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Spatial-Temporal-Spectral LSTM: A Transferable
Model for Pedestrian Trajectory Prediction

Chi Zhang, Zhongjun Ni, and Christian Berger

Abstract—Predicting the trajectories of pedestrians is critical
for developing safe advanced driver assistance systems and
autonomous driving systems. Most existing models for pedestrian
trajectory prediction focused on a single dataset without con-
sidering the transferability to other previously unseen datasets.
This leads to poor performance on new unseen datasets and
hinders leveraging off-the-shelf labeled datasets and models.
In this paper, we propose a transferable model, namely the
“Spatial-Temporal-Spectral (STS) LSTM” model, that represents
the motion pattern of pedestrians with spatial, temporal, and
spectral domain information. Quantitative results and visual-
izations indicate that our proposed spatial-temporal-spectral
representation enables the model to learn generic motion patterns
and improves the performance on both source and target datasets.
We reveal the transferability of three commonly used network
structures, including long short-term memory networks (LSTMs),
convolutional neural networks (CNNs), and Transformers, and
employ the LSTM structure with negative log-likelihood loss in
our model since it has the best transferability. The proposed
STS LSTM model demonstrates good prediction accuracy when
transferring to target datasets without any prior knowledge, and
has a faster inference speed compared to the state-of-the-art
models. Our work addresses the gap in learning knowledge from
source datasets and transferring it to target datasets in the field of
pedestrian trajectory prediction, and enables the reuse of publicly
available off-the-shelf datasets.

Index Terms—Pedestrian trajectory prediction, deep learning,
transferable models, spectral representation, Fourier transform

I. INTRODUCTION

THE demand for road safety stimulates the rapid develop-
ment of driver assistance systems and automated driving

systems that require vehicles to understand the behavior of
other road users. Pedestrians are the most vulnerable among
all road users, accounting for 23% of all road deaths globally,
according to the World Health Organization (WHO)’s safety
report [1]. Therefore, accurately predicting pedestrian behavior
in complex traffic scenarios is pivotal for developing automated
vehicles. Many research studies have focused on pedestrian
intention prediction (e.g. [2]–[4]) and trajectory prediction
(e.g., [5]–[7]) to avoid potential pedestrian-vehicle conflicts
and ensure driving safety.

Deep learning-based models have shown their strong po-
tential for pedestrian trajectory prediction as stated in [8].
Long short-term memory (LSTM)-based models are capable
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Fig. 1. The concept of a transferable model. The model is trained on the source
dataset, Waymo training set (shown in the dark blue block). The transferable
model can perform well on both the non-transfer task on the source dataset,
Waymo test set (shown in the light blue block) and transfer tasks on target
datasets, ETH and UCY datasets (shown in the pink block).

to deal with time series, as used in Social LSTM proposed
by Alahi et al. [5] and its extensions [9]–[11]. Gupta et
al. [6] proposed Social GAN that used the LSTM-based
encoder-decoder as the generator in generative adversarial
networks (GANs). Convolutional neural networks (CNNs) such
as temporal convolutional networks (TCNs) can also be used
for trajectory prediction, as used by Mohamed et al. [7] and
Zhang et al. [12], [13]. Recently, Transformers [14] have been
utilized in pedestrian trajectory prediction, such as the methods
proposed by Giuliari et al. [15] and Yu et al. [16].

However, most existing deep learning methods focus on
single tasks and are trained on single datasets [17]. These
models assume that the training and test data follow the
same distribution, and usually get poor predictive accuracy
on new unseen and untrained datasets of different scenarios.
Focusing on single tasks without considering transferability
and generalizability hinders us from utilizing off-the-shelf
labeled datasets and models. Therefore, there is a great need for
developing transferable models that can learn the knowledge
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TABLE I
STATISTICS OF THE SOURCE DATASET (WAYMO OPEN DATASET) AND

TARGET DATASETS (ETH AND UCY DATASETS).

Dataset name
Number
of Frames
(@2.5Hz)

Number of
pedestrian
sequences

Average
number of
targets per
frame

Average
speed
(m/s)

Waymo (train) 17,127 8,328 29.33 0.91
Waymo (test) 3,570 1,978 30.91 0.95
ETH-univ 1,448 603 6.27 0.92
ETH-hotel 1,168 301 5.60 1.04
UCY-zara1 872 602 5.91 1.07
UCY-zara2 1,052 921 9.24 0.79
UCY-univ 985 947 40.37 0.63

from source datasets and apply it to different target datasets
without a sharp decline in performance.

The transferability of a model refers to its ability to transfer
knowledge learned from one or more source tasks and then
reuse it in new related target tasks [17]. As illustrated in
Fig. 1, a transferable model is trained on the source data and is
expected to have the capability to handle unseen and untrained
cases in target datasets. The statistics of the source and target
datasets are shown in Table I. Different datasets vary in the
number of frames, the number of pedestrian sequences, the
density of crowds or the average number of pedestrians in each
frame, and also the average walking speed of pedestrians.

Instead of designing a complex model with complicated
structures, our goal is to propose a method with simple
structures that can be easily generalized to other datasets and
can be combined with other methods. We propose a novel
data representation method, and evaluate existing prediction
structures and loss functions to find the best combination. We
aim to provide guidance to other researchers who want to
design transferable models. In particular, we are looking into
the following research questions (RQs):

RQ1 How does our proposed Spatial-Temporal-Spectral (STS)
LSTM model perform on non-transfer and transfer tasks
compared to existing state-of-the-art (SOTA) pedestrian
trajectory prediction models?

RQ2 Which commonly used structure among LSTM-based,
CNN-based, and Transformer-based models is the most
transferable that can learn a generic motion pattern
regardless of the dataset?

RQ3 What performance improvement can be achieved using
our proposed spatial-temporal-spectral representation
compared to regular time series representation?

To achieve our research goal and answer the research
questions, we propose the STS LSTM that can learn general
pedestrian motion features and perform well on both non-
transfer and transfer tasks. The main contributions of this
paper are as follows:

• We propose a novel transferable pedestrian trajectory
prediction model, namely the STS LSTM that performs
well on both source and target datasets, with a faster
inference speed compared with the SOTA methods.

• We propose a method to represent input features of
pedestrian trajectories in spatial, temporal, and spectral

domains that can better represent pedestrian motion
patterns to enable model transferability.

• We reveal the transferability of three commonly used
network structures, including LSTMs, CNNs, and Trans-
formers, and compare the performance of two commonly
used loss functions, including L2 loss and negative log-
likelihood (NLL) loss for pedestrian trajectory prediction.

• We quantitatively analyze how pedestrian trajectory pre-
diction performance decreases when the model transfers
from the source task to target tasks. We visualize and
qualitatively analyze the input and output of the model.

