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Abstract—Hybrid electric vehicles (HEVs) rely on energy man-
agement strategies (EMSs) to achieve optimal fuel economy. How-
ever, both model- and learning-based EMSs have their respective
limitations which negatively affect their performances in online
applications. This paper presents a computationally efficient
adaptive dynamic programming (ADP) approach that can not
only rapidly calculate optimal control actions but also iteratively
update the approximated value function (AVF) according to the
actual fuel and electricity consumption with limited computation
resources. Exploiting the AVF, the engine on/off switch and torque
split problems are solved by one-step lookahead approximation
and Pontryagin’s minimum principle (PMP), respectively. To
raise the training speed and reduce the memory space, the
tabular value function (VF) is approximated by carefully selected
piecewise polynomials via the parametric approximation. The
advantages of the proposed EMS are threefold and verified by
processor-in-the-loop (PIL) Monte Carlo simulations. First, the
fuel efficiency of the proposed EMS is higher than that of an
adaptive PMP and close to the theoretical optimum. Second,
the new method can adapt to the changed driving conditions
after a small number of learning iterations and thus has higher
fuel efficiency than a non-adaptive dynamic programming (DP)
controller. Third, the computation efficiencies of the proposed
AVF and a tabular VF are compared. The concise data structure
of the AVF enables faster convergence and saves at least 70% of
onboard memory space without obviously increasing the average
CPU utilization.

Index Terms—Hybrid electric vehicle, Energy management
strategy, Adaptive dynamic programming, Approximated value
function.

I. INTRODUCTION

THE urgent demand to reduce energy consumption and
exhaust emission dramatically expedites vehicular elec-

trification in contemporary society [1], [2]. Among various
new-energy vehicles, the hybrid electric vehicle (HEV), char-
acterized by an extra onboard electric energy storage (EES),
e.g., a battery pack or a supercapacitor (SC), along with the
traditional fuel tank on its powertrain, has shown fascinating
advantages over its counterparts. Thanks to the electric motor
(EM), the internal combustion engine (ICE) can either operate
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within its high-efficiency range or be switched off to save fuel.
Hence, the HEV can achieve better fuel economy than the
conventional fuel-powered vehicle and has less concern about
range anxiety than the pure electric vehicle [3]. However, the
dual onboard energy sources add an extra degree of freedom
to the powertrain and thus require an appropriate energy
management strategy (EMS) to flexibly assign torque demands
to the fuel and electric paths for minimal fuel consumption
without violating any system requirement [4], [5].

The published EMSs over past decades can be broadly
classified into three groups, namely rule-based, optimization-
based, and learning-based strategies [6], [7]. Rule-based
EMSs, including thermostat (on/off) [8], power follower [9],
state machine [10] and fuzzy logic strategy [11], have merits in
component variability and system robustness. However, since
predefined rules are extracted from heuristic inference and/or
human expertise rather than rigorous optimization, these EMSs
can hardly ensure close-to-optimal performances or even that
all system constraints can be well satisfied.

Based on predefined optimization objectives and system
constraints, optimization-based strategies search for optimal
or suboptimal solutions by different approaches. Depending on
the reliance on future driving information, they can be further
divided into global and real-time optimization EMSs. The
former subgroup, containing deterministic dynamic program-
ming (DDP) [12], [13], genetic algorithm (GA) [14], simulated
annealing (SA) [15], and particle swarm optimization (PSO)
[16], usually cannot be directly applied to online applications
due to the dependency on complete driving information as well
as the enormous computation intensity. Benefiting from the
rapid solving process, the latter subgroup, including Pontrya-
gin’s minimum principle (PMP) [17], equivalent consumption
minimization strategy (ECMS) [18], and model predictive con-
trol (MPC) [19], can be utilized in online applications and has
obtained favorable results. The performances of optimization-
based EMSs, however, are not robust if vehicle models signif-
icantly deviate from real powertrain features or the predicted
information fails to reflect actual driving scenarios.

To improve the robustness, a slew of learning-based EMSs
have been studied recently, such as supervised learning [20],
unsupervised learning [21], reinforcement learning (RL) [22],
deep reinforcement learning (DRL) [23], and so forth. At each
time step, they select a set of control actions and then update
control strategies according to the real-time feedback and the
accumulated historical information. Therefore, after adequate
training in simulation and actual driving environment, they
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can achieve a competitive performance very close to the
optimum. Nevertheless, current learning-based EMSs still have
several bottlenecks. For instance, the basic Q-learning method
[24] represents Q functions as high-dimensional tables, which
incur truncation errors to the control performance and require
a large amount of onboard memory space. Approximating
the Q table by a deep neural network (DNN), the deep Q-
network (DQN)-based EMS [25] can effectively overcome the
“curse of dimensionality” but can only output actions with dis-
crete values. The deep deterministic policy gradient (DDPG)
method [26] enables control actions in continuous spaces,
but relies on four independent neural networks (NNs) and
one replay buffer of large size to store historical experience.
Such a complicated architecture brings in massive storage
occupation and burdensome computation intensity in online
applications. Moreover, almost all learning-based EMSs suffer
low convergences rates, and their performances are highly
dependent on the training database.

Among all aforementioned EMSs, DDP is regarded as the
most effective method to realize the global optimum and has
been extensively investigated. Since DDP is an offline method,
a lot of online dynamic programming (DP) methods have
been investigated in recent years [27]. Instead of requiring
a precise driving cycle in advance, stochastic DP (SDP) [28]
adopts a statistical model to predict future driving information
and generates a stationary optimal control policy. The time-
invariant and state feedback properties enable SDP to run
rapidly online. However, its multi-dimensional control map is
usually memory intensive and limits its prevalence. Adaptive
DP (ADP)1 [30] is another alternative, in which the explicit
value function (VF) and state transitions are approximated
by NNs. ADP can attain a comparable performance as DDP
and significantly save the onboard memory, whereas the extra
computation overhead for updating NNs is nontrivial in online
applications.

In addition to the torque split between the fuel and electric
paths, the ICE on/off switch is crucial for fuel economy,
especially for parallel HEVs, whose wheel speeds are directly
coupled with ICE spinning speeds. Due to the binary property,
optimizing the ICE on/off switch together with the torque split
simultaneously is time-consuming in online control. Conse-
quently, the majority of research works ignore this binary
variable or use heuristic rules to calculate it with ease [31]. The
PMP method is utilized to regulate the real-time ICE status but
cannot avoid rapid switches [32]. The DDP method is able to
solve the optimal ICE switch problem with a receding horizon,
but the computation load is too large [33].

In summary, the complex nonlinearity and non-convexity
of the HEV powertrain impose enormous challenges on the
development of advanced online EMSs. To the best of our
knowledge, the majority of current research concentrates on
whether the numeric results attained by a newly developed
EMS are better than those by the benchmark methods, while
little attention has been paid to how much computation re-
source an EMS will occupy and whether it can be implemented

1Adaptive DP is sometimes also called approximate DP since they both
employ adaptive critic designs [29].

as a real-time controller on vehicular onboard processors.
To address these challenges, this paper presents a com-

putationally efficient adaptive dynamic programming (ADP)-
based EMS for a parallel HEV to improve its fuel economy.
The proposed online EMS contains three interactive modules,
namely powertrain mode selection, torque split control, and
adaptive learning algorithm. With the aid of VF, the total
equivalent fuel consumption in the remaining driving can be
forecasted, and the optimal ICE on/off switch determined. If
the ICE is switched on, PMP is employed to calculate the
torque allocations on ICE and EM. For a close-to-optimal
solution with efficient execution in real-time, the Hamiltonian
is formulated as a constraint quadratic programming problem,
and the costate of PMP is derived from the VF. To avoid the
“curse of dimensionality”, the tabular VF of explicit values
is replaced by the approximated value function (AVF) of
piecewise polynomials. The AVF parameters are initialized by
the optimal VF obtained from offline DDP and then itera-
tively updated during online usage to overcome the deviation
between the model and reality.

