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Green Video Compression for 
Metaverse: Lessons Learned from 
VP9 and HEVC

Advanced codecs such as HEVC and VP9, integral to  
facilitating seamless interactions, entail considerable energy 
consumption, notably in resource-intensive motion estima-
tion processes during encoding and decoding. This energy 
expenditure predominantly occurs within data centers 
during video processing. The imperative balance between 
visual fidelity and processing efficiency underscores the 
pressing need for green video compression methods. 
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T
he rise of multimedia consumption, partic-
ularly video content, has become an integral 
part of our lives. Videos are widely used in 
diverse fields, such as online entertainment, 
education, and remote work. The metaverse, 
an immersive digital universe spanning 
virtual worlds and augmented reality expe-

riences, is witnessing exponential growth and demands 
high-quality digital video to meet the increasing demand 
for engaging content. In spite of that, many content con-
sumers are unaware of the growing carbon footprint as-
sociated with this paradigm shift, where video creation 
and communication processes contribute significantly 
to global energy consumption and greenhouse gas (GHG) 
emissions.

Within the metaverse, video content is characterized 
by high resolutions, real-time streaming, and interactive 
features. To efficiently handle large volumes of video data, 
two of the most commonly used video compression meth-
ods are High-Efficiency Video Coding (HEVC) and VP9.

HEVC and VP9 are cutting-edge video codecs known 
for their ability to significantly reduce video file siz-
es without compromising visual quality. These codecs  

enable smoother streaming experiences and faster video 
transmission, facilitating seamless interactions within the 
metaverse. However, it is essential to note that the encod-
ing and decoding processes of HEVC and VP9, especially 
the resource-intensive motion estimation (ME) processes, 
require substantial computational power and time, lead-
ing to increased energy consumption and pollution.

Efforts are now focused on creating more energy-effi-
cient video compression methods to address the environ- 
mental impact of video processing in the expanding 
metaverse. By striking a balance between maintaining vid-
eo quality and reducing processing times, sustainable and 
cost-effective solutions can be achieved.

To address this challenge, this paper aims to help in 
the development of new efficient video compression al-
gorithms prioritizing energy efficiency. Using Matlab, the 
research provides a standardized and freely accessible 
implementation for comparing the two video codecs, fo-
cusing on the ME component of HEVC and VP9. The incor-
poration of energy and computational complexity metrics 
empowers researchers to experiment with novel param-
eters to advance energy-conscious video compression  
techniques.

The contributions of this paper extend beyond codec 
implementation and performance evaluation. It sheds 
light on the importance of considering energy consump-
tion in the design of video compression methods and its 
impact on the digital carbon footprint. As the metaverse’s 
popularity grows, the development of energy-efficient vid-
eo compression algorithms becomes even more critical 
to minimize environmental impact and reduce carbon  
emissions.

The structure of the paper is as follows: the next section 
provides a literature review of the work accomplished to 
date, highlighting advancements in this field and elucidat-
ing how this study can address existing gaps. The Meth-
odology section explains the implementation of the ME 
processes on HEVC and VP9, provides a description of the 
metaverse video file used in these tests, and introduces 
the metrics used to assess performance in terms of energy 
consumption and computational complexity. The Results 
section presents the outcomes of predicting the same 
frame in both codecs, offering valuable insights into their 
comparative performance. In the Discussion section, a 
broader perspective is provided on the escalating environ-
mental impact resulting from our collective use of digital 

Abstract 
Over the past decade, video consumption applica-
tions have surged, reaching new heights with the 
metaverse’s emergence. This expansion burdens net-
works, data centers, and devices due to increased 
data volume and processing, leading to substantial 
energy consumption and high CO2 emissions annually. 
Priority should be given to developing lightweight 
video compression algorithms to tackle this. Current 
standards fall short of achieving the desired efficiency. 
This study conducts a comprehensive analysis of Mo-
tion Estimation (ME) in leading metaverse video com-
pression algorithms, VP9 and HEVC. Using Matlab, an 
exhaustive evaluation focuses on ME, allowing an ob-
jective comparison and integrates novel sustainability 
assessments. The findings highlight areas for future 
video compression improvements, paving the way for 
sustainable and optimized video storage and trans-
mission in the metaverse.
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video, especially with the rise of the metaverse. Finally, the 
paper concludes by summarizing key findings and outlin-
ing promising directions for future research.

By addressing the energy efficiency challenges in video 
compression and providing a systematized implementa-
tion, this paper significantly contributes to the advance-
ment of sustainable video transmission in the metaverse, 
bringing us closer to a greener and more optimized digital 
future. 

Literature Review
In a study by M. Uitto,1 the energy and power consump-
tion of open-source video encoders, including x264 for 
H.264/AVC, x265 for H.265/HEVC, and VP9, were exam-
ined. H.264/AVC, where AVC stands for Advanced Video 
Coding, is a widely used video compression standard and 
the predecessor of H.265, also known as HEVC. The x264 
encoder had the lowest energy consumption but the low-
est compression efficiency, while the x265 encoder had 
the best efficiency but higher energy consumption. VP9 
demonstrated a favorable tradeoff between compression 
efficiency and energy consumption. It is important to note 
that these findings are specific to the analyzed encoder 
implementations and may not be universally applicable 
to all compression algorithms. The open-source encoders 
were developed with different programming styles and 
optimization goals, making generalizations challenging. 
To bridge this absence, this paper offers a detailed analysis 
of the complexity of VP9 and HEVC,  using an implemen-
tation in Matlab that provides valuable insights into the 
intricacies of the algorithms.

