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Safety-Balanced Driving-Style Aware Trajectory
Planning in Intersection Scenarios With
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Xiao Wang , Senior Member, IEEE, Ke Tang, Xingyuan Dai , Jintao Xu, Jinhao Xi , Rui Ai, Yuxiao Wang,
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Abstract—This paper proposes a two-stage trajectory planning
method for self-driving vehicles (SDVs) in intersection scenarios
with uncertain social circumstances while considering other traf-
fic participants, which are human-driving vehicles (HDVs) with
different driving styles. The mixture-of-experts approach is first
utilized to learn from human-driving trajectory data to construct
a multimodal motion planner, which uses a Transformer to model
the interactions between vehicles by explicitly considering their
driving styles to facilitate the integrated network to achieve scene-
consistent multimodal trajectory prediction and candidate trajec-
tory generation. Second, based on the generated trajectories for
the SDV and the predicted trajectories for the other HDVs, each
candidate planning trajectory is evaluated via a safety-balanced
value function. After that, the trajectory with the highest value
is selected for implementation. Such a method plans a safe and
efficient driving trajectory in complex and uncertain scenarios. The
experimental results demonstrate the efficiency and effectiveness of
the designed method as well as the robustness and reasonableness
of the SDVs’ maneuver decisions at an intersection considering the
behavioral dynamics of HDVs.

Index Terms—Autonomous vehicles, trajectory planning, social
interactions, uncertain circumstances.

I. INTRODUCTION

TRAJECTORY planning at intersections on city roads
where new participants join from time to time is one of the
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Fig. 1. The trajectory planning of SDVs will be influenced by different driving
styles and the driving intentions of surrounding HDVs.

most common but challenging tasks in daily driving [1]. Sensing
and responding to time-varying social situational changes are
critical for self-driving vehicles (SDVs) to make safe, effective,
and efficient decisions while interacting with surrounding traffic
participants. Thus, their social complexity becomes the most
challenging but crucial factor.

Learning and analyzing driving styles [2], sensing and predict-
ing new participants’ intentions, and self-maneuver-decision-
making according to situational changes are the three main
functions of an SDV when planning a trajectory through an inter-
section considering that the other participants are human-driving
vehicles (HDVs) with consistent driving styles.

Fig. 1 shows a typical left-turn trajectory planning scenario
with interference from oncoming traffic in an intersection. While
driving, the SDV’s desired turn-left trajectory planning should
also account for traffic safety and avoid congestion. Therefore,
if the driving style of the oncoming vehicle is radical with a solid
intention to go straight, as shown in Fig. 1(a), the SDV needs
to yield and slow down for collision avoidance. However, if the
driving style of the oncoming vehicle is conservative with an
intention to turn left, as shown in Fig. 1(d), the SDV directly
performs a turn left decision. Thus, learning and analyzing the
relevant participants’ driving styles are vital for SDV trajectory
planning.
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Traditional rule-based planning methods set predefined mod-
eling rules for the above-described complex situations. They
usually make reasonable planning decisions by comprehensively
considering the instant social interactions among traffic partici-
pants to guarantee a specific pass rate. However, these predefined
rules cannot cover all the possible situations in an intersection.
The constantly-occurring rule-uncovered corner cases cause
rule-based planning methods to fail all the time. In addition,
rule-based SDVs cannot transfer and share common knowledge
about different scenarios with one another. This lack of ability
to share information combined with the aforementioned con-
straints results in rule-based methods being unable to utilize the
benefits of Big Data effectively and limits their compatibility
with popular deep learning methods.

Data-driven trajectory planning methods are quite the op-
posite and can complementarily use Big Data, deep learning,
and reinforcement learning methods to address intersection
decision-making challenges. For them, enhancing scenario gen-
eralization and modeling uncertain environment are crucial for
SDVs to implement safe and rational trajectory planning for
different times and scenes. However, the state-of-the-art meth-
ods often fail to achieve the above two goals simultaneously.
Bansal et al. proposed ChauffeurNet, which learns trajectory
planning directly from expert data [3]. Although this method is
more scalable than traditional rule-based planning methods, it
does not consider the generalization of scenarios and predictions
regarding environmental uncertainty. Thus, it cannot guarantee
the safety of autonomous driving. To address environmental
uncertainty, Diehl et al. proposed the UMBRELLA model [4],
which solves the problem of prediction, planning and control
of autonomous driving by modeling uncertainty in a partially
observable environment. However, the model does not consider
the diversity of planning trajectories of autonomous vehicles and
lacks the ability of relational reasoning about the environmental
entities, resulting in poor scene generalization for planning.
Meanwhile, the single trajectory generated by the above method
has difficulty ensuring the safety of driving, and the planned
route does not necessarily meet the dynamic requirements of
the downstream controller. To address this issue, multimodal
trajectory generation considering environmental randomness
is gaining attention among researchers [5]. However, existing
multimodal trajectory planning methods tend to overlook the
impact of social factors on the environment, making it difficult
to ensure driving safety.