Processor-in-the-loop (PIL) simulations based on a low-cost
microprocessor have been performed on two different driving
routes to verify the following three primary advantages of
the proposed ADP method. First, the ADP method achieves
a close-to-optimal fuel efficiency, more than 97% of that by
offline DDP and at least 5% better than that of an adaptive
PMP (APMP). There is no frequent ICE on/off switch during
driving, and the final state of charge (SOC) of the SC is close
to its initial value. Second, this method can quickly improve
itself by adapting to real driving conditions through online
learning. The adaptation addresses both model errors and the
deviation between prior knowledge and real driving conditions.
Thus, it achieves higher fuel efficiency than a non-adaptive DP
method. Third, this method adopts a much more compact data
structure to represent the AVF than the DDP method directly
using tabular VF. Hence, it enjoys a higher learning speed and
saves at least 70% of onboard flash memory.

The main contributions that distinguish this paper from
previous studies are summarized below.

1. Owing to the nonlinear and discrete dynamics of HEV
powertrains, existing ADP-based EMSs approximate the
VF by complex NNs to ensure the numeric accuracy,
whereas NNs require long learning time and large mem-
ory spaces. Our method approximates the VF by piece-
wise third-order polynomials to reduce the complexity.
The VF segmentation is determined by the optimal pro-
file of powertrain mode obtained from offline DDP. To
ensure optimality and accelerate the convergence speed,
the parameters of piecewise polynomials are initialized
by the optimal VF from offline DDP.

2. Online decisions on ICE switch and ICE torque are often
calculated by mixed integer optimization or DDP for a
limited time horizon in the literature and are thus time-
consuming. Our approach constrains the ICE to operate
at the peak efficiency point when evaluating its on/off
switch command. Then, the ICE on/off switch control
becomes a binary problem and can be rapidly solved by
one-step lookahead with the AVF.
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Fig. 1. Parallel HEV Powertrain Architecture

3. Unlike previous PMP methods that calculate the costate
by either heuristic rules or partial derivative equations,
the optimal costate in this paper is estimated through
the AVF for a close-to-optimal solution. In addition, by
simplifying the ICE and EM models, the Hamiltonian is
reformulated as a convex constraint quadratic program-
ming problem that can be rapidly solved.

4. Only numeric results are discussed in the majority
of previous EMS studies, and a small number of re-
searchers merely exhibited the EMS execution time in
simulations. This paper systematically investigates the
computation efficiency of the proposed EMS through
PIL simulations, which measure both numerical results
and the time and space complexities of the proposed
EMS, including maximum/average CPU utilization and
RAM/flash memory consumption.

The rest of this paper is organized as follows: Section II
establishes a control-oriented dynamical model of a parallel
HEV and its powertrain; Section III converts the HEV en-
ergy management problem into a constrained-optimal control
problem (OCP); Section IV elaborates the framework of ADP-
based EMS; Section V illustrates and discusses the PIL simu-
lation results; and lastly, Section VI draws the main conclusion
and raises the future work.

II. DYNAMICAL MODEL OF HEV AND POWERTRAIN

The HEV under investigation is a lightweight prototype
and has a parallel powertrain depicted in Fig. 1. It consists
of two independent propelling components: a petrol-driven
ICE and a brushless direct current (BLDC) motor powered
by an SC. During driving, the powertrain has two working
modes, namely the electric mode when the ICE is off and
the clutch is disengaged, and the hybrid mode when the ICE
is on and the clutch is engaged. Essential parameters of this
HEV are listed in TABLE I. Since the optimization objective
is the accumulated energy consumption on a driving route,
the quasi-static modeling method is employed to analyze the
dynamical characteristics of each powertrain component. The
fast dynamics, such as clutch engage/disengage and ICE on/off
switch, are neglected.

TABLE I. Essential Parameters of the HEV

Parameter Sign Value Unit
HEV gross mass M 216 kg

Gravitational acceleration g 9.81 kg ·m·s−2

Rotational mass conversion ratio δ 1.04 /
Driving wheel radius r 0.26 m

Windward area Af 1.05 m2

Air drag coefficient cd 0.15 kg ·m−3

Rolling resistance coefficient cr 0.011 /
ICE gear ratio Rce 1.23 /
EM gear ratio Rem 1.06 /

Differential gear ratio Rp 10 /
Lumped efficiency in drive shaft ηd 0.9 /

Lumped efficiency to recharge SC ηrc 0.25 /
Average SC efficiency ηsc 0.98 /
SC terminal voltage Vsc 40-50 V

SC Nominal capacitance C 107 F
SC Nominal charge capacity Qsc 5350 C

ICE maximum torque Tmax
ce 3.1 Nm

ICE maximum power Pmax
ce 1.5 kW

EM maximum torque Tmax
em 11 Nm

EM maximum power Pmax
em 3.55 kW

A. HEV Longitudinal Model

Suppose that the total driving time tf for a driving route is
uniformly divided into N steps with interval ts = tf/N . At the
kth step, k∈{0, 1, ..., N−1}, the HEV longitudinal dynamics
can be described by,

ak =
1

δM

[
Tt,k
r
−1

2
Afcdv

2
k−Mg

(
cr cosαk+sinαk

)]
, (1)

vk+1 = vk + akts, (2)

where a, v, Tt, and α denote the HEV acceleration, speed,
net tractive torque on the driving wheel, and road slope angle,
respectively. They are assumed fixed within one step ts.

In the hybrid mode, Tt is supplied by both the ICE torque
Tce and the EM torque Tem, expressed by,

Tt,k = Rp

(
Tce,kRceηd + Tem,kRemη

sign(Tem,k)
d

)
. (3)

In the electric mode, (3) still holds with Tce,k equal to 0.

B. ICE Model

The transient fuel consumption by ICE during one step ts
contains two parts, one is the actual fuel consumption mce for
generating driving torque Tce, and another is the equivalent
one msw for powertrain mode switch by switching ICE on/off
and dis/engaging clutch. The first part, mce, is derived as,

mce,k = ṁce,kts, (4)

ṁce,k =
Pce,k

Qf
=

Tce,kωce,k

ηce(Tce,k, ωce,k) ·Qf
, (5)

ωce,k = vk
RpRce

r
, (6)

where ṁce is the transient fuel consumption rate in grams per
second (g/s), Pce is the power consumption by ICE, Qf is
the lower heating value of gasoline, ωce is the spinning speed
of ICE crankshaft after the clutch is engaged, and ηce denotes
the ICE net efficiency which is modeled as a 2D map with
Tce and ωce as inputs, shown in Fig. 2(a).

