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Probabilistic Graph-Based Real-Time Ground
Segmentation for Urban Robotics

Iván del Pino , Angel Santamaria-Navarro , Anaís Garrell Zulueta , Fernando Torres ,
and Juan Andrade-Cetto

Abstract—Terrain analysis is of paramount importance for the
safe navigation of autonomous robots. In this study, we introduce
GATA, a probabilistic real-time graph-based method for segmen-
tation and traversability analysis of point clouds. In the method, we
iteratively refine the parameters of a ground plane model and iden-
tify regions imaged by a LiDAR as traversable and non-traversable.
The method excels in delivering rapid, high-precision obstacle de-
tection, surpassing existing state-of-the-art methods. Furthermore,
our method addresses the need to distinguish between surfaces
with varying traversability, such as vegetation or unpaved roads,
depending on the specific application. To achieve this, we integrate a
shallow neural network, which operates on features extracted from
the ground model. This enhancement not only boosts performance
but also maintains real-time efficiency, without the need for GPUs.
The method is rigorously evaluated using the SemanticKitti dataset
and its practicality is showcased through real-world experiments
with an urban last-mile delivery autonomous robot.

Index Terms—Ground segmentation, LiDAR, sequential
innovation, terrain analysis.

I. INTRODUCTION

ROBUST detection of obstacles and traversable space is
a fundamental requirement for any autonomous robot

to navigate safely. While this capability is easily achieved in
indoor environments, it becomes considerably more challeng-
ing in outdoor settings due to unpredictable ground structures
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and uncontrolled illumination conditions. LiDAR sensors are
a popular choice for outdoor scenarios because they provide
precise geometric information over acceptable ranges and are
relatively insensitive to external illumination sources. However,
the sparsity and lack of color information in LiDAR data,
combined with the complexities of outdoor environments, make
LiDAR-based ground segmentation a highly demanding task,
particularly when real-time performance is a practical necessity.

In recent research trends, Deep Learning models have gained
prominence for the semantic segmentation of point clouds.
These models have demonstrated remarkable results in bench-
mark tests such as SemanticKitti and NuScenes, accurately
distinguishing among various classes [1], [2], [3]. However,
Deep Learning methods have their drawbacks. They require
an extensive amount of labeled data for supervised training,
are computationally intensive both during training and infer-
ence, and raise concerns regarding their susceptibility to ad-
versarial attacks when used in critical processes like obstacle
detection [4].

In addition to Deep Learning methods, a wide range of al-
ternative approaches exists. These include Elevation maps [5],
Gaussian Processes [6], RANSAC with polynomial fitting [7],
or Markov Random Fields [8]. Each approach has its advantages
and drawbacks, but common challenges include achieving real-
time performance, adapting to different sensors, and addressing
traversability estimation.

To address these challenges, we propose GATA a probabilistic
Graph-based real-time Approach for Terrain Analysis (refer to
Fig. 1). The method generates a ground model organized as a
graph structure encoding traversability information, facilitating
fast and robust obstacle detection. Moreover, the ground model
produces features that can be harnessed to refine traversability
analysis. If ground-truth data is available, we train a shallow
neural network to distinguish between traversable and non-
traversable ground. While this shallow neural network cannot
match the complexity of modern Deep Learning methods, it
offers advantages, including the need for a modest amount of
annotated data, fast training, and real-time segmentation on a
single CPU core.

Key features of the method are:
� LiDAR-only: It can be utilized without complex hardware

setups or calibration processes.
� Single-shot: It does not require odometry or localization

for concatenating point clouds.
� Lightweight: It operates in real-time on a single CPU core.
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Fig. 1. Real-time terrain analysis using a probabilistic graph-based approach:
The figure illustrates ground model predictions (depicted as blue squares), a
traversability graph (where yellow edges represent traversable paths and red
edges indicate non-traversable paths), and a segmented point cloud (with obsta-
cles marked in green, traversable ground in blue, and non-traversable ground in
magenta).

� Easy to tune: It has a small number of meaningful pa-
rameters, such as Kalman noises, ROI sizes, and angular
resolution.

� Flexible: It works with various 3D LiDAR sensors, regard-
less of their field-of-view or resolution.

� Easy to train: It requires minimal annotated data and train-
ing time [9].

� Complementary to Deep Learning methods: It can serve as
an alternative to protect against adversarial attacks [10].

� Provides excellent point cloud segmentation and
traversability analysis, outperforming existing methods in
its class.

The remainder of this paper is organized as follows: in Sec-
tion II, we provide a brief review of related works. In Section III,
we offer a detailed description of our method, leading to an
experimental evaluation in Section IV. Finally, in Section V, we
present our conclusions and outline future research directions.

II. RELATED WORK

Over the past few years, we have seen how Deep Learning-
based algorithms have achieved excellent results in classic
computer vision tasks, such as image classification or object
detection, expanding technological possibilities and practical
applications to unprecedented levels [11]. Beyond image pro-
cessing, deep neural networks have recently been extended to
point cloud processing, which is of great interest for autonomous
driving since LiDAR sensors are a fundamental piece in most of
these systems [12]. Initially, Deep Learning techniques were pri-
marily applied to object detection in point clouds [13], however,
with the advent of new tools, such as highly realistic simulators
(e.g., CARLA [14]) and automated labeling algorithms (similar
to those used in SemanticKITTI [1]), we now have access to

point-wise-level annotated point cloud datasets. These datasets
enable the development of Deep Learning-based semantic seg-
mentation algorithms. Currently, the top-performing semantic
segmentation methods in the SemanticKITTI benchmark rely on
Deep Learning and employ various techniques. Among these,
Knowledge Distillation [15] has gained prominence. In the study
by Yan et al., [3], a Knowledge Distillation strategy is developed
to leverage RGB camera information during network training but
not during inference. This approach allows the system to operate
even in the absence of cameras. Another notable example of
Knowledge Distillation is found in the work presented by Hou
et al., [16], where they introduce a method called “Point-to-Voxel
Knowledge Distillation”. By reducing the complexity of several
large models, this technique enhances the handling of dispersion
and variable density in point clouds generated by LiDAR sensors
and currently ranks second in the SemanticKITTI semantic
segmentation benchmark.