The structure of the following sections is: Sec. II presents
related work. Sec. III describes the proposed transferable model.
Sec. IV presents the experiment details. The results and analysis
are provided in Sec. V. Conclusions and future works are
described in Sec. VI.

II. RELATED WORK

A. Deep Learning-based Pedestrian Trajectory Prediction

Pedestrian trajectory prediction models aim to predict the
future positions of pedestrians in temporal order based on
their past positions. In recent years, deep learning-based
methods have made great progress. In this section, we introduce
three commonly used deep learning structures for trajectory
prediction.

1) LSTM-based models: Long short-term memory (LSTM)
networks are an improved version of recurrent neural networks
(RNNs). LSTMs have a strong ability to handle long sequences
and have been introduced to trajectory prediction by Alahi
et al. [5]. The authors proposed Social LSTM, using the
social pooling layer over LSTMs to learn social interactions
between pedestrians. Many researchers followed this trend of
using LSTM-based prediction, and extended Social LSTM by
improving the interaction module (e.g., [9]–[11]). In addition
to spatial interactions, Wu et al. [18] considered temporal
interactions and proposed a hierarchical spatio-temporal atten-
tion model that jointly considers both spatial and temporal
interactions across time steps of all agents. Gupta et al. [6]
argued that there could be multiple plausible trajectories given
the past trajectories, and proposed Social GAN based on a
multi-modal distribution assumption. They applied generative
adversarial networks (GANs) with LSTM-based generators.
Some studies followed the multi-modal distribution assumption
and simultaneously generated several possible future trajectories
(e.g., [19]–[21]).

2) CNN models: Convolutional neural networks (CNNs)
have gained great success in the computer vision field. Bai et
al. [22] pointed out that CNNs can also be used for sequence
modeling to replace RNNs because they have higher efficiency.
Nikhil and Morris [23] employed CNNs for trajectory pre-
diction and achieved competitive results with computational
efficiency. In contrast to RNNs whose later time step prediction
depends on previously predicted time steps, CNNs such as
Temporal Convolutional Networks (TCNs) predict all time
steps simultaneously. This can alleviate accumulated errors, and
enable parallelization. Mohamed et al. [7] and Zhang et al. [12],
[13] used CNNs and TCNs for prediction and considered social
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interactions. Bae and Jeon [24] followed this direction, and
improved the social interaction module using a disentangled
multi-relational graph, considering multi-scale aggregation and
temporal aggregation, and achieved better performance.

3) Transformer-based models: Recently, Transformers [14]
are becoming popular as they can better memorize the infor-
mation in long sequences compared to RNNs. The attention
mechanism of Transformers can create shortcuts between the
context vector and the entire input instead of only the last
hidden state. Transformers gain better performance compared to
RNNs, and allow parallelization to save training time. In recent
years, Transformers have achieved ground-breaking progress
in Natural Language Processing (NLP) field, and are adopted
for predicting pedestrian trajectories. Giuliari et al. [15] used
Transformers on individual trajectories as input and achieved
better performance than previous LSTM- and CNN-based
models. Other studies [16], [25], [26] using Transformer also
considered the interaction with other road users and context
information.

In this paper, we apply all three prediction structures to
find the most transferable structure for trajectory prediction.
As presented and discussed in Sec. V-B, LSTMs have better
transferability and are employed in our proposed model.

B. Input and Output Representations
There are many methods to represent input and output data,

and accordingly, different loss functions are used for prediction.
In this paper, we aim to develop a transferable model that can be
applied to new target datasets. Since the sensors for collecting
data vary in different datasets, to avoid the influence of sensors,
we only consider using pedestrian trajectories as model input.

Pedestrian trajectories can be represented as discrete vari-
ables by grid-based representations. The frame scene can be
discretized into grids to encode the location information, as in
studies [27]–[30]. Besides, the input trajectory data can also
be quantized into discrete velocity bins and represented by
the one-hot encoding. Thus, the prediction can be treated as a
classification problem as proposed in Giuliari et al.’s study [15].
Although the discrete representation of pedestrian trajectories
enables a parameter-free approximation of distributions, it
requires high dimensionality, and the quantization errors may
cause poor prediction results.

Instead of representing pedestrian positions as discrete
variables, most existing methods used observed spatial positions
of pedestrians in (x, y) coordinates as continuous values to
represent the input trajectories, and directly regress the output
trajectories. The output of the trajectory prediction model
is mainly represented in several ways. Using deterministic
positions of (x, y) coordinates is the simplest way to represent
the output, with mean square error (MSE) or L2 loss as the
loss function, as in studies [9], [15], [23], [31]. Another way to
represent the trajectory output is using uni-modal distributions
with parameters with negative log-likelihood as loss function,
as in studies [5], [7], [11], [12], [32]–[35]. Multi-modal
distributions that consider multiple plausible trajectories are
also considered by researchers, developing generative models
such as GANs. The adversarial loss is used together with L2
loss in such models, as in [6], [19], [21], [36], [37].

In addition to treating trajectory prediction as time series
generation, a recent study by Wong et al. [38] investigates the
trajectories from the spectral domain. They represented the
input and output by the Fourier spectrum. After predicting the
output spectrum, an inverse Discrete Fourier Transform (DFT)
is performed to obtain the output time series. The model is
trained with point-wise L2 loss over output time series.

In this paper, we combine the representation of pedestrian
trajectories in spatial, temporal, and spectral domains as
input features. Both the positions in temporal order and the
Fourier spectrum of pedestrian trajectories are used to represent
pedestrian motion patterns. Regarding the output representation,
we compare uni-modal distribution prediction with NLL loss
and deterministic prediction with L2 loss. As discussed and
analyzed in Sec. V-B, the uni-modal distribution prediction with
NLL loss demonstrates better performance, so it is employed
by our model.

C. Model Transferability

Human drivers can inherently transfer knowledge between
similar driving scenarios. They can recognize and apply
relevant knowledge from previous driving experiences when
encountering new scenarios. When developing learning-based
algorithms, since the data collection and annotation of pedes-
trians in traffic scenarios is time-consuming and expensive,
we may face the situation that we cannot obtain any prior
information about a new environment, and need the model to
have transferability and can be used on untrained data. Some
studies on unsupervised learning tried to develop structural
developmental neural networks to simulate the growth and
development of the human brain. Ding et al. [39] proposed
a structural developmental neural network using competitive
learning rules and dynamic neurons with information saturation
to improve model performance when sufficient training samples
and prior knowledge of the task are not available.