Parallel driving was proposed in the early 2000s to improve
the safety, smartness, sensitivity, security, sustainability and effi-
ciency of SDVs by training in a digitalized proving group [6], [7].
Recently, with the development of data-driven machine learning
methods, scholars extended the idea to virtual-real interactive
learning and testing and further proposed parallel learning [8],
[9], [10], [11] and parallel testing methods [12]. At the same
time, MIT, Waymo and Intel also noticed the importance of
pretraining in virtual space and proposed parallel autonomy [13],
data closed-loop platforms [3] and lane-changing models [14],
respectively, which verified the effectiveness and recognition of
parallel driving.

Our work builds on the research ideas regarding parallel
driving and aims to design a parallel reasoning architecture and

develop new methods for safe and efficient trajectory planning.
We propose a two-stage trajectory planning method for SDVs in
intersection scenarios with uncertain social interactions among
other traffic participants. Driving style and intention uncertainty
are considered to achieve better scenario generalization perfor-
mance while guaranteeing driving safety. Specifically, we learn
from expert-driving trajectory data and construct a mixture-of-
experts (MoE) [5], [45] multimodal trajectory generator that
is similar to the architecture described in [5]. A Transformer
[15] is used to capture vehicles’ interaction behaviors, and a
driving-style aware module is incorporated with the network to
implement scenario-consistent multimodal trajectory prediction
and planning. Second, a safety verification module is designed
to evaluate the candidate planning trajectory obtained during the
first stage; then, the trajectory with the highest safety score is
selected for the downstream controllers.

Trajectory planning at intersections on city roads where new
participants continually join has been one of the most common
but challenging tasks for SDVs. To this end, we focused on
the social complexity of driving in intersections and proposed a
safety-balanced driving-style-aware trajectory planning method.
The main contributions of this work include the following:

1) A two-stage autonomous driving trajectory planning
method is designed, and the method improves the safety,
rationality, and robustness of self-driving strategies.

2) A candidate trajectory generation method that considers
the driving styles and driving intentions of surrounding
vehicles is proposed. The method improves an SDV’s
ability to predict the multimodal trajectory of surrounding
vehicles and thus helps SDVs generate safe and inter-
pretable trajectories in interaction scenarios.

3) A safety verification mechanism based on candidate tra-
jectory prediction is proposed to balance the safety and
efficiency of the planned trajectory in response to the
surrounding uncertain vehicle behaviors.

4) The experimental results demonstrate that the designed
method plans safe and efficient trajectories in intersections
with uncertain environments by explicitly considering the
driving style of the surrounding vehicles.

The remainder of this paper is organized as follows. Section II
presents the related works. Section III introduces the method-
ology of the proposed two-stage planning method. Section IV
illustrates how the proposed method is implemented, verified
and evaluated and elaborates on the results and explanations of
the experiments. Section V concludes the work in this paper
and presents our perspective on the development of trajectory
planning in SDVs.

II. RELATED WORK

Autonomous vehicles must negotiate with other traffic partic-
ipants regarding the right to use the road while driving to achieve
their goals of safe and efficient driving in complex social traffic
scenarios [59]. The safe path planning of SDVs in such complex
situations can be formulated by predicting and analyzing the
driving styles and intentions of others and making appropriate
in-time maneuvering decisions. The main functions include (1)
learning and predicting the driving styles and intentions of other
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traffic participants with mobility capabilities; (2) generating
feasible multimodal paths based on road traffic conditions and
the styles and intentions of potentially conflicting vehicles; (3)
performing safety verification on the generated paths; and (4)
selecting the safety-balanced optimal driving path.

A. Driving Style Recognition

Driving style refers to how a driver maneuvers in different
driving scenarios under different external factors, such as time
and weather [2]. Due to the social complexity of traffic situations
and uncertainty about the drivers’ states, they may exhibit dif-
ferent driving styles even in the same scenario. Predicting their
driving style helps improve the safety and efficiency of SDV
trajectory planning.

The current related algorithms are mainly classified into
rule-based, model-based, and machine learning-based methods.
Early rule-based approaches use a priori knowledge and manage
a limited number of variables and data to classify driving styles.
Model-based approaches use a set of predefined feature equa-
tions to describe driving styles by adjusting parameters to fit the
driving style data [16], [17], [18]. These methods can have a
high recognition ability in terms of driving styles, but it is more
complicated for the model’s design.

