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Abstract—This paper presents the first survey of vehicle dynam-
ics modeling methods for autonomous racing. Previous surveys
have covered dynamics models for standard autonomous vehi-
cles or, alternatively, concentrated on planning and control meth-
ods in autonomous racing with vehicle dynamics models briefly
mentioned. However, previous surveys overlook the importance
of vehicle dynamics under challenging conditions of top speeds
and non-steady state driving, which are unique characteristics in
autonomous racing. Recognizing the vital role of vehicle dynamics
modeling in an autonomous racecar’s prediction, planning, and
control modules, this survey seeks to ascertain to what degree
the nominal full-scale racecar dynamics can be streamlined with-
out sacrificing accuracy for simplicity. Furthermore, this survey
provides essential guidance for organizers of virtual autonomous
races, helping them choose vehicle dynamics models that meet
the required level of precision. This paper begins with a review
of previous surveys on vehicle dynamics modeling, highlighting
their limitations in the context of autonomous racing. Following
this, it investigates the existing dynamics models for autonomous
racing vehicles, along with a comprehensive examination of the
existing physical/virtual testing platforms. The paper concludes by
discussing emerging trends and offering perspectives in the field
of vehicle dynamics modeling for autonomous racing, paving the
way for groundbreaking research and innovations in autonomous
racing.

Index Terms—Autonomous racing, chassis, vehicle dynamics,
testing platform, intelligent vehicles for education (IV4E).

NOMENCLATURE

A Vehicle front surface.
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ADAS Advanced driver assistance system.
a Acceleration.
B Tuning parameter.
C Coefficient, stiffness.
CM Customizable models.
D Longitudinal command.
CG Vehicle gravity center.
DOF Degree of freedom.
e Lateral deviation between a path and CG.
F Fiala tire model.
F Force.
FLS Friction limited by a geometric shape.
FSD Formula Student Driverless.
g Gravitational acceleration.
HIL Hardware-in-the-loop.
h Height.
Iz Moment of inertia in vertical direction.
K Gradient.
LF Lateral Fiala tire model.
LL Lateral linear tire model.
LLAB Lateral and longitudinal acceleration bounded.
LongP Longitudinal Pacejka tire model.
L Linear tire model.
l Wheelbase.
lf Front axle to CG distance.
lr Rear axle to CG distance.
LP Lateral Pacejka tire model.
m Vehicle mass.
P Pacejka tire model.
P Power.
R Radius.
RC Radio controlled.
r Yaw rate.
SBM Selectable built-in models.
SLP Simplified lateral Pacejka tire model.
SP Simplified Pacejka tire model.
s Coordinate along a path.
T Torque.
TP Tunable parameters.
tw Track width.
u Longitudinal velocity.
v Lateral velocity.
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X,Y CG position in the earth-fixed Cartesian plane.
α Lateral slip angle.
β Side slip angle.
Δψ Error between the vehicle heading and the path orien-

tation.
δ Steering angle.
κ Driven curvature.
κ̄ Path curvature.
λ Longitudinal slip.
μ Coefficient of friction.
ρ Air density.
ψ Vehicle heading angle.
ε Lateral slip.

Subscripts
aero Aerodynamic.
f Front.
g Gear.
L Linear.
l Left.
lat Lateral redistribution.
long Longitudinal redistribution.
r Right, rear.
re Rolling resistance.
tr Traction.
us Understeer.
x Longitudinal direction.
y Lateral direction.
z Vertical direction.

I. INTRODUCTION

AUTONOMOUS racing has been rapidly evolving over
the past few years [1]. The absence of a human driver

eliminates safety-related issues such as high cockpit tempera-
tures and risks associated with competitive racing. Moreover,
the limitations imposed by human reaction times are no longer
a factor, which potentially leads to faster speeds than those
currently observed in human-driven races such as Formula One
and the World Endurance Championship.

Autonomous racing aims for greater speeds and more agile
maneuvers, through advancements in software and hardware.
Software advancements include better sensor fusion [2], motion
planning [3], and tracking control [4] algorithms. Hardware
improvements focus on two aspects. The first is upgrading
localization/perception sensors like LiDARs [5], inertial mea-
surement units [6], and radars [7]. The second entails evolving
chassis design, by using modified passenger cars for full-scale
racecars [8] and radio-controlled (RC) cars as the foundation for
reduced-scale racecars [9].

The unique challenges of autonomous racing, particularly the
notable tire slips during cornering, highlight the inadequacy of
traditional kinematic models designed for non-aggressive move-
ments [10], [11]. These kinematic models struggle to predict the
directional changes caused by tire slips [12], which results in
a gap between theoretical predictions and real-world outcomes
[13]. Integrating tire dynamics into a kinematic model adds to

the computational complexity [14]. Thus, vehicle dynamics are
considered only when the driving conditions become genuinely
complicated, such as in an advanced driver assistance system
(ADAS) with high-speed lane-keeping assist, adaptive cruise
control, and emergency brake assist functions [15]. Another
example of the usage of vehicle dynamics model is to guide the
optimization design of a racecar chassis, which tightly integrates
vehicle mobility with a specific racetrack to achieve extreme
speed [16]. In conclusion, accurate modeling of vehicle dynam-
ics is an important aspect in developing a qualified autonomous
racecar capable of driving at high speeds.

The importance of dynamics models in autonomous racing
cannot be overstated, given that they are crucial for mastering
complex racecar behaviors at high speeds. If accurate racecar
dynamics models are integrated into the motion planning and
tracking control methods for participants in an autonomous
race, then they could positively utilize the nonignorable tire slip
effects to achieve fastest lap times and implement sophisticated
and strategic racing maneuvers on the racetrack [12], [17].
Meanwhile, autonomous race organizers use these dynamics
models to guarantee the accuracy of their deployed racing sim-
ulation platforms and acquire a good estimation of the baseline
performances of the participants. In summary, dynamics mod-
eling is important in autonomous racing.

This study conducts a comprehensive survey of two aspects
in autonomous racing: the modeling methods employed for
racecar dynamics and the physical/virtual platforms utilized in
autonomous racing. First, we review the dynamics models that
have emerged due to the rapid advancement in autonomous
racing. These models are crucial in assisting participants in
navigating the complexities of autonomous racing, particularly
when integrated into motion planning and tracking control sys-
tems. Second, our survey explores the range of physical and
virtual platforms used in this domain. These platforms, which
are closely linked with vehicle dynamics, are indispensable
for the testing and training of racecars. They provide valuable
insights for executing effective racing strategies and assessing
the effectiveness and reliability of software. This survey is
designed to aid participants in selecting the most appropriate dy-
namics models and physical/virtual platforms according to their
actual needs. However, no such surveys have been previously
conducted.

A. Related Works

This subsection reviews previous surveys related to dynam-
ics modeling methods for an autonomous racing car and the
physical/virtual platforms used for testing autonomous racing
performances. As mentioned, such surveys are lacking. This
subsection alternatively investigates existing surveys that are
closely aligned with our concerned theme.

1) Vehicle Dynamics Modeling Method: In the field of
autonomous racing, dedicated surveys addressing vehicle
dynamics models implemented in planning and control
algorithms are lacking. To the best of the authors’ knowledge,
the only existing survey related to autonomous racing is [18],
which delves into the perception, planning, and control methods
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designed for autonomous racing. Although this survey paper
recognizes the importance of vehicle dynamics in autonomous
racing, it primarily provides a brief overview of model-based
and model-free dynamics modeling methods and lacks in-depth
elaborations.

Emergency and high-speed scenarios share the features of
aggressive movements and non-negligible tire slips inherent in
autonomous racing. The planning and control algorithms for
on-road autonomous vehicles should be capable of handling
these scenarios. Therefore, the review works on planning and
control algorithms for autonomous vehicles designed for these
scenarios are included to provide a brief understanding of
the involved vehicle dynamics models. Schwarting et al. [19]
comprehensively reviewed diverse perception, planning, and
decision-making strategies, with a focus on the critical impor-
tance of vehicle dynamics models during high-speed operations
and aggressive maneuvers. However, the review only mentions
that vehicle dynamics models should be adopted with consid-
eration of tire forces, which provides no detailed description of
the models. Teng et al. [20] reviewed vehicle mobility models
under emergency conditions. However, the survey focused solely
on data-driven models without elaborating on the specifics of
vehicle dynamics models explicitly.

Vehicle dynamics models are important for short-time state
estimation of autonomous racing cars in the presence of pro-
nounced tire slips. This importance is well established in the
development of ADAS. ADAS-related survey works focusing
on model-based vehicle state estimation are encompassed to
provide comprehensive insights into vehicle dynamics modeling
methods. Given the importance of vehicle dynamics in ADAS
research, we also investigate surveys in this domain. Singh et al.
[15] systematically summarized methods for estimating vehicle
dynamic states and tire road contact parameters. In this context,
vehicle dynamics models serve as the link between onboard
sensor data and the estimation of states, which forms the basis
for the design of chassis control systems. Leung et al. [21]
provided an overview of methodologies for vehicle dynamics
state estimation by primarily relying on Global Positioning
System or inertia navigation system data. Notably, model-based
approaches based on vehicle dynamics models have emerged
as a cornerstone method. Kanchwala et al. [22] extensively
reviewed model-based approaches based on fundamental ve-
hicle dynamics models to control the yaw moment, traction,
and side slip in electric vehicles. Similarly, Talvala et al. [23]
reviewed electronic stability control systems founded on vehicle
dynamics models and confirmed their potential in autonomous
racing through rigorous testing at the limits of tire adhesion.
Furthermore, Jin et al. [24] and Guo et al. [25] separately
explored model- and data-driven approaches to vehicle state
estimation. However, the scope of the abovementioned studies
primarily centered on selected variables, which resulted in a
bias in providing a comprehensive understanding of vehicle
dynamics models for researchers in the field of autonomous
racing.