When it comes to supervised learning, classic supervised
deep learning methods address isolated tasks [17], i.e., a
predictive model for a specific task is trained on a single
dataset and only solves the prediction on that particular dataset.
The ability to transfer the learned knowledge between related
but different scenarios is called transferability. Transfer learn-
ing [17] attempts to enable better transferability by developing
models that can transfer knowledge learned from one or several
source tasks to apply to new related target tasks. Transfer
learning has been successfully used in the computer vision
(CV) field (e.g., [40]–[42]) and natural language processing
(NLP) field (e.g., [43], [44]). With good transferability, deep
learning models are rarely trained from scratch, and off-the-
shelf models and datasets are widely used which can save
annotation and computation resources.

Inspired by the benefits of model transferability, researchers
in the field of pedestrian behavior prediction recently attempted
to develop transferable models. Shen et al. [45] and Jaipuria
et al. [46] tried to develop transferable prediction models
that are trained on pedestrian trajectories collected at one
intersection and can be generalized to other previously unseen
intersections. They focused on learning features that represent
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Fig. 2. The overall framework of the Spatial-Temporal-Spectral (STS) LSTM model. The model contains three components: a) the spatial-temporal-spectral
feature encoding module for feature extraction (shown in the blue block), b) the LSTM encoder-decoder module for predicting the distribution (shown in the
red block), and c) the sampling module to get the final predicted trajectories from the predicted distributions (shown in the green block).

the relationship between pedestrian behavior and intersection
geometry, which can be generalized to new intersections. Zhang
et al. [47] developed a heterogeneous agent trajectory prediction
model, and transferred the learned knowledge from vehicles
and pedestrians to the prediction of rarely-seen cyclists to
improve the prediction accuracy. Xu et al. [48] developed
an adaptive trajectory prediction model. They proposed an
attention-based adaptive knowledge learning module to learn
the domain-invariant individual-level transferable features. But
this model requires access to a validation set of target data.

In this paper, we are interested in transferring learned
knowledge from one source dataset to other previously unseen
target datasets. We propose a transferable model that learns the
general motion pattern of pedestrians instead of focusing on
trajectories in a specific scenario alone. Our proposed model
represents the input features in spatial, temporal, and spectral
domains, that can well reflect the general motion patterns of
pedestrians, and utilizes well-generalized prediction structures.
The proposed model can achieve high accuracy in both non-
transfer and transfer tasks.

III. METHODOLOGY

The overall framework of the proposed STS LSTM model
is shown in Fig. 2. There are three components of the model,
a) the spatial-temporal-spectral feature encoding module for
feature extraction, b) the LSTM encoder-decoder module for
predicting the distributions, and c) the sampling module to get
the final predicted trajectories from the predicted distributions.

A. Problem definition

1) Pedestrian trajectory prediction: Given the observed
trajectories of pedestrians in the past, we aim to predict the
most likely trajectories of pedestrians in the future. The position

of a pedestrian in a scene is represented as p = (x, y) in the
x-y-coordinate. In a recorded sequence with n pedestrians,
the ith observed trajectories of pedestrians are denoted as
Xi = [p1, p2, . . . , pTobs

], where i ∈ {1, . . . , n}, and Tobs is the
observed time steps. The predicted trajectories of pedestrians
are denoted as Ŷi = [p̂Tobs+1, . . . , p̂Tpred

] in future time steps.
The ground truth of the ith pedestrian’s future trajectory is
Yi = [pTobs+1, . . . , pTpred

], where i ∈ {1, ..., n}.
2) Transferability: In addition to conventional pedestrian

trajectory prediction, we particularly investigate the transfer-
ability of the prediction models. Both non-transfer and transfer
tasks are evaluated. For the non-transfer task, the model is
evaluated on the source dataset, i.e., the test set is collected
in the same scenarios as the training set. For transfer tasks,
the model is evaluated on target datasets, i.e., the tests are
collected in different scenarios from the training set. No prior
information or access to the target datasets is provided. There
are no overlaps between training and test datasets for both
non-transfer and transfer tasks.

For better transferability to different datasets, we need to
avoid the impact of different sensor types (e.g., camera vs.
LiDAR), different image resolutions, and different calibration
parameters. Therefore, we do not use other input information
such as camera images and maps. The model only takes the past
trajectories of pedestrians in 2D real-world (x, y) coordinates
from the bird’s-eye-view as input.

B. Spatial-Temporal-Spectral Feature Representation

With pedestrian trajectories as input, most existing methods
use only pedestrians’ positions in time series to represent input
features. This works well on a single task when the training
and test data are collected in the same place, where most
pedestrians follow the same motion pattern, traffic rules, and
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culture. When it comes to a new dataset collected in a different
place, the motion pattern represented by pedestrian position
information may become different.

To find a more general way to represent pedestrian motion,
we consider spectral representation. The spectrum of pedestrian
trajectories decomposes the time series into a combination of
different frequencies that can reflect their motion patterns at
different frequency scales [38]. Therefore, we propose the
spatial-temporal-spectral feature encoding module to reflect the
intrinsic motion patterns of pedestrians.

The observed trajectory sequence of the ith pedestrian
is denoted as Xi = [p1, p2, . . . , pTobs

], and contains spatial
information of positions p = (x, y). The temporal information
for each dimension can be represented as in Eq. 1.

Px = [x1, x2, . . . , xTobs
] (1)

Py = [y1, y2, . . . , yTobs
]

where the sampling time step of the sequence is t =
[1, 2, . . . , Tobs]. For the time series on each dimension, we
apply Discrete Fourier Transform (DFT) to get Tobs point
spectral information of the trajectory, and obtain the amplitudes
and phases of each dimension, as shown in Eq. 2.

Sx = (Ax,Φx) = DFT ([x1, x2, . . . , xTobs
]) (2)

Sy = (Ay,Φy) = DFT ([y1, y2, . . . , yTobs
])

where the frequency range is ω = [ω0, ω1, . . . , ωN−1]. The
kth frequency component is calculated by Eq. 3.

ωk = k ∗ fs/N (3)

where fs is the frequency of the input time series signal, N is
the number of sample points, that equals to Tobs.

The spatial, temporal, and spectral features are concatenated
and fed into the embedding layer to obtain the encoded spatial-
temporal-spectral feature, as shown in Eq. 4.

e = Wem · concat(Px, Py, Sx, Sy) (4)

where Wem is the linear embedding weights, concat(·) denotes
the concatenate operation. For each ith pedestrian, we get the
embedded feature ei.

C. LSTM Encoder-Decoder Prediction Structure

As we have introduced in Sec. II-A, there are three commonly
used structures for pedestrian trajectory prediction, LSTMs,
CNNs, and Transformers. These models learn different motion
features of pedestrians and perform differently. We use the
sequence-to-sequence LSTM encoder-decoder structure in
our model to predict pedestrian trajectories and compare its
transferability to the other two models.

