-pursuit controller, which determines the ego vehicle’s
front wheel steering angle based on the relative position
between the vehicle’s current pose and a carrot point along the
carrot path [35]. The principle of the basic pure pursuit
controller is briefly presented in Appendix.

In simulating the movement of the virtual chassis, the
pure-pursuit controller updates the control demand in every

simt seconds. A smooth path is derived if one observes the
motion of the virtual chassis until it is close to the goal pose.
However, the obtained smooth path is not continuous in the
curvature. This is because the continuity of curvature is directly
related to the continuity of steering angle, which jumps to a
different value at every simt seconds. To guarantee the
obtained smooth path is curvature-continuous, this study
additionally requires that the derivative of steering angle is
upper bounded by a user-specified parameter maxω 0.
Specifically, suppose that a previous steering angle command is

0 and a new steering angle command 1 is available at 1t .t
We require that the virtual chassis responds during

 sim1 1t , t tt in the following way: the steering angle
changes from 0 to 1 continually and quickly. This means
that ()t is the solution to the following optimal control
problem (OCP), where maxω denotes the maximum allowable
value of the steering angle derivative.

 1 sim

1

t t 2

1t()

1 0

max

max

() d

s.t., (t) ,

d ()

m

 ω ,
d

 ()

in

.

t

t

t

t

 (5)

The analytical solution to OCP (5) can be easily found by
Pontryagin’s Maximum Principle [36]. Notably, sim1(t t) is
not necessarily equal to 1 , but ()t would try its best to reach

1 earlier than sim1t tt .
With the obtained ()t and a constant velocity const() vv t ,

one can simulate the motion of the virtual chassis during

Algorithm 1. Overall Framework of Proposed APP Planner

Function global, (),PlanP_ _ ath is completed smooth path map pose

1. global ,()SearchA*Path_ carrot path map pose ;
2. Initialize init init

left left right right_ 0, 0, bf , bfis completed iter buffer buffer ;
3. while maxouter _iter ,iter do
4. global global global, ,()smooth path carrot path carrot path pose SamplePurePursuitPa h _ t_ _ ;
5. global(),conflict id smooth path map IdentifyConflicting_ _ Points ;
6. left right, ,() conflict segms conflict id buffer buffer CreateConflictingSegments_ _ ;
7. if ,conflict segms _ then
8. _ 1is completed ;
9. return;
10. end if
11. Initialize _polished segms ;
12. for each ,segm conflict segms _ do
13. local global global(, ,), ,carrot path map segm smooth path carrot path conflict id PolishLocalSegment_ _ _ _ ;
14. local_ _ _polished segms polished segms carrot path ;
15. end for
16. global global , ,()carrot path carrot path polished segms conflict segms StitchPoli_ _ shedSegm _s _e nt ;
17. left left left right right rightbf , bfbuffer buffer buffer buffer ;
18. ++iter ;
19. end while
20. return;

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

 sim1 1t , t t .t The - -x y state that the virtual chassis

reaches at the moment sim1t tt is recorded in a waypoint
and further stored in a vector. The -x y coordinate of the carrot
point that the virtual chassis tracks during sim1 1t , t tt is
recorded in another vector.

The outputs of ()SamplePurePursuitPath are the two vectors
mentioned above, which are recorded as globalsmooth path_ and

global.carrot path_ The waypoint number in globalsmooth path_ is
identical to that in global_carrot path . Let us define the waypoint
number as pathN for future usage.

D. Identify Conflicting Local Segments along Global Path

This subsection introduces ()IdentifyConflictingPoints and
()CreateConflictingSegments .

The function IdentifyConflictingPoints outputs the indices of
the invalid waypoints in global.smooth path_ Concretely, the ith
waypoint - -i i ix y is regarded as invalid if the corresponding
footprint involves collisions, i.e., obs, , .i i ix y
Detailed principle of the collision checker is introduced in [37].
The output of this function is called conflict id_ .

Invalid indices conflict id_ would be further processed in
the function CreateConflictingSegments to form local segments.
Concretely, a one-dimensional array is formed, which
consists of as many as pathN 0-valued elements. As we have
mentioned earlier, pathN is the count of waypoints in

global.smooth path_ All elements in are initially set to 0, and
the elements whose indices are recorded in conflict id_ would
be called seeding elements. For a seeding element indexed as i ,
we trace backward to 1, 2, ...,i i until we find ki , which
satisfies the following criterion:

 lef1 1 t

k

1
, k 1 .

i

j j j jj i
x x by iry uffe

 (6)

In this context, (,)j jx y represents the coordinate of the jth
waypoint in global ,smooth path_ while leftbuffer is the trace-back
distance threshold. Specifically, (6) stipulates that the distance
between the seeding element and the (k) thi waypoint along
the smooth path should exceed leftbuffer , or alternatively, the
(k) thi waypoint is the first element in global.smooth path_
Once k is determined, the elements in at indices 1,i

2, ..., ki i are set to 1.
A similar forward trace to 1, 2,i i etc., is performed until

an index mi is found that satisfies (7), wherein rightbuffer is
the trace-forward distance threshold. The elements in at
indices 1, 2, ..., mi i i are set to 1.

 m

1 1 patri h1 ght, m .
i

j j j jj i
buffex Nrx y y i

 (7)

In essence, these operations ensure that the left and right
neighboring elements of a seeding element are set to 1, akin to
planting a seed that grows in both directions in array . The
seed growing intensity is determined by user-specified
parameters left right, 0,buffer buffer which are initialized in
Line 2 of Algorithm 1 via user-specified parameters init

leftbf and
init
rightbf . leftbuffer and rightbuffer would further increase in Line

17 of Algorithm 1, which is introduced in Section III.G.
After all of the seeding elements are processed, we check

and discard those 0-value elements, thus dividing the original
array into local segments. Each segment contains an ascending
sequence of indices. The output of CreateConflictingSegments

is denoted as a vector conflict segms_ . If conflict segms_ is
empty, then it indicates that all of the sampled waypoints along
the globalsmooth path_ are collision-free, thus the entire planner
exits with the current globalsmooth path_ , which is safe and
kinematically feasible (Line 7–10). Particularly in Line 8 of
Algorithm 1, _is completed is a boolean variable that indicates
whether the APP planner finds a valid path finally (1 = success,
0 = failure). If conflict segms_ is not empty, then an extra
procedure is needed to refine the conflicting local segments,
which would be introduced in the next subsection.

