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Evaluation of Thermal Imaging on Embedded GPU
Platforms for Application in Vehicular

Assistance Systems
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Abstract—This study is focused on evaluating the real-time
performance of thermal object detection for smart and safe ve-
hicular systems by deploying the trained networks on GPU &
single-board EDGE-GPU computing platforms for onboard au-
tomotive sensor suite testing. A novel large-scale C3I Thermal
Automotive dataset comprising of >35,000 distinct frames is ac-
quired, processed, and open-sourced in challenging weather and
environmental scenarios. The dataset is recorded from a lost-cost
yet effective uncooled LWIR thermal camera, mounted stand-alone
and on an electric vehicle to minimize mechanical vibrations.
The state-of-the-art YOLO-v5 networks variants are trained us-
ing four different public datasets as well newly acquired local
dataset for optimal generalization of DNN by employing SGD
optimizer. The effectiveness of trained networks is validated on
extensive test data using various quantitative metrics which include
precision, recall curve, mean average precision, and frames per
second. The smaller network variant of YOLO is further opti-
mized using TensorRT inference accelerator to explicitly boost the
frames per second rate. Optimized network engine increases the
frames per second rate by 3.5 times when testing on low power
edge devices thus achieving 11 fps on Nvidia Jetson Nano and
60 fps on Nvidia Xavier NX development boards.

Index Terms—ADAS, object detection, thermal imaging, LWIR,
CNN, edge computing.

I. INTRODUCTION

THERMAL imaging is the digital interpretation of the in-
frared radiations emitted from the object. Thermal imaging

cameras with microbolometer focal plane arrays (FPA) is a
type of uncooled detector that provides low-cost solutions for
acquiring thermal images in different weather and environmental
conditions. These cameras when integrated with AI-based imag-
ing pipelines can be used for various real-world applications. In
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this work, the core focus is to design an intelligent thermal object
detection-based video analysis system for automotive sensor
suite application that should be effective in all light conditions
thus enabling safe and more reliable road journeys. Unlike other
video solutions such as visible imaging which mainly relies on
reflected light thus having the greater chances of being blocked
by visual impediments, thermal imaging does not require any
external lighting conditions to capture quality images and it can
see through visual obscurants such as dust, light fog, smoke,
or other such occlusions. Moreover, the integration of AI-based
thermal imaging systems can provide us with a multitude of
advantages from better analytics with fewer false alarms to
increased coverage, provide redundancy and, higher return on
investment.

In this research work, we have focused on utilizing ther-
mal data for designing efficient AI-based object detection and
classification pipeline for Advanced Driver-Assistance Systems
(ADAS). Such type of thermal imaging-based forward sens-
ing (F-sense) system is useful in providing enhanced safety
and security features thus enabling the driver to better scruti-
nize the complete road-side environment. For this purpose, we
have used state-of-the-art end-to-end deep learning framework
YOLO-v5 on thermal data to predict 6 distinct objects, which
include person, car, street-pole, bike, bicycle, and bus. In the
first phase, a novel thermal dataset (https://github.com/Mali-
Farooq/Thermal-YOLO) is acquired for training and validation
purposes of different network variants of YOLO-v5. The data
is captured using a prototype low-cost microbolometer based
uncooled LWIR thermal camera with a resolution of 640x480,
specifically designed under the ECSEL Heliaus research project
[1]. The raw thermal data is processed using shutterless cam-
era calibration, automatic gain control, bad-pixel removal, and
temporal denoising methods.

Furthermore, the trained network variants are deployed and
tested on two state-of-the-art embedded GPU platforms, which
include NVIDIA Jetson nano [2] and Nvidia Jetson Xavier
NX [3]. Thus, studying the extensive real-time and on-board
feasibility in terms of various quantitative metrics, inference
time, FPS, and hardware sensor temperatures.

The core contributions of the proposed research work are
summarized below:
� Preparation and annotation of a large-scale C3I thermal au-

tomotive open-access dataset captured in different weather
and environmental conditions.
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TABLE I
EXISTING SOA THERMAL DATASETS

� A detailed comparative evaluation of SoA object detection
based on a modified YOLO-v5 network, fine-tuned for
thermal images using this newly acquired dataset.

� Model optimization using TensorRT inference accelerator
to implement a fast inference network on SoA embedded
GPU boards (Jetson, Xavier) with comparative evaluations.

� A determination of realistic frame rates that can be
achieved for thermal object detection on SoA embedded
GPU platforms.

II. BACKGROUND

ADAS (Advanced Driver Assistance Systems) are classified
as AI-based intelligent systems integrated with core vehicu-
lar systems to assist the driver by providing a wide range of
digital features for safe and reliable road journeys. Such type
of system is designed by employing an array of electronic
sensors and optical mixtures such as different types of cameras
to identify surrounding impediments, driver faults, and reacts
automatically.

The second part of this section will mainly summarize the
existing/ published thermal datasets along with their respective
attributes. These datasets can be effectively used for training and
testing the machine learning algorithms for object detection in
the thermal spectrum for ADAS. The complete dataset details
are provided in Table I.