The general approach to obtain ηce is to perform interpola-
tion with Tce and ωce in the 2D map of meshgrid format.
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Fig. 2. Actuator Efficiency Maps
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Fig. 3. Power Consumption Approximation

However, this method will result in excessive computation
and memory overheads in real-time optimization. Thus, it is
unsuitable for developing computationally efficient EMSs. A
common solution is to approximate Pce of a given ωce as a
second-order function of Tce [34],

Pce,k = p2(ωce,k)T 2
ce,k + p1(ωce,k)Tce,k + p0(ωce,k), (7)

where p2, p1, p0 are fitting coefficients of a specific ωce. The
approximation results of several different ωce are plotted in
Fig. 3(a), and the normalized root mean square error (NRMSE)
between approximated efficiency values and real ones in the
2D map is 2.68%.

For better fuel economy, the ICE is expected to operate
in the high-efficiency region. In this paper, a narrow band of
width ∆T , around the peak efficiency line that is depicted by
the red curve in Fig. 2(a), is selected as the admissible ICE

operating range. Hence, the upper and lower bounds for Tce
at a given ωce are defined as,

Tmin
ce,k = T ◦ce(ωce,k)−∆T/2, (8)

Tmax
ce,k = T ◦ce(ωce,k) + ∆T/2, (9)

where the superscripts min and max refer to the upper and
lower bounds, T ◦ce denotes the ICE torque with peak efficiency.

The value of msw can be either m? if the powertrain mode is
switched at the current step or 0 if it does not occur. Since the
actual energy consumption for one mode switch varies a lot
under different operation conditions [35], for simplification,
m? is set as the average equivalent fuel consumption of a
large number of mode switches under different conditions. The
fast dynamics of ICE switch and clutch dis/engagement are
neglected in this quasi-static model since they have negligible
impact on the analysis of energy consumption. Assume that
one switch can be fully carried out within one step ts. If the
current ICE on/off status is represented by a binary variable
sce ∈ {0, 1} (“1” means on concerning the hybrid mode and
“0” means off concerning the electric mode) and the ICE
on/off command by another binary variable uce∈{0, 1}, then
msw can be calculated by the followings,

msw,k =

{
0; sce,k = uce,k

m?; sce,k 6= uce,k
, (10)

sce,k+1 = uce,k, (11)
sce,k = 0 ⇒ Tce,k = 0, (12)

sce,k = 1 ⇒ Tce,k ∈
[
Tmin
ce,k , T

max
ce,k

]
. (13)

C. EM and SC Models

The EM can work in either the actuator mode when Tem
is positive or the generator mode when Tem is negative. Its
transient electric power consumption Pem is calculated by,

Pem,k =
Tem,kωem,k

ηem (Tem,k, ωem,k)
sign(Tem,k)

, (14)

ωem,k = vk
RpRem

r
, (15)

where ωem is the spinning speed of the EM rotor, and ηem is
the EM net efficiency dependent on Tem and ωem, shown by
Fig. 2(b).

An SC is selected as the onboard EES mainly due to its
longer life cycles and higher specific power than a battery
pack [36]. The net power across the SC Psc is the combination
of Pem and Paux, i.e, the power to support other onboard
auxiliary devices. For simplification, Paux and the SC effi-
ciency ηsc are both treated as constants of their average values.
Consequently, the SC dynamics can be expressed by (16)-(19),

Psc,k =
Pem,k+Paux

η
sign(Pem,k+Paux)
sc

, (16)

V̇sc,k = − Psc,k

C · Vsc,k
, (17)

Vsc,k+1 = Vsc,k + V̇sc,kts, (18)

SOCk =
C

Qsc
Vsc,k. (19)
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Thanks to the linear relationship between Vsc and SOC,
Vsc is employed to indicate the SOC level hereafter. Similar
to the ICE model, to improve the computation efficiency for
calculating Psc, Psc is also approximated as a second-order
function of Tem,

Psc,k = q2(ωem,k)T 2
em,k+q1(ωem,k)Tem,k+q0(ωem,k), (20)

where q2, q1, and q0 are fitting coefficients associated to ωem.
The approximation results are plotted in Fig. 3(b), with the
NRMSE of 4.88%.

III. OPTIMAL CONTROL PROBLEM STATEMENT

The EMS objective for this parallel HEV is to optimally
regulate the powertrain mode and allocate torque demands
to the ICE and the EM so that the total fuel consumption
over a specified driving route can be minimized. Additionally,
the final SC voltage is expected to be no less than its initial
value; otherwise, the net electricity consumption over the
whole driving route will be converted into an equivalent fuel
consumption for recharging the SC afterward.

For evaluating EMS performances, standard driving cycles
that define time sequences of HEV speed, acceleration, and
road grade are typically used, e.g., Japan 10-15, New European
Driving Cycle (NEDC), Artemis Urban, and so forth [37].
However, all speed profiles in these cycles cannot properly
match road characteristics of the driving routes selected in this
paper. The characteristics of a real driving route, including ex-
plicit information on geometry, altitude, and driving distance,
significantly impact the HEV fuel economy.

The essential task of an optimal EMS is to find the op-
timal speed trajectory for a specific HEV on a given route
with knowledge of the length-altitude profile to minimize the
overall fuel consumption under the constraints of safe speed,
maximum driving time, and actuator limits. This problem has
been solved by offline DDP with a distance-based state update
model, in which the HEV speed and accumulated driving
time are set as state variables, and the ICE and EM torques
are two independent control variables [38]. The optimized
solutions contains a distance-based speed trajectory, which is
then converted into a time-based one for online usage.

If the HEV can strictly follow the given speed profile, the
net tractive torque at each step can be calculated by (1), and
thereby the EM and ICE torques at that step must satisfy
(3), (12), and (13). Consequently, this energy minimization
problem is formulated as an optimal control problem (OCP)
and expressed below.

J(x0) =

N−1∑
k=0

[mce(xk,uk) +msw(xk,uk)] +mrc(xN ),

(21)
subject to (1)-(3), (10)-(13), (16)-(18) and the following,

mrc(xN ) =
C ·
(
V 2
sc,0−V 2

sc,N

)
2ηrcQf

, (21a)

xk =
[
Vsc,k, sce,k

]T
, (21b)

uk =
[
Tce,k, uce,k

]T
, (21c)

x0 =
[
Vsc,0, 0

]T
, (21d)

V min
sc ≤ Vsc,k ≤ V max

sc , (21e)

V min
sc,N ≤ Vsc,N ≤ V max

sc , (21f)

sce,N = 0, (21g)

Tmin
em (vk) ≤ Tem(k) ≤ Tmax

em (vk), (21h)

where mrc is the equivalent fuel consumption to recharge SC
if the final value of SC voltage Vsc,N is less than its initial
value Vsc,0; V min

sc,N is much higher than V min
sc and used as the

lower bound for Vsc,N to ensure the SC charge sustain. Note
that sce must be 0 at both the start and the end to prevent the
ICE from low operating efficiency at low-speed driving, and
Tmin
em and Tmax

em are variables determined by v due to the rigid
connection between the driving wheels and the EM rotor.

IV. ADP-BASED EMS DESIGN

The formulated OCP (21) is a mixed-integer nonlinear
program (MINLP) problem because it contains both contin-
uous and discrete variables in the state and control vectors.
This type of OCPs are generally difficult to be solved by
existing optimization solvers because of the huge exploration
spaces caused by control decisions at many time steps. A
general solution to these OCPs is DDP, which is applicable
for complex nonlinear and non-convex OCPs [39]. However,
due to the “curse of dimensionality”, DDP can hardly be
directly implemented online. Moreover, its solution is non-
causal because it relies on an accurate powertrain model and
complete prior knowledge.

