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Leveraging Smooth Deformation Augmentation for
LiDAR Point Cloud Semantic Segmentation
Shoumeng Qiu , Jie Chen , Chenghang Lai , Hong Lu , Xiangyang Xue , and Jian Pu

Abstract—Existing data augmentation approaches on LiDAR
point cloud are mostly developed on rigid transformation, such
as rotation, flipping, or copy-based and mix-based methods, lack-
ing the capability to generate diverse samples that depict smooth
deformations in real-world scenarios. In response, we propose a
novel and effective LiDAR point cloud augmentation approach with
smooth deformations that can enrich the diversity of training data
while keeping the topology of instances and scenes simultaneously.
The whole augmentation pipeline can be separated into two dif-
ferent parts: scene augmentation and instance augmentation. To
simplify the selection of deformation functions and ensure control
over augmentation outcomes, we propose three effective strategies:
residual mapping, space decoupling, and function periodization,
respectively. We also propose an effective prior-based location
sampling algorithm to paste instances on a more reasonable area
in the scenes. Extensive experiments on both the SemanticKITTI
and nuScenes challenging datasets demonstrate the effectiveness of
our proposed approach across various baselines.

Index Terms—LiDAR augmentation, smooth deformation,
semantic segmentation.

I. INTRODUCTION

L IDAR point cloud semantic segmentation plays a crucial
role in environment understanding for autonomous driv-

ing [3], [4], [5]. It is also very important for downstream tasks
of autonomous driving, such as trajectory prediction [6] and
motion planning [7]. Data augmentation is proven to be one of
the most crucial and practical techniques in enhancing model
performance without additional computation costs in the test
phase [8], [9], [10], [11], [12]. This is especially true for tasks
such as LiDAR point cloud semantic segmentation [3], [13],
[14], [15], [16], where creating a large dataset is extremely
difficult and requires extensive labor work.
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Data-driven deep models often require abundant data to suf-
ficiently understand complex LiDAR point clouds in real-world
scenarios. In contrast to images with lattice structures, point
clouds are unordered sets of points without inherent struc-
ture [17]. Therefore, while data augmentation is relatively com-
mon for images [18], [19], [20], [21], it has been relatively
underexplored for LiDAR point clouds [1], [22], [23].

Most of the existing methods are based on rigid transfor-
mations, such as the commonly used rotation and flipping.
Despite some great progress has been made in recent years,
such as the copy-paste based approaches [24] or Mix-based
approaches [1], [25]. PointMixup [26] proposed to produce new
examples through an interpolation between two scans of point
clouds. Copy-Paste [24] proposed to simply copy instances from
other scenes and then paste them into the current scenes directly.
PolarMix [1] proposed to enrich the diversity of the point cloud
through two cross-scan augmentation strategies. They all lack
consideration of cases where smooth deformations happen in
real-world scenarios [17], [27], such as walking people or a
winding road, which is also very important for the diversity of
the datasets. Only a few methods are based on local deformations
now, such as [17], [28], [29]. PointAugment [28] proposed an
adversarial learning framework to optimize an augmented neural
network and a task-specific network jointly. PointWOLF [17]
proposed to generate the augmented results by applying locally
weighted transformations centered at multiple anchor points in
the object. PA-AUG [29] proposed to divide instances into par-
titions and then stochastically apply five different augmentation
methods to each local region. However, the above approaches
only apply to the point clouds of objects well. This is attributable
to the LiDAR point clouds in the outdoor environments were
distributed over a wide range [30], [31], [32], the method should
be effective and the augmented results should be reasonable
everywhere instead of a single object. In addition, compared with
the simple rigid transformations, the augmentation with local
deformation transformation is more sophisticated and uncon-
trollable [17], [27]. Overall, these factors result in augmentation
approaches based on deformations for the LiDAR point cloud
have not been fully investigated.

In this article, we focus on LiDAR point cloud augmentation
with the aim of alleviating the issue of data scarcity for 3D
semantic segmentation. Specifically, we propose a novel and
effective augmentation approach with smooth deformations for
the LiDAR point clouds semantic segmentation task. To simplify
the selection and design of the deformation functions, three
strategies were proposed: residual mapping, space decoupling,
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Fig. 1. Overall comparison between the conventional method, recent state-of-the-art (SOTA) method PolarMix [1], and our proposed augmentation approach
with smooth deformation. The second row shows some augmented samples generated by the corresponding method. The third row is the final performance of the
model trained with each augmentation approach on the SemanticKITTI validation set [2].

and function periodization. First, drawing inspiration from the
residual mapping in ResNet [33], instead of designing a function
that maps the source point to the target point directly, we only
need to design a function that maps the source point to the offset
between the source and target point. Second, we decouple the
raw transformation mapping {x, y, z} → {x′, y′, z′} into three
different mapping pairs, making the design of the mapping
functions easier and the augmentation process more control-
lable. Third, given the LiDAR point clouds were distributed
over a wide range, we adopt a periodization to the function,
allowing concentration on a localized area during augmentation
function design. In addition, to address the unbalanced class in
the datasets [2], [31], we further propose an effective prior-based
location sampling algorithm, from which a more reasonable
location can be obtained when we perform the copy-paste-based
instance augmentation operation. Finally, we evaluate the ef-
fectiveness of our proposed approach on both the challenging
SemanticKITTI and nuScenes datasets across different baselines
and the experimental results show significant improvement in
performance on both datasets. The overall comparison between
the conventional method, the recent SOTA method Polarmix [1],
and our proposed smooth deformation augmentation approach
on the Semantic KITTI val set is shown in Fig. 1.