E. Refine Local Segments via Adaptive Adjustments

This subsection introduces Lines 11–15 of Algorithm 1,
which are about how to refine each local segment in the vector
conflict segms_ in a for loop. Without loss of generality, we
focus on one local segment segm conflict segms _ .

Local segment refinement is done in ()PolishLocalSegment ,
the pseudo-code of which is listed in Algorithm 2.

In Algorithm 2, Line 1 defines the starting and ending
indices, i.e., startid and end.id Line 2 defines the initial and goal
poses in the local segment refinement scheme. Lines 3–5 cut
variables global ,smooth path_ global ,carrot path_ and conflict id_
to concentrate on the concerned local segment. A for loop,
spanning from Lines 6 to 28 of Algorithm 2, is deployed to
repeatedly refine the local path segment, up to a maximum of

maxinner_iter iterations. In each iteration, we assess whether
each waypoint along the local smooth path (denoted as

localsmooth path_ in Line 4) is conflicting (Line 24). If one
waypoint is conflicting (Line 9), then we evaluate the collision
rates on both halves of the vehicle footprint (Line 10), that is,

left right, [0,1].rate rate If the collision rate is higher on the
vehicle’s left half side (left rightrate rate , Line 13), then the
local carrot path localcarrot path_ is nudged rightwards to reduce

left .rate Conversely, if left right ,rate rate then the local carrot
path nudged leftwards. The method for determining the nudge
depth (Lines 10–19) is a key innovation of this paper and will
be introduced in more details later. The nudging effects of all
conflicting waypoints are integrated into localcarrot path_
before a virtual chassis is used to track this local carrot path in
Line 22 of Algorithm 2. Notably, the derived localsmooth path_
and localcarrot path_ are resampled to ensure the number of
elements in the local smooth path or local carrot path always
equals end start().id id Maintaining a consistent path scale is
crucial, as it enables the local carrot path localcarrot path_ to
perfectly replace the corresponding segment in the global carrot
path later (Line 16 of Algorithm 1). Line 24 of Algorithm 2
examines the resampled local smooth path localsmooth path_ for
potential collisions. If no collision is found (Line 25), then the
function ()PolishLocalSegment exits, otherwise a new iteration
is executed until the maximum iteration count maxinner_iter is
reached.

The principle to define the nudge depth is introduced at the
end of this subsection. As depicted in Fig. 1, the function

 ,map wpMeasureCollisio ates nR measures the overlap rates
between the two halves of the vehicle body and the obstacles if
the vehicle stays at a pose wp. As defined in Line 8 of
Algorithm 2, wp denotes the configuration of one specified

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

waypoint along local .smooth path_ The two halves are formed
by dividing the ego vehicle along its longitudinal axle. Suppose
that the vehicle length is LL, vehicle width is LB, the overlapped
area in the left half is Sleft, and the overlapped area in the right
half is Sright, then leftrate and rightrate are defined as

left
left

right
r

L

g
L

i h
B

t

B0.5L L

0.
.

L

,

5L

S
rate

S
rate

 (8)

Eq. (8) indicates that left right, [0,1].rate rate
,tb a variable representing the trace-back distance, is

defined in Line 11 of Algorithm 2, where left rightrate rate
ranges from 0 to 1 and maxtraceback_length 0 is a
user-specified parameter defining the maximum trace-back
length. The reason why left axr might traceback_lengthrate rate
is used is given as follows.

When one waypoint wp is found conflicting, a natural idea
is to adjust the carrot point cp associated with wp . This idea is
intuitively correct because a conflict that happens on wp is
exactly caused by tracking cp . However, we notice that
adjusting cp is empirically ineffective because it is “too late”
to avoid a collision. Therefore, we anticipate by adjusting an
earlier carrot point (denoted as newcp) that is ahead of cp along
the local carrot path local.carrot path_ Suppose that cp is
indexed i in the localcarrot path_ while newcp is indexed

 (1),id id i id is determined as follows:

 1

1 1arg min , ,
idid

i

k k k kk
tb x x y y

 (9)

where (,)k kx y denotes the coordinate of the kth point along

local.carrot path_ Eq. (9) indicates that tb determines the
anticipation intensity, that is, the distance between newcp and
cp . Recall that tb defined in Line 11 of Algorithm 2 is in
proportion to the collision degree. At this point, our idea is that,
a more severe conflict degree left rightrate rate deserves a
longer trace-back length tb . The aforementioned procedure
defines the function ()FindMatchedCarrotPointID in Line 12 of
Algorithm 2. Once id is determined, newcp could be identified
accordingly. Lines 13–19 present the nudging rule to adjust

newcp along the local carrot path. Let us take the branch

left rightrate rate for example. Given that the collision degree is
higher on the left side, newcp should be moved rightward. As
illustrated in Fig. 2, the nudging direction is orthogonal to
the orientation angle of the ego vehicle at wp, that is,

. π / 2.wp Fixing the unit nudging distance to a user-
specified parameter Δs > 0 yields that

 new new

new new

. . Δs cos ,

. . Δs sin ,

cp x cp x

cp y cp y

 (10)

which is in accordance with Lines 14 and 15 if one replaces

Sleft

Y

O X

Sright

obstacle

obstacle

wp.x

wp.y

wp.θ

Fig. 1. Schematics on overlap regions between ego vehicle’s two haves and
environmental obstacles.

wp.θ

carrot_pathlocal

smooth_pathlocal

wp

wp.θ
cpnew

cp

Y

O
X

cpnew.x

cp
n

ew
.y

Fig. 2. Schematics on nudging procedure for reshaping local carrot path.