Despite their commendable performance, the practicality of
employing deep-learning algorithms for ground segmentation
is often limited. This limitation is primarily due to their sub-
stantial computational demands, rendering them unsuitable for
real-time applications on robots lacking GPU capabilities [17].
Furthermore, deep neural networks possess qualities that are
not yet fully understood and that generate counterintuitive and
even “intriguing” effects, as shown in the work [18] where it is
stated that unlike in classic computer vision algorithms, small or
even imperceptible alterations in the input images of a deep net-
work can cause serious classification errors in its output. These
counterintuitive properties of deep networks have been studied
within the Adversarial Machine Learning community [19] to
develop methods able to degrade the performance of artificial
Deep Learning-based systems by “adversarial attacks” and to
create methods to defend them against such attacks [20].

Various studies have illuminated the vulnerabilities of deep
learning-based point cloud processing algorithms. Noteworthy
examples include: a) Physical Camouflage: In the work by
Tu et al., [21] meticulously crafted objects with unconven-
tional shapes alter a car’s appearance, rendering it invisible
to deep networks; b) Semantic Segmentation Confusion: Zhu
et al., [10] strategically place small elements within the en-
vironment to confound semantic segmentation systems. These
elements cause misclassification of vehicles as ground points,
leading to their disappearance; and c) GNSS-Based Backdoor
Attacks: Li et al., [22] reveal a potential backdoor in point cloud
rectification using GNSS information. This common prepro-
cessing strategy, employed to mitigate point cloud deformations
during high-speed sensor movement, can inadvertently serve as
a gateway for adversarial attacks. Spoofing techniques contam-
inate the GNSS signal, effectively evading the perception sys-
tem’s detection of pedestrians, cars, and other critical obstacles.
In light of these studies, we contend that diversifying obstacle
detection methods beyond deep learning is critical for ensuring
redundancy and robustness in safety-critical processes. This
motivation drove the development of our method and remains a
key focus for our future research.

Numerous methods have been proposed in the literature to
address real-time pointwise ground segmentation without the
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need for Deep Learning techniques. Initial algorithms utilized
elevation maps to detect obstacles in point clouds, assigning
height information to each occupied cell, such as the mean
height of all contained points or the difference between the
maximum and minimum heights [23]. Some methods modeled
the ground plane as a set of concentric lines, estimating their
slope and intercept using least squares [24], albeit with the
inherent limitation of having a single equation for each angular
zone. More contemporary works have employed probabilistic
approaches for ground segmentation, as demonstrated in [25],
where the ground is modeled as a Markov Random Field, and
the maximum-belief ground height is sought using a polar grid
representation. Reymann et al. [26] introduced a hierarchical
classification method based on Random Forests. This method
uses geometric features to differentiate flat surfaces, vegetation,
and obstacles. Intensity features and multi-echo data are then
used to further refine the classification into grass, small rocks,
and asphalt. Inspired by this approach, we incorporate a second
classification stage in our method, employing a shallow neural
network to distinguish between traversable and non-traversable
ground. A highly efficient ground segmentation method is pre-
sented in [27]. Rather than operating in 3D space, this method
employs a projection in spherical coordinates to generate Range
Images. The data in these images is processed column-wise, with
each column encoding the elevation angles, thereby facilitating
the analysis of the ground’s slope. Zermas et al. [28] divided
LiDAR scans into planes along the front-back (x) axis, using Sin-
gular Value Decomposition based on the lowest detected points.
This method classifies points using a simple point-to-plane
Euclidean distance threshold. While fast, this approach struggles
in the presence of noise and outliers. A more robust variant is
presented by Luo et al. [29], which divides the environment into
inner, forward, and backward regions and estimates slope and
intercept parameters for the best-fitting line using RANSAC [30]
and Iteratively Reweighted Least Squares. Although effective
in structured roads, it is less suitable for complex, unstructured
scenarios. Another RANSAC-based method is presented in [31],
where a two-step algorithm is employed. Initially, the more
apparent non-ground points are discarded using the sensor’s
geometry and the distance between consecutive rings in the scan.
Subsequently, a multi-region RANSAC plane fitting is used to
finalize the refinement of the ground segmentation.

All these works faced the challenge of lacking point-wise
annotated datasets for performance evaluation. This changed in
2019 when the SemanticKitti dataset was released, providing
labels for over four billion points classified into twenty-eight
classes. This dataset has become a standard benchmark for
ground segmentation, and we use it in this paper to compare
our results with the state of the art (see Section IV). In the
latest literature on ground segmentation, Huang et al. [8] present
a coarse-to-fine method that divides the segmentation process
into three stages. The first two are purely geometric analyses,
using a ring-based elevation map and spherical coordinates
representation to produce a coarse segmentation, which serves
as initialization for the third stage. This final stage employs
a graph-based approach with a min-cut algorithm to separate
ground and non-ground points. Qian et al. [7] describe a ground

modeling algorithm that creates a polar grid containing only
points with the minimum z-coordinate. It then applies the
method described in [32] to remove obstacles and performs
RANSAC-based second-order polynomial fitting. This process
generates a ground model used for point cloud classification
based on an Euclidean error threshold. Lim et al. [33] use a
variable cell size polar grid, called the Concentric Zone Model
(CZM), to accommodate data sparsity. Principal Component
Analysis is used to find local planes in the CZM representation.
These local planes are combined using three different features
(Uprightness, Elevation, and Flatness) to perform the final
segmentation. Notably, all these methods are sensor-specific
and make assumptions about the point cloud’s distribution or
projection. Popular methods that also include graph structures
for LiDAR segmentation include Zhu and Liu’s method for
the segmentation of traversable areas in rough terrain [34] that
divides LiDAR line scans into line segments by least squares
linear regression and uses graph-cut to classify line segments
into ground and non-ground; and Oh et al. [35] that builds a
graph from a constant-resolution triangular grid and employs
PCA within each cell to find the normal vector to each surface.
Cells are classified as terrain, obstacle, or unknown based on the
number of points in the cell and the normal vector. Traversability
analysis is performed by encoding central points of terrain cells
as nodes within the graph. A search is conducted to analyze
the edges between neighboring nodes, marking non-traversable
nodes as unreachable. Point cloud segmentation is achieved by
thresholding the Euclidean distance between points and model
planes. Similar to our approach, Oh et al. is sensor-agnostic and
also encodes the ground model in a graph, but has no means to
estimate the model’s uncertainty. In contrast, our approach al-
lows for probability distribution prediction in the Z-axis and uses
Mahalanobis distance checks for better treatment of noisy data.
Additionally, we use a shallow neural network to distinguish
between different types of ground, providing vital traversability
information, as certain areas, like grass or unpaved terrain, may
present similar traversability features.