A. Related Literature

We can find numerous studies regarding the implementation
of object detection algorithms using AI based conventional
machine learning as well as deep learning algorithms. Such
type of optical imaging-based systems system can be deployed
and effectively used as forward sensing methods for ADAS.
Advanced Driver-Assistance Systems (ADAS) is an active area
of research that seeks to make road trips more safe and se-
cure. Real-time object detection plays a critical role to warn
the driver thus allowing them to make timely decisions [13].
Ziyatdinov et al. [13] proposed an automated system to detect
road signs. This method uses the GTSRB dataset [14] to train on
conventional machine learning algorithms which include SVM,
KNN, and Decision Trees classifier. The results proved that
SVM and K – nearest neighbour (k-NN) outperforms all other
classifiers. Autonomous cars on the road require the ability to
consistently perceive and comprehend their surroundings [15].
Oliver et al. [15] presented a procedure to use Bernoulli particle
filter, which is suitable for object identification because it can
handle a wide range of sensor measurements as well as object
appearance-disappearance. Gang Yan et al. [16] proposed a
novel method to use HOG to extract features and AdaBoost and
SVM classifiers to detect vehicles in real-time. The histogram
of oriented gradients (HOG) is a feature extraction technique
used for object detection in the domain of computer vision
and machine learning. The study concluded that the AdaBoost
classification technique performed slightly better than SVM
since it uses the ensemble method. Authors in [17], proposed
another approach to detect vehicles on road using HOG filters
to again extract features from the frames and then classify them
using support vector machines and decision tree classification al-
gorithms. Furthermore, SVM achieved 93.75% accuracy, which
outperformed decision tree accuracy on classifying the vehicles.
These are some of the conventional machine learning object
detection techniques used for driver assistance system till date.
The main drawback of traditional machine learning techniques is
that the features are extracted and predefined prior to training and
testing of the algorithms. When dealing with high-dimensional
data, and with many classes conventional machine learning
techniques are often ineffective [18].

Deep learning approaches have emerged as more reliable and
effective solutions than these classic approaches. There are many
state-of-the-art pre-trained deep learning classifiers and object
detection models which can be retrained and rapidly deployed
for designing efficient forward sensing algorithms [19]. YOLO
(you only look once) object classifier provides sufficient per-
formance to operate at real-time speeds on conventional video
data without compromising the overall detector precision [20].
Veta et al. [21] presented a technique for detecting objects at a
distance by employing YOLO on low-quality thermal images.
Another research [22] focused on pedestrian detection in thermal
images using the histogram of gradient (HOG) and YOLO
methods on FLIR [9] dataset and computed performance with
a 70% accuracy on test data using the intersection over union
technique. Further, Rumi et al. [23] proposed a real-time human
detection technique using YOLO-v3 on KAIST [10] thermal
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TABLE II
COMPARISON ANALYSIS OF PREVIOUS YOLO VERSIONS WITH YOLO-V5

dataset, achieving 95.5% average precision on test data. Authors
in [24] proposed a human detection system using YOLO object
detector. The authors used their custom dataset recorded in
different weather conditions using FLIR Therma-CAM P10
thermal camera. Using five Siamese networks, the authors in
[25] proposed a data-driven appearance score based on an in-
novative edge-based descriptor. The network was trained on a
locally gathered single class pedestrians’ dataset to obtain robust
outcomes with an average precision of 86.2%.

Focusing on road-side objects, authors in [26] used YOLO-v2
object detection model to enhance the recognition of tiny vehicle
objects by combining low-level and high-level features of the
image. In [27], the authors proposed a deep learning-based
vehicle occupancy detection system in a parking lot using a ther-
mal camera. In this study authors had established that YOLO,
Yolo-Conv, GoogleNet, and ResNet18 are computationally more
efficient, take less processing time, and are suitable for real-
time object detection. In one of the most recent studies [28],
the efficacy of typical state-of-the-art object detectors which
includes Faster R-CNN, SSD, Cascade R-CNN, and YOLO-v3
was assessed by retraining them on a thermal dataset. The results
demonstrated that Yolo-v3 outclassed other object SoA object
detectors. As compared to all the previous versions of YOLO
released, YOLO-v5 has a Cross-Stage-Partial (CSP) backbone
and PA-NET neck. The foremost improvements include mosaic
data augmentation and auto learning bounding box anchors. The
detailed comparative analysis of the recently released Yolo-v5
with all the previous versions is presented in Table II.

It can be observed from Table II that YOLO-V5 has compar-
atively achieved better validation results in terms of the highest
mean average precision and frames per second on COCO dataset
as compared to the previous version of YOLO framework. The
optimal training and fine-tuning process of CNN to predict
objects in low resolution, grayscale, and thermal infrared imag-
ing (with lack of color information) and further optimizing the
trained network to be deployed on edge devices is a challenging
task [25]. For this task, Yolo-v5 open-source object detection
framework is employed as it has better detection results than
the previous YOLO versions as shown in Table II. In one of our
recently published study [33], we have proposed a novel state-
of-the-art YOLO-v5 based thermal object detection algorithm
trained on public datasets and validated the performance on GPU

with a maximum FPS rate of 170 and 3 FPS on Nvidia-Jetson
Nano.

The main contribution of this research work is the establish-
ment of a novel C3I thermal automotive dataset, which is then
used to train the YOLO-v5 object detection algorithm along
with four other public datasets. This study produced superior
outcomes on thermal data and advances the state-of-the-art in the
form of higher FPS rate and less inference time by optimizing the
trained networks using TensorRT neural accelerator which were
then deployed on both the edge-GPU devices which includes
Nvidia Jetson Nano and Nvidia Jetson Xavier devices.