Our contributions are summarized as follows:
1) We propose a novel LiDAR point cloud augmentation

approach with smooth deformations for the semantic seg-
mentation task, our approach can enrich the training data
diversity and boost the performance of baselines effec-
tively.

2) We propose three different strategies: residual mapping,
space decoupling, and function periodization, to simplify
the selection and design of the deformation augmentation

functions, and also make the augmentation results more
flexible and controllable.

3) We propose a simple and effective prior-based location
sampling algorithm, which can place the augmented in-
stances in a more feasible area.

4) We conduct extensive experiments and show substantial
and consistent improvements in performance by adopting
our proposed augmentation approach.

II. RELATED WORK

In this section, we give a brief overview of the data aug-
mentation approaches for point clouds and LiDAR semantic
segmentation tasks. We further divide the data augmentation
part into two different categories: Augmentation with Rigid
Transformation and Augmentation with Deformation and divide
the LiDAR semantic segmentation part into 2D-based methods,
3D-based methods, and Fusion-based Methods.

A. Data Augmentation

Augmentation with Rigid Transformation: Conventional aug-
mentation methods including rotation, flipping, scaling, and per-
spective transformation are widely used in many recent works,
such as [34], [35], [36], [37], which are typically useful in many
cases. Inspired by Mixup [25], PointMixup [26] proposed an
interpolation method that produces new examples through an
optimal assignment of the path function between two point
clouds. Autoaugment [38] proposed to use of reinforcement
learning technologies to find the best choices and orders of the
augmentation actions to achieve the best performance. In Fast
AutoAugment [38], a more efficient search strategy is proposed
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based on density matching, which does not require any back-
propagation for network training for each policy evaluation.
InstraBoost [39] proposed to generate a location probability map
to explore the feasible locations where instances can be placed.
By sampling feasible locations from the local contour simi-
larity heatmap, a significant performance improvement can be
achieved. Lidar-Aug [40] proposed a plug-and-play rendering-
based LiDAR augmentation module to enrich the training data
and boost the performance of the model. By leveraging the
rendering technique to compose the augmented objects into the
real background frames, the occlusion constraints are automat-
ically enforced. RS-Aug [41] proposed a Realistic Simulator
based data augmentation approach, and a heuristic search based
object insertion scheme is also proposed to enhance rendering
quality with collision and distance constraints. Both of the above
methods require the use of simulators to enrich the diversity
of objects. SageMix [42] proposed a saliency-guided Mixup
augmentation for point clouds to make sure that the salient
local structures are preserved. Polarmix [1] proposed to enrich
the distribution of the point cloud and preserve the fidelity of
the point cloud through two cross-scan augmentation strategies:
scene-level and instance-level respectively. For the scene-level
augmentation, points within the same azimuth angle range are
exchanged, while for the instance-level augmentation, the points
selected from another scan were rotated for multiple copies and
then pasted into another scan. In [43], the authors proposed Point
Augmentation (PA)-RCNN which aim for small object detection
task through generating complementary features. In [44], the
authors proposed to improve the robustness of LiDAR-based
perception methods in adverse weather with different data
augmentation techniques, which demonstrates that data aug-
mentation can effectively enhance the model’s generalization
ability in different scenarios. LidarAugment [45] introduced a
search-based approach for LiDAR point clouds augmentation.
However, the augmentation policies in the search space still
come from conventional augmentation methods. They all lack
consideration of cases where smooth deformation happens in
real-world scenarios.

Augmentation with Deformation: PointAugment [28] pro-
posed an adversarial learning strategy to jointly optimize an
augmented network and a task-specific network. The learnable
point augmentation function was formulated with a shape-wise
transformation and a point-wise displacement, and a specific loss
function was carefully designed to enable the model to adjust the
augmentation magnitude based on the learning state of the model
for the main task dynamically, which allowed the generation
augmented samples that are more suitable for any training stage
of the task. In PointWOLF [17], it proposed to generate the aug-
mented samples by locally weighted transformations centered at
multiple anchor points, the method can produce diverse and re-
alistic augmented samples with smoothly varying deformations
formulated as a kernel regression. PatchAugment [27] proposed
a new augmentation framework, in which different augmenta-
tion techniques were applied to different local neighborhoods.
In PA-AUG [29], it also divides instances into partitions and
stochastically applies five augmentation methods to each local
region, then the rich information of labels can be better utilized

in augmentation. 3D-VField [46] introduced a new data aug-
mentation approach that generates reasonably deformed objects
via vector fields learned in an adversarial fashion. The method
is targeted for object detection task and therefore operates only
on the instances level. Therefore, these methods are specifically
designed for the objects, and not suitable for large-scale LiDAR
point clouds.

B. LiDAR Semantic Segmentation

Point cloud semantic segmentation is one of the most funda-
mental tasks for autonomous driving [3], [15], [16], which aims
to provide precise semantic information about the surrounding
environment. As the 3D Light Detection and Ranging (LiDAR)
sensor can capture more precise and farther-away distance mea-
surements of the surrounding environment than conventional
visual cameras, it has gradually become an indispensable device
in many other scenarios. Currently, the methods for LiDAR
semantic segmentation can be categorized into three categories:
2D-based, 3D-based, and fusion-based methods.