III. METHOD

A. Problem Statement

The problem we aim to address involves a ground robot
equipped with one or more LiDAR sensors, with known mount-
ing points through calibration. Despite having limited process-
ing power, this robot must navigate outdoor environments, ne-
cessitating the detection of obstacles at extended ranges in com-
plex, non-flat terrains for tracking, localization, and mapping
tasks. Additionally, it must differentiate between traversable
and non-traversable surfaces to support planning. Specifically,
we need to determine which points in a given point cloud
belong to obstacles and which belong to the ground. Among
the ground points, we must distinguish between traversable and
non-traversable areas. Furthermore, this method should run in
real-time without requiring GPUs.

For obstacle detection, we build a representation of the ground
in which height is modeled with a Gaussian distribution for any
desired coordinate in the XY plane. This ground model provides
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Fig. 2. Two-stage segmentation scheme. First, stochastic estimation is used to update parameters of the height and slope of the ground plane and to discard points
belonging to obstacles. In the second step, a shallow neural network is used to classify traversable and non-traversable ground.

the foundation for obstacle detection, effectively treating it as
an outlier rejection task. We use a Mahalanobis threshold to
differentiate obstacles from the ground. For the traversability
classification of ground points, we utilize a supervised learning
approach. We train a shallow neural network (as discussed in
Section III-J) to classify ground points as either traversable or
non-traversable. This classification is based on a feature vector
extracted from the point cloud and the ground model.

A schematic representation of the proposed segmentation
pipeline is provided in Fig. 2, with two sequential modules, one
for ground segmentation, and the second one for traversability
analysis. An algorithmic representation of the pipeline is given
in Algorithm 1. The more relevant variables, referred to as
Config Params in Algorithm 1, are thoroughly elucidated in
Section IV-A.

B. Ground Segmentation

In our specific problem, the objective is to compute the param-
eters, height, and slope, of a supporting plane of the ground local
to a given robot position. As the robot traverses the environment,
these parameters change smoothly and we update them using
stochastic state estimation. The approach is computationally ef-
ficient, robust, and, unlike some other methods in the state of the
art, considers uncertainty, which is valuable for the identification
of obstacles as outliers to the plane.

To implement this approach, we locally explore the point
cloud as if a virtual rover navigates through it while estimating
the supporting plane. The exploration starts from the point
cloud’s origin, where a solid prior of the ground plane is available
thanks to sensor extrinsic parameter calibration. The exploration
is then propagated to nearby points, with a linear propagation
of uncertainty of ground plane parameters as the exploration
proceeds away from the point cloud origin, and using point

Algorithm 1: Probabilistic Real-Time Ground Segmenta-
tion and Traversability Analysis.

cloud data to revise the ground parameter estimates. This process
repeats until the entire point cloud is analyzed.

1) Inputs: The algorithm operates with a minimal set of
inputs:
� A 3D Point Cloud: This can be a single shot or an accumu-

lation of point clouds. It may originate from a single sensor
or be generated by multiple sensors, as long as all the points
within the cloud share a common reference frame.
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� Ground Plane Prior: To initiate the algorithm, a prior
estimation of the ground plane at the robot’s position is
required. This estimation is used to distinguish between
ground and obstacles in the robot’s immediate vicinity.
Typically, this information is obtained through extrinsic
parameter calibration. It’s important to note that this is
a prior estimation and doesn’t need to be perfect, as the
method will refine the estimation based on sensory data.
This flexibility makes it possible to use the algorithm with
various robots without the need for a complex calibration
process.

� Sensor Uncertainty: Two parameters are needed to model
sensor uncertainty, one to propagate ground parameter
estimates away from the sensor, and one to revise these
estimates with measured data.

� Resolution Parameters: Three resolution parameters are
required, including the grid cell size, the region of interest
size, and the angular exploration resolution.

� Thresholds: Two thresholds are utilized in the algorithm.
The first is the Mahalanobis distance, used to identify
point outliers, and the second is a score threshold, which
determines whether a point is classified as ground or an
obstacle.

2) Outputs: The algorithm provides two primary outputs: a
Segmented Point Cloud and a Ground Model.
� Segmented Point Cloud. The Segmented Point Cloud is

derived from the original point cloud and is enhanced with
labels and colors that convey the segmentation results. It
includes five distinct classes, each represented by a spe-
cific color: Unlabeled (grey), Traversable Ground (blue),
Non-Traversable Ground (magenta), Obstacle (green), and
Above-Obstacles (cyan). The “Above-Obstacles” class in-
cludes points that are associated with obstacles but do
not pose a direct collision risk, such as overhanging tree
branches.

� Ground Model. The Ground Model encapsulates the results
of terrain analysis and is used to generate the point cloud
segmentation while providing crucial traversability infor-
mation. The Ground Model can be described as a graph G,
comprising vertices V and edges E. Each vertex vk ∈ V
contains the following information:

vk = [x, y, z, a, b, σz, σa, σb] (1)

In this definition, the x and y coordinates are considered
deterministic, while the z coordinate and the slopes in
the x and y directions are modeled as Gaussian random
variables with respective means of z, a, and b, along with
standard deviationsσz ,σa, andσb. These random variables
are iteratively refined in our method. It’s important to note
that, for efficiency, the method assumes the slopes and
the z coordinate are independent variables, simplifying the
Mahalanobis distance computation for point segmentation.
This simplification significantly enhances the method’s
speed while having minimal impact on performance.
The graph has its root node located at the reference frame’s
origin (at ground level) and can be used for tasks like

TABLE I
PARAMETER SETUP IN KITTI EXPERIMENTS

path planning, representing a promising direction for future
research (see Fig. 5).

C. Cloud of References

To achieve efficient real-time performance, we devised a
reduction technique that we call “cloud of references.” Instead of
processing the entire point cloud, we divide it into smaller partial
clouds by employing a grid with cells of size s× s (see Table I)
in the XY plane. Each cell that contains at least one point forms
a partial point cloud. For each of these partial point clouds, we
generate a “reference” that includes the point with the lowest z
coordinate in the cell. Additionally, a vector stores the indices
of the remaining points in the same cell, which is later used
to expedite the segmentation process. A flag is also employed
to indicate whether the reference has already been utilized to
create a vertex or not. The exploration process halts when no new
vertices are generated. These references are collectively stored
in a reference point cloud denoted as L (for Lowest), and the
subsequent ground modeling is performed using this reduced
dataset. This approach offers several advantages. Firstly, the
regular grid structure ensures the algorithm’s independence from
the data acquisition method, eliminating assumptions like con-
centric circles or specific point distributions related to LiDAR
sensors. Secondly, it mitigates the impact of varying LiDAR
point density, which often occurs as the distance from the sensor
increases. Lastly, it significantly reduces the volume of data that
requires processing.