After obtaining the ith pedestrian’s spatial-temporal-spectral
embedded feature ei, we feed it into the LSTM encoder to
learn the hidden states of pedestrians, as shown in Eq. 5.

hi
Tobs

= LSTMenc(h
i
0, e

i;Wenc) (5)

where hi
Tobs

is the encoded feature of LSTM encoder for the
ith pedestrian, hi

0 is the initial hidden state, ei is the embedded

spatial-temporal-spectral feature. The LSTM encoder is denoted
as LSTMenc(·), and the weights learned by the LSTM encoder
are Wenc.

Traditional LSTM networks that take time series as inputs
can store and retrieve information over long time intervals
using the input gate, output gate, and forget gate, and store
the information in the memory cell. The LSTM networks use
hidden states to learn and represent the “motion status” of each
pedestrian over time.

In our proposed model, LSTMs are fed with spatial informa-
tion in temporal order and spectral information in frequential
order. The network learns and stores not only important
temporal information, but also critical frequency components.
Both temporal motion status and spectral moving preferences
are learned in this way. The LSTM encoder encodes the input
sequence into a fixed-length vector as the latent representation
of the time and frequency information. The learned weights
are shared across all pedestrian sequences.

Then, we use the LSTM decoder to generate the output
sequence. The LSTM decoder takes the predicted position of
the previous time step as input. Here we use the mean value
of predicted distribution (µx, µy)t−1 and hidden states ht−1

to generate the LSTM decoder output ht for time step t, as
shown in Eq. 6.

hi
t = LSTMdec(h

i
t−1, l

i
t;Wdec) (6)

lit = Ws · (µx, µy)t−1 (7)

where t ∈ [Tobs + 1, Tobs + 2, . . . , Tpred]. The LSTM decoder
is denoted as LSTMdec(·), and Wdec is the LSTM decoder
weights. Ws is the linear embedding weights for spatial
encoding.

D. Position Estimation and Loss Function
There are two commonly used loss functions for trajectory

prediction. L2 loss is used for deterministic prediction, and
negative log-likelihood (NLL) loss is used for probabilistic
prediction. In the proposed model, we predict the bi-variate
Gaussian distribution using NLL loss.

We assume the positions of pedestrians are random variables,
and the ith pedestrian’s position at time t follows bi-variate
Gaussian distribution Ŷ i

t ∼ N (µi
t, σ

i
t, ρ

i
t). We generate output

sequence distribution for each time step, (µx, µy, σx, σy, ρ)
i
t,

where the mean value of the position is (µx, µy)
i
t, the standard

deviation is (σx, σy)
i
t, and ρit is the correlation coefficient.

The probability density function of position (x, y) is shown in
Eq. 8.

f(x, y) =
1

2πσxσy

√
1− ρ2

exp

[
− 1

2(1− ρ2)
∗(

(x− µx)
2

σ2
x

+
(y − µy)

2

σ2
y

− 2ρ(x− µx)(y − µy)

σxσy

)]
(8)

After we obtain the hidden states from the LSTM decoder,
we use output transformation to get the final prediction. The
output transformation from hidden states to the distributions is
shown in Eq. 9.

[µx, µy, ln(σx), ln(σy), tanh
−1(ρ)]it = oit = Wo · hi

t (9)
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(a) Waymo (Source) (b) ETH-univ (c) ETH-hotel (d) UCY-zara1 (e) UCY-zara2 (f) UCY-univ
Fig. 3. Screenshots of the data showing the differences between the source dataset (Waymo Open Dataset) and target datasets (ETH and UCY datasets). These
data are collected by various sensors at different locations from different views. For the Waymo data, we present the front camera image from the vehicle’s
view, but we use the annotated pedestrians from the bird’s-eye-view collected by LiDAR.

where t ∈ [Tobs + 1, Tobs + 2, . . . , Tpred]. The output of
the LSTM decoder is denoted by hi

t, and Wo are the linear
weights for transforming the hidden state to the output. Instead
of learning σx, σy, ρ directly, we learn the logarithm of the
standard deviation ln(σx), ln(σy), and the arctanh of the
correlation coefficient tanh−1(ρ) to avoid negative values.

The NLL loss function is shown below:

Lnll(Wθ) = −
Tpred∑

t=Tobs+1

n∑
i=1

log (f(xi
t, y

i
t|µx, µy, σx, σy, ρ))

(10)

where Wθ represents the learned network parameters.

IV. EXPERIMENTS

A. Datasets

The large and abundant Waymo Open Dataset [49] is used as
the source dataset. We train the model on the Waymo training
set, and evaluate the non-transfer task on the Waymo test set.
Five transfer tasks are evaluated, including two ETH target
datasets and three UCY target datasets. In this section, we
introduce the basic information of these datasets. Fig. 3 shows
screenshots of different pedestrian behavior scenarios of the
source and target datasets. The basic information of the datasets
is shown in Table II.

a) Waymo Open Dataset: Waymo Open Dataset [49]
contains 1,150 real-world road scenes collected from the
vehicle’s view, among which 450 scenes are collected in urban
street scenarios. To investigate pedestrian behavior in urban
scenarios, we use the 450 urban scenes, including 374 training
records and 76 test records with 20 seconds duration. We divide
the training records into a training set with 337 records and
a validation set with 37 records. The 76 test records are used
for non-transfer task evaluation.

The data are collected with high-resolution cameras and
LiDARs. We use the annotations from LiDAR data that have
a scan range of 75m. The 3-dimensional positions in the real
world are pre-processed into 2-dimensional (x, y) positions
from the bird’s-eye-view, and used as ground truth for training
and evaluation.

b) ETH and UCY datasets: ETH [50] and UCY [51]
datasets are widely used by existing studies on pedestrian
trajectory prediction. These datasets contain five different sce-
narios at fixed locations from the bird’s-eye-view recorded by
a camera. We evaluate five senes separately. The positions are
pre-processed into real-world 2-dimensional (x, y) positions.

B. Input Alignment and Data Pre-processing

As shown in Table II, the source and target datasets are
collected in different scenarios with various sensors, views, and
data frequency, and contain different labeled objects. Therefore,
to develop a transferable model, we first need to align the input
of the datasets.

To avoid the impact of different sensors and calibration
parameters, we only use pedestrian trajectories as input instead
of using raw data from cameras or LiDARs. We pre-process
all data into the same coordinate system and frequency to keep
the input information of the model consistent. For the Waymo
datasets, the pedestrians’ real-world center positions (x, y)
are used and pre-processed into the global coordinate with a
fixed origin for each record to reduce the influence of the ego-
vehicle’s movement. For the ETH and UCY datasets, the labels
of pedestrians are transformed from the image coordinate (u, v)
into real-world center positions (x, y). To avoid the influence
of different frequencies, we sample all sequences to 2.5 Hz.