B. Object Detection on Edge Devices

AI on edge devices benefit us in various methods such that
it speeds up decision-making, makes data processing more reli-
able, enhances user experience with hyper-personalization, and
cuts down the costs. While machine learning models have shown
immense strength in diversified consumer electronic applica-
tions, the increased prevalence of AI on edge has contributed
to the growth of special-purpose embedded boards for various
applications. Such types of embedded boards can achieve image
inference at higher frames per second (fps) and low power
usage. Some of these board includes Nvidia Jetson Nano, Nvidia
Xavier, Google Coral, AWS DeepLens, and Intel AI-Stick. Au-
thors in [34], [35] proposed a raspberry pi-based edge computing
system to detect thermal objects. Sen Cao et al. [36] developed a
roadside object detector using KITTI dataset [37] by training an
efficient and lightweight neural network on Nvidia Jetson TX2
embedded GPU.

In another study [38] authors proposed deep learning-based
smart task scheduling for self-driving vehicles. This task man-
agement module was implemented on multicore SoCs (Odroid
Xu4 and Nvidia Jetson).

The overall goal of this study is to analyze the real-time
performance feasibility of Thermal-YOLO object detector by
deploying on edge devices. Different network variants of yolo-
v5 framework are trained and fine-tuned on thermal image
data and further deployed on the Nvidia Jetson Nano [2] and
Nvidia Jetson Xavier NX [3]. These two platforms, although
from the same manufacturer provide very different levels of
performance and may be regarded as close to current SoA in
terms of performance for embedded neural inference algorithms.

III. THERMAL DATA ACQUISITION AT SCALE FOR ADAS

This section will mainly cover the thermal data collection
process using the LWIR prototype thermal imaging camera.
The overall data is consisting of more than 35K distinct thermal
frames acquired in different weather and environmental condi-
tions. The data collection process includes shutterless camera
calibration and thermal data processing [39], using the Lynred
Display Kit (LDK) [40], data collection methods, and overall
dataset attributes with different weather and environmental con-
ditions for comprehensive data formation.
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Fig. 1. LWIR thermal imaging module images from different view angles.

A. Prototype Thermal Camera

For the proposed research work we have utilized an uncooled
thermal imaging camera developed under the HELIAUS project
[1]. The main characteristic of this camera includes its low-
cost, lightweight, and sleek compact design thus allowing to
easily integrate it with artificially intelligent imaging pipelines
for building effective in-cabin driver-passenger monitoring and
road monitoring systems for ADAS. It enables us to capture
high-quality thermal frames with low-power consumption thus
proving the agility of configurations and data processing algo-
rithms in real-time. Fig. 1 shows the prototype thermal camera.
The technical specifications of the camera are as follows, the
camera type is a VGA long-wave infrared (LWIR) with a spectral
range from 8-14 µm and a camera resolution of 640x480 pixels.
The focal length (f) of the camera is 7.5 mm, F-number is
1.2, the pixel pitch is 17 µm, and the power consumption is
less than 950mW. The camera relates to a high-speed USB
3.0 (micro-USB) port for the interface. Moreover, the camera
has a frame rate of 30 FPS. The camera has a thermal time
constant of 12 ms. It is a time parameter that shows how quickly
the bolometer reacts to the incoming flux change and reaches
its expected level. Moreover, the camera comes with flat field
correction (FFC) to remove non-uniformities in the thermal
frames caused by optical factors. The FFC method nearly takes
100 ms to 300 ms time frame.

The data is recorded using a specifically designed toolbox.
The complete camera calibration process along with the data
processing pipeline is explained in the next section.

B. Shutterless Calibration and Real-Time Data Processing

This section will highlight the thermal camera calibration
process for shutterless camera configuration along with real-time
data processing methods for converting the raw thermal data
to refined outputs. Shutterless technology allows uncooled IR
engines and thermal imaging sensors to continuously operate
without the need for a mechanical shutter for Non-Uniformity
Correction (NUC) operations. Such type of technology provides
proven and effective results in poor visibility conditions ensuring
good quality thermal frames in real-time testing situations. For
this, we have used a low-cost blackbody source to provide
three different constant reference temperature values referred
to as T-ambient1-BB1 (hot uniform scene with temperature
value of 40-degree centigrade), T-ambient1-BB2 (cold uniform
scene with the temperature value of 20 degrees centigrade), and
T-ambient2-BB1 (either hot or cold uniform scene but with
different temperature value). The imager can store up to 50
snapshots and select the best uniform temperature scenes for

Fig. 2. Thermal camera calibration (a) blackbody source used for LWIR
thermal camera calibration, (b) uniform scene: temperature set to 40.01 degree
centigrade.

Fig. 3. Prototype thermal camera SDK for loading constant reference temper-
atures values for shutterless camera calibration.

Fig. 4. Shutterless algorithm results on sample thermal frame captured from
640x480 LWIR thermal camera designed by Lynred France [40].

calibration purposes. Fig. 2 shows the blackbody used for the
thermal camera calibration.

Once the uniform temperature images are recorded the im-
ages are loaded in camera SDK as shown in Fig. 3 to finally
calibrate the shutterless camera stream. Fig. 4 shows the results
before applying shutterless calibration and processed results
using shutterless algorithms on thermal frame capture through
the prototype thermal IR camera.

In the next phase, various real-time image processing-based
correction methods are applied to convert the original thermal
data to produce good-quality thermal frames. Fig. 5 shows the
complete image processing pipeline.

As shown in Fig. 5 image processing pipeline consist of
three different image correction methods which include gain
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Fig. 5. Thermal image correction pipeline.

Fig. 6. Bad pixel replacement algorithm output on sample thermal frame, left
side frame with some bad pixels and the right side is processed frame.

correction, bad-pixel replacement, and temporal denoising. The
further details of these methods are provided as follows.