Machine learning-based methods can be specifically subdi-
vided into three categories: (1) unsupervised training methods
that statistically analyze the data with input features to achieve
classification [19], [20]; (2) supervised training methods such
as the K-nearest neighbors (KNN), neural networks, decision
trees, random forest, and Markov models [21], [22], [23], [24],
which use known sample features and corresponding styles for
training; and (3) unsupervised and supervised hybrid methods
that combine the advantages of both to improve the overall
driving style recognition performance; one example involves
combining K-means and the support vector machine (SVM)
[25]. The unsupervised training method has a wide range of
applications, but the output lacks interpretability; the supervised
training method has fewer model parameters and is easy to
understand, but the model’s accuracy could be more satisfactory.
The combination of unsupervised and supervised methods can
make use of the advantages of both to improve the overall driving
style recognition performance.

B. Driving Intention Inference

Driving intention inference refers to reasoning about the
actions of surrounding vehicles over time in the upcoming time
step [26]. Different vehicles in the same scenario have different
driving intentions and generate different driving trajectories.
Accurately inferring other traffic participants’ intentions helps
SDVs plan proper and safe paths.

Driving intention inference methods include probability-
based methods and learning-based methods [27]. Probability-
based methods model vehicle behavior through dynamics and
kinetic functions, and model uncertainty through normal distri-
butions. Learning-based methods infer driving intentions mainly
through data-driven vehicle state information regarding the
environment. Zyner et al. [28] used long short-term memory
networks to identify vehicle intentions at intersections. Lee et

al. [29] proposed using convolutional neural networks (CNNs)
to predict and infer traffic participants’ lane-changing intentions
and improve safety and ride comfort through model predictive
control. Ding et al. [30] proposed a driving intention prediction
method for highway scenes that predicts vehicle intentions by
considering vehicles’ interaction behavior. The disadvantage of
the above research is that it is difficult to use driver behavior data
effectively and to fully consider the impact of driving style on
driving intention. This paper develops a data-driven trajectory
planning method to infer intention by considering the driver’s
style and predicting a reasonable driving trajectory.

C. Data-Driven Trajectory Prediction

In recent years, researchers have focused on autonomous driv-
ing trajectory prediction tasks based on deep learning models
due to the increasing complexity of datasets in terms of volume
and content [57]. Based on data-driven approaches, a large
amount of data can be used to train the model. Most of these
approaches consist of an encoder-decoder architecture. Early
CNN-based [31] and recurrent neural network (RNN)-based
[32] methods extract spatial features and time series information
by using a bird’s-eye view and historical trajectories, respec-
tively. However, such methods encounter scene information loss
and long-distance dependence problems. More importantly, the
interaction information between vehicles is missed. Although
graph neural networks [33] have been used in later studies to
model interaction information by vectorization, these models
are “black boxes” and have poor model interpretability and uni-
modal prediction trajectories. To solve the above problems, the
generative adversarial network (GAN) is used to model the un-
certainty of environmental information and generate multimodal
prediction trajectories [34]. However, the GAN-based approach
suffers from the problem of pattern collapse [35], which causes
the training model to collapse and prevents it from converging.
In addition, the Social-GAN model ignores the driving style and
intention changes of surrounding vehicles, which is inconsistent
with reality. To solve this problem, the leader-follower game
controller model [36] uses a game-theoretic approach to model
the driving style and intention classification of surrounding
vehicles. The attention-based mechanism approach [37] is a
popular strategy that has recently attracted the attention of
researchers. This approach can quickly focus on high-value
factors, especially the Transformer method [38], which has
been adopted from the natural language processing field to
autonomous driving. The model can generate highly accurate
multimodal trajectories. In this paper, we use a data-driven
planning approach and use a bird’s-eye view semantic map as
input, which consists of a high-definition (HD) map and agents.
To account for the uncertainty of HDV driving behavior, the
interactions between vehicles are modeled by a Transformer, and
the driving style of the HDVs is explicitly modeled. The decoder
outputs a multimodal predictive trajectory based on driving style
with safety-sensitivity and interpretability.

D. Safety-Sensitive Trajectory Planning

As one of the core modules of the autonomous driving system,
the trajectory planning module is used to receive environmental
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information input from the sensing module and output the trajec-
tory for the downstream control module. The trajectory planning
module first predicts the future trajectory using environmental
and interaction information and generates a safe and inter-
pretable planning trajectory based on the generated multimodal
trajectory. Reasonable path planning is the key to achieving safe
autonomous driving. This paper divides the trajectory planning
task into data-driven unimodal and safety-sensitive multimodal
trajectory planning.