C. Evaluation Metrics

The following two metrics are used to evaluate the prediction
performance:

• The Average Displacement Error (ADE): the average
distance between the ground truth and the predicted
trajectories over all predicted time steps, as shown in
Eq. 11.

ADE =

∑
i∈n

∑Tpred

t=Tobs+1 ∥Y i
t − Ŷ i

t ∥2
n× (Tpred − Tobs)

(11)

• The Final Displacement Error (FDE): the average distance
between the ground truth and the predicted trajectories
for the final predicted time step, as shown in Eq. 12.

FDE =

∑
i∈n ∥Y i

t − Ŷ i
t ∥2

n
, t = Tpred (12)

D. Baselines

To avoid the impact of various sensors and calibration
parameters from different datasets, the baseline models we
use for comparing the transferability take only pedestrian
trajectories as input, and do not consider other input information
such as camera images, LiDAR data, or scene map information.
The following models are retrained on the Waymo dataset, and
compared for the performance and transferability on both the
source and target datasets.
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TABLE II
BASIC INFORMATION OF SOURCE AND TARGET DATASETS

Dataset Year Objects Sensors View Collected
Location Scenarios Frequency

Waymo 2020 Pedestrians, vehicles,
cyclists, signs

Cameras,
LiDARs

Vehicle’s view,
bird’s-eye-view United States Urban road traffic 10 Hz (LiDAR)

ETH 2009 Pedestrians Camera Bird’s-eye-view Switzerland Urban outdoor 2.5 Hz (Sampled)
UCY 2007 Pedestrians Camera Bird’s-eye-view Cyprus Urban outdoor 2.5 Hz (Sampled)

1) Social LSTM: proposed by Alahi et al. [5] in 2016,
considering individual trajectories of target pedestrians
and social interactions, using L2 loss.

2) TF Individual: proposed by Giuliari et al. [15] in
2020, considering only individual trajectories of target
pedestrians, using L2 loss.

3) Social STGCNN: proposed by Mohamed et al. [7]
in 2020, considering individual trajectories of target
pedestrians and social interactions, using NLL loss.

4) Social IWSTCNN: proposed by Zhang et al. [12] in 2021,
considering individual trajectories of target pedestrians
and social interactions, using NLL loss.

5) DMRGCN: proposed by Bae and Jeon [24] in 2021,
considering individual trajectories of target pedestrians
and social interactions, using NLL loss.

6) Spatial-Temporal-Spectral (STS) LSTM (ours): our pro-
posed model as described in Sec. III, considering only
individual trajectories of target pedestrians, using NLL
loss.

In addition to the aforementioned baseline models, we
also compare our proposed model with SoPhie [19], Social
BiGAT [21], and HSTA [18]. Since these models either require
other inputs than just trajectories or have not provided publicly
available code, we cannot retrain and test their transferability.
Therefore, we directly use the evaluation results on the ETH and
UCY datasets from the original papers and compare them with
the performance of our transferable model. The comparison
shows the performance of our transferable model on the ETH
and UCY datasets without prior knowledge compared to the
models trained directly on those datasets.

E. Experimental Setting and Implementation Details

1) Model transferability: Experiments are designed to
evaluate the transferability of the models. As shown in Fig. 1,
all models for comparison are trained from scratch on the
Waymo training set. For the non-transfer task, we evaluate
the model on the Waymo test set. The data of training and
test set share the same prior knowledge, and are collected in
similar scenarios. For transfer tasks, we evaluate the model on
ETH-univ, ETH-hotel, UCY-zara1, UCY-zara2, and UCY-univ
datasets without knowing any prior information and without
access to these datasets.

2) Model performance evaluation: We evaluate and compare
the model transferability of our proposed model with the
baselines as described in Sec. IV-D. The probabilistic models
that we compare with [7], [12], [24] used the best of 20 samples
for evaluation and comparison. To better align and compare the
results, we follow this setting and use the best of 20 samples

as results. The observation and prediction lengths are set the
same for all datasets. We observe 8 time steps (i.e. 3.2 s)
and predict 12 time steps (i.e. 4.8 s), following the setting in
baseline models [5], [7], [12], [15], [24].

3) Inference speed: We are concerned about the inference
speed of the models. We test the inference speed of four
competitive models, including our proposed STS LSTM, Social
STGCNN, Social IWSTCNN, and DMRGCN. We compare
the total inference time, that consists of data processing, graph
building, and network prediction time. The inference speed is
tested on the Waymo test set.

4) Prediction network structures: To select the most trans-
ferable prediction network structure, we evaluate and compare
the LSTM, CNN, and Transformer for both non-transfer and
transfer tasks. We use the conventional spatial position in time
series as inputs with multilayer perceptron (MLP) embeddings,
and consider only individual trajectory features.

5) Loss functions: We implemented and evaluated both L2
loss and NLL loss for all three network structures.

6) Input representations: To compare and analyze how
feature representation affects transferability, we evaluate input
features with different components, including time series
features, spectral features, and the proposed spatial-temporal-
spectral representation with both features.

7) Implementation details: The Nvidia GeForce RTX 2080
Ti GPU was used for training and evaluation. Our proposed
model was trained with the Adam Optimizer, with the batch
size setting to 16 for 200 epochs. The learning rate was set
to 1e-4. We use the displacement between each step as spatial
inputs for calculating temporal and spectral features.

V. RESULTS AND ANALYSIS

A. Quantitative Results

1) Model performance and transferability: The quantitative
evaluation results are shown in Table III. For SoPhie [19],
Social BiGAT [21], and HSTA [18], we compare the results
from the original papers without testing the transferability. The
results show that compared with these non-transferable models
trained on the ETH and UCY datasets, our transferable model
achieves better results without access to the datasets. This
demonstrates the potential of using off-the-shelf pre-trained
models for practical tasks.

To test and compare the transferability, the models we select
for comparison use only pedestrian trajectories as input, without
image or map information. Our proposed model and the TF
Individual model [15] consider only the information of single
individuals’ trajectories, while the other models including
Social LSTM [5], Social STGCNN [7], Social IWSTCNN [12],
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TABLE III
THE ADE/FDE METRICS (IN METERS) OF BASELINE METHODS COMPARED TO OUR PROPOSED STS LSTM MODEL. LOWER IS BETTER. METHODS ABOVE

THE DASHED LINE: RESULTS FROM THE ORIGINAL PAPERS WITHOUT TESTING THE TRANSFERABILITY. METHODS BELOW THE DASHED LINE: MODELS
RETRAINED ON THE SOURCE DATA, AND THE TRANSFERABILITY IS EVALUATED. METHODS MARKED WITH THE STAR *: USED THE BEST OF 20 SAMPLES.
METHODS MARKED WITH SUPERSCRIPT 1: CONSIDERED SOCIAL INTERACTIONS AND SCENE INFORMATION. METHODS MARKED WITH SUPERSCRIPT 2:

CONSIDERED SOCIAL INTERACTIONS. BOLD: BEST, UNDERLINE: SECOND BEST.