2D-based Methods: 2D-based Methods can also be referred
aa projection-based methods, which can be further divided
projection-based methods into two different categories: Range
View projection (RV) and Bird’s-Eye-View projection (BEV).
For the range-based methods: RangeNet++ [47] proposed a
deep-learning-supported approach to exploit the potential of
range images and 2D convolutions, and a GPU-accelerated
post-processing K-Nearest-Neighbor (KNN) approach is further
proposed to recover consistent semantic information during
inference for entire LiDAR scans. KPRNet [48] improved the
convolutional neural network architecture for the feature extrac-
tion of the range image, and the commonly used post-processing
techniques such as KNN were replaced with KPConv [49],
which is a learnable pointwise component and allows for more
accurate semantic class prediction. For BEV-based approaches,
which are consistent with the currently popular representation
in BEV space [50], [51]. PolarNet [52] proposed to use the polar
Bird’s-Eye-View representation to balance the spatial distribu-
tion of points in the coordinate system, and a ring convolution
operation was also developed that was more suitable for the
polar Bird’s-Eye-View representation. Panoptic-PolarNet [34]
was proposed based on PolarNet, which is a proposal-free Li-
DAR point cloud panoptic segmentation network and can cluster
instances on top of the semantic segmentation efficiently.

3D-based Methods: 3D-based Methods can be further divided
into point-based methods and voxel-based methods. For the
point-based method, KPConv [49] proposed a new kind of
3D point convolution that operates on point clouds without
any intermediate representation. RandLA-Net [53] proposed an
efficient network architecture for directly inferring per-point
semantics on large-scale 3D point clouds. It uses random point
sampling instead of more complex point sampling approaches
for efficiency. it also introduced a local feature aggregation
module to preserve geometric details by progressively increasing
the receptive field for each 3D point. For voxel-based meth-
ods, which generally achieve better performance than point-
based methods. MinkNet [54] proposed a generalized 3D sparse
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convolution and an auto-differentiation library for sparse tensors
was proposed. SPVCNN [55] proposed a lightweight 3D module
that can boost the performance on the 3D scene understanding
tasks effectively. In Cylinder3D [56], it introduced a novel Cylin-
drical and Asymmetrical 3D Convolution framework, which can
effectively and robustly explore the 3D geometric pattern and
tackle the difficulties caused by sparsity and varying density of
point clouds. (AF)2-S3Net [36] proposed a multibranch attentive
feature fusion module in the encoder and an adaptive feature
selection module with feature map re-weighting in the decoder. It
fuses the voxel-based learning and point-based learning methods
into a unified framework to process the potentially large 3D
scene effectively.

Fusion-based Methods: As 2D-based (range and BEV) meth-
ods and 3D-based (point and voxel) methods have different
advantages while suffering from their own shortcomings in
the semantic segmentation task [57]. So it is intuitive to fuse
information from different views together for better segmenta-
tion performance. AMVNet [58] proposed an assertion-based
multiview(range, BEV) fusion network for LiDAR semantic
segmentation, where the features of individual views were fused
later with an assertion-guided sampling strategy. RPVNet [57]
devised a deep fusion framework with multiple and mutual
information interactions among three (range, point, and voxel)
different views to make feature fusion more effective and
flexible. GFNet [59] introduced a geometric flow network
to better explore the geometric correspondence between two
different views(range, BEV) in an align-before-fuse manner.
CPGNet [60] proposed a cascade Point-Grid Fusion Network
(CPGNet) effective feature extraction with minimal information
loss and a consistency loss for better inference performance.

III. METHOD

In this section, we first provided the details of smooth
deformation augmentation function selection and design in
Section III-A, including three strategies: residual mapping,
space decoupling, and function periodization. Then we describe
the whole non-rigid augmentation pipeline for LiDAR point
clouds in Section III-B, which also contains three different mod-
ules: the instance augmentation module, prior-based location
sampling module, and scene augmentation module.

A. Deformation Function Design

The deformation augmentation function presents an expan-
sive search space [61], [62], making the selection of appropriate
augmentation functions a considerable challenge. To address
this issue, we identify specific desired properties to narrow
down the search space. Specifically, we categorized the desired
properties from three different aspects, namely, continuity of
function, scale consistency, and computational efficiency.

First, it is imperative that augmentation functions exhibit
continuity or smoothness; without this attribute, instances risk
disintegration after augmentation. Second, the size of the aug-
mented instance should remain relatively consistent with its
original dimensions, as the size is a critical attribute of an object.
For instance, it would be incongruous to encounter a five-meter

giant or a mere ten-centimeter individual. Finally, the function
should preferably be computationally efficient in practice.

1) Residual Mapping: For a deformation augmentation op-
eration, establishing a direct mapping between the raw points
and augmented points is challenging due to the vast number of
points and their expansive range.

Inspired by the deep residual network [33], we propose to
focus on generating the residual coordinates for each point rather
than directly computing the final augmented coordinates. Specif-
ically, for a given point cloud scan P = {p0, p1, . . . , pN−1}, the
deformation augmentation function φ() doesn’t aim to yield the
target coordinates P ′ = {p′0, p′1, . . . , p′N−1},

we only need to compute the residual coordinates, represented
by P ′ − P , thus the augmentation process becomes:

P ′ = P + αφ(P ), (1)

where α represents a scale parameter. The residual coordinate
generation has the following advantages: first, as mentioned
in [33], the residual function is relatively simple and easier to
learn, which also makes the design of the augmentation function
easier. Second, the augmented samples were only affected by the
residual branch, so the magnitude of augmentation can be easily
controlled by α.