The key reason for the huge complexity of DDP is the
explicit representation of VFs as high-dimensional data arrays.
To reduce the space complexity without losing too much
accuracy, explicit VFs are usually approximated by DNNs,
which are trained through simulations and/or experimental
data. Close-to-optimal control decisions are derived from
the trained DNN models of AVFs. The training and control
processes using DNNs are often realized by ADP and DRL.
Having less complexity and better adaptivity than DDP, these
DNN-based EMSs are widely applied for online HEV energy
management in recent years [22].

Nevertheless, DNN-based EMSs require lengthy training
time to obtain accurate DNN parameters for estimating optimal
state values before they can produce near-optimal control
decisions. When the OCP is complex and the DNN is large,
the training process becomes very tedious. In light of this,
a computationally efficient ADP-based EMS combining the
strengths of DDP and DRL is designed in this paper. The
reasons why this EMS is named ADP are twofold. First
and foremost, the AVF serves as the foundation to calculate
optimal control actions for the ICE on/off switch and torque
split. Second, the AVF is initialized by optimized solutions of
offline DDP for a fast convergence and a robust performance.

Illustrated by Fig. 4, the complete ADP-based EMS frame-
work consists of offline and online parts. The offline part,
shown by the yellow block, performs DDP and parametric
approximation in sequence. The tabular VF is first generated
by DDP through solving the OCP (21). Before being sent to
the online part, it is approximated by piecewise polynomials
with the method elaborated in Subsection IV-A. The online
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Fig. 4. ADP-Based EMS Framework

part, shown by the blue block, exploits the ADP approach
to calculate optimal control actions and then refines the AVF
based on real-time state feedback and fuel consumption. Since
the complex OCP (21) is computationally intractable in real-
time, it is decoupled into two sub-problems and solved by
two control modules sequentially. According to (11)-(13),
Tce depends on sce. Thus, the powertrain mode selection
module determines the optimal powertrain mode by one-step
lookahead with the aid of AVF and generates the correspond-
ingly optimal ICE on/off command u∗ce, using the strategy
in (29). If the powertrain works in the hybrid mode, the
torque split control module employs the value-based PMP
algorithm to calculate optimal torque demands on ICE and
EM, T ∗ce and T ∗em. For a close-to-optimal solution with rapid
calculation, the Hamiltonian is simplified to a constrained-
quadratic programming problem in (33) and the PMP costate
is derived from the AVF by (32). During online control, AVF
parameters are iteratively updated by the adaptive learning
algorithm elaborated in Subsection IV-D according to the real
fuel and electricity consumption. Moreover, to reduce the
response time of control actions, the learning algorithm is
executed after all optimal control actions are determined and
sent to the actuator control, shown by the magenta block, for
subsequent operations.

A. Parametric Approximation of VFs

To solve the OCP (21) by DDP, all continuous variables,
including the state variable Vsc, the control action Tce, and the
free variable driving time t, have to be discretized. To mitigate
the performance degradation by truncation errors, relatively
high resolutions are preferred in the offline calculation. In this
case, the resolutions of Vsc, Tce and t are 0.1V , 0.05Nm
and 0.5 s, respectively. The formulated problem is solved by a
generic DP MATLAB function [40] and a tabular VF of three
inputs Y (Vsc, sce, t) is derived. Since sce is a binary variable,
this 3D look-up table is separated into two 2D ones with
different sce values, expressed as Yon(Vsc, t) and Yoff (Vsc, t).

Because of dense grids, the tabular Y (·) contains tens of
thousands of elements that will consume intractable mem-
ory space on onboard processors. To decrease the memory
demand, the parametric approximation is adopted to convert
tabular VFs into parametric functions. Among various basis
function sets, such as polynomials, wavelets, radial basis
functions, NNs, and so forth, DNN is the primary candi-
date to approximate the (state-action) VF in learning-based
EMS, because it is sufficiently expressive to represent compli-
cated problems with multiple inputs/outputs and/or non-convex
properties [41]. However, the drawbacks of employing DNNs
are evident as well. To guarantee the approximation accuracy,
a DNN usually possesses a sophisticated architecture and
contains at least hundreds of activation functions distributed
over several hidden layers. As a consequence, it will consume
considerable onboard computation resources.

To save the computation resource without compromising the
numeric precision, a concise parametric approximation method
should be designed to approximate tabular VFs. Since the
powertrain mode imposes a significant impact on VF evolu-
tions, one intuitive approach is to separate the entire Yon(·)
and Yoff (·) into several time-dependent sections according to
the optimal trajectory of powertrain mode s◦ce(t) from DDP.
Hence, the entire driving period t∈ [0, tf ] can be divided into
a number of time intervals with the constant powertrain mode.
Suppose the number of intervals of hybrid mode in one route is
Nh, and thereby that of electric mode is Ne = Nh+1 because
the HEV must use the electric mode at the start and the end
of one route. Therefore, Yon(·) and Yoff (·) are both separated
into Nmd = Nh + Ne sections. Furthermore, denote the
boundary of each two adjacent sections by t◦1, t

◦
2, · · · , t◦Nmd−1

in sequence. For convenience, 0 and tf are used to label the
start of the first section t◦0 and the end of the last section
t◦Nmd

, respectively. For any section with index n ∈ [1, Nmd]
and t∈ [t◦n−1, t

◦
n), Yon,n(·) and Yoff,n(·) are approximated as

third order polynomials of Vsc and t and expressed as,

Ỹon,n =wn
1V

3
sc+wn

2V
2
sc ·t+wn

3Vsc ·t2+wn
4 t

3+

wn
5V

2
sc+wn

6Vsc ·t+wn
7 t

2+wn
8Vsc+wn

9 t+w
n
10,

(22)

Ỹoff,n = wn
11V

3
sc+wn

12V
2
sc ·t+wn

13Vsc ·t2+wn
14t

3+

wn
15V

2
sc+wn

16Vsc ·t+wn
17t

2+wn
18Vsc+wn

19t+w
n
20,

(23)

where wwwn =[wn
1 , w

n
2 , · · · , wn

20] is the coefficient vector for the
nth section and obtained by surface fitting. All wwwn compose
a coefficient matrix WWW =

[
www1;www2; · · · ;wwwNmd

]
of dimension

Nmd×20.
Hence, at the kth step, the value of a state Y (xk, tk) can

be approximated by a section of the piecewise cubic function
Ỹ (x, t|WWW ) with only 10 coefficients,

Y (xk, tk) ≈ Ỹ (xk, tk|WWW )

=

{
Ỹon,n

(
Vsc,k, tk|wwwn

)
; sce,k =1

Ỹoff,n
(
Vsc,k, tk|wwwn

)
; sce,k =0

,
(24)

where
tk = k · ts ∈

[
t◦n−1, t

◦
n

)
. (25)

The NRMSE for this method is less than 2% on several
different driving routes, and relevant details concerning spe-
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TABLE II. Average NRMSE by Piecewise Polynomials of Differ-
ent Orders on Several Testing Routes

Polynomial Order 1st 2nd 3rd 4th

Coefficient Number 6 12 20 30
Average NRMSE 3.54% 2.32% 1.33% 1.18%

cific routes adopted in this paper are presented in Section V.
Polynomials of different orders have been tested. The results
in TABLE II indicate that polynomials of lower orders have
larger NRMSE, while those of higher orders cannot obviously
decrease the NRMSE but greatly increase computation loads.