Model (Year) Waymo test
(Source Data) ETH-univ ETH-hotel UCY-zara1 UCY-zara2 UCY-univ Average

(Target Data)
SoPhie*1 (2019) [19] – / – 0.700 / 1.430 0.760 / 1.670 0.300 / 0.630 0.380 / 0.780 0.540 / 1.240 0.540 / 1.150

Social BiGAT*1 (2019) [21] – / – 0.690 / 1.290 0.490 / 1.010 0.300 / 0.620 0.360 / 0.750 0.550 / 1.320 0.480 / 1.000
HSTA*2 (2021) [18] – / – 0.380 / 0.620 0.400 / 0.790 0.340 / 0.710 0.320 / 0.680 0.550 / 1.170 0.400 / 0.790

Social LSTM2 (2016) [5] 0.393 / 0.841 0.696 / 1.375 0.365 / 0.707 0.448 / 0.972 0.360 / 0.795 0.561 / 1.214 0.486 / 1.013
TF Individual (2020) [15] 0.363 / 0.782 0.647 / 1.287 0.322 / 0.623 0.429 / 0.955 0.324 / 0.720 0.518 / 1.141 0.448 / 0.945

Social STGCNN*2 (2020) [7] 0.335 / 0.550 0.418 / 0.681 0.253 / 0.360 0.352 / 0.610 0.303 / 0.515 0.401 / 0.753 0.346 / 0.584
Social IWSTCNN*2 (2021) [12] 0.328 / 0.538 0.405 / 0.644 0.209 / 0.285 0.340 / 0.581 0.292 / 0.506 0.412 / 0.775 0.332 / 0.558

DMRGCN*2 (2021) [24] 0.275 / 0.468 0.390 / 0.664 0.193 / 0.266 0.299 / 0.541 0.252 / 0.451 0.365 / 0.680 0.300 / 0.520
STS LSTM* (ours) 0.284 / 0.532 0.457 / 0.813 0.203 / 0.282 0.306 / 0.567 0.243 / 0.476 0.373 / 0.700 0.316 / 0.568

TABLE IV
INFERENCE SPEED COMPARISON (IN MS). BOLD: FASTEST.

Model (Year) Inference Time
per sequence

Social STGCNN (2020) [7] 15.81
Social IWSTCNN (2021) [12] 3.38

DMRGCN (2021) [24] 31.13
STS LSTM (ours) 3.08

and DMRGCN [24] consider also social interactions between
pedestrians.

Compared with the baseline models, our proposed STS
LSTM model gets the second-best performance on the non-
transfer task on the Waymo test set. The ADE and FDE achieve
0.284 m and 0.532 m respectively, slightly worse than the
previous best SOTA method DMRGCN. The ADE of our
model is only less than 1 cm behind DMRGCN, while our
proposed model has a much simpler structure. The proposed
STS LSTM does not calculate the complex spatial and temporal
interaction with other pedestrians and hence, it does not require
much computational resource. Compared with Social STGCNN
and Social IWSTCNN which consider social interactions, our
proposed STS LSTM achieves better performance. This shows
the effectiveness of the proposed spatial-temporal-spectral
feature encoding module. Using the proposed feature encoding
module, our model can learn the general motion pattern
of pedestrians and obtain accurate predictions even without
considering the status of their neighboring pedestrians.

When transferring to other target datasets, although DM-
RGCN achieves the best average results on target datasets, it
has the most complicated network structure that considers both
spatial and temporal interactions. On four out of five datasets,
including ETH-hotel, UCY-zara1, UCY-zara2, and UCY-univ
datasets, the ADE of our model is only marginally worse than
DMRGCN with a difference of less than 1 cm. Our proposed
model outperforms the other baseline methods on these four
datasets using a simple LSTM encoding-decoding structure
with spectral domain information. Another competitive model
is the Social IWSTCNN, which performs better on the ETH-
univ dataset, while it also uses a more complicated structure
than ours that considers social interactions between pedestrians

within crowds. This indicates better transferability of the
proposed model to other unseen cases compared to existing
methods.

We compare the prediction errors of the proposed STS LSTM
model on the source and target datasets. The performance of the
model is similar or slightly decreased on the ETH-hotel, UCY-
zara1, and UCY-zara2 datasets, while the performance drops
sharply on the ETH-univ and UCY-univ datasets. To better
understand model transferability, we look into the property
of the source and target datasets. The source Waymo dataset
is collected in urban street scenarios with densely populated
pedestrians. The three target datasets: ETH-hotel, UCY-zara1,
and UCY-zara2 datasets are collected in similar crowded urban
street scenarios, so they have similar performance to the source
data and good transferability. The ETH-univ and UCY-univ
datasets are collected in university scenarios. The pedestrian
moving patterns are very different from those in the urban
street scenarios. So the performance is worse compared to
the source data. Therefore, these datasets of pedestrians with
different motion patterns are harder for the models to transfer.

2) Inference speed: To investigate the potential of using
prediction models in practical applications, we are also inter-
ested in the computational performance of the models. The
inference speed of four competitive models, including Social
STGCN, Social IWSTCNN, DMRGCN, and our proposed
STS LSTM model are compared. The total inference time per
sequence is listed in Table IV. Our proposed method achieves
the best inference time of 3.08 ms per sequence. Although
DMRGCN has less prediction error, the complicated structure,
data processing, and graph building lead to the longest total
prediction time of 31.13 ms, which is 10 times slower than
our proposed model. The simpler structure design and less
computational requirement of our proposed model demonstrate
the potential of applying the model in practice.

B. Ablation Study

1) Prediction network structures and loss functions: To find
a prediction network structure with good transferability, we
compare three commonly used network structures, including
LSTMs, CNNs, and Transformers, with two different loss
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TABLE V
THE ADE/FDE METRICS (IN METERS) FOR LSTM, CNN, AND TRANSFORMER PREDICTION STRUCTURES USING L2 AND NLL LOSS. FOR MODELS USING

NLL LOSS THAT OUTPUT DISTRIBUTIONS, WE COMPARE THE BEST OF 20 SAMPLES. LOWER IS BETTER. BOLD: BEST.