2) Space Decoupling: While the residual mapping strategy
can make the design of the augmentation function much easier,
the task remains complex due to the interdependence of spatial
coordinates. Generally, the augmentation function takes the
coordinates {x, y, z} of each point as input, and the correspond-
ing offset {x′ − x, y′ − y, z′ − z} is generated. The coupling
between three coordinates makes controlling augmented results
more difficult. However, in the real-world scenario, the {x, y, z}
three-dimensional space is not always coupled. For instance,
the road may be undulating while straightforward, or a winding
and twisting road but very smooth at the same time. Based on
the above observations, we propose space decoupling to further
simplify the augmentation function design. Specifically, for the
raw coupled mapping:

{x, y, z} → {x′, y′, z′} , (2)

we decouple it into three different mapping pairs:

{x → y′ − y}; {y → x′ − x}; {r → z′ − z}, (3)

where r =
√
(x2 + y2). The above equation shows that for

each mapping pair, we only need to consider the impact of one
dimension on another dimension, without taking into account
the impact of all dimensions, which simplifies the design and
selection of the augmentation function. The concept of space
decoupling is illustrated in Fig. 2. From the visualization, it can
be seen that for each decoupled pair, the generated samples are
both intuitive and plausible within real-world contexts.

3) Function Periodization: With residual mapping and space
decoupling, the selection and design of the augmentation func-
tion have been largely simplified. However, as the coordinates
of the input points were distributed over a wide range in the
real-world scenario [2], [31], the functions for augmentations
should be under control over a wide range of inputs. The
commonly used functions, such as functions from the binomial
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Fig. 2. Visualization of the space decoupling strategy. Here, we assume that
the horizontal direction is the x-axis, and the vertical direction is the y-axis. For
the second (X-Y) column, the y-coordinate is determined as a function of the
x-coordinate. In the third column (Y-X), the x-coordinate is derived as a function
of the y-coordinate. Lastly, in the column labeled (R-Z), the x-coordinate is
defined as a function of the radius r.

family or gaussian family may not handle this situation well, as
their outputs could exhibit significant variations across different
regions of a point cloud.

To overcome the aforementioned challenges, we propose
periodizing a simple augmentation function which tailored for
a localized area to encompass the entire scan of points. Despite
its simplicity, the periodization strategy greatly facilitates the
selection and design of the augmentation. which also means
that the selected function can be adapted to both the instances
and scenes, making our method more concise and unified.

Finally, the overall deformation augmentation for the point
cloud can be expressed as:

x′ = x+ φ(y, fy ∗ ξ(.), βy ∗ ξ(.)) ∗ αy ∗ ξ(.),
y′ = y + φ(x, fx ∗ ξ(.), βx ∗ ξ(.)) ∗ αx ∗ ξ(.),
z′ = z + φ(r, fz ∗ ξ(.), βz ∗ ξ(.)) ∗ αz ∗ ξ(.), (4)

whereφ(.) is a periodic function, ξ(.)generates random numbers
between 0–1, r is the radius distance, fx ∗ ξ(.), fy ∗ ξ(.) and
fz ∗ ξ(.) controlling the frequency of deformation augmentation
function, βx ∗ ξ(.), βy ∗ ξ(.) and βz ∗ ξ(.) controlling the phase
of the periodic function, αx, αy , and αz is the amplitude of
augmentation, with distinct values designated for instance and
scene augmentation.

Next, we provide further descriptions and explanations about
4. First, we observe that the augmentation is applied in a
residual manner. Specifically, for each dimension x, y, and z,
the change before and after augmentation can be simply repre-
sented as x′ = x+ xoffset, y′ = y + yoffset, and z′ = z + zoffset,
respectively. Then, for the offset generation, taking xoffset as
an example, from the first line of 4, we can see that xoffset

only depends on y among the three x, y, and z dimensions.
This simplifies the generation of xoffset as we only need to
consider the y dimension rather than interference from x and
z. It should be noted that the simplification remains consistent
with potential real-world scenarios like a winding, twisting, yet

smooth road. Finally, since we chose φ(.) as a periodic function,
we only need to ensure the offset output from φ(.) is reasonable
within one period. This frees us from considering the large-scale
distribution of LiDAR point cloud scenes when designing and
selecting parameters for the augmentation function.

B. Augmentation Pipeline

The overall framework of our proposed approach is illus-
trated in Fig. 3. It consists of three main modules: an Instance
Augmentation Module (IAM), a Prior-based Location Sampling
Module (PRLS), and a Scene Augmentation Module (SAM).
First, the raw point cloud is separated into two different parts
through the ground truth label: instance and scene [63]. For the
instance branch, the separated instances are fed to the instance
augmentation module for the deformation augmentation. Next,
we use the prior-based location sampling module to generate
multiple candidate locations. Then we paste each instance on
the sampled location. Finally, the whole point cloud is fed to
the scene augmentation module and the global deformation
transformation is performed.

1) Instance Augmentation: As the instance may be dis-
tributed over a wide range in the point cloud, a decentralization
operation is performed before the deformation augmentation
operation is performed. Although the deformation augmentation
operation can increase the diversity of the samples, the unbal-
anced count of classes in the datasets was not yet solved.