D. Root Vertex Prior

The initial step in generating the “Ground Model” involves
creating the root vertex. This step necessitates selecting ap-
propriate values for all the parameters specified in (1), which
together form the initial estimation of the ground plane at the
origin of coordinates within the reference frame. While it may
seem like a meticulous task, determining suitable values is
actually quite straightforward. Typically, x and y are set to zero,
representing the origin of the reference frame. The parameter z
denotes its distance to the ground, while the slopes a and b are
initially set to zero. This is because theZ axis is typically aligned
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vertically with the robot’s axis, ensuring that the reference frame
remains orthogonal to the ground plane.

The remaining parameters (σz , σa, and σb), which capture
uncertainties and play a crucial role in outlier rejection, can be
fine-tuned as follows. Begin with very small values and grad-
ually increase them until no ground points are misclassified as
obstacles. This iterative approach helps strike a balance between
effectively identifying ground points and avoiding misclassifi-
cations.

E. Extracting References in the Region of Interest

In line with our core concept of local data analysis for real-
time performance, we treat each vertex, denoted as vk, as a
unique point of view from which we estimate a ground plane.
This estimation solely relies on the data within a defined vicinity
around the vertex, termed the “references” within a Region of
Interest (ROI). The appropriate size for this area is contingent
on the density of the point cloud and the intricacy of the environ-
ment under examination. To allow for flexible adjustment, we
introduce a parameterΔ that governs the dimensions of a square
ROI, measuring 2Δ× 2Δ, with its center aligned at the vertex’s
position. The choice of Δ allows users to tailor the ROI size
to suit the characteristics of the data, accommodating varying
point cloud densities and environmental complexities.

F. Filtering the ROI Using the Prior

In our approach, even though we exclusively use the lowest
point within each grid cell to establish references, it is common
to find points within a Region of Interest (ROI) that pertain to
obstacles. Such occurrences often result from occlusions and
a lack of vertical resolution in the LiDAR data. Therefore, it
is imperative to filter out these points before proceeding with
ground plane estimation.

Leveraging the “prior” information stored in the vertex vk,
along with a first-order error propagation operation, we can
predict both the z value and its associated uncertainty for any
given x and y coordinates:

ẑ = zvk
+ (x− xvk

) avk
+ (y − yvk

) bvk
(2)

σ̂2
z = σz

2vk + (x− xvk
)2σa

2
vk

+ (y − yvk
)2σb

2
vk

(3)

Subsequently, for each point within ROIk, we calculate its Ma-
halanobis distance by dividing the magnitude of the prediction
error by the standard deviation of the prediction d = |z − ẑ|/σ̂z

and, using a specified threshold value, denoted as τ (see Table I),
we determine which of these points should be included as
“observations” for computing the “posterior” estimation of the
ground plane at the vertex’s position.

From an implementation perspective, it’s noteworthy that,
since references can belong to multiple Regions of Interest,
we store the ID of the vertex that yielded the most accurate
prediction for each reference. This approach enables us to iden-
tify the vertex to use during the segmentation step without the
need for time-consuming searches, consequently enhancing the
algorithm’s efficiency.

Fig. 3. Dense reconstruction of the ground using the predictions of the Ground
Model. Predicted points are colored following their z value from red (low) to
purple (high).

G. Computing the Posterior Estimation

To compute the posterior estimation, we adopt a sequential
innovation approach [36], which offers an efficient implementa-
tion, particularly because the matrix inversion required for cal-
culating the posterior covariance simplifies to a scalar division,
given that our measurements consist of scalar values z. Here,
we detail the procedure:

We first organize the vertex prior estimation (which stems
from either the spatial propagation of its parent or the initial-
ization process for the root vertex v0) into a state vector and
covariance matrix. For notation simplicity, we will omit the
subscript vk, as all values pertain to the node under update:

x� = [z, a, b]T (4)

P� = diag
(
σz

2, σa
2, σb

2
)

(5)

Next, we express the measurement model from (2) in vector
form z(i) = H(i)x, withH(i) = [1, (x(i) − x), (y(i) − y)]. We
initialize x⊕,0 = x� and P⊕,0 = P� to initiate the sequential
innovation scheme that runs for the n ground measurements
within each ROIk, denoted as p(i) = [x(i), y(i), z(i)].

K(i) = P⊕,i−1H(i)T
(
H(i)P⊕,i−1H(i)T + r

)−1

(6)

x⊕,i = x⊕,i−1 +K(i)
(
z(i) −H(i)x⊕,i−1

)
(7)

P⊕,i = P⊕,i−1 −K(i)H(i)P⊕,i−1 (8)

In the equations above, the scalar r represents the variance
of the additive measurement noise, which we consider to be
constant and identical for every measurement (as indicated in
Table I). Following these computations, we store in vertex vk

(as defined in (1)) the means and standard deviations of the last
update, effectively representing the final posterior distribution.

Fig. 3 shows height estimates for the point cloud of the high-
way shown in Fig. 4. In addition to the estimation for each point
in the point cloud, we showcase a dense reconstruction of the
ground computed using the posterior estimation of the Ground
Model. The color code represents z coordinate values, ranging
from red (low) to purple (high). To create this reconstruction,
we instruct the Ground Model to generate z predictions for
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Fig. 4. Point cloud segmentation and Traversability graph in a highway with
more than thirteen meters of altitude difference between the road and the lowest
point in the cloud. Color code: Traversable ground (blue), non-traversable
ground (magenta), navigation obstacles (green), overhanging obstacles (cyan),
and not analyzed (gray).

pairs of x and y coordinates. All predictions displayed in the
figure have a maximum standard deviation of one-third of a
meter, thus indicating that the reconstructed area has a maximum
uncertainty of one meter within the 3σ region. By examining the
colors, one can observe how the Ground Model’s predictions
closely match the colors of the point cloud.

H. Generating New Vertices

To create new vertices, we utilize the references within the
filtered ROIk that remain unexplored. These references are
grouped into azimuthal regions, each spanning Δφ degrees (see
Table I) around the current vertex. New vertices are then cre-
ated at positions corresponding to the median azimuthal angles
within each region. Once these new vertices are established, the
used references are marked as explored to prevent redundant
processing.