Given that previous surveys on vehicle dynamics, particularly
for autonomous racing, are absent, we alternatively broaden the
scope to generic vehicle dynamics surveys, which still provide

some valuable insights. Yang et al. [26] comprehensively sum-
marized advances in vehicle dynamics models across different
degrees of freedom (DOFs), by delving into a detailed discussion
on the interplay between vehicles and road pavement smooth-
ness. Despite the comprehensiveness of the vehicle dynamics
models, their application to autonomous vehicles, particularly
in terms of computational efficiency, proved inadequate for the
demands of autonomous racing. Kebbati et al. [27] surveyed the
prevailing vehicle dynamics models deployed in autonomous
driving. However, the review primarily focused on the control
of autonomous vehicles, with limited discussion on weight redis-
tribution and tire models. Guiggiani [12] delivered a comprehen-
sive review of vehicle dynamics models related to handling and
braking, spanning powertrains, transmissions, braking systems,
car bodies, and tires. However, the book centered on manned
vehicle handling and vehicle design, rather than on the devel-
opment of algorithms for motion planning and control. Conse-
quently, many of the models impose computational burdens that
might be considered unfeasible in practical applications.

The studies mentioned above either assume that the discussion
of vehicle dynamics models is common knowledge for the read-
ers without providing specific details or explore various models
that may not be directly applicable to the field of autonomous
racing. Consequently, a gap in research remains, which requires
the systematic categorization of dynamics models based on
different scenarios for their implementation in planning and
control algorithms in autonomous racing.

2) Autonomous Racing Testing Platforms: In the domain
of established physical and virtual autonomous racing testing
platforms, limited attention has been given to comprehensive
surveys, with only [18] exploring a few such platforms. Con-
cerning physical platforms, this survey primarily summarizes
aspects, such as sensor integration, computational hardware
and software, and the associated competition types. With re-
gard to virtual platforms, it provides only brief insights into
three platforms. Notably, for the surveyed physical and virtual
platforms, the investigation ignores dynamics-related config-
urations, whether in terms of hardware specifications or the
implementation of vehicle dynamics models.

B. Motivations and Contributions

This study aims to provide a comprehensive survey of cutting-
edge vehicle platforms in autonomous racing to cater to a diverse
audience, including enthusiasts, scholars, race organizers, and
participants. Existing surveys often focus on motion planning
and control methodologies and utilize vehicle dynamics models
that often lack detailed descriptions. Thus, we comprehensively
present all theoretical models in the literature especially those
applied in the motion planning and control algorithms. Further-
more, we include a detailed list of physical racing cars and
virtual platforms used in autonomous racing, along with their
associated dynamics configurations, to offer a comprehensive
understanding of physical and virtual vehicle testing platforms.

Our work presents the following unique contributions:
1) This survey is the first to systematically investigate the

vehicle dynamics modeling methods suitable for motion
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planning and tracking control functions in autonomous
racing.

2) This survey is the first to systematically review the phys-
ical and virtual testing platforms embedded with vehicle
dynamics models that are useful for testing autonomous
racing cars.

C. Organization

In the rest of the survey paper, Section II reviews the vehi-
cle dynamics models in autonomous racing, including lateral,
longitudinal, and tire models. In Section III, an overview of
the physical vehicle platforms in autonomous racing is pro-
vided. In Section IV, we provide insights into the virtual testing
platforms employed for autonomous racing, with a focus on
their physics engines and adopted vehicle dynamics models.
Section V provides perspectives on the aforementioned vehicle
dynamics models and physical/virtual platforms. Section VI
finalizes this survey with our conclusions.

II. VEHICLE DYNAMICS MODELS FOR AUTONOMOUS RACING

In this section, our exploration delves into theoretical vehicle
dynamics models, with a focus on those that share a sophisticated
balance between accuracy and computational complexity. These
models play a critical role in planning and control algorithms
designed for autonomous racing events. The diverse nature of
autonomous racing requires a range of vehicle dynamics models
designed to suit different roles in racing events. Racing partic-
ipants typically prefer to simplify full-scale vehicle dynamics
models before incorporating them into their onboard planning
and control algorithms. This preference arises from the necessity
for real-time processing throughout the entire race, where the
time delay in dynamics model-related calculations can introduce
a more significant error compared to the potential inaccuracies of
an incomplete theoretical model. Meanwhile, participants also
find value in complete versions of these models. These compre-
hensive models focus on the accuracy of predicted results, serv-
ing to validate the consistency of their simplified counterparts.
Conversely, organizers of autonomous racing events, especially
in virtual realms, prioritize complete vehicle dynamics models.
Their objective is to simulate the vehicle’s dynamic response
in virtual racing simulators as closely as possible to reality.
Additionally, they may find utility in simplified models to gain a
quick overview of participants’ general performance within the
virtual racing simulators they create. For readers interested in
exploring the complete vehicle dynamics models used to validate
simplified models or in the creation of virtual racing simulators,
relevant references can be found in [12], [28].

Shifting our focus to the vehicle dynamics models integrated
into planning and control algorithms, these models can be briefly
classified into three main categories: lateral dynamics models,
longitudinal dynamics models, and tire models. Lateral dynam-
ics models are designed to capture the forces and moments
that come into play as the vehicle negotiates corners, rendering
them a critical aspect of comprehensive vehicle models [29].
Conversely, longitudinal dynamics models focus on the vehicle’s
forward motion, specifically on longitudinal acceleration and

deceleration [30]. On the other hand, tire models are specifi-
cally developed to investigate the interaction between the tires
and the road surface, allowing for accurate simulation of the
tire-generated longitudinal and lateral forces [28].

In addition, the consideration of weight transfer during high-
performance driving assumes primary significance, given its
substantial impact on the tire models and their integration with
the vehicle’s lateral dynamics. Weight transfer directly impacts
the nominal load distribution on each tire, resulting in variations
in its force carrying capability. Consequently, weight transfer
serves as a critical linkage between the tire models and the
vehicle’s lateral or longitudinal models.

While lateral and longitudinal models can be separately
applied in specific scenarios [31], [32], they are typically
used in conjunction with tire models. Although models within
each category fulfill distinct roles, the significance of these
models may vary, with some being sophisticated while oth-
ers being more straightforward, contingent upon the specific
application.

Table I presents an overview of the state-of-the-art lateral
dynamics and tire models employed in autonomous racing.
Initially, the scenarios are categorized based on the scale of
the test vehicles, including both real-world applications and
simulations. Additionally, four distinct driving scenarios are
outlined. The first focuses on time-optimal testing, aimed at
solving minimum lap-time problems with a single racecar. The
second pertains to driving at the limits, striving to maximize
tire lateral grip and enhance vehicle dynamic response under
highly dynamic driving conditions. The third involves controlled
oversteering with traction loss, commonly referred to as drift-
ing. Last, multi-car competition involves head-to-head racing
contests among multiple racecars.

A. Common Assumptions

In the field of vehicle dynamics models, it is common to
treat the vehicle body as a single rigid entity [12]. However, to
enhance computational efficiency and meet the demands of rapid
calculations in a racing context, certain additional assumptions
are frequently introduced. These assumptions include the notion
that the vehicle body engages in planar motion aligned with
the road surface and postulates the road’s perfect flatness. It is
worth noting that these assumptions disregard any consideration
of suspension deflections and tire vertical deformations [12].
Notably, racing-specific chassis typically incorporate stiffer sus-
pensions and tires [85], which serves to mitigate the implications
of this simplification. Consequently, the vehicle dynamics model
is fundamentally simplified, focusing exclusively on the planar
motions of the vehicle.

B. Lateral Dynamics Models

1) Point-Mass Model: The most basic model for racecar
dynamics, up to the limits, is the point-mass model. In this
model, the vehicle is treated as mass concentrated at its center of
gravity (CG). It applies Newton’s second law to the point-mass
in a 2D plane, including 2 DOFs: longitudinal and lateral. While
it considers all the forces acting on the CG as the primary factors
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TABLE I
OVERVIEW OF DIFFERENT AUTONOMOUS RACING SCENARIOS AND CORRESPONDING DYNAMICS MODELS IN LITERATURE

influencing the vehicle’s motion, it does not explicitly account
for yaw dynamics. Consequently, it does not incorporate the
lateral forces generated during changes in vehicle orientation,
which can impact tire grip and affect vehicle performance.
However, empirical studies have indicated that for minimum
lap-time problems, the contribution of yaw inertia to vehicle dy-
namics can be relatively negligible [86]. As a result, in practical
terms, the vehicle’s yaw dynamics are approximated to remain
quasi-steady state [69].