To address this, we propose to generate more samples with
diversity by applying the augmentation operation on each in-
stance multiple times with different augmentation parameters.
Specifically, for each instance I , we generate more than one
augmented sample Iaug = {F(I, θ1),F(I, θ2), . . . ,F(I, θk)},
where F(, ) is the augmentation operation, θi is the different
augmentation parameters,k is the number of augmented samples
we want to generate. We visualize some augmented instances in
Fig. 4.

Then we need to paste the augmented instances into the scene.
In copy-paste [24], the instances are copied from other scenes
and pasted directly, the place in one scene may be inappropriate
for another. In PolarMix [1], the instances were simply cut
from another scan and then rotated before being pasted to the
current scan. Both methodologies overlook a further exploration
regarding the placement of instances. To tackle these challenges,
we further propose a more reasonable and effective prior-based
location sampling algorithm.

2) Prior-Based Location Sampling: In [24], the authors uti-
lize a plane equation to represent the road, ensuring that aug-
mented instances remain grounded. While this provides a foun-
dational approach, we go a step further for the prior-based
location generation.

Specifically, given a scan of point clouds P , first, an ap-
propriate Region of interest (ROI) area is cropped, and only
the points residing within this ROI undergo subsequent far-
thest point sampling operation. This methodology addresses the
prevalent issue of outliers in point clouds, which is extremely
unfriendly for the FPS algorithm, as the sampled points may
have a large probability of being outliers. Second, we separate
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Fig. 3. Pipeline of our proposed augmentation approach. Given a scan of a point cloud, it is first divided into two different parts: ‘scene’ and ‘things’ [63]. Then
Instance Aug Module (IAM) takes the instances as input, the augmented instances are input into the prior-based Location Sampling (PLSM) module and then they
are placed in the sampled locations on the road area. Next, the augmented instances and the scene are combined to form a new scan with more instances. Finally,
the new scan is input into the Scene Aug Module (SAM) to obtain the final augmented result. The augmented point clouds are taken as input for model training.

Fig. 4. Visualization of augmented instances.

the points of the road by the ground-truth label and project the
points to a predefined Bird’s eye view(BEV) map following the
approach in Pointpillar [64]. Depending on whether the grid
of maps has points or not, the grids were classified into two
different states: valid and empty, which are represented by “1”
and “0” respectively. Third, an erosion operation is performed
on the BEV map. Without the erosion operation, the sampled
locations will be mainly distributed at the boundaries of the
road. We refer to this as boundary effects, which are obviously
not appropriate in the real-world scenario. Finally, the Farthest
Point Sampling (FPS) is adopted for generating more uniform
distributed locations for instance to be pasted.

3) Scene Augmentation: The scene augmentation procedure
is more simple and straightforward compared to instance aug-
mentation. Specifically, we first paste the instances generated
from IAM at the sampled location on the scene. Then the whole
point clouds can be processed according to the (4) but with
different parameter settings {fx, fy , fz , βx, βy , βz , αx, αy ,
αz}. We summarize the overall semantic segmentation training

procedure with our proposed smooth deformation augmentation
approach in Algorithm 1. Note that our method operates only
on the model input data, allowing for seamless integration into
the training process of current segmentation models.

IV. EXPERIMENTS

A. Dataset and Metrics

Dataset: We evaluate our proposed nonrigid augmentation ap-
proach over two LiDAR datasets of driving scenes that have been
widely adopted for benchmarking in semantic segmentation.
The first is SemanticKITTI [2], which is a large-scale dataset
for semantic scene understanding using LiDAR sequences. It
is based on the KITTI Vision Benchmark and has a dense
semantic annotation for the entire KITTI Odometry Benchmark.
It has a total of 43,551 scans sampled from 22 sequences and
collected in different cities in Germany. In the dataset, over
21,000 are available for training (sequences 00 to 10), the rest
(sequences 11 to 21) are used as the test set, and sequence
08 is often used as the validation set. It has 19 classes for
training and evaluation, and the details of each class are listed
in Table I. The second is nuScenes-lidarseg [31], which has
40,000 scans captured in a total of 1000 scenes of 20 s duration.
It is collected with a 32 beams LiDAR sensor and is sampled at
20 Hz. The dataset was split into training and validation sets of-
ficially. After similar classes were merged and rare classes were
removed, there remained 16 classes for the LiDAR semantic
segmentation.
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Algorithm 1: Semantic Segmentation Model Training Pro-
cedure With Our Proposed Augmentation Approach.

Require:
1: Dataset D: LiDAR points, semantic label, and

panoptic label: P , YS , YP ;
2: Deformation augmentation operation F(, ), Parameter

space Θ1,Θ2 for scene augmentation and instance
augmentation respectively. Max augmented times for
each instance n;

3: Initialized Segmentation Model Minit;
4: Maximum training iteration MAXiter.
Ensure: Trained Model Mtrained.
5: while iter < MAXiter do
6: Sample batch of D: B ∼ D, B = {P0, . . ., Plen(B)};
7: Augmentation results: Raug = ∅
8: for P in B do
9: Separate each scan P into scene PS and instances

PI with ground-truth label YS ;
10: Divide PI into separated instance:

Instance = {I1, I2, . . ., In} with
ground-truth label YP ;

11: // For instance augmentation //
12: Initialize instance bank IB = ∅
13: for inst in Instance do
14: Sampling augmentation times K in [0, n];
15: for k in range(K) do
16: Sampling parameters θ1 in Θ1:
17: instaug = F(inst, θ1, centering = True)
18: IB.append(instaug)
19: end for
20: end for
21: // For prior-based FPS //
22: Separate points of road Pr with label YS ;
23: Farthest Sampling length(IB) points:
24: {p1, p2, . . ., plength(IB)} = Prior-based FPS(Pr)
25: for i in range(length(IB)) do
26: Paste instance IB[i] at pi on scene PS ;
27: end for
28: // For scene augmentation //
29: Sampling augmentation parameters θ2 in Θ2:

sceneaug = F(PS , θ2, centering =
False) Raug .append(sceneaug)

30: end for
31: Input Raug to model and obtain the predictions;
32: Back-propagate and update parameters of the model;
33: iter = iter + 1;
34: end while
35: Return the trained model Mtrained.