To set the prior estimation for the newly created vertices, we
propagate the parent vertex’s state to the new positions using the
following equations:

xvk+1
= F kxvk

(9)

P vk+1
= F kP vk

F k
T +Qk (10)

F k =

⎡
⎢⎣
1 xvk+1

− xvk
yvk+1

− yvk

0 1 0

0 0 1

⎤
⎥⎦ , (11)

Qk denotes a zero-mean Gaussian additive noise scaled by the
squared Euclidean distance between the parent and child vertices
(d2):

Qk = d2

⎡
⎢⎣
q2z 0 0

0 q2a 0

0 0 q2b

⎤
⎥⎦ (12)

The parameter standard deviations (qz, qa, qb) are fine-tuned
through experimentation, the chosen values are given in Table I.
Finally, we establish edges to connect the current vertex vk with

each newly created child vertex, adding them to the edges vector
E of the graph G.

I. Detecting Obstacles Using the Ground Model

Once all new vertices have been created, and no further
vertices appear, the Ground Model is considered complete and
ready for use in point cloud segmentation. To perform this
segmentation efficiently, we use the cloud of references, denoted
asL, which guides the process. Each reference withinL provides
us with the ID of the vertex that yielded the best prediction, along
with a vector of indices pointing to the remaining points within
its respective grid cell.

To segment the point cloud, we iterate over the vector of in-
dices and, for each point, request the corresponding vertex in the
Ground Model to generate a Gaussian probability distribution
for z based on the x and y coordinates of the point. We then
compute the Mahalanobis distance (d) and compute the score:

η = 1− d

τ
(13)

Points are considered as ground if their score exceeds a
specific threshold, denoted as ν in Table I. Points that fail to
reach this threshold are classified as non-ground. However, this
classification does not necessarily imply that they are obsta-
cles to navigation. Whether they pose a collision risk depends
on three factors: the z coordinate of the ground (predicted
or observed), the z coordinate of the point, and the robot’s
height (h as defined in Table I). Given these considerations,
we categorize non-ground points into two classes: obstacle and
above-obstacle.

Furthermore, points associated with references in L that re-
main labeled as unexplored after the ground modeling process
is completed are classified as unlabeled. This typically occurs
when the size of the Region of Interest is insufficient to analyze
certain parts of the point cloud. This may be due to large occluded
areas or the limited vertical resolution of the LiDAR sensor,
resulting in undetected ground in those regions.

J. Predicting Traversability

The algorithm, as described thus far, excels at efficiently
detecting obstacles, with the ability to process a full Velodyne
HDL-64 point cloud in just around eleven milliseconds on a
standard laptop. This efficiency is crucial for tasks such as
moving object tracking and localization. However, the informa-
tion it provides alone may be insufficient for path planning, as
whether the ground is considered traversable or non-traversable
depends on various factors such as surface material and specific
application requirements. For instance, a robot may or may not
be allowed to navigate on grass.

To address this limitation without compromising real-time
performance or necessitating GPU usage, we incorporate a
Shallow Neural Network that operates in a supervised manner.
This small neural network has dimensions of 13× 39× 2, with
thirteen features as input, thirty-nine neurons in the hidden layer,
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Fig. 5. Traversability graph in an urban environment. Each node contains
a local plane estimation and vertices encode the traversability by connecting
neighboring nodes whose plane estimations are geometrically compatible. In
yellow we show the traversable edges, whereas in red we show connections
discarded by the neural network.

and two outputs, enabling binary classification (traversable /
non-traversable) in real-time.

To create the input vector, we gather thirteen features for each
point classified as ground by the Ground Model. These features
encompass both point-level and cell-level characteristics, cal-
culated by computing statistics on the points indexed by the
references in L. Specifically, these features consist of:
� Point-level features: Squared ranges (point-to-sensor and

point-to-reference), incidence angle (relative to the local
plane estimated by the ground model), point intensity,
prediction error (Euclidean distance between the predicted
z value by the model and the point’s z coordinate, which
can be negative or positive), and score (as defined in (13)).

� Cell-level features: The ratio between the number of
ground and obstacle points in the cell, as well as the
mean and variances of intensities, prediction errors, and
scores.

It is important to note that we intentionally excluded certain
available information from this set of features. While this in-
formation could have potentially improved quantitative results,
such as the 3D coordinates of the points, we made this decision
to prevent the network from overly focusing on the structural
details of the environment. For instance, sidewalks typically
appear to the left or right of the vehicle, while the road is
generally ahead or behind. While this information is valuable,
relying too heavily on it could lead to undesirable outcomes,
like failing to detect sidewalks in front of the robot, potentially
hindering the integration of the method into an autonomous
navigation system.

Using these feature vectors, the Shallow Neural Network is
trained to classify points as traversable or not. Fig. 5 shows the
resulting traversability graph, with traversable edges shown in
yellow and non-traversable ones in red.

IV. EXPERIMENTS

The algorithm’s performance is evaluated in two distinct
settings: First, for quantitative comparison with other state-of-
the-art methods, we employ the SemanticKITTI Dataset [1].
This dataset provides pointwise LiDAR ground truth and is

widely regarded as one of the primary benchmarks for assessing
the accuracy of ground segmentation algorithms. Secondly, we
conduct a series of experiments with a last-mile delivery robot
in the context of the Logismile project.1 The experiments in-
cluded a variety of scenarios, with tests in the Barcelona Robot
Lab, a complex outdoor environment located in the Universitat
Politècnica de Catalunya campus [37], and demonstrations in
urban settings in Esplugues de Llobregat (Spain) and Debrecen
(Hungary). We provide detailed descriptions of both evaluation
setups in the following sections.

A. Configuration Parameters

For both evaluations, we maintained the same configuration
parameters, as detailed in Table I. They play a crucial role in
determining the algorithm’s performance. Here’s an overview
of the key parameters and their influence on the algorithm:
� Cell Size:

Description: The cell size represents the size of the cells in
the regular grid used to generate the cloud of references.
Effects: The density of the Cloud of References is primarily
determined by the size of the cells. Smaller cells yield a
higher number of nodes in the Ground Model, which is ben-
eficial for complex environments. However, this increased
complexity slows down the algorithm and provides less
context for the neural network, as some input features are
derived from cell-level statistics. Conversely, larger cells
generate sparser reference clouds, simplifying the Ground
Model. This reduction in complexity decreases computa-
tional costs and provides more context to the neural net-
work. However, if the cell size is excessively large, errors
due to cells containing simultaneously different surface
materials (e.g., grass and asphalt) will affect a significant
number of points.
Given that the Cloud of References is used for model
fitting and exploration, the cell size is a critical factor
when adjusting the Region of Interest (ROI) size and the
Exploration Resolution. This is essential as we require
observations within the ROIs to maintain active exploration
and to accurately correct the prior estimation.
Typical Values: Cell sizes ranging from 0.5 to 3.0 meters
are considered appropriate. The optimal selection depends
on the complexity of the environment and the available
computational resources.