Algorithm 2. Local Segment Refinement

Function local

global global

(,

,)

,

,

carrot path map segm

smooth path carrot path conflict id

 Polish_ LocalSegment

 _ _ _

1. start [1]id segm , end [end]id segm ;
2. local global start global end[], []pose smooth path id smooth path id _ _ ;
3. Initialize local start end[:]conflict id conflict id id id_ _ ;
4. Initialize local global start end[:]smooth path smooth path id id_ _ ;
5. Initialize local global start end[:]carrot path carrot path id id_ _ ;
6. for max(1; inner_iter ;),iter iter iter do
7. for end start(1; ; + +),i id id ii do
8. local[]smooth pathwp i _ ;
9. if local[] 1,conflict id i _ then
10. left right[,] ,rate rate map wp MeasureCollisionRat s e ;
11. left right maxtraceback _lengthtb rate rate ;
12. local , ,id carrot path i tb FindMatchedCarrotPointI _ D ;
13. if left right ,rate rate then
14. local local_ []. _ Δs sin()[]. .carrot path id x carrot path id x wp ;
15. local local_ []. _ Δs cos()[]. .carrot path id y carrot path id y wp ;
16. else
17. local local_ []. _ Δs sin()[]. .carrot path id x carrot path id x wp ;
18. local local_ []. _ Δs cos()[]. .carrot path id y carrot path id y wp ;
19. end if
20. end if
21. end for

22.
 local local

local local(

,

,)

smooth path carrot path

carrot path pose

SamplePurePursuitPa _ th

_ _
;

23.
 local local

local local

,

,()

smooth path carrot path

smooth path carrot path

ResamplePaths

_ _

_ _
;

24. local local(),conflict id smooth path map IdentifyConflictingPoi _ nts_ ;

25. if local[] 0,
j

conflict id j _ then

26. break;
27. end if
28. end for

29. return;

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

with . π / 2.wp The opposite case in Lines 17 and 18 could
be analyzed in the same way.
 The output of ()PolishLocalSegment is local ,carrot path_
which consists of end start()id id elements. All of the adjusted
local carrot paths are gathered in a vector called
polished segms_ (Line 14 of Algorithm 2).

F. Integrate Refinements in Local Segments

The function ()StitchPolishedSegments is used to update the
global carrot path globalcarrot path_ by integrating the local
refinement achievements stored in polished segms_ (Line 16
of Algorithm 1). As stated in the preceding subsection, the scale
of each local carrot path is not altered after the polishment, thus

()StitchPolishedSegments simply uses each refined local carrot
path to replace the corresponding segment along the global
carrot path. The pseudo-code is listed in Algorithm 3.

Algorithm 3. Locally Refined Segment Integration

Function global global

)

,

,

(carrot path carrot path

polished segms conflict segms

_ _

StitchPolishedSegments

 _ _

1. for (1; .size(); + +),i i polished segms i _ do
2. []conflict segm conflict segms i_ _ ;
3. start [1]id conflict segm _ , end [end]id conflict segm _ ;
4. global start end[:] []carrot path id id polished segms i_ _ ;
5. end for

6. return;

G. Prepare for a New Iteration in Outer Loop

Once globalcarrot path_ is updated in Line 16 of Algorithm 1,
one needs to make preparations for the next iteration. As shown
in Line 17 of Algorithm 1, leftbuffer and rightbuffer are
increased by leftbf and rightbf , respectively. Herein, leftbf
and rightbf are user-specified parameters that decide how fast
the variables leftbuffer and rightbuffer should increase during the
while-loop iteration. When leftbuffer and rightbuffer are larger,
the conflicting waypoints identified by the function

()IdentifyConflictingPoints tend to gather in a smaller number of
segments in ().CreateConflictingSegments In Line 18 of
Algorithm 1, the index iter is added by 1 to record the iteration
cycle. If a maximum cycle is reached (Line 3 of Algorithm 1),
the entire planning algorithm exits with a failure flag

_ 0is completed .

IV. SIMULATION RESULTS AND DISCUSSIONS

Simulations are conducted to investigate the efficiency of the
proposed APP planner.

A. Simulation Setup

Simulations are executed on an i9-9900 CPU that runs at
2×3.10GHz. Basic parametric settings are listed in Table I. A
typical curvy road scenario containing a right-turn and two

Fig. 3. Planned paths and corresponding footprints of two simulation cases. This figure is seen more clearly if zoomed in.

C
ur

va
tu

re
 [m

-1
]

Fig. 4. Curvatures of planned paths in two simulated cases.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

U-turns is defined, where static obstacles are irregularly placed
to clutter the drivable area along the road [38].