1) Gain Correction Automatic Gain Control (AGC): Ther-
mal image detectors, based on flat panels, suffer from irregular
gains due to the non-uniform amplifiers. To correct the irregular
gains, a common yet effective technique referred to as automatic
gain control is applied. It is usually based on the gain map. By
averaging uniformly illuminated images without any objects, the
gain map is designed. By increasing the number of images for
averaging provides a good gain-correction performance since
the remained quantum noise in the gain map is reduced [40].

2) Bad Pixel Replacement (BPR): This is used to list bad
pixels estimated at the calibration stage. It works by tracking
potential new bad pixels by looking at pixel neighbourhood also
known as the nearest neighbour method. Once it traces the bad
pixels in the nearest neighbor it replaces them with good pixels.
Fig. 6 demonstrates one such example.

3) Temporal Denoising (TD): The consistent reduction of
image noise poses a frequently recurring problem in digitized
thermal imaging systems and especially when it comes to
un-cooled thermal imagers [41]. To mitigate these limitations
for better outputs different methods are used which include
hardware as well software-based image processing methods
such as temporal and spatial denoising algorithms. The temporal
denoising or temporal filtering method is typically performed to
decrease the temporal noise and prevent temporal vibrations in
the thermal frames. While acquiring the video sequence from
an uncooled thermal camera, the pixel values can vary with
the passage of time. This method is employed to smooth out
the variations of pixel values at a given position thus producing
refined thermal output. In commercial solutions, it usually works
by gathering multiple frames and averaging those frames to
cancel out the random noise among the frames. In our data acqui-
sition process, this method is used after applying the shutterless

Fig. 7. High-quality thermal frames after applying the shutterless calibration
algorithm and image correction methods.

Fig. 8. Data Acquisition setup by placing the camera at a fixed place
(a) camera mounted on a tripod stand, (b) complete daytime roadside view,
(c) video recording setup at 30 fps, (d) evening time alleyway view.

algorithm. Fig. 7 shows the sample thermal images in the form of
outcomes after applying shutterless algorithms and all the image
processing-based corrections methods as shown in Fig. 5.

C. Data Collection Methods and Overall Dataset Attributes

This section will highlight different data collection ap-
proaches adopted in this research work. The data is collected
in two different approaches. In, the first approach (M-1) the data
is gathered in an immobile method by placing the camera at
a fixed place. The camera is mounted on the tripod stand at a
fixed height of nearly 30 inches such that the roadsides objects
are covered in the video stream. The thermal video stream is
recorded at 30 frames per second (FPS). The data is recorded
in different weather and environmental conditions. Fig. 8 shows
the M-1 data acquisition setup. In the second method (M-2) the
thermal imaging system is mounted over the car and data is
acquired in the mobile method. The prime reason for collecting
the data in two different methods is to bring variations and
collect distinctive local data in different environmental and
weather conditions. For this, a specialized waterproof camera
housing case was designed to hold the thermal camera in the
correct position and angle to cover the entire roadside scene.
The housing case is fixed on a suction-based tripod stand thus
allowing us to easily fix and remove the complete structure from
the car bonnet. The housing case also contains a visible camera
to get initial visible images as reference data thus allowing us
to adjust both the camera positions in proper angle and field of
view.

Fig. 9 shows the camera housing case along with the initial
data acquisition setup whereas

Fig. 10 shows the housing case fixed on the tripod structure
and complete M-2 acquisition setup mounted on the car. The
overall dataset is acquired from Galway County Ireland. The data
is collected in form of short video clips and more than>35000



FAROOQ et al.: EVALUATION OF THERMAL IMAGING ON EMBEDDED GPU PLATFORMS FOR APPLICATION 1135

Fig. 9. Data acquisition setup through car (a) camera housing case holding
thermal and visible camera, (b) initial data acquisition testing phase.

Fig. 10. Complete data acquisition setup mounted on the car (a) camera
housing fixed on a suction tripod stand, (b) data acquisition kit from the front
view, (c) data acquisition kit from the side view.

Fig. 11. Six different thermal samples acquired using LWIR 640 × 480
prototype thermal camera showing various class objects.

unique thermal frames have been extracted from the recorded
video clips. The data is recorded in the daytime, evening time,
and night-time which is distributed in the ratio of 44.61%,
31.78%, and 23.61% respectively of overall data. The complete
dataset attributes are summarized in Table III. The acquired
data comprises distinct stationary classes, such as road signs
and poles, as well as moving object classes such as pedestrians,
cars, buses, bikes, and bicycles.

Fig. 11 shows the six distinct sample of thermal frames cap-
tured in different environmental and weather conditions using
M1 and M2 methods. These samples show different class objects
such as buses, bicycles, poles, person, and cars. Most of these
objects are found commonly on the roadside thus providing the
driver a comprehensive video analysis of car surroundings.

TABLE III
NEW C3I THERMAL AUTOMATIVE DATASET ATTRIBUTES

The recorded thermal datasets provide a greater number of
thermal frames and extensive thermal data variations as com-
pared to the FLIR open-source dataset. The acquired novel
thermal datasets provide more than 35k distinct thermal frames.
Moreover, the acquired LWIR dataset is collected in diverse
weather, day, and environmental conditions which include day-
time, evening time, and night-time with cloudy, windy, and
light foggy weather conditions. Further, the newly proposed
dataset is recorded in two different ways which include M1 and
M2 methods where M1 refers to static data collection method
by placing the camera at a fixed place and M2 refers to data
collection method by mounting the camera on the car. The
complete dataset attributes are provided in Table III.