The data-driven unimodal trajectory planning approach is
mainly based on imitation learning, where driving strategies are
learned from expert data. Early trajectory planning based on
imitation learning used behavioral cloning (BC) [4]. However,
BC relies on expert data, experiences cascading errors and
suffers from low safety in unknown scenarios. Although the
data aggregation method solves the problem of cascading errors,
the human cost increases. In a subsequent study, the generative
adversarial imitation learning (GAIL) model was proposed to
solve the cascade error problem in the BC model [39]. GAIL
consists of a generator and a discriminator. The generator is
trained to generate expert samples, and the discriminator is
trained to generate samples that are distinguishable from ac-
tual samples. These data-driven approaches focus on apply-
ing sequential decision-making techniques to simulate human
drivers. This reward-based learning model avoids the drawbacks
of short-sighted behavioral choices in the behavioral cloning
approaches. GAIL can generate long-term trajectories that are
immune to cascading errors. Kuefler et al. applied GAIL to a
highway driving scenario [40]. However, the above approach
does not consider driving style and driving intentions, which
are the main factors that constitute uncertainty. ChauffeurNet
[3] takes a bird’s-eye view as input and extracts environmental
information. A mixture of actual and simulated data is used
to train the model. The output predicted trajectory is used as
expert data to learn recovery after drifting and avoid dangerous
behaviors such as collision, swaying, and lane departure by
combining the behavioral changes of experts. UMBRELLA [4]
jointly solves the prediction, planning and control problems of
SDVs in an interpretable learning manner. This method trains
the model from offline data through a model-based method while
considering the partial observability of the environment and
uncertainty.

The data-driven multimodal trajectory planning approaches
incorporate the influence of the SDV on other agents dur-
ing the planning process. A representative study first pre-
dicted the trajectories of surrounding vehicles, generated mul-
timodal trajectory candidates, and then selected the final tra-
jectory via rule-based metrics [5]. Although the data-driven
works have high-precision inference for planning, they have
not considered the influence of the road agent’s driving style.
Therefore, it is difficult to ensure the rationality and con-
sistency of trajectory planning. In this paper, we design
a driving-style-aware multimodal planning method and pro-
pose a safety assessment link based on safety-sensitivity as
a trajectory selection method to achieve safe and efficient
planning.

III. METHODOLOGY

This section first describes the trajectory planning problem
under the interaction between SDVs and HDVs. Then, we
propose a two-stage trajectory planning method that contains
driving-style-aware candidate trajectory generation and safety-
verification-based trajectory selection. The proposed method
learns the driving behavior of human drivers in the interaction
scenario by explicitly modeling the uncertainty of driving styles
and the intentions of surrounding HDVs to generate reasonable
driving trajectories. Moreover, we perform safety verification
on the candidate trajectories to improve the driving feasibility
of SDVs in complex interaction scenarios.

A. Problem Formulation

Guided by a predefined route, the trajectory planner accounts
for the multiobjective requirements of the vehicle and the cor-
responding dynamics constraints and outputs the optimal exe-
cutable trajectory. We formulate the driving scenario consisting
of SDVs and different numbers of interactive traffic participants
as a discrete-time system in continuous space [41]. The SDV
is denoted as A0, and other traffic participants (i.e., HDVs) are
denoted as A1, . . . , AN . It should be noted that the other traffic
participants can be vehicles, bicycles, or pedestrians, which the
agent displays. The state of agent i at time t is denoted as sit,
and the corresponding trajectory is τ it . Apart from the agents,
the scenario context, including a vectorized HD map with traffic
signals, is also considered. The context is represented as Mt. At
time t, given the historical state Xt = s0:Nt−H:t of the SDV and
the HDVs from the previous H steps and with the scene context
Mt, the goal of trajectory planning is to learn a planner function
that generates the future trajectory of the SDV

τ0t+T = f(Xt,Mt), (1)

while ensuring that the trajectory meets the requirements of
safety and efficiency.

B. Model Framework

In the interaction scenario, the uncertainty of the driving
behavior of surrounding agents causes SDV safe planning diffi-
culties. If the SDV intends to plan a safe trajectory, it needs to
accurately predict the movements of other vehicles, which are
influenced by their drivers’ driving styles and driving intentions.
Meanwhile, the surrounding vehicle motions will also be influ-
enced by the future trajectory of the SDV. Therefore, the SDV
needs to fully consider the environmental uncertainty caused
by these factors to ensure safe and efficient planning behavior.
To address the difficulty of planning in intersection scenarios
with uncertainties and complex social interactions, we propose
a two-stage trajectory planning method that contains candidate
trajectory generation based on HDV driving style recognition,
driving intention judgment, and trajectory selection based on
safety verification.