TABLE I. PARAMETRIC SETTINGS FOR SIMULATIONS

Parameter Description and unit Value

LW Wheelbase of the ego vehicle (m) 2.800

LB

Width of the ego vehicle (m) 1.942

LL Gross length of the ego vehicle (m) 4.689

LR Rear hang length of the ego vehicle (m) 0.929

max Upper bound of ()t (rad) 0.7

maxω Upper bound of d () / dt t (rad/s) 2.5

maxouter _iter Maximum iteration number of the while
loop in Algorithm 1

10

init init
left rightbf , bf

Initial values of trace-back and track-
forward thresholds used for determining
conflicting local segments (m)

4.0, 4.0

left rightbf , bf Additional values of trace-back and
track-forward thresholds (m)

5.0, 5.0

simt Unit time step in simulating pure pursuit
control process (s)

1.0

constv

Constant velocity in simulating tracking
control process (m/s)

1.0

maxinner_iter Maximum iteration number of the for
loop in Algorithm 2

200

maxtraceback _length

Maximum trace-back length used for
determining the matched carrot point in
Line 11 of Algorithm 2 (m)

4.0

Δs Unit nudging step length (m) 0.1

B. On the Efficiency of APP Planner

This subsection presents the efficiency of the proposed APP
path planner in dealing with cluttered environments. We
defined two distinct path-planning scenarios by placing 16 and
20 static polygonal obstacles in a randomized pattern. Fig. 3
visually illustrates the generated paths along with the
corresponding vehicle footprints, demonstrating the APP
planner’s capability to maneuver around environmental barriers.
Fig. 4 further validates that the path curvatures in both cases are
not only continuous but also within reasonable limits. This
indicates that the paths planned by our APP planner can be
easily tracked by a low-level controller.

It's worth noting, as Fig. 3 illustrates, that the APP planner is
not able to reach a predefined goal pose strictly. This inherent
limitation arises because the proposed APP planner indirectly
manipulates the smooth path via the carrot path without an
explicit strategy to fix the end of the smooth path to a specific
pose. One potential solution is to define an adaptive strategy
similar to how the planner deals with obstacles. Specifically, a
simulated smooth path that ends with an incorrect goal pose
would be considered invalid, prompting adjustments to the
carrot path. However, we have opted not to incorporate this
modification into the APP planner, as it would add complexity
to the entire algorithm. More importantly, this is not a serious
issue if the proposed planner is utilized for online planning in a
receding-horizon manner.

In both of the aforementioned cases, Fig. 5 depicts the
progression of the smooth path globalsmooth path_ during the
iterations within Algorithm 1’s while loop, with the path color

transitioning from red to purple. This evolution of the smooth
path demonstrates the APP planner’s ability to concentrate on
the conflicting local segments and dynamically adjust the
waypoints. As opposed to processing the entire path, the change
to focusing only on local segments as needed guarantees that
the APP planner runs fast. Similar to Fig. 5, Fig. 6 depicts the
evolution of the carrot path globalcarrot path_ during Algorithm
1’s iterative process, aligning with the aforementioned analysis.

C. Comparisons with State-of-the-art Path Planners

This subsection evaluates the performance of the APP
planner by comparing it with some existing path planners. We
selected the Dynamic Programming (DP) path planner [39] and
the Lightweight Iterative Optimization Method (LIOM) [38],
respectively representing the sampling- and refinement-based
planners. Concretely, the DP method samples equidistant layers
of equidistant nodes and uses quantic polynomials to connect
two nodes in adjacent layers. LIOM refines a coarse path via
numerically solving an OCP. As a refinement-based planner,
LIOM depends heavily on the initial guess quality. To make
comparisons fair, the coarse path derived by ()SearchA*Path in
Section III.B is used to warm-start LIOM.

A benchmark set consisting of 1,000 simulation cases was
established to ensure the comparisons would be thoroughly
made. The number of environmental obstacles in each case was
randomly set between 10 and 27 (averaging at 16.77), and these
obstacles were distributed randomly within the drivable region
of the road scene. Notably, some of the path planning cases in
the established benchmark set might be invalid, i.e., no path
efficiently connects the initial and goal poses. We deliberately
designed the benchmark set like this because a qualified
planner should be fail-fast, i.e., terminates quickly when it
encounters an invalid path planning case. Table II reports the
comparative simulation results. Fig. 7 provides a direct
comparison among the planned paths of the three involved
planners in a typical benchmark case.

TABLE II. COMPARATIVE SIMULATION RESULTS

Planner
ID

Success
rate

Average CPU
runtime (ms)

Average collision
check times

APP 89.20% 51.3327 13,738.203

DP 21.10% 413.0506 86,044.101

LIOM 2.90% 976.8490 63,372.333

The DP planner runs slowly due to the exhaustive collision

checks required by the DP search strategy. The success rate of
DP planner is low because it lacks the flexibility to explore
every inch of the drivable region. As pointed out by [40], the
lack of sampling flexibility is a typical limitation of
sampling-based planners with rigidly sampled nodes.
Increasing the sampling resolution to improve the success rate
would exacerbate the curse of dimensionality issue, leading to
more runtime consumed. A comparison between the DP
planner and the proposed APP planner highlights the
importance of sampling flexibility.

The average CPU runtime consumed by LIOM is obviously
longer than that of the proposed APP planner. The long runtime
consumed on safe travel corridor construction and NLP
solution is a contributing factor to the limited widespread
application of optimization-based planners in the research area
of path planning for intelligent vehicles. LIOM failed in most of

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

the cases because the safe travel corridor construction renders
buffers around the ego vehicle, which easily blocks the tiny
road in our benchmark cases. Therefore, LIOM is not
efficacious in dealing with scenarios narrowed by cluttered
obstacles. This conclusion is also reflected in Fig. 7, where the
path derived by LIOM is more conservative than the one
derived by APP.