IV. PROPOSED METHODOLOGY

This section will detail the proposed methodology and train-
ing outcomes from the various network variants tested in this
study.

A. Network Training and Learning Perspectives

The overall training data comprises both locally and publicly
available datasets. The complete training data is divided in the
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Fig. 12. Depicts the respective class-wise training samples distributions.

Fig. 13. Block diagram depicts the steps taken to evaluate the performance of
YOLO v5 on local and public datasets.

ratio of 50% - 50% where 50% of data is selected from locally
acquired thermal frames whereas the rest 50% of the training
data is leveraged from public datasets. Six distinct types of road-
side objects for driving assistance are included in training and
validations sets. Fig. 12 shows the class-wise data distribution.

In the training phase of the YOLO-v5 [32] framework, a
total of 59150 class-wise data samples were utilized, along with
their corresponding class labels. Fig. 13 shows the complete
block diagram representation of our algorithm to validate the
performance of trained networks on the public as well as locally
gathered datasets.

B. Data Annotation and Augmentation

The overall data annotations were performed manually using
an open-source bounding box-based annotations tool LabelImg

TABLE IV
TRAINING RESULTS

[42] for all the thermal classes in our study. Annotations are
stored in YOLO format as text files. During the training phase
all the YoloV5 network variations which include small, medium,
large, and x-large networks have been trained to detect and clas-
sify six different classes in different environmental conditions.

Large-scale datasets are considered a vital requirement for
achieving optimal training results using deep learning architec-
tures. Without the need of gathering new data, data augmentation
allows us to significantly improve the diversity of data available
that can be effectively used for training the DNN models. In
the proposed study we have incorporated a variety of data aug-
mentation techniques which involve cropping, flipping, rotation,
shearing, translation, mosaic transformation for an optimum
training of all the network variants of the YOLO-v5 framework.

C. Training Results

As discussed in Section A of Section IV all the networks
are trained using the combination of public as well as the locally
gathered dataset. Training data from public datasets are included
from four different datasets which include FLIR [9], OST [4],
CVC [5], and KAIST [10] datasets. Secondly, we have used ther-
mal frames acquired from the locally gathered video sets using
both M1 and M2 methods. The training process is performed on
a server-grade machine with XEON E5-1650 v4 3.60 GHz pro-
cessor, 64 GB of ram, and equipped with GEFORCE RTX 2080
Ti graphical processing unit. It comes with 12 GB of dedicated
graphical memory, memory bandwidth of 616 GB/second, and
4352 cuda cores. During the training phase, the batch size is fixed
to 32 and as an optimizer, both stochastic gradient descent (SGD)
and ADAM optimizer were used. However, we were unable
to achieve satisfactory training results using ADAM optimizer
as compared to SGD thus selected SGD optimizer for training
purposes. Table IV shows the performance evaluation of all the
trained models in the form of mean average precision (mAP),
recall rate, precision, and losses.

By analyzing Table IV, it can be observed that the large model
performed significantly better when compared to other models
with an overall precision of 82.29%, recall rate of 68.67%, and
mean average precision of 71.8% mAP. Fig. 14 shows the graph
results of yolo-v5 large model. The figure visualizes obtained
PR-curve, box loss, object loss, and classification loss. During
the training process, the X-large model consumes the maximum
amount of hardware resources with the largest training time as



FAROOQ et al.: EVALUATION OF THERMAL IMAGING ON EMBEDDED GPU PLATFORMS FOR APPLICATION 1137

Fig. 14. Training results of YOLO-v5 large model using SGD optimizer.

Fig. 15. GPU resource utilization during the training process of x-large
network, (a) 85% (9.78 GB) of GPU memory utilized, (b) 90% (585 watts)
of GPU power required and, (c) 68 C of GPU temperature with the maximum
rating of 89 C.

compared to other network variants with overall GPU usage of
9.78 GB and a total training time of 14 hours. Fig. 15 shows the
overall GPU memory usage, GPU power required in percent-
ages, and GPU temperature in centigrade scale while training
the largest x-large network variant of the yolo-v5 framework.

V. VALIDATION RESULTS ON GPU AND EDGE DEVICES

This section will demonstrate the object detection validation
results on GPU as well as on two different embedded boards.

TABLE V
TEST DATASET

A. Testing Methodology and Overall Test Data

In this research study, we have used three different testing
approaches which include the conventional test-time method
with no augmentation (NA), test-time augmentation (TTA), and
test-time with model ensembling (ME). TTA is an extensive
application of data augmentation applied to the test dataset. It
performs by creating multiple augmented copies of each image
in the test set, having the model make a prediction for each,
then returning an ensemble of those predictions. However, since
the test dataset is enlarged with a new set of augmented images
the overall inference time also increases as compared to NA
which is one of the downsides of this approach. TTME or
ensemble learning refers to as using multiple trained networks
at the same time in a parallel manner to produce one optimal
predictive inference model [43]. In this study, we have tested
the performance of individually trained variants of the Yolo-v5
framework and selected the best combination of models which
in turn helps in achieving better validation results.

After training all the networks variants of yolo-v5, the per-
formance of each model is cross-validated on a comprehensive
set of test data selected from the public as well as locally
gathered novel thermal data. Table V provides the numeric data
distribution of the overall validation set.