This model relies solely on the vehicle’s mass, notwithstand-
ing the consideration of the interaction between the vehicle and
the road, as elucidated in Section II-D. In Cartesian coordinates,
the state vector is expressed as [X,Y, Ẋ, Ẏ ]

T
[79]. However, in

a broader context, this vector incorporates not only the vehicle
states but also its position relative to a desired path, expressed in
the form of Frenet coordinates, as illustrated in Fig. 1. In such
scenarios, the vehicle’s heading angle ψ aligns with the path

Fig. 1. Vehicle states of point-mass model in the frenet frame.

orientation, leading to a modified state vector [s, e, u,Δψ]T [47],
[69]. The corresponding kinematic and equilibrium equations
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are expressed as follows:

ṡ =
u cos(Δψ)

1− κ̄e
,

ė = u sin(Δψ),

u̇ =
Fx

m
,

Δψ̇ =
Fy

mu
− ṡκ̄. (1)

The control inputs of the point-mass model in autonomous
racing have traditionally been represented either in force form
[Fx, Fy]

T [69] or acceleration form [ax, ay]
T [48] with ad-

justments made to the equations to summarize the forces or
accelerations along orthogonal directions within the 2D plane.
These inputs can be determined arbitrarily or derived through
the tire equations, which will be discussed in Section II-D.
Furthermore, the control inputs can also be [Fx, κ]

T expressed
as a function of the driven curvatureκ, whereκ is correlated with
the steering wheel angle δ by δ = κl assuming neutral steer and
a small steering angle, with l representing the vehicle wheelbase
[47]. Additionally, the point-mass model can be extended to a 3D
path by introducing Euler angles into the frame transformation
[69].

The point-mass model simplifies vehicle dynamics by not
explicitly considering the characteristics of individual axles or
tires, including normal load transfers [47], [48], [49], [79]. Thus,
its applications are constrained to scenarios involving purely
velocity optimization [49] or instances where the controller
can perfectly track the lateral and longitudinal accelerations of
the racecar [47]. In this approach, the interaction between the
vehicle and the road is treated as a unified entity. However, more
advanced models for studying vehicle-road interactions are often
designed with a focus on individual tires. By distributing the
tire forces to each wheel, the model’s accuracy in predicting the
vehicle’s acceleration limits can be improved.

Changes in tire normal loads can lead to variations in cor-
nering stiffness and peak lateral forces for different axles, po-
tentially resulting in tendencies toward oversteering or under-
steering [28]. To account for these effects, it is possible to
incorporate load transfer between the front and rear axles into
the point-mass model. Among these considerations, the static
load transfer between the front and rear axles can be calculated
as follows:

Fz,f,static =
lr
l
· Fz, Fz,r,static =

lf
l
· Fz, (2)

and the normal load transfer due to longitudinal acceleration is
expressed as [69]

Fz,f,long = −hCG

l
· Fx, Fz,r,long =

hCG

l
· Fx, (3)

where Fz is the vehicle mass multiplied by the gravitational
acceleration, andhCG stands for the height of CG. Consequently,
the normal load acting on a single axle is obtained by summing
the corresponding static wheel load term Fstatic with the longi-
tudinal redistribution term Flong.

Fig. 2. Kinematic single-track model in Cartesian frame.

2) Single-Track Models: The single-track model, often re-
ferred to as bicycle model, represents the merging of the front
and rear wheels into a single wheel positioned at the center of
their respective axles [87]. This model can be further categorized
into kinematic, kineto-dynamic, and dynamic models.

In Fig. 2, the kinematic single-track model is presented,
where the vehicle’s motion is solely governed by geometric
factors, independent of the complexities arising from tire road
interactions involving forces and torques. The model features a
fixed instantaneous center (Fig. 2), which remains unchanged
when the steering angle δ remains constant. For vehicles with
front-wheel steering, this model is characterized by only 2
DOFs. The sideslip angle β of this model, expressed within
an Earth-fixed Cartesian frame of reference, can be described as
follows [50]:

β = arctan

(
lr
l
· tan δ

)
, (4)

and the equations of motion are as follows:

Ẋ = u cos(ψ + β),

Ẏ = v sin(ψ + β),

ψ̇ =
u

lr
· sinβ,

u̇ =
Fx

m
· cosβ. (5)

The input variables of the above system consist of Fx and δ.
However, it is important to note that this model disregards the
influence of tire slip, which presents a challenge in accurately
representing actual dynamics during high-speed cornering [88].
Similar to the point-mass model, the kinematic single-track
model was commonly employed when utilizing Frenet coor-
dinates along either the center path [80] or a predefined racing
line [50] on the track. In such scenarios, the state vector typically
consists of variables s, e, Δψ, u, and δ, while the corresponding
inputs include Fx and the steering rate ω [50], [80]. Since the
kinematic single-track model does not account for the forces
exerted on the tires, there is no need to investigate normal
load transfers between axles or tires. Consequently, without
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Fig. 3. Dynamic single-track model in Cartesian and Frenet frames.

accounting for tire slip, it can accurately simulate scenarios only
when lateral acceleration is negligible.

Assuming that the kinematic model operates under quasi-
steady state condition, the concept of an understeer gradientKus

is introduced to establish a connection between the yaw rate r
and the lateral acceleration ay. This leads to the development
of a kineto-dynamic single-track model [33]. In this model, the
definition ofKus is adjusted to incorporate a correlation between
ay and Kus. The corresponding equation can be expressed as
follows:

δ − r

u
· l = Kus(ay). (6)

To accurately depict the vehicle dynamics near the limits of
handling while maintaining computational efficiency, the evo-
lution of r is incorporated into the kinematic single-track model
as a first-order system. This addition enables a cost-effective
modeling approach that captures the vehicle’s behavior under
challenging conditions. However, it is important to note that
the coupling between r and ay is preserved within this model,
resulting in the retention of its 2 DOFs. Hence, the applicable
scenarios are restricted to situations near quasi-steady state,
where the rates of change for yaw rate and lateral acceleration
are minimal.

The dynamic single-track model (Fig. 3), widely acknowl-
edged as a prominent model in the field of autonomous racing,
assumes nearly equal left and right gear ratios for the steering
system [12]. This model accounts for all in-plane rigid body
motions, including the addition of yaw motion, thereby encom-
passing 3 DOFs. When assuming small steering angles rendering
β ≈ 0, with respect to the Earth-fixed Cartesian frame, this
model can be mathematically expressed as follows [39], [41],
[73]:

u̇ =
1

m
· (Fx,r − Fy,f sin δ + Fx,f cos δ + Fx,other) + vr,

v̇ =
1

m
· (Fy,r + Fy,f cos δ + Fx,f sin δ)− ur,

ṙ =
1

Iz
· (Fy,f lf cos δ + Fx,f lf sin δ − Fy,rlr). (7)

Equation (7) represents the coupling of equilibrium and kine-
matic formulas. The additional terms beyond the tire forces
(Fx,f , Fy,f , Fx,r, and Fy,r), which may have impacts on u, are
incorporated into the variable Fx,other, which will be elaborated
in Section II-C. Furthermore, in certain studies investigating
reduced-scale platforms driven and braked solely by the rear
axle [34], [35], [36], [37], [38], [39], [40] or scenarios such as
drifting where front tire longitudinal dynamics are not involved
[78], the terms related to Fx,f can be disregarded.

In this dynamic system, the states primarily describe the
vehicle’s planar motion. Typically, ux, uy, and r were selected
as the motion related states. However, several studies have
concentrated solely on the lateral response of the system and
chose uy and r as the vehicle’s motion variables [51]. It is
important to emphasize that the use of these specific state
variables is not obligatory. Alternative states, such as β and r
can also be considered replacements for uy and r [31], [52],
[71], [84]. When only two motion-related states are employed,
the corresponding dynamic single-track model features only 2
DOFs.

Depending on the specific purpose of the system, additional
states are necessary to pinpoint the car’s location on the race-
track. For instance, in the Cartesian frame, the model can be
expressed as follows [41], [54], [56], [60]:

Ẋ = ux cosψ − uy sinψ,

Ẏ = ux sinψ + uy cosψ,

ψ̇ = r, (8)

or in the Frenet frame with s, e, and Δψ [55], [61], [73] as

ṡ =
u cosΔψ − v sinΔψ

1− κ̄e
,

ė = u sin(Δψ) + v cos(Δψ),

Δψ̇ = r − κ̄ṡ. (9)

The inputs of the system typically consist of two variables,
with one related to δ, and the other related to Fx. The traction-
related input can be selected based on various longitudinal
dynamics models, which will be discussed in Section II-C.

For racing cars equipped with mechanically decoupled driv-
ing wheels, the distribution of traction force among the wheels
can be arbitrarily determined [57]. One potential approach in-
volves introducing an additional input for the torque vectoring
moment, which directly influences the variable r in (7) [57].
Likewise, an empirically guided lateral weight transfer ratio can
be incorporated to influence the distribution of forces between
the driven wheels [84]. Furthermore, for vehicles with rear axle
steering, the states of u, v, and r also depend on the rear steering
angle coupled with Fx,r and Fy,r [62].