The model architecture is shown in Fig. 2. First, we construct
a multimodal joint prediction and planning module considering
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Fig. 2. Framework of the two-stage safety-balanced driving-style-aware trajectory planner.

vehicle driving style during the candidate trajectory generation
stage. The module accepts the bird’s-eye view semantic graph as
input, which includes an HD map and other vehicle agents. The
vehicle interaction is encoded through a Transformer. Mean-
while, the driving styles of the surrounding HDVs are explicitly
modeled, and the predicted likelihood of the vehicle driving style
is used as a conditional constraint to assist the trajectory decod-
ing network in achieving interaction-aware joint prediction and
planning. The process produces candidate trajectories for the
SDV. During the trajectory selection stage, the safety-sensitive
trajectory evaluation function scores each candidate trajectory
based on the predicted trajectories of the other vehicles in the first
stage as well as other road information. Finally, the trajectory
with the safest score is selected for controller execution. We
detail the two stages in Sections III-C and III-D.

C. Driving Style-Aware Joint Prediction and Planning

This subsection introduces the proposed joint prediction and
planning module considering the HDV driving styles. We first
present the inputs and outputs of the module. Then, we design the
network structure, and finally, we propose the training method
and optimization objectives.

1) Input and Output Representation: The joint prediction
and planning network generates both SDV multimodal trajectory
candidates and surrounding HDV multimodal predictive trajec-
tories based on the currently observed vectorized bird’s-eye view
states. The specific representations of its input and output are as
follows:

Inspired by recent vectorization representation methods [5],
[42], we describe the driving scenario in vector form, and the
following data are used as inputs to the joint prediction and
planning network: The input contains dynamic entities, static
entities, and extra information. The dynamic entities include the
SDV’s current and past poses, which include the coordinates and
yaw angles of the last H steps and the HDV’s current and past
poses and their types. The static entities include a static HD map
with lanes, pedestrian crossings, intersections, and traffic light

states. The extra information includes routes that indicate the
middle lanes that the SDVs should follow. Each input element is
encoded as a reference frame centered on the SDV and contains
the element type as an additional feature.

The model’s output consists of three components: multimodal
trajectory planning, driving style recognition and multimodal
trajectory prediction for the surrounding vehicles.

The trajectory planning output consists of K future SDV tra-
jectories and the corresponding probability distributions. Each
SDV trajectory is defined as a set of T discrete states

τ it = {xi
t, y

i
t, θ

i
t}, (2)

where t is the time step in the [1, T ] interval, and x, y, θ denotes
the horizontal and vertical coordinates and yaw of the vehicle
midpoint relative to the current moment, respectively. These
values constitute the vehicle pose. The probability distribution
pk = p(τk|Xt,Mt) is defined as the likelihood of the K SDV
trajectories given the current state; this likelihood is calculated
from the human driving trajectory data and used to model the
uncertain driving behavior of human experts in the current state.
The computation of the multimodal planning trajectories with
the corresponding trajectory probability likelihoods is presented
in Section III-C-3.

The driving style identification output labels the instantaneous
driving styles of the N HDVs in the scene. Each HDV’s pre-
dicted driving style output is represented as a three-dimensional
one-hot encoding, corresponding to radical, moderate, and con-
servative driving styles.

The model’s trajectory prediction output contains the future
trajectories of surrounding agents and a probability distribution
that is used to evaluate the likelihood that each agent follows the
K possible future trajectories. Similar to the planning output, the
predicted trajectories of each agent are defined as a discrete set
of states

τnt = {xn
t , y

n
t , θ

n
t }. (3)
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Each probability distribution qn, n = 1, . . . , N is defined
as K possible future trajectories of agent n. This probability
distribution is used to select the most likely trajectories.

2) Model Architecture: The architecture of the joint predic-
tion and planning model based on driving styles is shown in
Fig. 2. The overall architecture of each module is constructed
using neural networks, and the backbone network design is
similar to [5]. The main difference in our network lies in the
intermediate layer, which recognizes the driving style of the
surrounding vehicles. The designed network, which employs
end-to-end joint training, ensures that our network effectively
models the diversity of driving styles and the intentions of
vehicles in the intersection scenario. The model can better char-
acterize the intersection state and help the planner to generate
safe and efficient trajectories.