B. Powertrain Mode Selection

With the aid of Y (·), the global OCP (21) can be converted
into a local one to solve real-time optimal control actions u∗k
based on xk. Following the Bellman equation [42], the total
fuel consumption to be minimized in the remaining route is
described as a one-step lookahead approximation,

Ỹ (xk,tk)=mce(xk,uk)+msw(xk,uk)+Ỹ (xk+1,tk+1), (26)

u∗k = argmin
uk

Ỹ (xk, tk), (27)

subject to the same constraints in OCP (21), where mce(·) and
msw(·) together constitute the instant cost, and Ỹ (xk+1, tk+1)
represents the approximated cost-to-go.

Although the OCP (27) is simplified to a large extent, it
is still an MINLP problem, and therefore solving it in real-
time is still computationally consuming for low-cost onboard
processors. Considering constraints (8), (9) and (13) that Tce
can only vary within a small range when sce equals to 1, we
simplify the OCP (27) by assuming,

T ∗ce,k = sce,k · T ◦ce(ωce,k). (28)

Thus, Tce is no longer an independent control variable but
determined by sce, and the only control variable left is uce, i.e.,
u = uce. Then, the OCP (27) becomes a binary optimization
problem and u∗ce can be rapidly determined by (29),

u∗ce,k =


1; Ỹ (xk, tk)

∣∣∣
uce,k=1

< Ỹ (xk, tk)
∣∣∣
uce,k=0

0; Ỹ (xk, tk)
∣∣∣
uce,k=1

> Ỹ (xk, tk)
∣∣∣
uce,k=0

sce,k; Ỹ (xk, tk)
∣∣∣
uce,k=1

= Ỹ (xk, tk)
∣∣∣
uce,k=0

.

(29)
Note that the assumption (29) is only valid for solving u∗ce.

The explicit values of T ∗ce and T ∗em will be calculated in the
following torque split control based on a known s∗ce.

C. Torque Split Control

The torque split control is responsible for splitting Tt into
Tce and Tem for optimal fuel economy. Its solution is directly
dependent on the transient powertrain mode, indicated by the
value of sce. If the powertrain works in the electric mode,
i.e., sce =0, then Tce must be 0, and Tt is solely satisfied by
Tem; otherwise, if it works in the hybrid mode, i.e., sce = 1,
Tce is nonzero, and there are theoretically infinite admissible
combinations of Tce and Tem that can satisfy Tt. To efficiently

pick out the optimal pair of T ∗ce and T ∗em, this torque split
problem is solved by PMP. For this purpose, the Hamiltonian
H is defined as,

Hk = ṁce,k + λkV̇sc,k =
Pce,k

Qf
− λk

Psc,k

C ·Vsc,k
, (30)

T ∗ce,k = argmin
Tce,k

Hk, (31)

where λ is the costate of Vsc and is a scalar.
The optimal value of Tce highly relies on the trajectory of

optimal costate λ∗ [43], [38]. General methods to obtain this
trajectory must require full knowledge of future driving and
usually perform tedious searches and complex computations,
which are impractical for real-time applications with low-cost
microprocessors. Some APMP-based EMSs [44], [45] use the
deviation between the real and reference SOCs to calculate
suboptimal λ but cannot guarantee robust performances once
the driving conditions changed. Given the essential equiva-
lence between PMP and DP, λ∗ in PMP is equivalent to the
derivative of the optimal VF in DDP with respect to the state
variable. Consequently, λ∗ can be rapidly estimated by (32),

λ∗k ≈
∂Ỹon,n(Vsc,k, tk|wwwn)

∂Vsc,k
. (32)

Since the OCP (31) is a nonlinear programming problem,
T ∗ce has to be generally solved by a nonlinear programming
solver. Our solution is to simplify H for higher computation
efficiency. Owing to the nonlinear item Temη

sign(Tem)
d in (3),

Tem cannot be easily substituted by a function of Tce. To tackle
this issue, a reasonable assumption is introduced that Tem is
positive when T ◦ce(ωce)Rceηd is less than Tt; otherwise, Tem
is negative. As a result, H is transformed into a constrained-
quadratic programming problem and illustrated by,

Hk =


a1T

2
ce,k+b1Tce,k+c1; T ◦ce(ωce,k)<

Tt,k
RceRpηd

a2T
2
ce,k+b2Tce,k+c2; T ◦ce(ωce,k)≥ Tt,k

RceRpηd

, (33)

where

a1 =
p2
Qf
−λ∗k

q2R
2
ce

CR2
emVsc,k

, (33a)

b1 =
p1
Qf

+λ∗k
Rce

CVsc,k

(
2q2Tt,k
R2

emRpηd
+

q1
Rem

)
, (33b)

a2 =
p2
Qf
−λ∗k

q2R
2
ceη

4
d

CR2
emVsc,k

, (33c)

b2 =
p1
Qf

+λ∗k
Rce

CVsc,k

(
2q2Tt,kη

3
d

R2
emRp

+
q1η

2
d

Rem

)
. (33d)

The coefficients p2, p1, q2 and q1 are determined by ωce and
ωem. a1, b1, a2 and b2 are intermediate variables, and c1 and
c2 are two constants independent of Tce.

Since H is converted into a convex quadratic programming
problem expressed by (33), T ∗ce can be solved efficiently, and
T ∗em solved by (3) thereafter.
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D. Adaptive Learning Algorithm

The accuracy of Ỹon(·) and Ỹoff (·) from DDP solutions
highly relies on the accuracy of the HEV powertrain model
and driving information. However, inevitable model errors and
unmeasured disturbances during driving degrade the effective-
ness of Ỹon(·) and Ỹoff (·). They will seriously worsen the
HEV fuel economy and even destruct vehicular drivability.

To overcome this issue, an adaptive learning algorithm
is designed and introduced into the online EMS framework
to iteratively update the coefficient matrix WWW according to
the feedback information from online implementation. In this
way, the iteratively improved AVFs will approach the optima
suitable to the actual vehicle dynamics and road conditions,
and then support the control modules to generate real-time
close-to-optimal control actions.

More specially, temporal difference (TD) learning [46] is
applied to update WWW in this paper. At time step tk+1, the HEV
transits from xk to xk+1 based on u∗k, and outputs running
cost mce,k and msw,k. According to (26), the estimated TD
target Ỹ ◦(·) at a state xk is expressed as,

Ỹ ◦
(
xk, tk|WWW

)
= mce

(
xk,u

∗
k

)
+msw

(
xk,u

∗
k

)
+Ỹ
(
xk+1, tk+1|WWW

)
,

(34)

where u∗ can be obtained from the control modules elaborated
in Subsections IV-B and IV-C.