Evaluation Metric: To evaluate our proposed method, we
follow the official guidance to leverage means intersection over-
union (mIoU) as the evaluation metric as defined in [2]. The
evaluation metric be formulated as:

IoUc =
TPc

TPc + FPc + FNc
, (5)

whereTPc,FPc, andFNc represent true positive, false positive,
and false negative of class c respectively. The final mIoU is the
mean value of IoU over all classes in the dataset.

B. Implementation Details

In our experiments, we adopt the cosine function as the
augmentation function φ(.). This function aptly aligns with the
characteristics delineated in our analysis. For the {x → y′ − y},
{y → x′ − x}, and {r → z′ − z} mapping, the wavelength
1/fx, 1/fy , and 1/fz of the cosine function is randomly sampled
from a uniform distribution within the interval [1/10π, 1/30π],
the phase of the cosine function is randomly sampled from a
uniform distribution within the interval [0, π], and amplitude of
the function is randomly sampled from a uniform distribution
within the interval [0, 1] and [0, 10] for the instance and scene,
respectively. The max augmented times n for each instance are
set to 4 in all our experiments. For the ROI crop operation in
the prior-based location sampling module, we randomly select
an ROI area with size 70 m × 70 m from the predefined range
[−50 m, 50 m] in the training stage.

C. Experimental Results

We evaluate our proposed augmentation approach over Se-
manticKITTI [2] and nuScenes-lidarseg [31] datasets across
MinkNet [54], SPVCNN [55], PolarNet [52] and Cylin-
der3D [56] baselines. We choose MinkNet and SPVCNN as they
are also adopted in other augmentation methods, which allows us
to make a more comprehensive and fair comparison. In addition,
we further chose PolarNet and Cylinder3D to further prove the
effectiveness and generalization of our proposed approach. To
clarify the definition, we use CGA to represent conventional
global augmentation which includes random scaling and random
rotation.

For the MinkNet and SPVCNN baselines on the Se-
manticKITTI val set, the evaluation results are shown in Table I.
It can be seen that a significant improvement can be achieved
with our approach, which suppresses the baseline by 12.0% and
10.7% mIoU respectively, and suppresses the PolarMix method
by 2.9% and 2.2% respectively. For the comparison results on
the SemanticKITTI test set, as the annotations of test data are
not available, predicted segmentation results are submitted to
the online server for a fair evaluation to prevent overfitting to
the test set. The result is shown in Table II. We can see that our
approach achieves clear performance gain compared with the
PolarMix [1]. We suppress the Polarmix by 2.1% and 1.1% on
the MinkNet and SPVCNN baseline, respectively.

We also conduct experiments with the PolarNet [52] and
Cylinder3D [56] baselines on both the SemanticKITTI val and
test set to demonstrate the effectiveness and generalization of
our approach, and the results is shown in Table III. Better
performance is also achieved over the two different baselines.
Specifically, we suppress the PolarNet and Cylinder3D baselines
by 5.3% and 4.9% on the SemanticKITTI val set. Compared
with PolarMix, we achieved an additional performance gain of
1.4% and 2.2%, respectively. On the SemanticKITTI test set,
we suppress the baseline by 1.9% and 1.9%. Compared with
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TABLE I
QUANTITATIVE COMPARISON OF MINKNET [54] AND SPVCNN [55] TRAINED WITH THE PROPOSED AUGMENTATION APPROACH AND OTHER METHODS

TABLE II
QUANTITATIVE COMPARISON OF MINKNET [54] AND SPVCNN [55] TRAINED WITH THE PROPOSED AUGMENTATION APPROACH AND OTHER METHODS

TABLE III
QUANTITATIVE COMPARISON OF POLARNET [52] AND CYLINDER3D [56] TRAINED WITH THE PROPOSED AUGMENTATION APPROACH AND OTHER METHODS

PolarMix, we attained an additional performance gain of 0.7%
and 1.3%, respectively.

To further demonstrate the generalization of our method, we
further conduct experiments with the MinkNet and SPVCNN
baselines on the nuScenes-lidarseg dataset, the evaluation results
are shown in Table IV. It can be seen that our approach achieves
obvious improvements over the two different baseline models.
We suppress the baseline model by 6.2% and 5.1% mIoU,

respectively. Compared with the PolarMix, we achieve a 1.3%
performance gain on the MinkNet baseline and suppress the
PolarMix by 1.4% on the SPVCNN baseline.