� Root Node Prior:
Description: These parameters control the creation of the
root node in the graph, representing the initial estimation
of the ground.
Effects: Setting x0 and y0 can help position the root node at
the center of the shadow area beneath the robot’s sensors.
An appropriate value for z0 should be based on the expected
z coordinate of the ground from the reference frame. Stan-
dard deviations for x0, y0, z0, a0, and b0 should be as small
as possible without causing false negatives.

1LOGISMILE - www.eiturbanmobility.eu/projects/logismile

www.eiturbanmobility.eu/projects/logismile
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Recommendations: Tune these values based on the robot’s
shadow area and the ground’s expected z coordinate.

� ROI Sizes:
Description: Two different ROI sizes are defined: one for
the root node (Δroot) and another for the rest of the graph
(Δ).
Effects: ROI sizes determine the area around each vertex in
the graph, influencing the exploration process. These sizes
need to be large enough to ensure full coverage of the point
cloud. When processing single-shot point clouds, a larger
ROI may be necessary to accommodate the increased dis-
tance between ground points captured by different LiDAR
layers. The ROI size should not be excessively large to
maintain the local data analysis approach.
Recommendations: Ensure the ROI sizes are appropriate
for the environment and sensor characteristics.

� Mahalanobis Threshold:
Description: The Mahalanobis threshold is used for outlier
rejection during Ground Model creation and score compu-
tation during segmentation.
Recommendations: The threshold value is typically kept
fixed at 3 sigmas. Adjust the variances (prior, propagation,
and observation) to achieve the desired behavior.

� Score Threshold:
Description: The score threshold is used in the first seg-
mentation stage to classify points as ground or obstacle.
Effects: The threshold can be used to balance precision
and recall in cases where the neural network is not used.
A higher threshold reduces false positives but may lead to
more false negatives.
Recommendations: When the neural network is applied, a
threshold of zero is recommended to let the network correct
false positives from the initial segmentation.

� Standard deviations:
Description: Parameter standard deviations (qa, qb, and qz)
are used to induce uncertainty into the prior estimation of
new vertices. They are linearly scaled by the distance from
the parent to the child node.
Effects: Properly tuned standard deviations are essential for
accurate results. Small values may lead to overconfidence
and hence misclassification of ground points as obstacles,
while large values may lead to a much permissive classifi-
cation setting, misidentifying obstacles as ground.

� Exploration Resolution:
Description: This value determines the resolution used for
generating new vertices.
Effects: Exploration resolution, in conjunction with the
ROI size, controls the number of vertices created in the
Ground Model. Optimal tuning ensures sufficient vertices
to describe the environment without redundancy.

� Robot Height:
Description: This parameter sets the threshold for declaring
high obstacles as non-collidable, based on the height above
the ground level predicted by the Ground Model.

Careful tuning of the presented parameters is essential to
ensure that the algorithm performs well and provides accurate
traversability analysis results in various environments and use

cases. The specific values for these parameters may vary de-
pending on the robot’s characteristics and the characteristics of
the environment in which it operates.

B. Shallow Neural Network Training Details

The process of training the Shallow Neural Network involves
several key steps. Here’s an overview of the training details:
� Dataset Preparation:

A dataset was generated by running the GATA algorithm
in ROS using SemanticKITTI data. The features extracted
from GATA were saved into files for further processing.

� Choice of Supervised Learning Algorithm:
Matlab’s Classification Learner App was employed to
explore and evaluate different supervised learning algo-
rithms. Various algorithms, including Decision Trees, Ran-
dom Forests, and Support Vector Machines, were exper-
imented with. The goal was to find an algorithm that
struck the right balance between classification accuracy
and speed, as real-time processing was a requirement.

� Selection of Shallow Neural Network:
After conducting experiments, a Shallow Neural Network
showed promise, achieving similar results to Random For-
est but with faster processing. Bayesian Regularization
with the Sum of Squared Errors as a loss function was
chosen to optimize the hyperparameters.

� Dataset Size and Optimization:
The size of the training dataset was observed to have a
limited impact on classification performance. There was
a point at which adding more training examples did not
result in further improvements. The dataset was decimated
to strike a balance between training speed and classification
accuracy.

� Validation and Training Subset:
The training dataset was divided into a training subset and
a validation subset. The first five sequences (representing
49 percent of the data) were used for training, while the
remaining six sequences (51 percent of the data) were
reserved for validation. The training subset was further
reduced by randomly selecting one point (classified as
“ground” by the Ground Model) from each reference in
L and discarding nine out of ten of these points.

� Final Training Subset:
The final training subset consisted of approximately
500,000 feature vectors, representing less than 0.02 percent
of the entire dataset. Given the large volume of data, this
decimated subset was deemed sufficient for training.

� Training of Shallow Neural Network:
The Shallow Neural Network was trained for 200 epochs.
The training was completed in less than five minutes on a
standard laptop.

� Uniform Performance:
It was observed that there were no substantial differences
in performance between the sequences used for training
and the remaining sequences. Therefore, the results were
not separated into training and validation sets.
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TABLE II
SHALLOW NEURAL NETWORK HYPERPARAMETERS

The training and selection process for the Shallow Neu-
ral Network was made taking into account the need to op-
timize accuracy and speed while working with large Li-
DAR datasets. The final selected hyperparameters are given in
Table II.

C. Evaluation in the SemanticKITTI Dataset

The SemanticKITTI dataset, an extension of the KITTI
dataset [38], is an ideal benchmark for assessing methods related
to high-level scene understanding. It comprises a total of 28
classes, making it particularly suited for deep learning-based
approaches. However, for the specific task of traversability
analysis, only two classes are relevant: “traversable” (indicating
safe ground surfaces for navigation) and “not traversable” (en-
compassing obstacles, overhanging objects, and ground surfaces
unsuitable for navigation). The dataset’s abundance of classes
presents a challenge for evaluating traversability analysis meth-
ods due to several factors:

Practicality: SemanticKITTI does not provide tools to con-
solidate classes, making it impractical for traversability analysis
evaluations, especially since the evaluation process is conducted
on a remote server.