Model Loss
Type

Waymo test set
(Source Data) ETH-univ ETH-hotel UCY-zara1 UCY-zara2 UCY-univ Average

(Target Data)
CNN L2 0.512 / 1.022 0.720 / 1.404 0.380 / 0.712 0.507 / 1.049 0.414 / 0.855 0.595 / 1.251 0.523 / 1.054

LSTM L2 0.380 / 0.812 0.708 / 1.392 0.356 / 0.660 0.453 / 1.001 0.341 / 0.755 0.523 / 1.140 0.476 / 0.990
Transformer L2 0.363 / 0.782 0.647 / 1.287 0.322 / 0.623 0.429 / 0.955 0.324 / 0.720 0.518 / 1.141 0.448 / 0.945

CNN NLL 0.334 / 0.571 0.488 / 0.837 0.204 / 0.301 0.369 / 0.639 0.282 / 0.504 0.422 / 0.788 0.353 / 0.614
LSTM NLL 0.291 / 0.537 0.457 / 0.790 0.233 / 0.374 0.304 / 0.547 0.247 / 0.468 0.374 / 0.708 0.323 / 0.577

Transformer NLL 0.328 / 0.756 0.577 / 1.284 0.238 / 0.479 0.428 / 1.055 0.304 / 0.730 0.457 / 1.045 0.401 / 0.919

TABLE VI
THE ADE/FDE METRICS (IN METERS) FOR DIFFERENT INPUT REPRESENTATIONS USING THE LSTM STRUCTURE WITH NLL LOSS. WE COMPARE THE BEST

OF 20 SAMPLES. LOWER IS BETTER. BOLD: BEST.

Model Waymo test set
(Source Data) ETH-univ ETH-hotel UCY-zara1 UCY-zara2 UCY-univ Average

(Target Data)
Temporal LSTM 0.291 / 0.537 0.457 / 0.790 0.233 / 0.374 0.304 / 0.547 0.247 / 0.468 0.374 / 0.708 0.323 / 0.577
Spectral LSTM 0.286 / 0.546 0.454 / 0.800 0.222 / 0.343 0.305 / 0.571 0.244 / 0.479 0.373 / 0.714 0.320 / 0.581

STS LSTM 0.284 / 0.532 0.457 / 0.813 0.203 / 0.282 0.306 / 0.567 0.243 / 0.476 0.373 / 0.700 0.316 / 0.568

functions including L2 and NLL loss. For each model, the
spatial positions of individual pedestrian trajectories in the
temporal order are used as input features. The evaluation results
are shown in Table V.

For models using L2 loss, the Transformer performs best and
achieves the least errors on both source data and most target
datasets. This is consistent with Giuliari et al.’s conclusion [15],
that the Transformer predictor outperforms other individual
LSTM-based approaches due to its attention mechanism. The
CNN performs worst on both source and target datasets when
using L2 loss. This may be because CNNs are not designed
for capturing the dependencies in time series data, and they
may fail to learn pedestrian motion patterns when it is used
without considering the randomness of pedestrian motion. The
LSTM model achieves relatively competitive but slightly worse
results compared with the Transformer on both the source and
target datasets. Without the help of the attention mechanism,
LSTMs can only process input sequences one step at a time, so
they may fail to capture more complex relationships between
different time steps.

Compared to the deterministic models using L2 loss, the
errors of the probabilistic models using NLL loss are much
lower. This is because the probabilistic models evaluating the
best of 20 samples are comparing the “upper-bound” of the
performance that they can achieve. Another reason is that the
prediction using L2 loss provides a deterministic “average”
result and loses the randomness of pedestrian behavior, while
the distribution prediction with NLL loss provides sample-
based results and preserves the randomness of human motion.
Therefore, to keep the random nature of pedestrian motion
and obtain better prediction results, we choose NLL loss for
regression and perform sample-based prediction.

For models using NLL loss, the LSTM model performs the
best on the source and target datasets, while the Transformer
does not perform well. The CNN and LSTM are competitive
on different prediction tasks. The LSTM model performs better

on the source dataset and four target datasets, including ETH-
univ, UCY-zara1, UCY-zara2, and UCY-univ datasets, while
the CNN model performs better on the ETH-hotel dataset. The
four datasets with better performance of the LSTM model are
denser compared to the ETH-hotel dataset, whose statistics are
shown in Table I. Since the models are trained on Waymo data
which is also dense, the results show that the LSTM model
with NLL loss has better transferability. Therefore, we choose
the LSTM model as the prediction structure with NLL loss as
the loss function for more accurate predictions of source data
and better transferability to target data.

2) Input representations: We compare the performance and
transferability of different input representations, including a)
only temporal representation, b) only spectral representation,
and c) our proposed spatial-temporal-spectral representation.
The LSTM encoder-decoder is used as the prediction structure
with NLL loss. The evaluation results are presented in Table VI.

The evaluation results show that using only temporal
representation and only spectral representation achieves similar
prediction performance. This is because we obtain the spectrum
of the pedestrian motion using the Discrete Fourier Transform
which is an invertible operation, thus, both kinds of input
features contain the same invertible information. When using
temporal information as input features, the LSTM encoder
learns the most important temporal information about pedestrian
positions. When using the spectrum of pedestrian motion as
input features, the LSTM encoder learns the most impor-
tant spectrum information, i.e. the most important frequency
components. The model gets better prediction results on the
source dataset and has the best transferability on more target
datasets when using both temporal and spectral information
as input features. This is because when combining the time
series and spectral information, the LSTM encoder extracts the
most important motion features in the spatial-temporal domain
from time series input, while also learning the most important
frequency features in the spectral domain.
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C. Visualization and Analysis

In this section, we visualize the inputs and outputs of
the proposed model to better understand the data and model
transferability.

Fig. 4. An example of a non-linear trajectory in x-y coordinates from the
bird’s-eye-view.

Fig. 5. The time series of the example in x and y directions.

Fig. 6. The spectral sequences of the example in x and y directions.

1) Input representations: We provide a simplified example
to show how spectral features improve feature representation.
A non-linear trajectory is shown in Fig. 4 as an example. The
data is represented in x-y coordinates from the bird’s-eye-
view. Eight time steps are observed at a frequency of 2.5 Hz.
Traditional prediction networks use time series of x and y
directions as input features, as shown in Fig. 5. The time series

Fig. 7. The effects of different frequency components for the time series in
the y direction. (a) the impacts of low-frequency components. (b) the impacts
of high-frequency components.

in the x direction is linear, which is easy to predict, while the
sequence in the y direction is non-linear, which is hard for the
network to capture the pattern. To extract the general motion
pattern of pedestrians, we add spectral domain information
as input features. The spectral representation of the x and y
directions is shown in Fig. 6. The spectrum provides additional
information about different frequency components that can
represent motion patterns at different scales.