The overall network can be divided into the encoder and the
decoder. The encoder maps the SDV-centered scene vector states
to hidden embeddings. We apply elementwise point encoders
to extract vectorized representations of the intersection state to
effectively model the static and dynamic element relationships in
the intersection scene. Specifically, we first consider the local re-
lationships of each entity in the scene and encode the state of each
vectorized entity (e.g., static map and agents) in the input scene
separately. The point features in each entity state are embedded
with the same length by multilayer perceptrons (MLPs), while
the location information of the points is encoded by sinusoidal
encoding. The point set of each entity embedding together with
the corresponding location encoding is fed into the 3-layer
PointNet [43], which outputs the feature encoding of each entity.
The encoding of all entities has the same dimensions. Then,
we consider the global relationship between the entities in the
scene. Based on the encoding of each entity, we perform global
feature aggregation using the DETR architecture [44], which is
an encoder-decoder Transformer. Based on the extracted local
features of the vehicles via PointNet, the Transformer, which is
equipped with self-attention modules, captures the global scene
features. The method involves encoding the relationships among
all of the input elements (SDVs, road agents, dynamic maps,
and lane lines) using the Transformer encoder and querying
the characteristics of the SDV and agents using the transformer
decoder. The query of the Transformer decoder is formed using
a set of learnable embeddings, which are created by adding the
SDV embeddings output by the PointNet network to learnable
ensembles to generate distinct queries for each of the predicted
future SDV trajectories.

The decoder in our architecture contains two modules. The
driving style decoder outputs the driving styles of the surround-
ing HDVs based on scene state encoding. The trajectory decoder
jointly outputs the predicted trajectories of the surrounding
vehicles with the trajectory candidates planned by the SDV based
on the intermediate layer features of the scene state encoding and
the driving style decoder. Specifically, the driving style decoder
consists of a scaled dot product attention layer and an MLP
layer. Its output predicts the probability of three driving styles
(radical, moderate, and conservative) for N agents. The planning
trajectory decoder and the prediction trajectory decoder share
the scaled dot product attention layer and contain separate MLP

layers, which are built on top of the shared layer, for prediction
and planning. The input to the shared layer contains the merged
embedding of the scene state encoding and the intermediate layer
output of the driving style decoder. The trajectory decoding net-
work outputs the predicted multimodal trajectories of the agents
with the multimodal planning trajectory and the corresponding
probabilistic likelihood of each trajectory.

3) Training Process and Objective Function: Inspired by [5],
we use imitation learning to train the joint predictive planning
network, and the training objective contains three components:
the distance between the predicted SDV trajectory and the
human expert trajectory, the distance between the predicted
agent trajectory and its actual future trajectory, and the distance
between the predicted agent driving style and its driving style
label. The driving style labels are obtained by clustering in the
offline dataset before the training process.

The joint prediction and planning process is represented as
an MoE model to forecast multiple trajectories for the SDV and
the surrounding agents. Additionally, the probability distribu-
tion for each trajectory set corresponding to expert selection is
obtained. To avoid the pattern collapse problem during expert
training and expert selection, we use a greedy approach in which
the maximum probability trajectory for the loss calculation is
chosen. We formulate a matching cost between the predicted
and target trajectories and probabilities so that the expert with
the lowest cost becomes the winner. The matching cost for each
SDV trajectory is calculated, and a trajectory is selected via

i∗ = argi minLi
IL + λ(1− pi), (4)

where

Li
IL =

T∑

t=1

||τ it − τ̂t||+ βLi
reg (5)

and pi is the predicted probability of trajectory τ i. Li
reg is

the trajectory smoothness regularization term. Then, the loss
is minimized

L = Li∗
IL + μLi∗

NLL, where Li∗
NLL = −log pi

∗
. (6)

The objection trades between imitation loss and multimodal
loss for trajectory planning.

The network for driving style recognition is trained in an
end-to-end manner with the prediction and planning network.
The K-means clustering algorithm [2], [46], [47], [48] is used to
generate instantaneous driving style labels based on the vehicle
trajectories. Driving style recognition consists of three steps:
generating trajectory datasets, generating velocity and acceler-
ation datasets from the trajectory datasets, and identifying the
driving style of the surrounding human drivers in each scene.
Each scene in the training set creates a dataset by capturing the
speed and acceleration of the vehicle trajectory and obtains the
driving style label through unsupervised K-means clustering.
The input to the K-means clustering consists of vector samples
representing the speed or acceleration data of each vehicle in
each scene. The obtained label of each car in the scene is encoded
into a three-dimensional one-hot embedding, representing the
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cluster’s three driving style labels: radical, moderate, and conser-
vative. Our driving style recognition model identifies the driving
styles of the surrounding vehicles based on their current and past
states, and the objective function is designed as a cross-entropy
function of the predicted driving style Ŷ i

DS and the label Y i
DS

LDS = Hc(Ŷ
i
DS , Y

i
DS), (7)

where Hc denotes the cross-entropy function.