D. Limitation of APP Planner

A typical limitation of the APP planner is that the planner
does not guarantee to reach the goal pose (including the
location and orientation) strictly. This is intuitively
understandable because sampling in the control space cannot
guarantee to reach a specified state. Another similar example is
the hybrid A* search algorithm, which cannot reach a specific
goal pose without the embedded Reeds-Shepp primitive
connection step. Thus the APP planner is suitable for planning
schemes that do not care much about the planning errors in the
goal pose.

V. FIELD TESTS

Indoor experiments were carried out on a 1.700m × 2.900m
track, uniquely characterized by straight lines in the middle and
circular arcs at both ends. A car-like robot of dimensions
0.211m × 0.191m was utilized as the ego vehicle. Six infrared
sensors from the NOKOV Motion Capture System were
deployed for precise vehicle and obstacle localization. Data
from these sensors were compiled on a desktop computer with
an AMD Ryzen 5 4600H CPU that runs at 6×3.00GHz, where
the proposed APP planner was also implemented (Fig. 8).
Driving commands were wirelessly dispatched to the car-like
robot via ZigBee. Proportional-derivative control was adopted
for longitudinal tracking while a pure-pursuit controller was
used to mitigate lateral deviations.

A 14-minute field test was executed, during which
environmental obstacles were intermittently relocated to
impede the robot’s path. The planning module was

Fig. 5. Evolution of smooth path in using APP planner. The iteration numbers are 7 and 9 in the two simulation cases, respectively. This figure is seen more clearly
if zoomed in.

Fig. 6. Evolution of carrot path in using APP planner. This figure is seen more clearly if zoomed in.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

implemented in an event-triggered way, i.e. the path planner
would be implemented only when environmental obstacles
update. The field test performance is shown at
https://www.bilibili.com/video/BV1MP411y7oF/. As we
observed, the average planning runtime of the APP planner was
3.909ms and the success rate is 100% among 21 triggered times
(Fig. 9). This indicates the proposed planner is fast, efficacious,
and stable. Particularly, the average runtime to sample a global
smooth path in the while loop was 0.180ms, which indicates
that the proposed planner archives kinematic feasibility in real
time.

TABLE III. COMPARATIVE CLOSED-LOOP TRACKING CONTROL RESULTS

maxω

(rad/s)

Closed-loop lateral tracking error (mm)

Maximum Average Median 99% percentile

0.60 22.0269 3.6181 2.6645 20.3909

 69.3837 10.4562 3.7599 67.1326

Recall that the cost function (4) contains a weighted term

about path smoothness. The APP planner cannot manipulate the
path smoothness by changing the parameter smoothnessw . Instead,
the APP planner determines the path smoothness by making
changes in the function ().SamplePurePursuitPath Concretely,
one may set a lower maxω to make the virtual chassis steer the

front wheels in a lower speed, thus improving the smoothness
of the tracked path global.smooth path_ With the purpose of
investigating how path smoothness would influence the
tracking performance, we conducted tests under different
settings of maxω . Results are reported in Table III and Fig. 10.
Setting maxω to infinity means that the virtual chassis is
allowed to steer its front wheels discontinuously. Tracking with
such a virtual chassis makes our modified tracking controller
regrades to the conventional pure pursuit controller. As Table
III indicates, the conventional pure pursuit controller caused
more tracking errors and inevitably renders curvature-
discontinuous paths, which are hard to track (Fig. 10a). This
indicates that our proposal in Section III.C makes sense. Setting

maxω to a small value would improve the smoothness of the
planned path and reduce the tracking error (Fig. 10b).

VI. CONCLUSIONS

This paper has proposed a real-time path planning method,
named Adaptive Pure Pursuit (APP) planner, for autonomous
driving in cluttered environments. Efficiency of the proposed
planner has been validated through comparative simulations
and field tests.

Our contribution in this paper goes beyond the mere

Fig. 7. A typical comparison among APP, DP, and LIOM planners.

Fig. 8. Field test scenario layout and device setups.

(a)

(b)

Legend
 Obstacle(s)
 Ego vehicle
 Reference line
 Planned path
 Carrot path

(c)

Fig. 9. Typical experimental operations and results: (a) relocation of an obstacle
during the real-time tracking process; (b) evasive maneuvers of ego vehicle
captured via time-lapse photography; (c) environmental layout and technical
details of APP planner visualized in ROS Rviz monitor.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

formulation of an algorithm; it introduces a fresh paradigm to
tackle path planning problems. Traditionally, path planning
faced challenges in striking a balance between vehicle
kinematic constraints and collision-avoidance constraints. In
contrast to widely-used refinement-based planners like LIOM,
which prioritize collision-avoidance constraints while
attempting to regain kinematic feasibility, our proposed APP
planner shows a paradigm shift. It effortlessly satisfies vehicle
kinematic constraints, while collision avoidance is achieved
adaptively via a series of trials and errors. When compared with
sampling-based planners that generate kinematically feasible
path candidates/primitives before sorting or searching, the APP
planner stands out. The flexibility during the sampling process
and the local focus on conflict resolution provide the APP
planner with a distinct advantage. The proposed paradigm is
generic because it accommodates a variety of vehicle
kinematic/dynamic models and tracking controllers other than
the pure pursuit controller considered in this work. If the ego
vehicle drives at a high speed, then the vehicle dynamics should
be considered when modeling the virtual chassis. Our proposed
APP planner supports the usage of vehicle dynamic models.