In the dynamic single-track model, it is possible to explicitly
account for the normal load transfer between the front and rear
axles. Equation (2) is a common consideration in all studies. As
indicated in Table I, most studies exclusively examined static
weight distribution between the axles for reduced-scale cars
[35], [36], [37], [38], [39], [40], [44], [45], [46], primarily due to
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Fig. 4. Schematic of dynamic double-track model.

their exceptionally low CG relative to the ground. Conversely,
systems designed for full-scale vehicles often incorporate weight
redistribution resulting from longitudinal acceleration, as de-
picted in (3). However, in such cases, Fx is no longer a single
variable but rather a summation of tire forces longitudinal to the
vehicle body and Fx,other. The formula is expressed as

Fx = Fx,r + Fx,f cos δ − Fy,f sin δ + Fx,other. (10)

Additionally, aerodynamic effects are considered by introduc-
ing an additional term that adjusts the vehicle’s effective gravity
acting on the CG. This term accounts for the partial influence
of aerodynamic forces on the vehicle’s dynamics. The formula
incorporating this aerodynamic effect is expressed as [57]:

Fz = mg + Cliftu
2, (11)

where Clift is the lift coefficient.
Moreover, within the dynamic single-track model, it is not

possible to explicitly account for the lateral distribution of the
normal force. Nevertheless, an approximation can be applied by
adjusting the cornering stiffness Cα on the front and rear axles
[62]. It is important to highlight that this modification operates
under the assumption of a steady state approximation for weight
transfer between the left and right tires [84]. This assumption
may not deliver the needed level of accuracy for highly transient
dynamics, necessitating more comprehensive vehicle dynamics
models. Furthermore, this model fails to deliver accurate simu-
lations when each tire on one axle is independently controlled.

3) Double-Track Model: Fig. 4 illustrates the schematic of
the dynamic double-track model, which represents the most
complex model in the literature for autonomous racing. This
model enables a detailed examination of the influence of forces
generated by each tire on the vehicle’s dynamic response while
largely preserving similar states and inputs as the dynamic
single-track model. Therefore, the model accurately captures
the dynamic response of the car body when each tire on one
axle is independently controlled.

The dynamic double-track model maintains the same 3 DOFs
as the dynamic single-track model. Similarly, assuming small
and identical steering angles between two front wheels, bearing
in mind that Fx,f = Fx,fl + Fx,fr, Fx,r = Fx,rl + Fx,rr, Fy,f =
Fy,fl + Fy,fr, and Fy,r = Fy,rl + Fy,rr, the resulting equations
of motion are [65], [66]

u̇ =
1

m
· (Fx,r − Fy,f sin δ + Fx,f cos δ + Fx,other) + vr,

v̇ =
1

m
· (Fy,r + Fy,f cos δ + Fx,f sin δ)− ur,

ṙ =
1

Iz
· (lf(Fy,f cos δ + Fx,f sin δ)− lrFy,r

+
twr

2
· (Fx,rr − Fx,rl) +

twf

2
· (Fx,fr − Fx,fl) cos δ

+
twf

2
· (Fy,fl − Fy,fr) sin δ). (12)

It can be observed that the states of u and v maintain a similar
structure to (7), but with additional terms that account for the
torque generated within the same axle. Furthermore, additional
states can be introduced to represent location-dependent vari-
ables, as described in (8) and (9).

The double-track model provides a more comprehensive ex-
amination of normal load transfer between tires in a quasi-steady
state. Employing the same definition of Fx,f , Fx,r, Fy,f , and
Fy,r as in (12), intermediate variables related to longitudinal
and lateral weight redistributions can be introduced as follows
[65], [66]:

ΔFz,long =
hCG

l
· (Fx,r + Fx,f cos δ − Fy,f sin δ + Fx,other),

ΔFz,lat =
hCG

1
2 (twf + twr)

· (Fy,r + Fx,f sin δ + Fy,f cos δ),

(13)

where tw stands for the track width of different axles.
Occasionally, the aerodynamic lift is consolidated into a single

term for load transfer between tires, expressed as

Fz,aero,f =
1

4
· Clift,fρAu

2, Fz,aero,r =
1

4
· Clift,rρAu

2.

(14)
Finally, as the road surface is horizontal, the normal loads on

different tires can be derived as

Fz,fl =
lr
l ·mg −ΔFz,long

2
− γΔFz,lat + Fz,aero,f ,

Fz,fr =
lr
l ·mg −ΔFz,long

2
+ γΔFz,lat + Fz,aero,f ,

Fz,rl =
lf
l ·mg +ΔFz,long

2
− (1− γ)ΔFz,lat + Fz,aero,r,

Fz,rr =
lf
l ·mg +ΔFz,long

2
+ (1− γ)ΔFz,lat + Fz,aero,r,

(15)

where γ is a suspension-related roll balance factor, indicating
the proportion of lateral transfer supported by the front axle.
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TABLE II
STRENGTHS, LIMITATIONS, AND APPLICABLE SCENARIOS OF LATERAL DYNAMICS MODELS

It plays a critical role in determining the vehicle’s tendency
toward understeering or oversteering when operating at the
friction limit. Depending on the specific application of the
model or considering that the maximum attainable speed may
not be exceptionally high, the impact of aerodynamic lift on
tire normal load transfer might not be prominently discernible.
Consequently, certain studies have chosen to exclude this term
from their calculations [63], [64], [65], [74], [75].

The advantages, disadvantages, and applicable scenarios
of the aforementioned lateral dynamics models are listed in
Table II. It is important to note that the scenarios suitable for
simpler vehicle dynamics models are generally applicable to
more complex ones, although with the latter requiring increased
computational resources.

C. Longitudinal Dynamics Models

Table III presents the longitudinal models employed in the
literature concerning autonomous racing. It is notable that some
studies concentrated on the lateral dynamics model, assuming
a predefined longitudinal velocity, and therefore did not require
the development of longitudinal dynamics [31], [51], [79]. Other
studies omitted the modeling of how longitudinal forces were
generated by the powertrain or braking systems. Consequently,
they directly utilized either the longitudinal force denoted as
Fx [47], [49], [71] or the longitudinal acceleration denoted as
ax [33], [48], [53] as model inputs. Additionally, a few studies
distributed the longitudinal forces to different tires [44], [73],
[77], without explicitly modeling their generation.

Apart from traction and braking forces, several supplementary
models were employed to determine Fx. These models include

TABLE III
OVERVIEW OF LONGITUDINAL DYNAMICS MODELS IN LITERATURE

factors such as rolling resistance acting on the tires, as well as
the aerodynamic drag and gravity force affecting the vehicle’s
body.

Furthermore, traction and braking represent the two primary
sources of variation in vehicle longitudinal dynamics and serve
as the sole controllable force inputs. When operated by a human
driver, these forces are influenced by a longitudinal commandD,
and the forces in relation toD are typically nonlinear. Moreover,
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Fig. 5. Schematic traction characteristics of electric motors and ICEs.

in cases where the tire grip is saturated, it becomes crucial
to consider the correlation between the generated longitudinal
force and D, which must also account for the tire grip [76].

However, some autonomous racing studies omitted the con-
sideration of longitudinal tire slip. This omission may stem from
the impracticality of measuring wheel rotational speed [40],
[42], or it may result from slippery road conditions combined
with nonpneumatic tires [33]. In such cases, the force from the
powertrain and braking systems was directly assumed to act
on the vehicle body, and the longitudinal force related input was
designed asD. Notably, the tire models described in Section II-D
solely account for lateral tire slip.

Fig. 5 provides a schematic representation of the maximum
traction force that electric motors and ICEs can deliver in relation
to vehicle speed [72], [92]. It is evident that these power-
trains exhibit different traction force characteristics, necessi-
tating gearshifts in ICE-powered vehicles to align the engine’s
operating range with varying vehicle speeds.

In the case of electric motors, which are commonly utilized
and assume negligible transient influence [93], traction Ftr is
modeled in the form of a polynomial with respect to bothD and
u. The formula can be expressed as [38], [40], [83]:

Ftr = (Ctr,1 − Ctr,2u)D. (16)

In other studies, Ftr of the electric motor can be arbitrarily
selected within a range limited by Ftr,limit, which is formulated
based on its power and torque characteristics (Fig. 5). This
relationship can be expressed as [67]

Ftr,limit = min

(
Tlimitig
Rwheel

,
Plimit

igu/Rwheel

)
, (17)

where Tlimit and Plimit denote the limits of motor torque and
power,Rwheel is the wheel radius, and ig is the transmission ratio.
The first term, Ftr is subject to potential limitations by motor
torque. It can also be applied in scenarios whereFtr is constrained
by tire grip. At high velocities, the second term becomes relevant,
limiting the traction by power. In some studies, only the power-
related term on the right side of (17) is considered exclusively
[69].

In cases where the vehicle is powered by an ICE (Fig. 5),
it is common to use a lookup table to correlate the current
velocity with the appropriate gear transmission ratio [72], [91].
Subsequently, the engine’s output torque should be multiplied
by this ratio to calculate the final traction force acting on the
tires.