Since Ỹ ◦(·) gives an unbiased estimation for Ỹ (·) through
bootstrapping, the TD error between Ỹ ◦(·) and Ỹ (·) can be
expressed as,

e
(
xk, tk|WWW

)
= Ỹ ◦

(
xk, tk|WWW

)
− Ỹ

(
xk, tk|WWW

)
. (35)

Afterward, we define the loss function based on an individ-
ual sample as,

lk =
1

2
e2
(
xk, tk|WWW

)
. (36)

To efficiently eliminate the TD error and ensure the training
robustness with limited onboard computation resources, batch
gradient descent (BGD) [47] is employed to update WWW with
a batch K of maximum size N̄ samples sk = {lk,xk}
approximated by the same coefficient vector wwwn. As described
in Subsection IV-A, according to the optimal trajectory s◦ce(t)
by DDP, the entire VFs Yon(·) and Yoff (·) are divided into
Nmd time-dependent sections with each one approximated by
an individual coefficient vector wwwn, n∈ [1, Nmd]. During each
sampling step tk, if the batch is not full, i.e., |K| < N̄ , and
the new sample sk is approximated based on the same wwwn to
those stored in K, the learning algorithm will not perform any
update on wwwn but only append sk into K; otherwise, wwwn will
be updated immediately based on existing samples stored in
K, and then K will be reset to empty before a new sample sk
is appended into it. The coefficient update follows the rule
of gradient descent. Since the parametric approximation is
realized by piecewise polynomials, the gradient of the loss
function ∆k∈R20 of one sample sk is calculated by,

∆k =
∂lk
∂wwwn

. (37)

Algorithm 1: Adaptive learning in one episode

Input: α, N̄ , x0, and WWW
1 Initialize mce,0 =0, msw,0 =0, K=∅, k=1, n=1,

and n′=1;
2 while tk < tf do
3 Receive xk, mce,k−1, and msw,k−1;
4 Find n′∈ [1, Nmd] where t◦n′−1≤ tk< t◦n′ ;
5 if (|K|=N̄ or n 6=n′) then
6 Update the nth row of WWW , i.e., wwwn, by (37)

and (38);
7 K = ∅;
8 n← n′;
9 end

10 Calculate lk−1 by (34)-(36);
11 Append sk−1 ={lk−1,xk−1} into the buffer K;
12 k ← k+1;
13 end

Output: WWW

Learning Algorithm Control Module

HEV Prototype

EMS

Fig. 5. Information Interaction between EMS and HEV

Note that at each step tk, Ỹ (·) is expressed by either
Ỹon,n(·) or Ỹoff,n(·) depending on the value of sce,k. Thus,
only half of the entries in ∆k are non-zero. Consequently,
the corresponding coefficient vector wwwn can be updated by
accounting for all the samples in K and expressed as,

wwwn ← wwwn − β
∑
k∈K

∆∆∆k, (38)

where β denotes the learning rate in the update process.
The running process of this adaptive learning algorithm

in one episode is summarized by Algorithm 1 with the
information interaction with the control module and vehicular
system depicted in Fig. 5. In Algorithm 1, two variables, n and
n′, are used to identify the variation of time sections referring
to wwwn. When the driving time tk reaches a new time section,
n′ is updated in Line 4, which triggers the condition to update
wwwn and clear K. After that, the updated index n′ is assigned
to n in Line 8, enabling K to accumulate new samples from
the new section referring to wwwn′

.

V. PIL SIMULATION RESULTS

To manifest the superiority of the proposed ADP using
piecewise polynomial AVF in terms of fuel economy and
computation efficiency, three types of comparative studies have
been performed through PIL simulations based on a portable
microprocessor with limited computation resources. First, the
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Fig. 6. Driving Information on Route SEM16

proposed method is compared with the optimal DDP and an
APMP controller to verify the optimality of the equivalent
fuel efficiency. Second, this method is compared with a non-
adaptive DP to highlight the significance of the adaptivity in
the actual driving environment, especially when the driving
conditions become aggravated. Third, this method using poly-
nomial AVF is compared with a similar ADP method using
explicit tabular VF to demonstrate the advantages of learning
efficiency and memory utilization.

A. Driving Routes

Two different driving routes are selected to test the real-
time performance of the ADP-based EMS, and the geographic
information and corresponding speed profiles are elaborated
by Figs. 6 and 7, respectively. As briefly explained at the
beginning of Section III, the optimal speed profile is com-
puted by the distance-based DDP method elaborated in [38].
The first route, named SEM16, is a short route of roughly
2240m and relatively gentle because its slope angle is mostly
within ±0.02 rad. Correspondingly, its speed profile has small
variations around the average speed and its acceleration profile
has small variations around zero during the majority of the
route except the starting and stopping phases, as illustrated by
Fig. 6(b). By contrast, the second route is a section of public
road in Stockholm and thereby named STHLM. This route is
5200m long and contains many steep uphills and downhills.
Hence, both its speed and acceleration profiles vary much more
dramatically and frequently, as illustrated in Fig. 7(b).

It is worth noting that there are two slope angle profiles
exhibited for each route. The real slope angle profiles for the
two driving routes are depicted by the red plots in Figs. 6(a)
and 7(a). The blue plots represent the low-fidelity estimations
of slope angles. To verify the effectiveness and optimality of
the proposed EMS, real profiles are utilized by the offline DDP
to find the theoretical optimum as a reference. By contrast,
low-fidelity estimations are utilized to design online EMSs, in-
cluding generating optimal speed profiles and initializing VFs,
while real profiles are adopted in the simulation environment
to test the adaptive learning ability of the ADP-based EMS.
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Fig. 8. PIL Simulation Platform

Furthermore, the fuel efficiency attained by the proposed EMS
is compared with the optimum by DDP based on real profiles.

B. PIL Simulation Test Bench

To verify the online control performance and computation
efficiency of the proposed EMS, a test bench is established to
perform PIL simulations in which the designed EMS is con-
verted into C code and executed by a real processor, as shown
in Fig. 8. To demonstrate the advantages of the proposed EMS
in terms of computation efficiency, a portable microprocessor
STM32L476RGT62 (Arm Cortex-M4 MCU 80MHz with up to
1Mbyte flash memory and 128Kbyte of SRAM) is selected
to run the EMS in real-time. The complete system model,
including the HEV dynamics, actuator control and digital
sensors, is built up in MATLAB/Simulink3. At each step, the
microprocessor receives real-time state and cost feedback, in-
cluding v, Vsc, mce and msw, from the system model, and then
sends out optimized control actions, containing u∗ce, T ∗ce and
T ∗em. The real-time information interaction between the EMS
and the system model is realized by serial communication.

For a balance between the computation load and the control
performance, the sampling periods for the powertrain mode
selection and the adaptive learning algorithm are 1 s, and that
for the torque split control is 0.1 s. Besides, Vsc,0 is set as
48V , a value close to but lower than the upper bound. Hence,
the SC can be either discharged or recharged at the start of
the route, even if there is a sharp uphill or downhill.

To investigate the robustness and adaptivity of the proposed
EMS in complex working environments, the training process

2https://www.st.com/en/microcontrollers-microprocessors/stm32l476rg.html
3https://se.mathworks.com/products/simulink.html
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is performed based on Monte Carlo simulations, in which
various types of actuator disturbances, sensor noises as well as
system uncertainties are imposed on the HEV model. Detailed
information about Monte Carlo simulation is presented in [38].
Correspondingly, all results presented and summarized in the
following subsections are from PIL Monte Carlo simulations.
Moreover, our investigation finds that in addition to the road
slope angle, the rolling resistance and air drag coefficients
play important roles in HEV fuel consumption. On account of
this, to further investigate the adaptivity of the proposed EMS
under sudden variations of driving conditions, relevant EMSs
will be tested under more aggravated driving scenarios, where
both coefficients increase by 10%, but designed EMSs do not
know this fact.