D. Safety-Balanced Trajectory Selection

The candidate trajectories generated by the joint prediction
and planning module during the first stage are used as input for
the second stage, and the trajectory with the highest safety value
is selected for execution.

We account for the generated SDV’s multimodal trajectory
and the predicted HDVs’ trajectories when performing trajectory
selection. A collision check is performed on each future SDV tra-
jectory τ i and the predicted most likely trajectory of the HDVs.
Safety verification is performed by calculating the overlapping
area between the vehicle bounding boxes. The shortest distance
between the bounding boxes is denoted as C(τ i). Then, the
distance between the SDVs from the lane median, which is
denoted by F (τ i) , is also used to evaluate the reasonableness of
the SDV trajectory. The above two indicators are used to select
a safe and reasonable trajectory. For each candidate trajectory,
when the distance between the SDV bounding box and that of
surrounding vehicles is large and the distance between the SDV
and the centerline is small, the planned trajectory aligns with
our expected requirements. The final trajectory value function
is obtained by

V (τ i) = C(τ i)− F (τ i). (8)

The trajectory chosen based on this value function allows the
SDV to maintain a safe distance from other vehicles and follow
the lane centerline as much as possible. Thus, the approach
improves the safety of the SDV during online inference.

IV EXPERIMENTS AND EVALUATION

A. Dataset

To train and test our model, we use the Lyft motion prediction
dataset [49]. This dataset was collected from real vehicles and
contains actual driving samples from complex urban routes
in Palo Alto, California. The dataset contains a variety of
real-world driving scenarios, such as driving in multiple lanes,
turning, and vehicle interactions at intersections. The perception
system preprocesses the data to obtain the precise location of the
surrounding vehicles over time. In addition, the dataset contains
an HD map that provides the location and status of lane lines,
crosswalks and traffic lights.

B. Baseline

We compare our proposed algorithm with four strong BC-
based planner baselines.

1) Behavioral cloning with image-based scene representa-
tion (BC-I). BC-I is a standard BC planner based on

the ResNet-50 backbone. The planner’s input is an ego-
centered scene raster image without historical informa-
tion.

2) Behavioral cloning with image-based scene representation
and trajectory perturbations (BC-IP). Similar to Chauffer-
Net [3], the method adds synthetic perturbations to the ego
trajectory in the dataset during training.

3) Behavioral cloning with vector-based scene representa-
tion (BC-V). BC-V is a standard BC planner based on
the PointNet backbone. The planner’s input is the ego-
centered scene vector, which is the same as the scene
representation in this paper.

4) Behavioral cloning with vector-based scene representation
and trajectory perturbations (BC-VP). This method adds
synthetic perturbations to the ego trajectory for vector-
based scene representation.

C. Evaluation Indicator

We use the following metrics to comprehensively evaluate
the planner performance. These metrics reflect imitation perfor-
mance and safety. It should be noted that the first four metrics
are for closed-loop tests; the last two are for open-loop tests.

1) Collision: Collision of the SDV with any other intelligent
body, including front, rear and side collisions with the
SDV.

2) L2: L2 displacement error in meters from the base expert
position in the driving log.

3) Off-road events: This event is triggered if the lateral dis-
tance between the planned trajectory and the reference
trajectory is more than 2 m. The metric reflects that the
vehicle is running off roads or into the opposite lanes.

4) Interventions: This composite metric evaluates safety fail-
ures by considering collisions and off-road events.

5) ADE: The average displacement error for the planning
trajectory.

6) FDE: The final displacement error for the planning
trajectory.

D. Experimental Results

We performed closed-loop and open-loop tests to evaluate
the model’s performance. During the closed-loop test, we val-
idated the safety of the proposed two-stage trajectory planning
approach. During the open-loop test, we focused on the distance
between the planned and actual human driving trajectories.

1) Closed-Loop Test: We compare the planning performance
of the proposed model with the four BC planning benchmarks
through closed-loop tests. The experimental results in 1000
scenarios show that the proposed method has a lower colli-
sion rate than all baselines. In the 1000 scenarios, our method
resulted in a total of 62 collisions, which is the lowest for
all compared planners. This result indicates that the proposed
two-stage method is more safety-sensitive during the planning
process. In addition, the trajectories planned by our model are
more reasonable. Our planner’s number of off-road events is the
lowest for all compared planners.
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Fig. 3. Visualization of the closed-loop test in a complex intersection with uncertainty.