In addition, Table IV compares computational costs and prac-
tical inference times across augmentation methods. For FLOPs,
we assume 100,000 points per scan, ignoring instance operations
due to their small contribution. We conducted inference exper-
iments on an Intel(R) Core(TM) i5-12500H @ 2.50 GHz CPU,
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TABLE IV
QUANTITATIVE COMPARISON OF MINKNET [54] AND SPVCNN [55] TRAINED

WITH THE PROPOSED AUGMENTATION APPROACH AND OTHER METHODS ON

THE NUSCENES VALIDATION SET

TABLE V
QUANTITATIVE COMPARISON OF TWO MAIN CATEGORIES: INSTANCE AND

SCENE

running each method 100 times and averaging. Our method
consumes more computational resources and CPU time than
others to generate augmented samples. However, in training, we
experimentally found negligible differences in speed between
the augmentation methods.

Taking the experimental results analysis one step further, we
categorize the mIoU performance into two main categories [2]:
the Instance mIoU and the Scene mIoU. Here, we aim to compare
the effectiveness of different methods on scene and instance
levels, as both our approach and the PolarMix contain two
main components: scene-level augmentation and instance-level
augmentation. Results of the analysis are shown in Table V.
It can be seen that we achieve significant improvements on the
instance level as we have more specific designs for instance aug-
mentation (IAM and PLSM) compared with scene augmentation
(only scene deformation augmentation is adopted), but we still
achieve competitive results for the Scene mIoU. Specifically, for
the MinkNet and SPVCNN baseline, compared with PolarMix,
the performance improvements on the Instance mIoU remains
significant, with 7.1% and 6.1% improvements on the val set, and
5.2% and 2.5% improvements on the test set respectively. For
the mIoU of scene, our advantages over Polarmix become less
obvious or even slightly worse as our augmentation operation
for the scene is relatively simple, but we still achieve obvious
performance improvements over the baseline model, 1.8% and
1.2% improvements compared with the MinkNet and SPVCNN
baseline. For the PolarNet baseline, we achieve a consistent and

TABLE VI
QUANTITATIVE COMPARISON BETWEEN CDA, POINTWOLF [17] AND OUR

SMOOTH DEFORMATION AUGMENTATION APPROACH FOR THE INSTANCE

AUGMENTATION OPERATION IN THE IAM

significant performance improvement on both the val and test
set, suppress the PolarMix method by 3.3% instance mIoU and
0.7% scene mIoU on the val set, and improve the performance
by 3.1% instance mIoU and 1.6% scene mIoU on the test set.
For the Cylinder3D baseline method, we are slightly worse than
the PolarMix by 0.5% instance mIoU on the val set, but suppress
PolarMix by 2% scene mIoU. On the test set, we suppress the
PolarMix method by 1.9% instance mIoU and 0.9% scene mIoU,
respectively. The above experimental results demonstrate that
our method holds advantages over the PolarMix in both instance
and scene aspects, and also prove the effectiveness of the IAM,
PLSM, and SAM modules we designed.

As for object-level augmentation used in the Instance Aug-
mentation Module (IAM), we conduct experiments and make
comparisons with other popular augmentation methods for in-
stance including Conventional Data Augmentation (CDA) and
POINTWOLF [17], where CDA including rotation, flipping,
scaling, and point-wise jittering as in [65]. For a fair comparison,
we simply replace the method used in our article for instance
augmentation with the above methods. The experimental results
are shown in Table VI. It can be seen that our method has
a slight advantage compared to methods tailored for object
augmentation.

D. Analysis

Here, we give a more in-depth analysis of why our approach
can deliver such promising performance improvement. The
overall improvement in performance comes from two aspects:
the performance improvement of instance classes and the per-
formance improvement of scene classes. Correspondingly, our
method can be divided into two parts: augmentation of the scene
and augmentation of the instance.

Firstly, for the scene part, our method considers smooth de-
formations – a non-rigid point cloud transformation that has not
been fully utilized in other augmentation techniques. However,
such deformation transformations commonly exist in reality, like
curved roads. Unlike other augmentation methods employing
only rigid transformations, our smooth deformation augmenta-
tion preserves the continuity and topological structure of point
clouds while simultaneously altering the 3D representations
during training. We believe this critically enhances the model’s
generalization ability to diverse scenarios by encouraging better
learning and utilization of structural information for semantic
prediction. Furthermore, experimental results in Table V clearly
demonstrate significant improvements in scene segmentation
performance with our technique.

Regarding the instance part, two primary factors limit in-
stance segmentation performance: data imbalance and lack of
diversity. Compared to scene classes spanning hundreds of
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Fig. 5. Visualization of the spatial distribution of features for both instances and scenes before and after deformation augmentation. The first row shows the point
cloud before and after augmentation. The second row shows t-SNE visualization of corresponding point cloud features. Green and blue represent results from the
baseline and proposed model, respectively. Solid shapes indicate models take point clouds after augmentation as input, while hollow shapes indicate models take
point clouds before augmentation as input.

Fig. 6. Sensitivity analysis on the augmentation frequency parameters f∗
(left) and amplitude parameters a∗ (right) in 4. For convenience, the default
parameter settings in Section IV-B are used as the baseline (1×). Experiments
are then conducted by scaling the default settings by factors of 0.25, 0.5 and 2,
respectively.

thousands of points, instance point clouds typically contain only
hundreds or thousands of points. Many existing augmentation
methods solely apply global transformations without consid-
ering instance-level augmentations, resulting in poor instance
segmentation performance. To address these factors, we pro-
pose tailored solutions. Firstly, to mitigate data imbalance, we
develop an improved instance copy-paste algorithm with prior
location selection. Unlike original copy-paste randomly pasting
instances scene-wide, we incorporate constraints on viable past-
ing locations to mimic realistic scenarios better. For instance,
pedestrians and vehicles generally occupy roads; thus, we limit
pasting to road areas. However, roads provide limited space, so
random pasting risks instance conflicts. To resolve this, we apply
farthest point sampling (FPS) of road point clouds and pasting
instances across the distributed FPS locations, nearly elimi-
nating inter-instance conflicts. Secondly, to improve instance
diversity, we apply non-rigid smooth deformations, which can
demonstrably enhance model generalization [17]. As Table VI
shows, our smooth deformation instance augmentations further
improve model performance.