To demonstrate how the low-frequency and high-frequency
components in the spectral domain impact the time series, we
take the non-linear sequence in the y direction as an example.
Fig. 7 shows how the time series changes with different
frequency components. When modifying the direct-current
(DC) component, we get a sequence in the same shape but
with a different average value. The DC component represents
the average value of the time series signal. It represents the
constant property of a pedestrian’s movement. As shown in
Fig. 7 (a), when modifying low-frequency (LF) components,
including components 1 and 2, the coarse-level shape of the
sequence changes. This indicates that the LF components
reflect the macroscopic moving trends such as the pedestrian’s
intention and destination. As shown in Fig. 7 (b), when
modifying the high-frequency (HF) components, including
components 3 and 4, the time series is “fine-tuned” with
fine-level changes. This indicates that the HF components
reflect the microscopic moving trend such as the pedestrian’s
adjustment to the interaction with other road users and their
moving preferences. This implies that using displacements and
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(a) Waymo (b) ETH-univ (c) ETH-hotel (d) UCY-zara1
Fig. 8. Distributions of pedestrian trajectories (positions) for the source dataset (Waymo) and three target datasets (ETH-univ, ETH-hotel, and UCY-zara1).
Density is presented in log scales. Displayed in white when no pedestrians have passed.

their spectrum as inputs allows the model to learn not only
the temporal features but also pedestrians’ moving trends in
different scales.

2) Data distribution: The 2D distributions of pedestrian
trajectories for the source dataset (Waymo) and three target
datasets (ETH-univ, ETH-hotel, and UCY-zara1) are shown as
log scale heatmaps in Fig. 8. The distributions vary greatly in
different scenarios. the source data is collected on a moving
vehicle, while three target datasets are collected from fixed
scenarios.

To represent the motion states of pedestrians in the temporal
domain, the displacements between adjacent frames (equivalent
to velocities) on the x-axis and y-axis in time series are used
as inputs. Distributions of the displacement on the x-axis and
y-axis are shown in the violin plot in Fig. 9.

The peaks of the x and y velocities are close to zero,
indicating that most pedestrians walk along the streets in the
direction of the x-axis or y-axis. There are two secondary peaks
in the Waymo dataset on both the x-axis and y-axis at about
0.4 m, indicating that there are also many people walking along
the streets in diagonal directions. In the ETH-univ dataset, the
velocities on the y-axis are larger and more widely distributed
than that of the Waymo dataset, and the velocities on the x-axis
are more concentrated at zero, indicating that most pedestrians
walk along the y-axis direction passing through the gate. The
ETH-hotel dataset has a distribution of velocities concentrated
at zero on the y-axis, indicating that most pedestrians walk
along the street in the direction of the x-axis, and there are
also some people standing static waiting to get on the tram or
cross the road. The distribution of the UCY-zara1 dataset has a
peak near zero on the y-axis, indicating that most pedestrians
walk along the x-axis passing the corner of the store.

Distributions of the amplitude of four frequency components
in the x-axis and y-axis directions are shown in Fig. 10. The
DC component that represents the static property is not plotted
in the figure. The other frequency components represent the
moving property. As the spectrum is symmetrical, we only plot
the first four frequency components.

The frequency components shown in Fig. 10 provide
additional dimensions for representing input data, extending
beyond the sole utilization of displacement in the x and y axes
as shown in Fig. 9. This implies that adding spectral information
can supplement the representation and improve transferability.

Fig. 9. Violin plots of the displacement (velocity) distributions for the source
dataset (Waymo) and three target datasets (ETH-univ, ETH-hotel, UCY-zara1).
Violin plots are shown with quartiles representing the 25th (top line), 50th
(middle line), and 75th (bottom line) percentiles of the distribution.

As shown in Fig. 10, the distribution of frequency components
of the ETH-univ dataset is greatly different from the Waymo
dataset. This is a possible reason for the drop in the accuracy
of transfer tasks on the ETH-univ dataset.

3) Examples of prediction results on target datasets: Fig. 11
presents qualitative examples of prediction results on three
target datasets. As shown in the figure, even without any
prior knowledge and without access to the target datasets,
our proposed model can predict position distributions that are
close to the ground truth. Our model predicts future position
distributions, and we plot 99.7% confidence interval here. For
the ETH-univ and the UCY-zara scenarios, the prediction shows
small uncertainty. This indicates our model is able to deal with
moving cases where pedestrians are walking. For the ETH-
hotel scenario, the uncertainty is larger, especially for the static
pedestrians standing by the roadside. This implies that our
model tends to predict the motion of stationary pedestrians
with large uncertainty to deal with randomness, indicating that
those stationary pedestrians may move at any time.

4) Limitations: Since our model only explicitly considers
the individual trajectories, it struggles to handle the cases
related to pedestrians’ intentions and complex interactions.
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Fig. 10. Violin plots of the amplitude distributions of four frequency components for the source dataset (Waymo) and three target datasets (ETH-univ,
ETH-hotel, UCY-zara1). Violin plots are shown with quartiles representing the 25th (top line), 50th (middle line), and 75th (bottom line) percentiles of the
distribution.

(a) ETH-univ (b) ETH-hotel (c) UCY-zara
Fig. 11. Examples of prediction results on three target datasets, including the ETH-univ, ETH-hotel, and UCY-zara dataset, with 99.7% confidence interval.

Fig. 12 shows examples of failed predictions. The failure occurs
when pedestrians move suddenly or accelerate at low speeds.
Sudden movements of pedestrians are usually related to their
intentions. For example, a) the pedestrians in Fig. 12c continue
walking after looking at merchandise in the shop window,
and b) the pedestrians are hesitating to enter the gate as in
Fig. 12a. Besides, when there are other pedestrians or objects
that pedestrians interact with, the proposed model does not
perform well, such as the cases in Fig. 12a and Fig. 12b.
This is because our proposed model only considers individual
movements without social interactions. These failures are due
to the lack of information about the intentions and interactions
of pedestrians. Since our proposed method is a simple base
structure for transfer learning, it can be combined with other
intention-based or interaction-based models to improve domain-
specific performance.

VI. CONCLUSIONS

In this paper, we focus on developing a transferable model for
pedestrian trajectory prediction. Specifically, the STS LSTM
model is proposed that performs well on both source and
target datasets with a faster inference speed compared with
the SOTA methods. We have evaluated and analyzed the
transferability of the proposed model and several popular
existing pedestrian trajectory prediction models. Experimental
results show that among the three commonly used neural

network structures including LSTMs, CNNs, and Transformers,
and two commonly used loss functions including L2 loss and
negative log-likelihood loss, the best prediction results are
achieved by using LSTMs with NLL loss. By comparing using
only time series, only spectrum, and our proposed spatial-
temporal-spectral representation as input features, our proposed
representation can effectively represent the pedestrian motion
pattern and achieves the best transferability. In future work, our
proposed model as a transferable base model can be combined
with other intention-based models or interaction-based models
to improve performance.
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