TABLE I
PLANNING METRICS FOR BASELINES AND OUR METHOD ON THE

CLOSED-LOOP TEST

We find that perturbation is an important technique for ad-
dressing the covariance shift problem [3] in closed-loop tests.
Specifically, BC planners with trajectory perturbations, such as
BC-IP, BC-VP, and our proposed method, all show improved
planning performance in terms of safety and reasonableness
compared to BC planners without trajectory perturbations, such
as BC-I and BC-V. Our results show that using trajectory per-
turbation as a data augmentation method during training can
significantly reduce the mismatch between the training and
inference-time distributions, improving the generalization of
the planner in closed-loop tests. This conclusion holds for both
image-based and vector-based planners.

To further validate the reasonableness of our proposed plan-
ner, we visualize the planning behavior of the proposed method
with the benchmark method for a complex interaction scenario.
As shown in Fig. 3, our method can cause the SDV in red to
stop at the intersection when it displays the red light and resume
movement when it displays the green light while maintaining a
safe distance from other vehicles and driving along the route.
The planning trajectory is close to the blue reference trajectory
of human drivers. In contrast, the vehicle based on the baseline
BC-VP planner runs the red light and hits other vehicles while
not following the routes.

TABLE II
PLANNING METRICS FOR BASELINES AND OUR METHOD ON THE

OPEN-LOOP TEST

TABLE III
PLANNING METRICS FOR ABLATION STUDY ON THE CLOSED-LOOP TEST

2) Open-Loop Test: We also evaluated the imitation per-
formance of the proposed planner and BC-VP planners using
open-loop tests. The performance metric reflects the closeness
of the planning trajectory by the BC planners to the reference
trajectory by human drivers for in-distribution scenarios. The
experimental results are shown in Table II. Our planner achieves
a lower value than the benchmark on both the ADE and FDE
metrics, indicating that our method is more capable of imitating
expert driving behavior.

3) Ablation Study: To validate the effectiveness of the dif-
ferent modules in the proposed method, we performed ablation
study using closed-loop tests. The ablation module includes
driving style recognition (DS) and safety verification (SV).

The closed-loop test results are shown in Table III. The imita-
tion and off-road event metrics indicate that, without considering
driving style, the planned vehicle trajectory greatly differs from
the actual reference trajectory. This result indicates that the
driving styles of other drivers partially influence human driving
trajectories. Therefore, considering the driving styles of the
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surrounding vehicles will help to achieve reasonable planning
for the SDV.

The safety verification module has also been proven to be
effective. The experimental results show that using safety verifi-
cation can reduce the number of collisions compared to not using
safety verification. This result demonstrates that the combination
of multimodal trajectory generation and safety verification can
maximize safety during the SDV driving process.

V. CONCLUSION

In this paper, we propose a safety-balanced two-stage trajec-
tory planning method that considers the driving styles of other
HDVs to address the difficulties of SDV trajectory planning
caused by the behavioral uncertainty of surrounding traffic
participants in intersection scenarios. The two-stage planning
approach consists of multimodal candidate trajectory generation
based on driving style and trajectory selection based on safety-
balanced verification. During the first stage, the model predicts
the future trajectory of the surrounding HDVs based on driving
style recognition and intention inference and simultaneously
generates multimodal candidate trajectories that conform to the
human driving experience of the autonomous vehicle in the inter-
action scenario. During the second stage, based on the generated
candidate trajectories and the predicted HDV trajectories, we
verify and score the trajectories with a safety value according
to the rules constructed from experience and select the safest
driving path for final execution.

In the proposed two-stage approach, the first stage learns
the driving style and intention of the HDVs to better predict
the driving behavior of HDVs and generates feasible trajectory
candidates. The second stage further improves driving safety in
complex interaction scenarios through safety verification.

In the future, we plan to integrate the proposed two-stage
approach with the cognitive world model to better generalize
SDV trajectory planning. The world model [50] can be used to
simulate the prediction of various possible traffic events during
the driving process, provide the potential to evaluate planning
behavior and ensure safe and reasonable trajectory planning
in the actual system. In addition, the world model is updated
through continuous learning based on empirical data to ensure
the cognitive alignment of the world model with the real world.
In this way, we will integrate parallel planning with parallel
vision [51] and parallel control [52], [56] to guarantee safe and
efficient autonomous driving in complex road environments. We
think parallel driving and parallel testing can be incorporated as
a closed-loop system and promote autonomous driving to the 6S
world, which is safe in the physical world, secure in the cyber
world, sustainable in the ecological world, sensitive to individual
needs, services for all, and smart in parallel intelligent societies
[53], [54], [55], [58], [60].
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