TABLE VII
ABLATION STUDY OF EACH COMPONENT IN OUR PROPOSED APPROACH ON

THE FINAL PERFORMANCE OF THE SPVCNN MODEL ON THE

SEMANTICKITTI VALIDATION SET

E. Ablation Study

To verify the effectiveness of each component, we conduct
ablation studies of the SPVCNN model on the SemanticKITTI
validation set. The experimental results are shown in Table VII.
We can see that only the scene augmentation can obtain a 5.8%
mIoU improvement, and with the copy-paste instance augmen-
tation, the performance can be improved by 2% mIoU. Together
with our instance deformation augmentation, the performance
can be further improved by 1.5% mIoU. When the copy-pasted
instance augmentation operation is replaced with our prior-based
location sampling module, the performance can obtain another
1.2% mIoU improvement. All the above results demonstrate the
effectiveness of each component of our proposed approach.

F. Sensitivity Analysis

We further conduct a sensitivity analysis for the frequency
parameters fx, fy, fz , and amplitude parameters αx, αy, αz in
(4), as these are the very crucial parameter for our proposed
approach. For simplicity, in the experiments, we performed
scaling by multiples based on the default experimental parameter
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Fig. 7. Visualization of some augmented scenes. For each scene, we show five different augmentation results generated from different parameters. The first three
columns mainly show the augmentation on the x-y plane, while the latter two columns mainly show the augmentation along the z direction. It can be seen that our
method can generate a large number of samples with extensive diversity.

settings as mentioned in Section IV-B. The experiment results
are shown in Fig. 6.

In the experiments, we have established four distinct sets
of coefficients for the sensitivity analysis, 0.25×, 0.5×, 1×,
and 2×, respectively. Notably, the performance for both the
frequency parameters f∗ and amplitude parameters a∗ slightly
declined on both the left and right of 1×, which is also the
default parameter setting chosen for our experiments. The best
performance is always obtained at 1× location.

G. Visualization

To demonstrate the model’s capability in responding to scene
changes after training with our approach, we visualize changes
in feature representations for point clouds before and after
augmentation for both instance and scene classes, and also make
comparisons with the baseline model. Notably, for the road class,
we employ the erosion operation mentioned in Section III-B2,
removing boundary areas since features are easily affected by
surroundings in these areas. The results are shown in Fig. 5. It can
be seen that after training with our augmentation approach, the
extracted features exhibit better consistency despite structural
changes in objects and scenes. We believe that the consistency

of feature representation is crucial for achieving robustness
segmentation results in real-world scenarios.

In addition, to provide a more intuitive understanding of our
augmentation approach, we visualize different scenes before and
after augmentation in Fig. 7. We show five augmentation results
for each scene generated from different augmentation parame-
ters. The first three columns mainly show the augmentation in
the x− y plane, while the last two columns show z-direction
augmentation. The results demonstrate that our approach can
generate a wide variety of samples, which will be highly bene-
ficial for model learning.

Finally, Fig. 8 visualizes segmentation results for qualitative
comparison. In the first two rows, our augmentation approach
provides correct segmentations while PolarMix incorrectly la-
bels instances. Specifically, in the first row, PolarMix incorrectly
classifies the other-vehicle as a car. In the second row, it mis-
labels the fence as a building. Notably, PolarMix inconsistently
labels classes bearing similarity, requiring precise discrimina-
tion between vehicles or man-made structures. Our augmenta-
tions enable a deeper understanding of subtle inter-class dif-
ferences, improving generalization. Both methods incorrectly
predict parts of other-ground as vegetation or terrain in the
third row – a challenging case even for humans lacking scene
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Fig. 8. Visualization of the segmentation results of different methods. The first two rows show the performance of the model trained with our approach
outperforming PolarMix, and in the third row, we present a failure case for both PolarMix and our method.

context. Further augmentation advances targeting contextual
reasoning could provide correct predictions. Overall, qualitative
results demonstrate that our augmentations produce consistently
accurate segmentations compared with PolarMix, overcoming
limitations posed by small inter-class discrepancies. However,
complex scenes warrant further augmentation to deeply under-
stand relationships and ambiguity.

V. CONCLUSION

In this work, we proposed a novel and effective augmentation
approach with smooth deformation for the LiDAR point cloud
semantic segmentation task. The overall augmentation pipeline
has two main components: scene augmentation and instance
augmentation. To simplify the selection and design of the smooth
deformation augmentation functions and make the augmentation
results more flexible and controllable, three different effective
strategies were proposed: residual mapping, spacing decoupling,
and function periodization, respectively. We also propose an
effective prior-based location sampling algorithm that aims to
paste the augmented instance on a more feasible area in the
scene. As a result, our approach can enrich the diversity of
training data and boost the performance of various baselines
consistently and significantly. Finally, we conduct extensive

experiments on both the SemanticKITTI and nuScenes chal-
lenging datasets. The experimental results demonstrate that our
method shows an obvious advantage compared to other methods.
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