The braking force can be incorporated into the model by
introducing negative forces solely in the vehicle’s heading. The
modeling approach for braking forces closely resembles that
used for traction force [82].

In specific driving configurations, the force distribution be-
tween the front and rear axles can vary, whether it pertains to
traction or braking force. The drive force can be adjusted through
limited-slip differentials, while the brake force is controlled by
a brake ratio setting. Consequently, different distribution ratios
can be employed to configure the drive settings and brake ratio
[62].

The other factors included by Fx,other that influence the
longitudinal dynamics are air drag Fdrag and resistance Fre, and
can be expressed as

Fx,other = −Fdrag − Fre. (18)

Regarding air drag, which predominantly affects the vehicle
at high speeds, is commonly depicted as a force opposing
the vehicle’s velocity and acting on the CG. Although various
formulations exist, it is typically approximated by the following
equation [64]:

Fdrag =
1

2
· ρACdragu

2, (19)

where ρ is the air density, A is the vehicle front surface, and
Cdrag is the aerodynamic drag coefficient.

The longitudinal force resulting from resistance can be ad-
equately approximated by a single constant [40]. For a more
comprehensive representation that implicitly relies on Fz, the
formula also includes all driveline resistance. This can be ex-
pressed as a fourth-order Taylor expansion of the longitudinal
velocity [94]:

Fre = Cre,0 + Cre,1u+ Cre,2u
4, (20)

where Cre,0, Cre,1, and Cre,4 are predefined constants that may
vary depending on the specific characteristics of different test
vehicles. Some studies choose to include only the first two terms
on the right side, omitting the higher-order refinements.

Furthermore, specialized models have been proposed to
specifically investigate the traction source, especially in cases
involving electric motors. It is assumed that the traction force
provided by the electric motor cannot be sustained at high levels
continuously due to the potential for thermal overstressing. This
aligns with the primary factor contributing to power loss in
electric vehicles [95]. Consequently, the power that the electric
powertrain can deliver decreases due to the increase in inter-
nal battery resistance for thermal reasons [89]. Additionally,
power loss stemming from copper losses, inverter switching, and
conduction losses also contributes to a reduction in the power
deliverable by an electric powertrain [90]. All of the detailed
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Fig. 6. Shapes used to limit ax and ay .

models of these electric systems can be parameterized based on
datasheet values and experimental data.

D. Tire Considerations

The tire is the sole component of a vehicle that makes direct
contact with the road surface. Consequently, all forces acting on
the vehicle in a planar model are eventually transmitted to the
tires in various forms.

In the field of autonomous racing, a range of tire models (as
shown in Table I) have been employed, spanning from simple
to complex. The simplest wheel model constrains the attain-
able force based on a geometric shape. Subsequently, assuming
negligible tire longitudinal slip, certain tire models exclusively
analyze lateral forces. Finally, there are tire models that account
for slips in both the longitudinal and lateral directions.

Regarding the correlations between tire slip angle and forces,
several models have been applied. These include the linear
model, the simplified Pacejka model, the Pacejka model, and the
Fiala brush model, each with specific underlying assumptions.

1) Lateral and Longitudinal Acceleration Bounded: In stud-
ies employing the point-mass model, specific tire characteristics
were not individually investigated; rather, the overall perfor-
mance of the car was considered. In its simplest form, the
maximum attainable acceleration must be constrained to pre-
vent entering a phase where tire forces reach saturation [47].
Under these conditions, the maximum forces that the tires can
deliver, strongly correlated to their corresponding Fz [69], can
be empirically determined.

When integrated with the point-mass model, this leads to
bounded resultant forces on the road surface. Various limiting
shapes, as depicted in Fig. 6, have been employed in different
research studies, such as the diamond shape [47], [49], circle
[69], and two half-ellipses [48]. For example, the diamond shape
for acceleration bounding can be expressed simply as [47]:∣∣∣∣ ax

ax,max

∣∣∣∣+
∣∣∣∣ ay
ay,max

∣∣∣∣ ≤ 1, (21)

where ax,max and ay,max denote the maximum achievable lon-
gitudinal and lateral forces provided by the tire. It is noteworthy
that the shape and calibration values in this model should be
determined while taking into consideration factors such as road
surface conditions, tire layout, and current weather conditions
[96].

2) Tire Lateral Forces Modeled: Since the longitudinal slip
angle is not taken into account, the vehicle’s longitudinal be-
havior is primarily determined by longitudinal models without
considering tire saturation. Additionally, the camber angle of
a wheel is not considered. This simplification allows for the
straightforward derivation of tire slip angles. In the case of a
front steering vehicle, based on a single-track model, the lateral
slip angles α of its front and rear tires can be expressed as [51]:

αf = arctan

(
v + lfr

u

)
− δ,

αr = arctan

(
v − lrr

u

)
. (22)

If tire lateral slip is analyzed using a double-track model, it is
important to incorporate the influence of track width into (22)
[67]. However, for the sake of brevity, this adjustment is omitted
in this context.

Lateral forces Fy exerted by tires within specific lateral slip
angles exhibit a nearly linear relationship with the corresponding
α. This allows for the use of a linear model to approximate tire
behavior in this range, resulting in what is commonly referred
to as a linear tire model, expressed as [70]:

Fy,L = −2Cαα, (23)

where Cα, as the product of the surface coefficient of friction
μ and Fz, represents the constant cornering stiffness of the
respective single tire, regardless of whether it is the front or rear
tire. Given that (23) is demonstrated with the single-track model
as an illustration, a single tire within this model is employed to
represent both tires on a single axle. Consequently, a coefficient
of 2 is used.

Various tire models applied in autonomous racing can be
broadly categorized into two types, as depicted in Fig. 7. The
first category is the semiempirical Fiala brush model [28], while
the second category comprises empirical models based on the
Pacejka formulation [12]. It is evident from Fig. 7 that within
a specific range, Fy linearly decreases with increasing α, cor-
responding to the effective range of the linear model. As the
absolute value of α further increases, Fy gradually approaches
saturation and remains approximately constant.

The Pacejka model, often referred to as the Magic Formula,
is designed to fit experimental tire response curves [12] and is
based on the following equation [54]:

μy,P=B1 sin(B2 arctan(B3α−B4(B3α−arctan(B3α)))),
(24)

where B1 denotes the peak value, B2 is a shape factor, B3 rep-
resents the stiffness factor, and B4 stands for a curvature factor.
Although variations may exist in different literature sources,
such as accounting for aerodynamic effects as an additional
coefficient function [66], these variations are mainly focused on
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Fig. 7. Model comparison: lateral force Fy vs lateral slip angle α.

the derivation of Fz, which is crucial for lateral tire force [54].
However, the Pacejka model is employed to estimate μ, which is
subsequently used to compute lateral force Fy by multiplying it
with Fz. In this context, a constant B1 is adequate for adjusting
the maximum value of μ [42].

In pursuit of a more straightforward and computationally
efficient alternative to the Pacejka model, a simplified version
was proposed, aligning with the demand for rapid computations
in racing scenarios. This simplified model is also widely used in
autonomous racing and can be expressed as [40]:

μy,SP = B5 sin (B6 arctan (B7α)) , (25)

where B5 serves as the shape factor, B6 represents the stiffness
factor, and B7 signifies the peak lateral force. All these factors
collectively define the precise shape of the empirical curve.

In contrast to fitting curves based on the Pacejka model, the
brush model strives to depict the complex interplay between
the tire and the road, explaining how forces are generated. One
example of this is the Fiala model. In the context of autonomous
racing, assuming a flexible carcass, a single coefficient of friction
μ and a parabolic force distribution across the contact patch [52],
the formulation can be expressed as:

Fy,F =

⎧⎪⎨
⎪⎩
−Cα tanα+ C2

α

3μFz
· |tanα| tanα

− C3
α

27μ2F 2
z
· tan3α, |α| < arctan

(
3μFz

Cα

)
,

−μFzsgnα, otherwise.

(26)

3) Tire Longitudinal and Lateral Forces Modeled: Incorpo-
rating longitudinal slip introduces the second direction of tire
slip, resulting in the overall tire slip and the induced resultant
tire force.

The longitudinal slip, denoted as λ, is defined as [32]

λ =
ωR− u

u
, (27)

where ω is the wheel speed and R is the wheel rolling radius.
Regarding the simplified Pacejka model, the wheel overall slip,
denoted as γSP and its magnitude γSP =

√
λ2 + ε2, is the vector

sum of λ and the corresponding tire lateral slip ε. Equation (25)

can then be transformed into

μSP = B5 sin (B6 arctan (B7γSP)) . (28)

This enables the derivation of the surface friction coefficient
μSP, and the direction of the resultant tire force is simply the
reverse of the overall tire slip direction [60].

If the Fiala brush model is applied, an intermediate weighted
vector sum γF can be defined as [61],

γF =

√
C2

λ ·
(

λ

1 + λ

)2

+ C2
α ·

(
tanα

1 + λ

)2

, (29)

and the magnitude of the resultant force is expressed as,

FF =

{
γF − 1

3μFz
· γ2F + 1

27μ2F 2
z
· γ3F, γ < 3μFz,

μFz, γ ≥ 3μFz,
(30)

where Cα and Cλ represent the cornering and longitudinal
stiffness, respectively, which can be identified a priori from
straight line braking and ramp steer maneuvers [97].