Non-uniform Evaluation: The dataset leaves the decision of
which classes should be considered as traversable and non-
traversable up to the researcher. This subjectivity can lead to
non-uniform evaluations of methods, making direct compar-
isons challenging.

For experimental comparison with the state-of-the-art, we
selected two contemporary papers that detail high-performance,
real-time methodologies that operate independently of GPU
acceleration: Hy-Seg [7], and TRAVEL [35]. Among these, only
TRAVEL’s implementation is publicly accessible via a reposi-
tory. Consequently, we designed two distinct experiments: We
first replicated the experiments delineated in the Hy-Seg paper,
employing both GATA and TRAVEL. This allowed us to perform
a quantitative comparison against all the methods enumerated in
the Hy-Seg paper. Then, we conduct an experiment to compare
GATA and TRAVEL in a context similar to the Logismile
project where the robot is allowed to navigate by sidewalks,
parking areas, and roads but not through vegetation or unpaved
terrain. The comprehensive descriptions of these experiments
are presented in Sections IV-C1 and IV-C2 respectively.

1) First Evaluation, Only Road is Traversable: For this eval-
uation, we conducted experiments and employed metrics out-
lined in the Hy-Seg paper by Qian et al. [7]. Specifically, we
measured Intersection over Union (IoU) and Recall using the
following equations:

IoU =
TP

TP + FP + FN
(14)

Recall =
TP

TP + FN
(15)

These metrics were calculated for each driving sequence
within the SemanticKITTI training dataset, and we reported the
mean values in Tables III and IV. Our evaluation considered
three different versions of our method:
� GATA Without Neural Network (Score Threshold of

0.475):
This version of the method does not incorporate a neu-
ral network. It utilizes a minimum score threshold of
0.475 (see (13)) to classify points as traversable. The
results demonstrated similarity to state-of-the-art methods,
with slightly better performance in the Intersection over
Union (IoU) metric and slightly lower scores in Recall.
This was attributed to fewer false positives due to the
score threshold, albeit at the cost of an increase in false
negatives.

� GATA with Neural Network (VEGETATION and TER-
RAIN Non-Traversable, Score Threshold of 0.0):
This version integrates a neural network trained to classify
VEGETATION and TERRAIN as non-traversable classes.
It employs a score threshold of 0.0. This configuration
resulted in a significant increase of approximately ten
points in the IoU metric, with no adverse impact on Recall.
The neural network effectively reduced false positives and
slightly decreased false negatives, indicating improved
classification of ROAD points without confusion with
VEGETATION or TERRAIN.

� GATA with Neural Network (Only ROAD Traversable):
In this version, the neural network is trained exclusively
to classify ROAD points as traversable. It achieved the
highest IoU results, with an increase of approximately
twenty-five points compared to state-of-the-art methods
and other configurations. However, this came at the ex-
pense of a reduction of approximately ten points in Recall.
The reduction in False Positives –which is the key factor
in the IoU improvement– was due to the inclusion of
SIDEWALK and PARKING in the non-traversable class
(the GATA VEG+TER classifies them as traversable), but
this increased False Negatives causing the degradation in
the Recall metric as some ROAD points were misclassified
as non-traversable.

Notably, the inclusion of SIDEWALK and PARKING classes
in the non-traversable category raised challenges, as they exhib-
ited similarities within the feature space with the ROAD class,
making it more difficult for the neural network to distinguish
between them.

2) Vegetation and Terrain are not Traversable: For this eval-
uation, we have prioritized the use case that holds particular
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TABLE III
IOU - ONLY ROAD IS TRAVERSABLE

TABLE IV
RECALL - ONLY ROAD IS TRAVERSABLE

TABLE V
MEAN VALUES - TERRAIN AND VEGETATION ARE NOT TRAVERSABLE

TABLE VI
STANDARD DEVIATIONS - TERRAIN AND VEGETATION ARE NOT TRAVERSABLE

significance for our research: the integration of the algorithm into
a mid-sized autonomous delivery robot designed for operation in
urban environments, encompassing pedestrian areas and roads
with vehicular traffic. In this context, we define traversable
classes as ROAD, SIDEWALK, PARKING, and LANE MARK-
ING, while categorizing TERRAIN and VEGETATION as non-
traversable. Given the availability of only the TRAVEL method
in a public repository, we compare three methods: TRAVEL,
GATA without a neural network (with a score threshold of
0.475), and GATA with a neural network trained to exclude
VEGETATION and TERRAIN from the traversable class set
(score threshold set to 0.0).

The results of these experiments are presented in Tables V
(mean values) and VI (standard deviations). In addition to the
Intersection over Union (IoU) and Recall metrics defined earlier,
we introduce the following indicators:
� Precision (P ): Precision is calculated as P = TP

TP+FP ,
providing insight into the accuracy of positive predictions.

� F1 Score (F1): The F1 score, defined as F1 = 2∗P ∗R
P+R ,

represents the balance between precision and recall and
offers a single metric to gauge performance.

� Accuracy (Acc): Accuracy is computed as Acc =
TP+TN

TP+TN+FP+FN , reflecting the overall correct classifica-
tion rate.

We also include two additional metrics:
� Execution Time (T ): Measured in milliseconds, this metric

signifies the time required to run the algorithms.
� Key Obstacle Recall (KOR): As defined in [8], this metric

calculates Recall based on points belonging to potential
dynamic obstacles like pedestrians, cars, bicycles, and
more.

Upon analysis of the tabulated results, a pattern emerges
that aligns with our previous evaluation. GATA outperforms
TRAVEL in Precision, F1, Accuracy, Intersection over Union,
and Key Obstacles Recall, while TRAVEL shows superior Re-
call. As a numerical example, GATA exhibits an approximate
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two-point advantage in Intersection over Union (IoU) without
the use of a neural network, and a significant fourteen-point en-
hancement when employing the network. Turning our attention
to execution time, GATA emerges as the fastest method when it
operates without the neural network. However, its performance
experiences a slowdown when the network is utilized. Notably,
all experiments were conducted within a Virtual Box on a laptop.
Despite this constraint, the version of GATA that incorporates the
neural network still meets real-time requirements as it consumes
a mean of about 70 milliseconds to process a point cloud while
the Velodyne sensor produces them at a rate of 10 Hz. It is
of great interest, in order to fairly assess the significance of
this experiment, to consider that in its original paper, TRAVEL
was compared to RANSAC [30], Zermas et al. [28], Narksri
et al. [31], and Lim et al. [33], achieving the best results in terms
of F1 score and Accuracy, while also being the fastest method
among those evaluated.