B. Inference Results Using YOLO Network Variants

In the first phase, we have run the rigorous inference test on
GPU as well as Edge-GPU platforms on our test data using
the newly trained networks variants of yolo framework. The
overall test data is consisting of nearly ≈31000 thermal frames.
Fig. 16 shows the inference results on 9 different thermal frames
selected from both public as well as locally acquired data. These
frames have data complications such as multiple class objects,
occlusion, overlapping classes, scale variation, and varying
environmental conditions. The complete inference results are
available on our github repository (https://github.com/Mali-
Farooq/Thermal-YOLO).

In the second phase, we have run the combination of differ-
ent models in a parallel manner using the model ensembling
approach to output one optimal predictive engine which can
be further used to run the inference test on the validation set.

https://github.com/Mali-Farooq/Thermal-YOLO
https://github.com/Mali-Farooq/Thermal-YOLO
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Fig. 16. Inference results on nine different frames selected from test data.

TABLE VI
MODEL ENSEMBLING

Fig. 17. Inference results on three different frames using model ensembling
method.

The different combination of these models is shown in Table VI
respectively where 1 indicates that the model is in active state
and 0 means the model is in a non-active state.

With the model ensembling method small and large models
(A1) turn out to best model combination in terms of achieving the
best mAP, recall, and relatively less amount of inference time per
frame thus producing optimal validation results. These results
are examined in further parts of this section. Fig. 17 shows the
inference results using A1 model ensembling engine on three
different thermal frames selected from the test data. The first
frame is selected from the public dataset whereas the other two
frames are selected from the locally acquired thermal dataset.
By closely analyzing the results it can be observed that model
ensembling based inference engine has performed significantly
well on diversified test data with image complexities like occlu-
sions and overlapping classes.

Fig. 18. Test data samples with the object at varying distances from the camera,
(a) near-field distance, (b) mid-field distance, (c) far-field distance.

TABLE VII
QUANTITATIVE RESULTS ON GPU

C. Quantitative Validation Results on GPU

The third part of the testing phase shows the quantitative
numerical results of all the trained models on GPU. To better
analyze and validate the overall performance for all the trained
models on test data, relatively a smaller set of test images has
been selected from the overall test set. For this purpose, a subset
of 402 thermal frames is selected to compute all the evaluation
metrics. The selected images consist of different roadside objects
such as pedestrians, cars, and buses under different illumination
and environmental conditions, time of day, and distance from the
camera. The objects are either far-field (between 11-18 meters),
mid-field (between 7-10 meters), or near-field (between 3-6
meters) from the camera. Fig. 18 shows selected views from
the test data for quick reference of the reader.

The performance evaluation of each model is computed using
four different metrics which include recall, precision, mean
average precision (mAP), and frames per second rate (FPS).
Table VII shows all the quantitative validation results on GPU.
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TABLE VIII
CLASS-WISE QUANTITATIVE RESULTS

Fig. 19. Precision-Recall (PR) cruve of X-Large model showing the average
precision value for all the six classes.

During the testing phase batch size is fixed to 8. Also, three
different testing configuration is selected thus having separate
confidence threshold values and the intersection of union val-
ues at each validation phase. Confidence threshold defines the
minimum threshold value, or in other words, it is the minimum
confidence score above which we consider a prediction as true. If
it’s below the threshold value, we consider the prediction as “no”.
The last row of Table VII shows the best ME results using A1
configuration from Table VI with a selected confidence threshold
of 0.2 and IoU threshold of 0.4.

For futher in-depth analysis of all the trained network variants
of YOLO-v5 framework we have presented class-wise quan-
titative results. The Table VIII shows the individual average
precision, for all the six classes of four different thermally
tuned models. It should be noted that these results are extracted
using test time with no augmentation approach with confidence
threshold of 0.1 and IoU threshold of 0.2.

As it can be observed from above Table VIII that although the
large model has achieved the highest mean average precision
however by observing the class-wise performance, the X-large
model has achieved the highest average precision value for the
maximum number of classes (i.e. bike, bus, and person). Fig. 19
shows the precision-recall curve for all the classes of the x-large
model.

D. Quantitative Validation Results on Edge-GPU Devices

This section will review the quantitative validation results
on two different Edge-GPU platforms (Jetson Nano & Jetson
Xavier NX). It is pertinent to mention that Jetson Xavier NX

TABLE IX
HARDWARE SPECIFICATION COMPARISON

development kit embeds more computational power in terms of
GPU, CPU, and memory as compared to Nvidia Jetson Nano.
Table IX shows the hardware specification comparison of both
boards.

On Jetson Nano we have validated the performance of the
small version only whereas on Jetson Xavier NX we have
evaluated the performance of smaller and medium versions of
models due to the memory limitations and constrained hardware
resources on these boards. During the testing phase, we have
selected the highest power modes on both boards to provide the
utmost efficiency thus utilizing maximum hardware resources.
For instance, on Nvidia Xavier board NX we have selected
‘Mode Id: 2’ which means the board is operating in 15-watt
power mode with all the six cores active with a maximal CPU
frequency of 1.4 gigahertz and GPU frequency of 1.1 gigahertz.
Similarly, on Nvidia Jetson Nano all the four CPU cores were
utilized with overall power utilization of 5 watts. Table X shows
the quantitative validation results on ARM processor based
embedded boards.