 Further advancements in this path-planning paradigm are
needed to incorporate the ability to plan backward maneuvers.
A theoretical convergence analysis is needed to guide the
optimal parametric settings in ().PolishLocalSegment A
limitation of the APP planner is that it cannot guarantee finding
paths with strict satisfaction of goal-pose constraints. Future
work is needed to improve the APP planner at that point.

APPENDIX

This section provides the basic principle of pure pursuit
controller. As depicted in Fig. A1, the ego vehicle is currently
staying at point P and tracking the carrot path. A look-ahead
carrot point Q along the carrot path is determined by a distance
Lfc ahead of point P. Once the carrot point Q is determined, one
can derive the steering angle profile ()t so that the ego
vehicle would track point Q in the next simt seconds.

The carrot point Q is determined by exploring along the
carrot path for a qualified point such that the distance between
that point and P is Lfc, which is a user-specified parameter that
sets the look-ahead distance. The pure pursuit controller
expects that the ego vehicle would reach Q with a circular path
segment. Due to the geometrics presented in Fig. A1, the radius
of the aforementioned circular arc R satisfies

fcL R
,

πsin(2) sin()
2

 (A1)

which yields that
fcL R

.
2sin() cos() cos()

 (A2)

With an assumption that cos() 0 , one has

fcL
R ,

2sin()
 (A3)

and thus
W W

fc

L 2L sin
arctan() arctan().

R L

α
 (A4)

The ego vehicle would track Q for simt seconds, which
indicates the steering angle is set constant during that period.
The longitudinal velocity is a user-specified constant value
then.

Fig. A1. Schematic of the pure pursuit tracking controller.

ACKNOWLEDGMENTS

The authors are grateful to Yakun Ouyang, Shiqi Tang,
Tianxing Yang, Xiaoyan Peng, Xinwei Wang, Chen Li, Zhe
Luo, Zhou Liu, Kun Li, Yi Liu, and Ping Shi for their support in
this study.

(a)

(b)

Fig. 10. Comparative open-loop and closed-loop tracking paths under different
settings of maxω : (a) maxω 0.6rad/s ; (b) maxω .

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

REFERENCES

[1] J. R. Sánchez-Ibánez, C. J. Pérez-del-Pulgar, M. Azkarate, L. Gerdes, and
A. García-Cerezo, “Dynamic path planning for reconfigurable rovers
using a multi-layered grid,” Engineering Applications of Artificial
Intelligence, vol. 86, pp. 32–42, 2019.

[2] J. S. Chou, M. Y. Cheng, Y. M. Hsieh, I. T. Yang, and H. T. Hsu,
“Optimal path planning in real time for dynamic building fire rescue
operations using wireless sensors and visual guidance,” Automation in
Construction, vol. 99, pp. 1–17, 2019.

[3] T. Wang, P. Huang, and G. Dong, “Modeling and path planning for
persistent surveillance by unmanned ground vehicle,” IEEE Transactions
on Automation Science and Engineering, vol. 18, pp. 1615–1625, 2021.

[4] Y. Huang, S. Z. Yong, and Y. Chen, “Stability control of autonomous
ground vehicles using control-dependent barrier functions,” IEEE
Transactions on Intelligent Vehicles, vol. 6, no. 4, pp. 699–710, 2021.

[5] L. Schäfer, S. Manzinger, and M. Althoff, “Computation of solution
spaces for optimization-based trajectory planning,” IEEE Transactions
on Intelligent Vehicles, vol. 8, no. 1, pp. 216–231, 2023.

[6] B. Li et al., “Optimization-based trajectory planning for autonomous
parking with irregularly placed obstacles: A lightweight iterative
framework,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 11970–11981, 2022.

[7] B. Li, L. Fan, Y. Ouyang, S. Tang, X. Wang, D. Cao, and F.-Y. Wang,
“Online competition of trajectory planning for automated parking:
Benchmarks, achievements, learned lessons, and future perspectives,”
IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 16–21, 2023.

[8] L. Chen et al., “Milestones in autonomous driving and intelligent vehicles:
Survey of surveys,” IEEE Transactions on Intelligent Vehicles, vol. 8, no.
2, pp. 1046–1056, 2023.

[9] J. Minguez, L. Montano, and J. Santos-Victor, “Reactive navigation for
non-holonomic robots using the ego-kinematic space,” In Proc. 2002
IEEE International Conference on Robotics and Automation (ICRA), pp.
3074–3080, 2002.

[10] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” In Proc. 1985 IEEE International Conference on Robotics and
Automation (ICRA), pp. 500–505, 1985.

[11] J. Borenstein, and Y. Koren, “Real-time obstacle avoidance for fast
mobile robots in cluttered environments,” In Proc. 1990 IEEE
International Conference on Robotics and Automation (ICRA), pp.
572–577, 1990.

[12] B. Li, D. Cao, S. Tang, T. Zhang, H. Dong, Y. Wang, and F.-Y. Wang,
“Sharing traffic priorities via cyber-physical-social intelligence: A
lane-free autonomous intersection management method in Metaverse”,
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53,
no. 4, pp. 2025–2036, 2023.

[13] H. Li, W. Liu, C. Yang, W. Wang, T. Qie, and C. Xiang, “An
optimization-based path planning approach for autonomous vehicles
using the DynEFWA-artificial potential field,” IEEE Transactions on
Intelligent Vehicles, vol. 7, no. 2, pp. 263–272, 2022.

[14] J. Wang, T. Li, B. Li, and M. Meng, “GMR-RRT*: Sampling-based path
planning using Gaussian mixture regression,” IEEE Transactions on
Intelligent Vehicles, vol. 7, no. 3, pp. 690–700, 2022.

[15] H. Ma, F. Meng, C. Ye, J. Wang, and M. Meng, “Bi-risk-RRT based
efficient motion planning for autonomous ground vehicles,” IEEE
Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 722–733, 2022.