The longitudinal and lateral forces are subsequently calcu-
lated as,

Fx,F =
Cλ

γF
·
(

λ

1 + λ

)
· FF, Fy,F =

−Cα

γF
·
(
tanα

1 + λ

)
· FF.

(31)
In pure cornering maneuvers, which imply the absence of

longitudinal tire slip, the maximum lateral tire slip angle, at
which the maximum lateral tire force is achieved, is αmax =
arctan(3μFz/Cα), and it is in line with (26).

E. Model-Free Methods

The abovementioned model-based approaches are used to
design motion planning and tracking control algorithms relying
on a detailed understanding of vehicle dynamics. In contrast,
model-free methods, often denoted as end-to-end autonomous
driving, leverage data-driven techniques to replace a part of the
driving pipeline between perception inputs and the generation
of steering and acceleration commands for racecars [18].

In the field of end-to-end driving, with regard to the specific
segment of the driving pipeline where the end-to-end pipeline
replaces, the approaches can be broadly categorized into two
groups. One group involves a partial integration, replacing the
segment from perception to motion planning, while maintaining
a distinct low-level control controller [98]. The second group
directly employs the end-to-end pipeline, establishing a direct
connection from perception data to the final actuator outputs
[99]. When classified by the type of end-to-end autonomous
driving, two fundamental categories are present: imitation learn-
ing [100], which involves training by mimicking the behavior of
an expert; and reinforcement learning [101], which continuously
interacts with the environment, aiming to maximize the specific
cumulative reward. Notably, both of these approaches implicitly
acquire information about vehicle dynamics during the training
process. Additionally, there is a contemporary trend involv-
ing physics-informed neural networks, which integrate vehicle
dynamics models into their architecture [102]. This approach
is employed in autonomous racing to take advantage of both
vehicle dynamics models and end-to-end approaches.
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TABLE IV
DYNAMICS RELATED HARDWARE OF REDUCED-SCALE AUTONOMOUS RACING CHASSIS

III. PHYSICAL AUTONOMOUS RACING PLATFORMS

The rise of autonomous racing has led to the development of
diverse racing platforms ranging from reduced-scale to full-scale
tailored to the specific needs of researchers. These platforms
have served as the foundation for a multitude of studies on per-
ception [9], prediction [44], planning [103], and control [104],
conducted by various universities and research institutions.

A. Reduced-Scale Racing Platforms

With regard to reduced-scale autonomous racing platforms,
emphasis has been placed on crafting compact designs tailored
for easily accessible environments to provide a cost-effective
means of simulating vehicle dynamics [106].

These reduced-scale racing cars underwent extensive modifi-
cations by dedicated students and researchers, who started with
commercially available RC cars as their foundation [105]. The fi-
nal drives of these models are powered by different types of small
electrical motors, selected for their compact dimensions and
their potential for advanced state estimation and performance
optimization [106]. Furthermore, all these vehicles are equipped
with Ackermann steering and precisely controlled by a servo
motor. The suspensions across reduced-scale cars are uniformly
configured in the double wishbone form, which is known for
its ease of tuning [107]. These compact structures also lead to
a considerably lowered center of gravity, thus mitigating the
effect of weight redistribution during acceleration. Additionally,
they feature a centered weight distribution and an enhanced
power-to-weight ratio, albeit without an incorporated gearbox.
Although these platforms share common traits, they have dis-
tinctive dynamics-related features. These distinctive features are
listed in Table IV.

AutoRally (Table IV and Fig. 8(a)), a 1:5-scale autonomous
vehicle testbed, was developed by researchers from the Georgia
Institute of Technology [105]. Derived from the original HPI
Baja 5SC RC trophy truck, it incorporates a substantial modifi-
cation, where the initial gasoline engine is replaced by a 10-hp
peak output electric motor for exclusively driving the rear axle.
This model features a single differential alongside two hydraulic
front brakes and two electronic rear brakes. It stands out as the
only mainstream reduced-scale platform equipped with physical
brakes mirroring the equipment of full-scale vehicles. Moreover,
to counteract the negative effects brought by the added mass, the

Fig. 8. Reduced-scale racing chassis: (a) AutoRally [105]; (b) F1TENTH; (c)
kyosho dnano car.

front and rear suspension systems possess an increase in spring
rates of up to 2.63 and 3.34 kN/m, respectively, resulting in a
spring-to-weight ratio that is comparable to that of a sports car.
Additionally, the viscosity of the damper’s shock oil is increased
to reduce body roll and enhance overall driving dynamics.

The F1TENTH car (Table IV and Fig. 8(b)) is an open plat-
form provided by an international community, and its origins
can be traced back to the University of Pennsylvania [111].
This community offers a unique opportunity for researchers and
enthusiasts to independently develop identical cars. Constructed
on a standardized chassis, this platform facilitates race events
that provide a level playing field, and the primary focus is
on evaluating the software testing of each team [112]. The
F1TENTH car is a transformation of a Traxxas Slash 4×4
Premium Chassis designed at the 1:10 scale [106]. It features
a four-wheel drive configuration, with limited-slip differentials
mounted on the front and rear axles. Notably, this model lacks a
physical braking system; its braking force is skillfully managed
by the motor, similar to the drive force delivered to the car.
Consequently, the driving and braking forces can be simply
described through the motor’s performance profile [113].

Several platforms share a 1:10 scale and are grounded on
similar stock RC cars. Examples include RoSCAR [114], Berke-
ley Autonomous Race Car [35], UT Automata robot [115], and
MuSHR [9]. They feature similar dynamics-related parameters,
and a detailed description is omitted for brevity.

Researchers at ETH Zurich have established 1:43-scale au-
tonomous racing cars (Table IV and Fig. 8(c)) built on the
foundation of Kyosho Dnano RC cars [40]. Control signals are
transmitted to these cars via Bluetooth, eliminating the need for
an onboard computer, which could introduce additional mass.
The suspension systems are simplified and realized through
elastic aluminum plates [110]. Additionally, the braking system,
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TABLE V
DYNAMICS RELATED PARAMETERS OF FULL-SCALE AUTONOMOUS RACING CHASSIS

which exclusively engages the rear axle, relies on the drive
motor. This chassis can achieve speeds of up to 3 m/s, which
is equivalent to 343 km/h for a full-scale car.

B. Full-Scale Racing Platforms

Although reduced-scale platforms are inexpensive and have a
straightforward setup, full-scale cars remain essential for testing
software and hardware in autonomous motorsports primarily
because they are the only platforms that can replicate the com-
plex and comprehensive dynamic conditions in actual racing
environments [18]. Specifically, reduced-scale models struggle
to reproduce critical factors, such as power-to-weight ratio,
suspension geometry, chassis stiffness, and tire characteristics,
inherent to full-scale cars.

Electric motor-powered cars exhibit a linear traction force
output (Fig. 5), and those equipped with multiple motors have
the ability to distribute traction arbitrarily to any driving wheel
[116]. However, electric motors still face limitations in providing
sustained high power, which constrain their extensive use in the
field of motorsports [89]. Consequently, research on full-scale
platforms has expanded beyond electric cars.

One prominent event in this domain is the Indy Autonomous
Challenge launched in 2019, which continues to engage univer-
sity teams in competition. The event employs the Dallara AV-21
(Fig. 9(a)), a chassis derived from the Dallara IL-15 originally
designed for Indy Lights [120]. It features a 2.0 L turbocharged
four-cylinder engine with a maximum power of 450 HP. It
can achieve speeds of up to 240 km/h. Power is transmitted
to the rear wheels via a three-plate design clutch, a six-speed
semi-automatic gearbox, and a limited-slip differential. Both
axles utilize a double wishbone suspension, and the front and
rear wing flaps are adjustable [121].

Another notable event is Roborace, which was initially con-
ceived to support Formula E races but discontinued in 2021.
The official prototypal chassis provided varied from year to
year. Most of the information available pertains to Devbot 2.0
(Fig. 9(b)), which was derived from a Ginetta LMP3 racing
chassis [122]. Devbot 2.0 participated in the 2019 Roborace
event and remains a valuable research platform for participating
universities. In this chassis, each rear wheel is driven by an
integrated electrical powertrain, each of which delivers at a

Fig. 9. Full-scale racing chassis: (a) dallara AV-21 [79]; (b) devbot 2.0 [117];
(c) FSD racing car [118]; (d) X1 [73]; (e) autonomous TTS [58]; (f) autonomous
Golf GTI [65]; (g) MARTY [119]; (h) brilliance experimental vehicle [17].

maximum 135 kW, thus enabling torque vectoring [123]. The
suspension for the front and rear utilizes a double wishbone
type.