For a better and more comprehensive valuation of thermally
tuned networks, we have demonstrated the performance of the
smaller network variant on various environmental conditions as
shown in Table XI which includes alleyways, roadside, industrial
park, and downtown. The main reason for shortlisting the smaller
network variant is it requires the least computational resources
and shows effective results on both edge-GPU devices. As it can
be observed from Table XI we have obtained the highest mean
average precision of 71.9% on roadside environmental thermal
frames which is highlighted in green color.

E. Real-Time Hardware Feasibility Testing

While running these tests we closely monitor the temperature
ratings of different hardware peripherals on both Edge-GPU
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TABLE X
QUANTITATIVE RESULTS ON EDGE PLATFORMS

TABLE XI
QUANTITATIVE RESULTS ON DIFFERENT ENVIRONMENTAL CONDITIONS

Fig. 20. External 5-volt fan unit mounted on Nvidia Jetson Nano processor
heatsink to avoid onboard overheating effect while running the inference testing.

platforms. It is done to prevent the overheating effect which can
damage the onboard processor or effect the overall operational
capability of the system. In the case of Nvidia Jetson Nano, a
cooling fan was mounted on top of the processor heatsink to
reduce the overheating effect as shown in Fig. 20.

The temperature ratings of various hardware peripherals are
monitored using eight different on-die thermal sensors and

Fig. 21. Temperature rating difference of different onboard hardware periph-
erals on Jetson Nano (a) without fan: A0 thermal zone = 65.50 C, CPU = 55
C, GPU = 52 C, PLL: 53.50, overall thermal temperature = 53.50 C, (b) with
external fan: A0 thermal zone = 45.50 C, CPU = 33 C, GPU = 33 C, PLL: 33,
overall thermal temperature = 32.75 C.

one on-die thermal diode. These temperature monitors are re-
ferred to as CPU-Thermal, GPU-Thermal, Memory-Thermal,
and PLL-Thermal (part thermal zone). External fans help us in
reducing the temperature rating of various hardware peripherals
drastically as compared to without mounting the fan. For this
jetson-stats open-source python library [44] have been used.
Jetson-stats is a package for monitoring various onboard hard-
ware resources such as real-time information of CPUs status,
Memory, GPU, disk, fan, temperature rating, and all status about
Jetson clocks. Fig. 21 shows the temperature rating difference
of onboard thermal sensors while running the smaller version
of the model on Nvidia Jetson Nano without and with mounting
the external cooling fan.

It can be examined from Fig. 21(b) that by mounting an
external cooling fan the temperature rating of various onboard
peripheral on Jetson Nano was reduced by nearly 30% thus
allowing us to operate the board at its maximum capacity for
rigorous model testing. Fig. 22 shows the Nvidia Jetson running
at its full pace (with an external fan) such that all the four cores
running at their maximum limit (100% capacity) while running
the quantitative and inference test by deploying the smaller
network variant of the yolo-v5 framework.

Fig. 23 shows the temperature rating difference of onboard
thermal sensors while running the smaller version of the model
on Nvidia Jetson Xavier NX board. Whereas Fig. 24 shows
the CPU and GPU usage while running the smaller variant of
YOLO-v5 framework for quantitative validation and inference
test on Nvidia Xavier NX development kit.

VI. MODEL PERFORMANCE OPTIMIZATION(S)

This section will mainly aim at further model optimization us-
ing TensorRT [45] inference accelerator tool. The prime reason
for this is to further increase the FPS rate for real-time evaluation
and on-board feasibility testing on edge devices. Secondly, it
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Fig. 22. Nvidia Jetson Nano running at MAXN power mode with all the
cores running at their maximum capacity while running the inference test and
quantitative validation test.

Fig. 23. Temperature rating of different onboard hardware peripherals on
Jetson Xavier NX (a) A0 thermal zone = 41.50 C, AUX: 42.5 C, CPU = 44 C,
GPU = 42 C, overall thermal temperature = 42.80 C.

helps in saving onboard memory footprints on the target device
by performing various optimization methods.

TensorRT [45] works by performing five modes of opti-
mization methods for increasing the throughput of deep neural
networks. In the first step, it maximizes throughput by quantizing
models to 8-bit integer data type or FP16 precision while pre-
serving the model accuracy. This method significantly reduces
the model size since it is transformed from originally FP32 to
FP16 version. In the next step, it uses layer and tensor fusion
techniques to further optimize the usage of onboard GPU mem-
ory. The third step includes performing kernel auto-tuning. It is
the most important step where the TensorRT engine shortlists the
best network layers, and optimal batch size based on the target
GPU hardware. In the second last step, it minimizes memory
footprints and re-uses memory by distributing memory to tensor
only for the period of its usage. In the last steps, it processes
multiple input streams in parallel and finally optimizes neural
networks periodically with dynamically generated kernels [45].

In the proposed research work we have deployed a smaller
variant of yolo-v5 using TensorRT inference accelerator on both
edge platforms Nvidia Jetson Nano and Nvidia Jetson Xavier
NX development boards to further excel the performance of the
trained model. It produces faster inference time thus increasing
the FPS on thermal data which in turn helps us in building an
effective real-time forward sensing system for ADAS embedded
applications. Fig. 25 depicts the block diagram representation of

Fig. 24. Nvidia Jetson Xavier running at 15-watt 6 core power mode, (a) all
the CPU cores running at its maximum capacity while running the quantitative
validation test, (b) 69% GPU utilization while running the inference test with
an image size of 128 x 128.