[16] A. H. Qureshi, and Y. Ayaz, “Intelligent bidirectional rapidly-exploring
random trees for optimal motion planning in complex cluttered
environments,” Robotics & Autonomous Systems, vol. 68, pp. 1–11, 2015.

[17] W. Sheng, B. Li, and X. Zhong, “Autonomous parking trajectory
planning with tiny passages: A combination of multistage hybrid A-star
algorithm and numerical optimal control,” IEEE Access, vol. 9, pp.
102801–102810, 2021.

[18] W. Chi, Z. Ding, J. Wang, G. Chen, and L. Sun, “A generalized Voronoi
diagram-based efficient heuristic path planning method for RRTs in
mobile robots,” IEEE Transactions on Industrial Electronics, vol. 69, pp.
4926–4937, 2022.

[19] B. Li et al., “Online trajectory replanning for sudden environmental
changes during automated parking: A parallel stitching method,” IEEE
Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 748–757, 2022.

[20] B. Li, Y. Ouyang, X. Li, D. Cao, T. Zhang, and Y. Wang, "Mixed-integer
and conditional trajectory planning for an autonomous mining truck in
loading/dumping scenarios: A global optimization approach,” IEEE
Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1512–1522, 2023.

[21] X. Zhang, Y. Jiang, Y. Lu, and X. Xu, “Receding-horizon reinforcement
learning approach for kinodynamic motion planning of autonomous
vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3, pp.
556–568, 2022.

[22] B. Li, L. Li, T. Acarman, Z. Shao, and M. Yue, “Optimization-based
maneuver planning for a tractor-trailer vehicle in a curvy tunnel: A weak
reliance on sampling and search,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 706–713, 2022.

[23] K. Bergman, O. Ljungqvist, and D. Axehill, “Improved path planning by
tightly combining lattice-based path planning and optimal control,” IEEE
Transactions on Intelligent Vehicles, vol. 6, no. 1, pp. 57–66, 2021.

[24] B. Li, Y. M. Zhang, and Z. Shao, “Spatio-temporal decomposition: A
knowledge-based initialization strategy for parallel parking motion
optimization,” Knowledge-Based Systems, vol. 107, pp. 179–196, 2016.

[25] P. Scheffe, T. M. Henneken, M. Kloock, and B. Alrifaee, “Sequential
convex programming methods for real-time optimal trajectory planning
in autonomous vehicle racing,” IEEE Transactions on Intelligent Vehicles,
vol. 8, no. 1, pp. 661–672, 2023.

[26] B. Li et al., “On-road trajectory planning with spatio-temporal RRT* and
always-feasible quadratic program,” In Proc. 2020 16th IEEE
International Conference on Automation Science and Engineering
(CASE), pp. 943–948, 2020.

[27] S. Zhang, Z. Jian, X. Deng, S. Chen, Z. Nan, and N. Zheng, “Hierarchical
motion planning for autonomous driving in large-scale complex
scenarios,” IEEE Transactions on Intelligent Transportation Systems, vol.
23, pp. 13291–13305, 2022.

[28] C. C. Tsai, H. C. Huang, and C. K. Chan, “Parallel elite genetic algorithm
and its application to global path planning for autonomous robot
navigation,” IEEE Transactions on Industrial Electronics, vol. 58, pp.
4813–4821, 2011.

[29] X. Zhong, J. Tian, H. Hu, and X. Peng, “Hybrid path planning based on
safe A* algorithm and adaptive window approach for mobile robot in
large-scale dynamic environment,” Journal of Intelligent & Robotic
Systems, vol. 99, pp. 65–77, 2020.

[30] C. Jiang et al, “R2-RRT*: Reliability-based robust mission planning of
off-road autonomous ground vehicle under uncertain terrain
environment,” IEEE Transactions on Automation Science and
Engineering, vol. 19, pp. 1030–1046, 2022.

[31] B. Hu, Z. Cao, and M. Zhou, “An efficient RRT-based framework for
planning short and smooth wheeled robot motion under kinodynamic
constraints,” IEEE Transactions on Industrial Electronics, vol. 68, pp.
3292–3302, 2021.

[32] X. Zhou, Z. Wang, H. Shen, and J. Wang, “Robust adaptive path-tracking
control of autonomous ground vehicles with considerations of steering
system backlash,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 2,
pp. 315–325, 2022.

[33] B. Li, and Z. Shao, “A unified motion planning method for parking an
autonomous vehicle in the presence of irregularly placed obstacles,”
Knowledge-Based Systems, vol. 86, pp. 11–20, 2015.

[34] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, pp. 100–107, 1968.

[35] R. C. Coulter, Implementation of the pure pursuit path tracking algorithm.
Carnegie-Mellon UNIV Pittsburgh PA Robotics INST 1992.

[36] R. F. Hartl, S. P. Sethi, and R. G. Vickson, “A survey of the maximum
principles for optimal control problems with state constraints,” SIAM
Review, vol. 37, no. 2, pp. 181–218, 1995.

[37] J. Ziegler, and C. Stiller, “Fast collision checking for intelligent vehicle
motion planning,” In Proc. 2010 IEEE Intelligent Vehicles Symposium,
pp. 518–522, 2010.

[38] B. Li, Y. Ouyang, L. Li, and Y. Zhang, “Autonomous driving on curvy
roads without reliance on Frenet frame: A Cartesian-based trajectory
planning method,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 9, pp. 15729–15741, 2022.