The Formula Student Driverless (FSD) Competition offers op-
portunities for universities worldwide to engage in autonomous
racing. While each team is required to fabricate a racing chassis
annually, specific rules may vary across branch competitions
[124]. As a result, detailed insights into chassis design (Table V
and Fig. 9(c)) related to vehicle dynamics have emerged. Some
competing groups modified their chassis previously used in the
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Formula Student Electric event [130]. With the exception of
computers, sensors, servo steering, and braking systems, the
other parts of the chassis maintained a framework similar to
that of the Formula Student Electric chassis. In single-motor
configuration, the electric motor is commonly positioned be-
tween the cockpit and rear axis. An intermediate gearbox,
a drive shaft, a differential, and two half shafts are utilized
to link the motor and drive wheels [131]. With the growing
prevalence of distributed power sources, diverse advanced ap-
proaches have emerged, featuring motors directly linked to the
hubs of individual tires in various configurations [132]. The
battery pack is arranged to optimize the car’s weight distribution.
Additionally, the suspension type commonly selected is the
double wishbone, and sophisticated aerodynamic packages may
be designed to generate downforce, typically at speeds below
100 km/h [118].

Table V presents typical vehicle dynamics model parameters
pertaining to the FSD chassis, and some other full-scale test-
ing platforms with the size of passenger cars. Notably, certain
variations in parameters within a model type may be attributed
to either distinct chassis designs serving a common purpose
or diverse configurations within a single chassis. Furthermore,
compared with other test vehicles with similar sizes as passenger
cars, the FSD vehicle exhibits notably reduced values across
all parameters. This discrepancy arises from its lightweight car
body and its specialized design intended for racing purposes.

With regard to passenger car-sized test vehicles with sim-
ilar dynamic-related parameters, the Center for Automotive
Research at Stanford (CARS) has prospectively developed a
series of prototypal racing cars initially for advancing by-wire
technology and later for autonomous racing. The P1 [133] and
X1 (Table V and Fig. 9(d)) [73] platforms were consecutively
developed. X1, a platform that is still in use, is a truss-frame car
with rear wheels driven by one electric motor through an open
differential [134]. All four wheels of the X1 platform can be
independently steered by wire and braked by wire, thus opening
up possibilities for in-depth explorations of its vehicle dynamic
potential.

Furthermore, some production cars have been modified into
platforms for testing autonomous racing. The same research
group in CARS has transformed three different production cars
into autonomous racing cars. Among these cars, Audi TTS
(Table V and Fig. 9(e)) [52] and Volkswagen Golf GTI (Table V
and Fig. 9(f)) [65] are gasoline-powered, and MARTY (Table V
and Fig. 9(g)) [77], a modification of a 1981 DMC Delorean,
is equipped with dual electric motors on its rear axle. Notably,
the Golf underwent testing under variable tire road conditions.
Thus, different values concerning Cα,f and Cα,r are reported in
Table V. Similarly, researchers at Tsinghua University have em-
ployed a Brilliance experimental vehicle (Table V and Fig. 9(h))
for similar tests [17].

IV. VIRTUAL AUTONOMOUS RACING TESTING PLATFORMS

The burgeoning field of autonomous racing has elicited sub-
stantial interest from research groups and dedicated companies,
leading to the development or enhancement of virtual platforms

tailored for autonomous racing applications. A comprehensive
overview of these virtual platforms, including their physics
engine, rendering engine, vehicle dynamics configuration, open-
source status, and release year, is presented in Table VI. Addi-
tional insights are provided in Section IV-A.

In the vehicle dynamics configuration column, abbreviations,
such as customizable models (CM), selectable built-in models
(SBM), and tunable parameters (TP), delineate the configura-
bility of vehicle dynamics physics within each platform. SBM
denotes a distinct approach for car modeling, and TP involves ad-
justments to specific parameters without necessitating a change
in the modeling method, although it may include modifications
to the vehicle type.

Even with the availability of virtual platforms, users still face
the arduous task of developing and fine tuning precise vehicle
dynamics models tailored to their needs. This task is particu-
larly challenging because users often concentrate on specific
model types, whether full- or reduced-scale racecars designed
for distinct racing events. In response to these challenges, several
teams have attempted to create simulators in specific virtual
platforms for addressing this specific need. These simulators,
predominantly rooted in Gazebo, are systematically cataloged
in Table VII and extensively discussed in Section IV-B. They
provide a comprehensive perception, planning, and control al-
gorithm testing ground to researchers or enthusiasts committed
to advancing autonomous racing applications.

A. Virtual Testing Platforms

Gazebo (Fig. 10(a)) [135] is a leading robot simulation plat-
form crafted by Open Source Robotics Foundation, the creator
of ROS. Fig. 10(a) provides a glimpse of its user interface,
and it utilizes third-party physics engines, with ODE serving
as the default [158]. Meanwhile, Gazebo can be integrated with
physics engines, such as Bullet, DART, and Simbody, each of
which can implement vehicle dynamics models based on rigid
body dynamics, collision detection, and specific functionalities.
However, each physics engine still encounters challenges, such
as erratic jumps or positional anomalies [158].

CoppeliaSim (Fig. 10(b)) [136], formerly known as V-REP
and developed by Coppelia Robotics, operates on a distributed
control architecture. It allows individual control of the ob-
ject/model through various means, including embedded scripts,
plugins, ROS nodes, remote API clients, or custom solutions.
CoppeliaSim is designed for rapid algorithm development, pro-
totyping, and verification. It includes a built-in vehicle dy-
namics engine for basic features, complemented by support
for detailed modeling through scripting or external dynamics
integration.

dSPACE [137], developed by the dSPACE GmbH, employs
a hardware-in-the-loop (HIL) approach to test real electronic
control units, thus offering realistic simulated platforms for
racing scenarios. While predominantly used to link hardware
and virtual platforms, dSPACE allows the integration of various
virtual platforms as its physics engine. The 2016 release year
in Table VI signifies the incorporation of the HIL concept into
ADAS systems and automated driving scenarios.
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TABLE VI
VIRTUAL PLATFORMS OF AUTONOMOUS RACING

TABLE VII
PHYSICAL AUTONOMOUS RACING PLATFORM SIMULATORS

Webots (Fig. 10(c)) [138], provided by Cyberbotics Ltd.
in collaboration with the Swiss Federal Institute of Technol-
ogy in Lausanne, is an open-source mobile robotics simula-
tion platform. It facilitates the simulation of racing cars with
configurable dynamics by using the third-party physics engine
ODE. Although a free version is available for educational and
non-commercial use, the source code remains inaccessible to
the public.

MORSE (Fig. 10(d)) [139], jointly developed by LAAS and
ONERA, is built on Blender software and exploits the Bullet
physics engine. Offering extensive configuration options for
vehicle dynamics models and parameters, MORSE enhances
the flexibility of simulation platforms.

DeepDrive (Fig. 10(e)) [140], developed by the University of
California, Berkeley, is designed specifically for racecars and
algorithm testing. Utilizing the Unreal physics engine, it allows
users to configure vehicle dynamics models and parameters
seamlessly.

CARLA (Fig. 10(f)) [141], a collaboration among Intel Labs,
the Toyota Research Institute, and the Computer Vision Center
in Barcelona, employs the Unreal engine. CARLA is tailored
for the development, training, and validation of autonomous
driving systems, but it is also suitable for testing racing
scenarios [163].

AutoDRIVE (Fig. 10(g)) [142], a joint development by the
SRM Institute of Science and Technology and Nanyang Tech-
nological University, utilizes the PhysX physics engine from
NVIDIA. This simulator is specifically designed for a reduced-
scale racing platform, and preconfigured for educational use,
with dynamics models, including aerodynamics, readily set for
the specific car.

LGSVL (Fig. 10(h)) [143], developed by LG Electronics
America R&D Lab, offers an end-to-end, full-stack simulation
compatible with Autoware and Apollo. Featuring a basic vehicle
dynamics model for autonomous vehicles, LGSVL also supports
the integration of external third-party dynamics models.

Grand Theft Auto V (Fig. 10(i)) [144] from Rockstars, Gran
Turismo Sport (Fig. 10(j)) [145] from Polyphony Digital, and
TORCS (Fig. 10(k)) [146] developed by individuals are promi-
nent video games utilized in autonomous racing research. De-
spite being commercial, they serve as valuable virtual platforms
because of their robust vehicle dynamics modeling. TORCS, in
particular, offers diverse suspension types with corresponding
models for user selection.

CarSim (Fig. 10(l)) [147], which is based on VehicleSim
and developed by Mechanical Simulation Corporation, is not
open-sourced but provides full configurability of vehicle dynam-
ics. Tailored for autonomous racing research, CarSim supports
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Fig. 10. User interface of the virtual platforms: (a) gazebo [157]; (b) coppeliaSim [136]; (c) webots [158]; (d) MORSE [139]; (e) DeepDrive [159]; (f) CARLA
[141]; (g) AutoDRIVE [142]; (h) LGSVL [143]; (i) grand theft auto V [144]; (j) gran turismo sport [145]; (k) TORCS [160]; (l) CarSim [161]; (m) CarMaker
[148]; (n) rFpro [149]; (o) VRXPERIENCE [162].

vehicle motion through built-in functions or external models
via Simulink, extending its versatility. The provided vehicle
dynamics models can be seamlessly integrated with the Unreal
rendering engine to ensure high-quality rendering and support
HIL.