3) Quantitative Results Analysis: Analyzing globally the
quantitative experimental results, we can observe that when
our system operates without the Neural Network, it delivers
results that are competitive with top-performing state-of-the-art
methods. Our approach, however, offers superior speed, effi-
ciency, and adaptability, primarily due to the probabilistic score
threshold that balances Precision and Recall. As demonstrated in
Table V, thanks to the score threshold (experimentally adjusted
to 0.475 to maximize the Intersection over Union results) our
system (GATA w/o NN) outperforms TRAVEL in every metric
(Precision, F1, Accuracy, IoU, Key Obstacles Recall, and Execu-
tion Time) except Recall. Importantly, if Recall is of particular
importance, it can be enhanced by simply lowering the score
required to classify points as traversable.

When our method makes use of the shallow neural network,
it significantly outperforms the state-of-the-art. This improve-
ment becomes more pronounced as the number of primarily
flat surfaces included in the non-traversable class increases, as
competing methods struggle to distinguish between different
textures. Our experimental results demonstrate that our shallow
neural network is proficient at road detection. However, this
comes with a slight trade-off in the recall metric, attributable
to the texture similarity in the feature space among structured
surfaces. Despite this, our neural network excels in detecting
natural textures, such as those found in vegetation or unpaved
terrain. This capability is crucial for urban robot navigation,
underscoring the practical relevance and potential of our method.

D. Real Tests With the ONA Robot

The ONA robot, developed as part of the Logismile project, is
a mid-sized delivery robot engineered for autonomous operation
in urban settings. This includes traversing pedestrian areas such
as sidewalks and squares, as well as navigating on urban roads
alongside other vehicles like cars and motorcycles. Notably, our
initial tests with ONA were conducted before our algorithm
incorporated the Neural Network. These early tests played a
pivotal role in motivating us to develop a method to distinguish
between different ground surfaces.

Fig. 6. Point cloud captured with the ONA robot in the Barcelona Robot Lab.
The method adequately classifies traversable and non-traversable regions even
for this very different sensor configuration.

Fig. 7. ONA robot during the Logismile demo in Esplugues de Llobregat.

Fig. 8. ONA robot navigating in Debrecen.

In ONA, the LiDAR placement was engineered to minimize
shadow areas by lowering its mounting height. Unlike the KITTI
setup, which employs a single 360◦ sensor atop the vehicle,
we equipped ONA with two 360◦ sensors placed at opposing
corners near the ground (see Fig. 8). Note also that the four small
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cylinders atop the robot are not LiDARs but rather light signals
used for indicating maneuvers and conveying information about
the robot’s operational state.

ONA’s LiDAR sensors are Robosense RS-Lidar-16 models,
featuring 16 layers, a horizontal resolution of 0.2◦ at 10 Hz,
and a vertical resolution of 2.0◦. While this setup and specifi-
cations significantly differ from KITTI, our algorithm’s general
approach allows for seamless integration without requiring any
special processing. A sample point cloud captured with the ONA
robot is presented in Fig. 6. This image illustrates how the
shadow area around the robot takes on a non-circular shape due
to the dual sensor placement, along with a significantly lower
vertical resolution.

The specific environment for conducting experiments was the
Barcelona Robot Lab, chosen for its challenging terrain featuring
strong slopes and multi-level areas. This environment provided
valuable insights and served as a testing ground preceding
two Logismile demonstrations: one in Esplugues de Llobregat
near Barcelona (Fig. 7) and the other in the Hungarian city of
Debrecen (Fig. 8).

Throughout these experiments, our method for terrain classi-
fication consistently demonstrated robust performance, success-
fully navigating complex urban landscapes and covering several
kilometers without encountering issues in obstacle detection.
However, we observed a significant challenge stemming from
the sensor’s low vertical resolution and extensive range. In
situations with negative slopes, the ground points reflected in the
LiDAR data became progressively distant, making it challenging
for the algorithm to continue data exploration. This occurred
because the Region of Interest (ROI) size was insufficient to
reach these distant points, and expanding the ROI indefinitely
was not a feasible solution as it would undermine the local
data analysis approach. Consequently, some remote obstacles
remained unlabeled and were subsequently discarded, which
adversely affected localization algorithms.

To address this issue and given our limited sensor resolution,
we adopted an approach that classified the lowest point in each
unanalyzed cell as the ground and categorized the remaining
points in the cell based on a simple height threshold relative
to this lowest point. This modification enabled us to utilize
the sensor’s full range without contaminating the data used for
localization with ground points and without sacrificing too much
information about distant obstacles.

Another issue we encountered in urban environments involved
surfaces that, while not classified as obstacles, were unsuitable
for traversal in the context of our autonomous delivery appli-
cation. These included areas like grass or unpaved terrain. This
observation spurred the development of traversability analysis
using the Shallow Neural Network that is detailed in this paper.

V. CONCLUSION AND FUTURE WORK

In this study, we presented GATA, a probabilistic, graph-based
algorithm for real-time terrain analysis. GATA processes 3D
point cloud data to generate a probabilistic Ground Model,
enabling rapid and reliable obstacle detection. For applications
requiring a more detailed representation of ground surfaces, we

integrated a shallow neural network to classify ground points
based on traversability, using features derived from the Ground
Model.

Our quantitative evaluation on the SemanticKitti dataset
demonstrated the superiority of our method over existing ap-
proaches. In its simplest implementation, our method outper-
formed the competition in all evaluated metrics (Precision, F1,
Accuracy, IoU, Key Obstacles Recall, and execution time),
except for Recall. When the shallow neural network was em-
ployed, the system kept meeting the real-time requirements
and the improvements were even more significant, reaching an
IoU increase of 14 points when TERRAIN and VEGETATION
classes were deemed non-traversable, and 25 IoU points when
only ROAD class was considered traversable.

Furthermore, we seamlessly integrated GATA into a real-
world last-mile delivery robot and conducted a series of exper-
iments and demonstrations. Regardless of the sensor resolution
or configuration, GATA consistently demonstrated robust per-
formance across diverse environments. This highlights GATA’s
value as a user-friendly, real-time terrain analysis solution, par-
ticularly for robots with limited processing capabilities.

Looking ahead, we plan to explore the integration of our
method with Deep Learning techniques to develop semantically
rich and adversarial-resistant point cloud segmentation systems.
We also aim to harness the Ground Model produced by GATA,
which inherently encodes traversability relationships between
nodes, for trajectory planning in dynamic environments. These
research directions open up exciting opportunities for further
advancements in the field of Intelligent Vehicles.
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