C. Benchmark EMSs

To manifest the superiority of the proposed ADP method on
both control performance and computation efficiency, several
benchmark EMSs are developed and tested for comparison.

The first one is the optimal DDP, which can only run offline
on a backward quasi-static HEV model with complete prior
knowledge, illustrated by the red plots in Figs. 6(a) and 7(a),
and give rise to an optimal solution for a specific scenario.
Hence, we only use its final result to evaluate the optimality
of other EMSs.

The second one is an APMP, where the costate is calculated
by a PID controller to regulate the error between the refer-
ence SOC and the real-time SOC [44], and the ICE on/off
commands are determined by a thermostat controller [9]. The
relevant formulas are given below.

uce,k =


1; Vsc,k≤V1 or Tmax

em,k<
Tt,k
Remηd

0; Vsc,k≥V2 or Tmin
em,k>

(Tt,k−Tmin
ce,k)ηd

Rem

sce,k; otherwise

, (39)

λk =λ0 + kp∆Vsc,k + ki

k∑
i=0

∆Vsc,i

+ kd
(
∆Vsc,k −∆Vsc,k−1

)
,

(40)

∆Vsc,k = V ◦sc,k − Vsc,k, (41)

where V1 and V2 (V min
sc < V1 < V2 < V max

sc ) are prescribed
lower and upper thresholds that divide the admissible range
of Vsc into 3 sections; λ0 reflects an initial guess to λ∗; kp,
ki and kd are proportional, integral and derivative gains of the
PID control, respectively; ∆Vsc is the deviation between the
current SC voltage and the optimal one V ◦sc from offline DDP.

Illustrated by (39), the ICE should be switched on when Vsc
is lower than V1 or the EM cannot solely satisfy the torque
demand on the powertrain; on the contrary, the ICE should be
off when Vsc is higher than V2 or the EM cannot recuperate the
surplus torque on the powertrain if the ICE keeps on working;
otherwise, the ICE prefers to maintain its current on/off status.
All tunable parameters, including V1, V2, λ, kp, ki and kd are
carefully selected after a long-time calibration for a possibly
satisfactory performance.

TABLE III. Results Comparison on Driving Route SEM16

Control Strategy ADP APMP NADP ADP-NPA
Final Voltage Variation (V) 0.08 -0.78 -0.35 -1.67

Total Fuel Consumption (mL) 11.65 12.22 11.93 11.62
Equivalent Fuel Efficiency (km/L) 192.7 183.6 188.1 193.0
Flash Memory Occupation (Kbyte) 90.63 88.74 85.52 293.45

RAM Occupation (Kbyte) 39.68 25.28 33.16 33.27
Max. CPU Utilization (%) 23.96 4.31 7.60 5.72
Avg. CPU Utilization (%) 2.82 2.09 2.68 2.07

The third one adopts exactly the same control method as
the proposed EMS but has no adaptive learning mechanism.
It is hence named NADP-based EMS. It is used to assess the
effectiveness of the adaptive learning algorithm as well as its
computation resource consumption in online applications.

The last one is an ADP-based EMS without performing the
parametric approximation, and thereby is named ADP-NPA.
The principle of this EMS is very similar to the proposed one,
and the essential difference is that real-time state values are
acquired by interpolation on tabular VFs. For this reason, its
learning algorithm totally differs from that of the proposed
ADP-based EMS. Testing results of this EMS aim to evalu-
ate the significance of the adopted parametric approximation
method for ADP-based EMS. Denote the value of state xk by
Y (xk, tk). The TD target Y ◦(·) is expressed as,

Y ◦(xk, tk) = mce

(
xk,u

∗
k

)
+msw

(
xk,u

∗
k

)
+ Y

(
xk+1(xk,u

∗
k), tk+1

)
.

(42)

Then, the corresponding state value can be updated by the
value iteration algorithm,

Y (xk, tk)← (1−β)·Y (xk, tk) + β ·Y ◦(xk, tk). (43)

Note that the state variable Vsc is continuous, while Y (·)
is a discrete representation of the VF. As a result, any state
value not at the meshgrid of lookup tables is obtained by
linear interpolation, and only the nearest meshgrid point to
the sample will be updated by (43).

D. Results on Driving Route SEM16

All testing results on SEM16 by the proposed ADP-based
EMS and comparison methods are illustrated in Figs. 9 - 11,
and summarized in TABLE III. Figs. 9(a) and 9(b) show
tabular VFs initialized by offline DDP, which are utilized by
ADP-NPA. After the parametric approximation, the resulting
AVFs, shown in Figs. 9(c) and 9(d), are sent to ADP and
NADP for online usage. Fitting errors on all sampling points
are shown in Figs. 9(e) and 9(f), with the NRMSE of only
1.59%. Due to the large size, all data in tabular VFs have to
be converted into single-precision floating-point type before
being loaded into the microprocessor, while other variables
and parameters maintain the double-precision type.

Recall that VFs for all online DP strategies are computed
based on low-fidelity estimations of road slope profiles, il-
lustrated by the blue plots in Figs. 6(a) and 7(a), and only
ADP and ADP-NPA have online learning capability among all
tested EMSs. The learning capability can improve VFs during
online control. Fig. 10(a) shows that both ADP and ADP-NPA
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Fig. 9. VFs on Driving Route SEM16

can improve fuel efficiencies after a few training episodes, but
ADP converges only after 3 episodes while ADP-NPA requires
at least 15 episodes. The main reason is that ADP has much
fewer training parameters than the extraordinary large table
of ADP-NPA. TABLE III compares PIL simulation results of
four EMSs. The results for ADP and ADP-NPA are the ones
after the training completes. The best fuel efficiency by ADP
on this route reaches 192.7 km/L, only a little bit lower than
ADP-NPA of 193.0 km/L and very close to the optimal result
of 195.4 km/L by offline DDP. Thanks to its adaptivity, the
proposed ADP is 2.5% higher than NADP and 5% higher
than APMP in equivalent fuel efficiency, respectively. One
essential reason for the slightly worse fuel efficiency over
ADP-NPA is that, exhibited by Figs. 10(c) and 11, the ICE
driven by ADP works for 148 s in total, 13 s longer than that
by ADP-NPA, even though ICE operation points by two EMSs
are concentrated in the same region and the total powertrain
mode switching numbers are identical. From the aspect of
charge sustainability, depicted by Fig. 10(b), the proposed
ADP outperforms the other three because its net electricity
consumption during driving is negative, so the terminal penalty
for compensation is avoided.

On the real-time computation efficiency, APMP consumes
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Fig. 10. PIL Simulation Results on Driving Route SEM16
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Fig. 11. ICE Operation Points on Driving Route SEM16

the least onboard computation resources in terms of RAM
occupation and CPU utilization since it uses simple heuristic
methods to determine the ICE on/off switch and calculate the
costate for PMP, and does not have the learning algorithm.
Nevertheless, its flash memory occupation is slightly larger
than that of ADP and NADP because it requires the optimal SC
voltage trajectory by offline DDP as a reference. In contrast,
owing to the introduction of adaptive learning algorithm,
ADP consumes more onboard computation resources than
NADP, but the growths in flash memory occupation, RAM
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occupation, and average CPU utilization are very limited, only
6Kbyte, 7.7Kbyte, and 0.18%, respectively, indicating the
high efficiency of learning algorithm. Moreover, ADP has a
great advantage over ADP-NPA in terms of flash memory
occupation without evidently increasing the computation in-
tensity. Thanks to the parametric approximation, ADP does not
have to save huge lookup tables and thereby saves nearly 70%
of onboard flash memory space. Since the learning algorithm
for updating a set of parameters is more complex than that
for updating several individual points, the RAM occupation
and average CPU utilization by ADP are higher than those by
ADP-NPA. Additionally, due to the batch usage, the learning
algorithm in ADP performs parameter updates only when the
batch is full or the powertrain mode is switched instead of
at each sampling period. Consequently, its maximum CPU
utilization is evidently higher than that of ADP-NPA. A batch
of larger size can improve the robustness of the learning
algorithm and slightly increase the RAM occupation, but can
drastically raise the instant computation overhead, reflected as
the surge of maximum CPU utilization. Thus, the batch size
should be carefully selected based on the computing capability
of the selected onboard processor.