TABLE XII
TENSORRT INFERENCE ACCELERATOR RESULTS

deployment phase TensorRT inference accelerator on embedded
platforms. Table XII shows the overall inference time along
with FPS rate on thermal test data using TensorRT run-time
engine. By analyzing the results from Table XII , we can deduce
that TensorRT API supports in boosting the overall FPS rate
on ARM-based embedded platforms by nearly 3.5 times as
compared to the FPS rate achieved by running the non-optimized
smaller variant on Nvidia Jetson Nano and Nvidia Jetson Xavier
boards. The same is demonstrated via graphical chart results in
Fig. 26.
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Fig. 25. Overall block diagram representation of deployment and running
TensorRT inference accelerator on two different embedded platforms.

Fig. 26. FPS increment rate of nearly 3.5 times on Jetson Nano and Jetson
Xavier NX embedded boards using the TensorRT built optimized inference
engine.

Fig. 27 shows the thermal object detection inference results
on six different thermal frames from the public as well as locally
acquired test data produced through the neural accelerator.

VII. DISCUSSION/ANALYSIS

This section will review the training and testing performance
of all YOLO-v5 framework model variants.
� During the training phase, the larger network variant of

YOLO-v5 outperforms other network variants scoring the
highest precision of 82.29% and a mean average precision
(mAP) score of 71.8%.

� Although the large network variant performed significantly
better during the training phase, the small network variant
also performed well with an overall precision of 75.58%
and mAP of 70.71%. Also, it gains a higher FPS rate on

Fig. 27. Inference results using optimized smaller variant through TensorRT
neural accelerator, (a) Object detection results on public data, (b) Object Detec-
tion results on locally acquired thermal frames.

Fig. 28. Quantitative metrics comparison of small and large network variants.

GPU during the testing phase as compared to the large
model. Fig. 28 summarizes the quantitative performance
comparison of small and large network variants of yolo
framework.

� Due to the lesser number of model parameters of smaller
architecture as compared to larger network variant (7.3M
Vs 47M model parameters) and faster FPS rate on GPU
during the testing phase as shown in Fig. 27 this model
is shortlisted for validation and deployment purposes on
both the edge embedded platforms Nvidia Jetson Nano and
Nvidia Jetson Xavier NX kits.

� During the testing phase, it was noticed that by reducing the
confidence threshold from 0.4 to 0.1 and the IoU threshold
from 0.6 to 0.2 in three stepwise intervals, the model’s mAP
and recall rates increased significantly, but the precision
level decreases. However, the FPS rate remains effectively
constant in most of the trained model cases.

� TTA methods achieved improved testing results when com-
pared to the NA method however the main drawback of
this method is that the FPS rate drops substantially which
is not suitable for real-time deployments. To overcome
this problem a model ensembling (ME) based inference
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engine is proposed. Table VII shows the ME results by
running large & small model in parallel configuration with
a confidence threshold of 0.2, and an IoU Threshold of 0.4.
The ensembling engine attains an overall mAP of 66% with
a frame rate of 25 FPS.

� When comparing the individual hardware resources of
both the edge platforms (NVidia Jetson Nano and Jetson
Xavier), Xavier is computationally more powerful than
the Jetson Nano. Note that due to memory limitations
and the lower computational power of the Jetson only the
small network variant was evaluated on the Jetson Nano,
whereas both the smaller and medium network variants
were evaluated on the Jetson Xavier NX.

� It was observed that throughout the testing phase, it was
important to keep a close eye on the operational tempera-
ture ratings of different onboard thermal sensors to avoid
overheating, which might damage the onboard components
or affect the system’s typical operational performance.
Active cooling fans were used on both boards during
testing, and both ran at close to their rated temperature
limits.

� This study also included model optimization using Ten-
sorRT [45] inference accelerator tool. It was determined
that TensorRT leads to an approximate increase of FPS rate
by a factor of 3.5 when compared to the non-optimized
smaller variant of yolo-v5 on Nvidia Jetson Nano and
Nvidia Jetson Xavier devices.

� After performing model optimization, the Nvidia Jetson
produced 11 FPS and Nvidia Jetson Xavier achieved 60
FPS on test data.

VIII. CONCLUSION

Thermal imaging provides superior and effective results in
challenging environments such that in low lighting scenarios
and has aggregate immunity to visual limitations thus making it
an optimal solution for intelligent and safer vehicular systems.
In this study, we presented a new benchmark C3I thermal
automotive dataset that comprises over 35K distinct frames
recorded, analyzed, and open-sourced in challenging weather
and environmental conditions utilizing a low-cost yet reliable
uncooled LWIR thermal camera. All the YOLO v5 network
variants were trained using locally gathered data as well as
four different publicly available datasets. The performance of
trained networks is analyzed on both GPU as well as ARM
processor-based edge devices for onboard automotive sensor
suite feasibility testing. On edge devices, the small and medium
network edition of YOLO is deployed and tested due to cer-
tain memory limitations and less computational power of these
boards. Lastly, we further optimized the smaller network variant
using TensorRT inference accelerator to explicitly increase the
FPS on edge devices. This allowed the system to achieve 11
frames per second on jetson nano, while the Nvidia Jetson
Xavier delivered a significantly higher performance of 60 frames
per second. These results validate the potential for thermal
imaging as a core component of ADAS systems for intelligent
vehicles.

As the future directions, the system’s performance can be
further enhanced by porting the trained networks on more ad-
vanced and powerful edge devices thus tailoring it for real-time
onboard deployments. Moreover, the current system focuses on
object recognition, but it can be further trained and modified
to incorporate image segmentation, road and lane detection,
traffic signal and road signs classification, and object tracking
for providing comprehensive driver assistance.
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