CarMaker (Fig. 10(m)) [148], developed by IPG Automotive,
is designed for recreating real test drives in the virtual world.
Similar to CarSim, CarMaker evolved from a tool supporting
vehicle dynamics projects and now offers comprehensive simu-
lation platforms and datasets for autonomous vehicle research.
Hence, it is a natural choice for autonomous racing virtual testing
[164].

rFpro (Fig. 10(n)) [149], owned by AB Dynamics PLC,
originated as a project of a Formula One team and is utilized
for vehicle dynamics simulation. Focusing on mainstream race-
tracks, rFpro provides high-fidelity digital models and supports
the development, training, testing, and validation of autonomous
driving systems.

Cognata [150] from the Cognata Ltd., VRXPERIENCE
(Fig. 10(o)) [151] from ANSYS, and DRIVE Constellation [152]
from NVIDIA are commercial software that offer physically
accurate simulation platforms for autonomous vehicles. VRX-
PERIENCE serves as the platform for the Indy Autonomous

Challenge. While these platforms come with proprietary physics
engines, some allow integration of third-party models, such as
the dSPACE ASM vehicle dynamics models in the case of the
DRIVE Constellation platform.

B. Physical Autonomous Racing Platform Simulators

The RACECAR simulator [153], which was developed by
researchers at Massachusetts Institute of Technology (MIT), is
a reduced-scale racecar simulator established under the MIT
Beaver Works Summer Institute Robotics Program. Although
it is primarily a high-school STEM program in robotics, the
simulator provides an open-source kinematic single-track model
in the Gazebo platform for users to virtually test their vehicles.

RoboMaker [154], developed by Amazon Web Services, in-
corporates a DeepRacer car model and functions as a virtual
racing platform and a reinforcement learning research testbed.
Aligned with the simulators for AutoRally [105] and F1TENTH
[111], these platforms for reduced-scale racecars opt to use
Gazebo as the platform and ODE as the physics engine. Al-
though the dynamics models for this simulation have not been
disclosed, the developers of AutoRally acknowledge Gazebo’s
limitations, especially in high-fidelity simulation when vehicles
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approach or surpass friction limits. However, these simulators
are predominantly geared toward debugging control, perception,
and communication software for reduced-scale racecars.

Oxford Brookes Formula Student Team’s simulator for their
full-scale racecar [156], which based on Gazebo, employs a
dynamic single-track model with a linear tire model to showcase
its general dynamic behavior.

FSSIM [118], the simulator for the Formula Student racecar
of AMZ Driverless in ETH Zurich, is an open-source simulator
applicable worldwide, and it is situated in the Gazebo platform.
Although the dynamics models applied remain undisclosed,
developers confirm that the ODE engine is not used, and an
integrated first principal model is adopted.

The KIT21d simulator [165] designed in ROS for the Formula
Student team at Karlsruhe Institute of Technology adopts a
nonlinear dynamic 7-DOF planar vehicle model with the Pace-
jka tire model. This model accounts for wheel load transfer,
aerodynamic effects, and powertrain characteristics, and strives
to accurately reflect real vehicle dynamics.

V. PERSPECTIVES OF VEHICLE DYNAMICS ON AUTONOMOUS

RACING

The consideration of vehicle dynamics stands out as a critical
aspect in the domain of autonomous racing, yet it remains an
underdeveloped area when implemented in the autonomous rac-
ing car. Meanwhile, artificial intelligence has demonstrated its
proficiency in managing a racecar’s maximum cornering speed
and optimizing lap times on specific racetracks under predefined
conditions. Nevertheless, there are still aspects that can be fur-
ther refined. This section delves into the future developments of
enhancing vehicle dynamics models with the goal of seamless
integration into the motion planning and control algorithms of
autonomous racing cars. Additionally, it provides suggestions
for the progress of methodologies in testing autonomous racing
cars.

A. Adapting to Model Variation Over Time

The present study primarily emphasizes pushing the lap time
limits within determined configurations and environmental con-
ditions, similar to a qualifying race. Under these circumstances,
a set of constants in parameter configurations generally suffices
to adjust the model [12]. However, when races extend in dura-
tion, as in sprint or feature races, several factors influence the
outcome. Fuel consumption alters the vehicle’s mass, inertia, and
the location of CG; tire wear and weather fluctuations change
the complexity of tire road interaction. Additionally, rubber ac-
cumulates at specific track locations, causing variations in track
conditions section by section. All of these factors lead to ad-
justments in the parameters of vehicle dynamics models. Albeit
some can be continuously monitored, modeled, and fine-tuned
to approximate real-time conditions, others, particularly tire
grip limitations, pose a challenge for accurate estimation [166].
Therefore, maintaining real-time monitoring and fine-tuning of
the model may present a notable challenge if autonomous racing
is to become a prominent commercial sports activity.

B. Modeling for Thoroughness and Efficiency

Vehicle dynamics models must strike a delicate balance be-
tween computational efficiency and accuracy [14]. They should
be neither oversimplified to the extent of lacking essential dy-
namics information, nor become overly complex to be compu-
tationally heavy. As onboard computing capabilities advance,
there is potential for applying more intricate models. How-
ever, a pragmatic approach involves capturing critical physi-
cal phenomena through established models while employing
machine-learning techniques, as a few researchers did [167],
to degrade the description of other mathematical phenomena
[58]. Furthermore, the application of physics-informed neural
networks may facilitate precise calibration of dynamics models
with limited data [102]. This combined approach may offer
a practical methodology to accelerate the development of au-
tonomous racing.

C. Balancing Datasets for End-to-End Racing

The training dataset utilized for end-to-end driving can cover
a wide range of scenarios pertaining to specified race types when
only a single racecar operates on a racetrack under regular con-
ditions. However, the availability of samples related to scenarios
involving head-to-head competition and extreme racetrack con-
ditions is limited. Moreover, these samples exhibit substantial
diversity. This diversity, coupled with the limited number of
samples, results in a substantial imbalance across datasets cov-
ering different scenarios [168]. This imbalance poses a notable
challenge for end-to-end models, particularly in terms of their
generalization to special racing conditions. While the trained
end-to-end autonomous racing system may demonstrate satis-
factory performance when a single racecar navigates a racetrack
under regular conditions, the introduction of competitors and
extreme track conditions can lead to a substantial increase in
lap times or even safety concerns. Consequently, addressing
the challenges associated with data collection and handling
imbalanced datasets remains a complex task for the advancement
of end-to-end autonomous racing systems.

D. Downscaling Full-Scale Impact

While reduced-scale racing platforms offer a cost-effective
means to test various techniques for autonomous racing, there
remains a substantial disparity between these models and the
full-scale platforms [33]. Aspects, such as tire grip limits, drive
and brake characteristics, and weight distribution, differ signifi-
cantly between these two types of platforms [40]. To bridge this
gap, the intentional design of scaled-down platforms tailored
for autonomous racing may serve as a solution. This can offer
researchers a more direct platform for understanding full-scale
vehicles, as they are the ones that participate in races watched
by everyone.

E. Testing in Virtual Reality

The limitations of reduced-scale platforms in accurately rep-
resenting reality, along with the cost constraints associated
with full-scale platforms, render them impractical for many
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researchers. Moreover, deploying perception, planning, and con-
trol strategies on real vehicles demands collaboration across
diverse teams and can be time-consuming and economically bur-
densome [169]. To address this challenge, simulative method-
ologies can be employed [170]. By harnessing the power of
social computing and parallel systems [171], a virtual artificial
society can be created, enabling a parallel management approach
to connect the virtual and real worlds [172]. For instance, the
limited physical platforms in use can be linked to their arti-
ficial duplicates via wireless sensing networks and wide area
networks. This linkage facilitates virtual testing under diverse
scenarios, thereby enhancing the performance and effectiveness
of algorithms developed by remote users [173]. Consequently,
the scarce real-world experiments conducted by small groups of
researchers can be transformed into valuable resources, readily
accessible for researchers worldwide to conduct precise nu-
merical investigations and perform essential simulations under
diverse scenarios.

VI. CONCLUSION

This survey paper offers a thorough overview of the current
state-of-the-art in autonomous racing. Aiming towards elabo-
rating the overlooked aspect of vehicle dynamics embedded
in motion planning and tracking control algorithms, the paper
provides concise summaries of specific lateral and longitudinal
dynamics models, along with key tire considerations. Addition-
ally, it offers a compact review of end-to-end learning-based
methods as alternative approaches that implicitly utilize vehicle
dynamics information. In order to deliver a comprehensive un-
derstanding of dynamics within the hardware context, the paper
outlines the vehicle dynamics characteristics of both reduced-
and full-scale autonomous racing platforms. These platforms,
whether modified from commercial stock or entirely fabricated
by dedicated researchers, have been considered. Additionally,
this survey provides detailed insights into the virtual testing
platforms employed for effective evaluation of motion planning
and control algorithms for autonomous racing, highlighting their
specific features pertaining to vehicle dynamics.

The field of autonomous racing represents an emerging fron-
tier within intelligent vehicles, gathering increasing interest
from researchers in both vehicle dynamics and autonomous
driving disciplines. With a growing emphasis on incorporating
vehicle dynamics into motion planning and control strategies,
coupled with the promising outlook for the development of
suitable and widely adopted platforms, we foresee significant
advancements in the field of autonomous racing and intelligent
vehicles on the horizon.
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