[39] W. Xu, J. Pan, J. Wei, and J. M. Dolan, “Motion planning under
uncertainty for on-road autonomous driving,” In Proc. 2014 IEEE
International Conference on Robotics and Automation (ICRA), pp.
2507–2512, 2014.

[40] D. Le, Z. Liu, J. Jin, K. Zhang, and B. Zhang, “Historical improvement
optimal motion planning with model predictive trajectory optimization
for on-road autonomous vehicle,” In Proc. 45th Annual Conference of
IEEE Industrial Electronics Society, pp. 5223–5230, 2019.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES

Bai Li (SM’13–M’19) received his B.S. degree in
2013 from the School of Advanced Engineering,
Beihang University, China, and his Ph.D. degree in
2018 from the College of Control Science and
Engineering, Zhejiang University, China. From Nov.
2016 to June 2017, he visited the Department of Civil
and Environmental Engineering, University of
Michigan (Ann Arbor), USA, as a joint training Ph.D.
student. He is currently an associate professor at the
College of Mechanical and Vehicle Engineering,

Hunan University, China. Before teaching at Hunan University, he worked in
JDX R&D Center of Automated Driving, JD Inc., China from 2018 to 2020 as
an algorithm engineer. Prof. Li has been the first author of nearly 80
journal/conference papers and two books in numerical optimization, motion
planning, and robotics. He was a recipient of the International Federation of
Automatic Control (IFAC) 2014–2016 Best Journal Paper Prize from
Engineering Applications of Artificial Intelligence. He was a recipient of the
2022 Best Associate Editor Award of IEEE TRANSACTIONS ON INTELLIGENT

VEHICLES. He is currently an Associate Editor of IEEE TRANSACTIONS ON

INTELLIGENT VEHICLES. His research interest is motion planning methods in
autonomous driving.

Yazhou Wang earned his B.S. degree in Vehicle
Engineering from Hunan University, China, in 2021.
Currently, he is pursuing his Master’s degree at the
College of Mechanical and Vehicle Engineering in
the same institution. His research focuses on
intelligent vehicle systems, with specific emphasis
on decision making, trajectory planning, control,
and software engineering aspects.

Siji Ma completed his B.S. degree in 2022 from the
School of Information Engineering at Hangzhou
Dianzi University, China. Presently, he is enrolled as
a Master’s candidate in the Faculty of Innovation
Engineering at the Macau University of Science and
Technology. His research interests encompass
parallel intelligence, reinforcement learning, and
Decentralized Autonomous Organizations (DAOs)
for intelligent vehicles.

Xuepeng Bian received his B.S. degree at the School
of Electrical Engineering, Yanshan University,
Qinhuangdao, China, in 2012. He went on to earn his
M.S. degree from the School of Automation at the
Beijing Institute of Technology, Beijing, China, in
2014. Currently, he is a Senior Engineer at the
Tencent Automatic Drive Lab, part of Tencent.com
Inc., wherein his primary work involves research and
development of motion planning and control for an
intelligent vehicle.

Hu Li completed his B.S. degree in 2020 from the
School of Mechatronic Engineering at Chengnan
College, part of Changsha University of Science and
Technology, China. Since 2021, he has been working
towards his Master’s degree at the College of
Mechanical and Vehicle Engineering, Hunan
University, China. His research is focused on the
trajectory planning and prediction of autonomous
vehicles.

Tantan Zhang received a B.S. degree in 2012 from
Hunan University, Changsha, China, the dual M.S.
degrees in 2015 from Politecnico di Torino, Turin,
Italy, and Tongji University, Shanghai, China, and a
Ph.D. degree in 2020 from Politecnico di Torino,
Turin, Italy. He is currently an assistant professor at
the College of Mechanical and Vehicle Engineering,
Hunan University, China. His research interests
include motion planning of automated vehicles.

Xiaohui Li received his B.S. degree in electrical
engineering from Harbin Institute of Technology, P.R.
China, in 2009 and the Ph.D. degree in control
science and engineering from the College of
Mechatronics and Automation, Nation University of
Defense Technology (NUDT), in 2016. He has been a
visiting Ph.D. student in Ohio State University, USA.
He is currently an associate professor with the
College of Intelligence Science and Technology,
NUDT. Dr. Li has served as a reviewer for a lot of

Journals, including IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION

SYSTEMS, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE

TRANSACTIONS ON INDUSTRIAL ELECTRONICS, etc. His research activities
include design and applications of complex control systems, decision-making,
motion planning, and optimal control for autonomous vehicles.

Youmin Zhang (M’99–SM’07–F’23) is a Professor
at the Department of Mechanical, Industrial and
Aerospace Engineering, Concordia University,
Canada. His research interests are in the areas of
monitoring, diagnosis and physical fault/cyber-attack
tolerant/resilient control, guidance, navigation and
control of unmanned systems and smart grids, with
applications to forest fires and smart cities in the
framework of cyber-physical systems by combining
with remote sensing techniques. He has published 8

books, over 600 journal and conference papers. Dr. Zhang is a Fellow of CSME,
a Senior Member of AIAA, President of International Society of Intelligent
Unmanned Systems (ISIUS) during 2019–2022, and a technical committee
member of several scientific societies. He has been an Editor-in-Chief (EIC),
Editorial Advisory Board Member of several journals, including as a Member
of Board Member of Governors and Representatives for Journal of Intelligent
& Robotic Systems, Associate Editor for IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS, IEEE TRANSACTIONS ON NEURAL NETWORKS & LEARNING

SYSTEMS, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS - II: EXPRESS

BRIEFS, IET Cyber-systems and Robotics, Unmanned Systems, Security and
Safety, and Deputy EIC for Guidance, Navigation and Control.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3296435

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