E. Results on Driving Route STHLM

Testing results on STHLM, presented by Figs. 12 and 13,
and TABLE IV, further reveal the strengths of the proposed
ADP. First of all, approximated results on VFs on this route
are very similar to those on route SEM16, with a smaller
NRMSE of only 0.75%. Illustrated by Fig. 12(a), after training
of 7 episodes, the fuel efficiency by ADP promptly converges
to a steady state of 182.1 km/L, reaching more than 97%
of DDP of 186.5 km/L, roughly 2.5% higher than that by
NADP and 5.9% higher than that by APMP. In contrast, ADP-
NPA achieves a slightly higher result of 182.9 km/L after an
obviously longer training process of more than 20 episodes.
As exhibited by Fig. 12(c), ADP utilizes the ICE for 337 s
totally, almost identical to NADP, 13 s longer than that by
APMP and 17 s shorter than that by ADP-NPA. However, the
number of powertrain mode switches by ADP is the least, one
couple less than that by ADP-NPA and two couples less than
those by APMP and NADP, implying more robust operation
on ICE and a longer ICE lifespan. Besides, Fig. 13 illustrates
sampled ICE operation points by each EMS. Compared to DP-
based EMSs, APMP distributes more points outside the peak
efficiency region (over 30%). Although none of these EMSs
can ensure the final SC voltage equal to its initial value, the
SC voltage driven by ADP can well recover back to 47V at
last, close to its initial value and better than its counterparts.

The consumption of onboard computation resources by each
EMS on this route present a similar tendency to that on
SEM16. The proposed ADP enjoys a larger advantage because
the longer driving time increases the size of lookup tables
used by ADP-NPA. As a result, the flash memory occupa-
tion of ADP-NPA on this longer route STHLM increases to
611.30Kbyte, more than twice of that on the shorter route
SEM16, whereas that of ADP increases by only 50Kbyte
mainly resulting from the longer profiles of speed reference
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Fig. 12. PIL Simulation Results on Driving Route STHLM
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Fig. 13. ICE Operation Points on Driving Route STHLM

and terrain information. Admittedly, the size of coefficient
matrix for approximating state values in this longer route
will rise as the number of necessary powertrain switches
ascends. Nonetheless, this increment has a negligible impact
on the overall memory occupation since one more mode switch
will only introduce 20 extra coefficients. As described in
Subsection V-D, due to the complex computing process of
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TABLE IV. Results Comparison on Driving Route STHLM

Control Strategy ADP APMP NADP ADP-NPA
Final Voltage Variation (V) -1.09 -2.10 -1.13 -1.22

Total Fuel Consumption (mL) 28.49 30.17 29.17 28.36
Equivalent Fuel Efficiency (km/L) 182.1 172.0 177.9 182.9
Flash Memory Occupation (Kbyte) 145.60 156.86 139.66 611.30

RAM Occupation (Kbyte) 40.93 25.30 33.24 33.29
Max. CPU Utilization (%) 27.08 4.44 7.95 5.57
Avg. CPU Utilization (%) 2.95 2.16 2.77 2.06
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Fig. 14. Training Process of Adaptivity Test

the learning algorithm, the RAM occupation and average CPU
utilization by ADP on this route are still higher than those by
APMP, ADP-NPA, and NADP. It is noteworthy that, the real-
time computation overheads by each EMS on these two routes
are similar, manifesting the consistency of all these online
EMSs when applied to different driving tasks.

F. Adaptivity Test

To verify the adaptivity of the proposed ADP-based EMS
against sudden variations during driving, an extra adaptivity
test is performed in which larger rolling and aerodynamic
resistances are imposed on the HEV. As aforementioned, only
ADP and ADP-NPA have the adaptive learning mechanism.
Hence, Fig. 14 illustrates the training processes of ADP and
ADP-NPA on both driving routes, and TABLE V compares
their after-training fuel efficiencies with those from APMP
and NADP without learning ability.

Fig. 14 shows that fuel efficiencies of ADP and ADP-
NPA suffer steep slumps immediately after driving conditions
suddenly worsen. Nonetheless, ADP can readily adapt to
this variation after 4 episodes on both routes owing to its
small number of AVF parameters. By contrast, ADP-NPA
requires longer training time to fully update its tabular VFs.
Note that the fuel efficiency cannot return to the high value
before the environmental change, because the increases in tire
rolling friction and aerodynamic drag inevitably deteriorate the
fuel efficiency. Numeric results in TABLE V summarize the

TABLE V. Adaptivity Test Results on Both Driving Routes

Control Strategy ADP APMP NADP ADP-NPA
SEM16 185.4 (km/L) 165.8 171.8 185.7
STHLM 176.1 159.8 164.2 176.8

significance of adaptive learning in practice when the system
model and prior knowledge cannot accurately reflect actual
driving scenarios. Due to the lack of a learning mechanism,
the performances of APMP and NADP seriously degrade by
around 10% on both routes. By comparison, the decreases
in fuel efficiency of ADP and ADP-NPA are very limited
after sufficient training, within 4% on SEM16 and 3.5% on
STHLM, respectively.

VI. CONCLUSION AND FUTURE WORK

To minimize the fuel consumption of a parallel HEV,
this paper proposes a computationally efficient ADP-based
EMS that combines the strengths of existing model-based
and learning-based EMSs. On the one hand, by making use
of AVFs initialized by offline DDP and approximated as
piecewise cubic polynomials, the OCP containing ICE on/off
switch and torque split can be rapidly solved to fulfill the
real-time requirement; on the other hand, an adaptive learning
algorithm is designed to iteratively update AVFs according to
the actual energy consumption in real-time applications. PIL
simulation results on two different driving routes figure out
that the proposed ADP-based EMS can be efficiently executed
by a portable microprocessor and generate close-to-optimal
fuel efficiency, at least 5% higher than that by an APMP.
Compared with two benchmark EMSs without the learning
mechanism and parametric approximation, the proposed EMS
fully exhibits the effectiveness of adaptive learning algorithm
and its superiority in terms of both memory occupation and
training speed, especially in the long-time driving route.

All EMSs studied in this paper are based on an HEV with a
fixed powertrain configuration. However, it is well known that
the compelling fuel economy relies on not only the appropriate
EMS but also the proper powertrain configuration. In view
of this, the future research orientation will favor excavating
the potentiality of efficient cooperative optimization on both
powertrain component sizing and real-time energy manage-
ment. In this context, further improved fuel economy can be
anticipated by virtue of advanced EMSs in the premise of the
most suitable component sizes according to the variations of
driving conditions and requirements in reality.
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