In their work, D. Grois et al.2 conducted a complexity 
analysis using the reference software implementations 
for H.264, HEVC, and VP9. Similar low-delay configura-
tions were employed for all encoders. The results showed 
that HEVC achieved average bit rate savings of 32.5% and 
40.8% compared to VP9 and H.264, respectively, for 1-pass 
encoding. For 2-pass encoding, HEVC yielded average bit-
rate savings of 32.6% and 42.2% relative to VP9 and H.264, 
respectively. However, the VP9 encoder had significantly 
higher encoding times than the x264 encoder, approxi-
mately 2,000 times higher for 1-pass encoding and 400 
times higher for 2-pass encoding. Notably, the evalua-
tion was specific to the encoder implementations used, 
particularly without direct comparability to the previous 
reference. The present investigation aims to provide reli-
able conclusions for new algorithm designs by evaluating 
HEVC and VP9 through a custom Matlab implementation, 
allowing for the analysis of the current method’s complex-
ity bottlenecks, concentrating on ME.

R. Monnier et al.3 presented power consumption com-
parisons of different available encoders (x264 for H.264/
AVC, VPxenc for VP9 and its previous version, VP8, x265 for 
H.265/HEVC, and KVazaar for high-performance HEVC en-
coding), considering the Peak Signal-to-Noise Ratio for the 
Y luminance component (PSNR-Y) to measure the quality 
by comparing the original video’s maximum power to the 
distortion or noise affecting it. They evaluated HEVC with 

two encoders (x265 and Kvazaar) and found that Kvazaar 
exhibited twice the power consumption compared to x265 
when assessing PSNR-Y. While this provides insights into 
encoder performance, it emphasizes the importance of 
specific codec implementations, which may differ in pro-
gramming principles, programming languages, and op-
timization parameters. Therefore, to accurately evaluate 
different algorithms, they should be developed using the 
same programming language and follow consistent prin-
ciples, such as variable and function structures, as demon-
strated in the present paper.

A. Katsenou et al. investigated the energy, quality, and 
bitrate tradeoffs across the following codecs:4 Scalable Vid-
eo Technology for Alliance for Open Media Video 1 (SVT-
AV1), VP9 (vpxenc), VVenC (a high-performance, open-
source video encoder developed by Netflix, optimized for 
encoding video content in the HEVC format), and x265. 
They proposed a new metric for the required bits: the 
energy cost. Similar to the previous references, their per-
formance results were obtained using third-party imple-
mentations, introducing uncertainties. They concluded 
that x265 appeared to be the best choice for low-energy 
solutions, albeit with slightly lower average video quali-
ty. While this study helps understand the implications of 
input parameters on different codecs, it does not provide 
specific reasons for these observations or potential solu-
tions. Moreover, the lack of detail can lead to discrepancies 
with the conclusions presented,1 where VP9 is regarded 
as the most efficient codec. The present work isolates the 
ME process, the most resource-consuming part of current 
video compression algorithms. This way, researchers can 
better understand its inefficiencies and take more concise 
actions.

To date, there are no energy-efficient video compres-
sion publications related to video frames with metaverse 
characteristics.

Methodology
In this section, the implications of utilizing the same soft-
ware platform, specifically Matlab, for comparing both ME 
algorithms (i.e., VP9 and HEVC) will be reviewed. Then, the 
ME principles will be described, along with the features of 
the metaverse video sample used for the tests. This section 
ends with a description of the new metrics introduced.

Using Matlab to Study Video Compression Algorithms
Comparing existing codecs using the available software is 
challenging and does not yield objective results, potentially 
leading to inconsistencies.5 Using Matlab offers several ad-
vantages for researchers working with new video codecs. 
Matlab provides a clear and straightforward comparison 
platform, allowing for precise control of configuration pa-
rameters and features. 

As images and videos can be treated as matrices of data 
in Matlab, inserting, testing, and analyzing new ideas in 
compression algorithms involving transformations, pre-
diction, and reconstruction of matrix data becomes more 
intuitive.
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Due to Matlab’s resource consumption and execution 
speed when compared to compiled software in languages 
such as C++, the computational cost must be carefully 
considered during performance testing. Matlab also offers 
a performance testing toolkit for translating code into C 
and C++. 

By implementing key features of video codecs, VP9 
and HEVC, in Matlab, this paper provides researchers with 
an educational tool to easily run and understand the ME 
module, a crucial and time-consuming task in current video 
encoders with a significant impact on energy efficiency. 

This unified approach allows for an objective and effi-
cient comparison of the two encoders, enabling research-
ers to gain valuable insights into video compression algo-
rithms and their implications for energy consumption. 

Motion Estimation Based on Block Match Algorithms
Although VP9 and HEVC algorithms differ, both codecs 
employ the Block Matching Algorithm (BMA) during ME 
at the encoder to discover motion vectors (MVs). Moreover, 
ME in both codecs supports variable block sizes (i.e., 4 x 4, 
8 x 8, 16 x 16, 32 x 32, and 64 x 64 pixels). Figure 1 illustrates 
the BMA, demonstrating a current block from a frame 
compared to blocks within a specified search area in a ref-
erence frame. The algorithm determines the best match 
by assessing the similarity between the current block and 
those in the search area, identifying the MV representing 
the necessary displacement to align the blocks. This MV 
denotes the optimal position in the reference frame, facil-
itating motion estimation for effective video compression. 
The specific block of pixels selected from the reference 
frame, aligning with the corresponding block in the cur-
rent frame as the optimal match, is termed the prediction 
block (PB).

As will be examined in the Results section, the resolu-
tion of MVs plays a significant role in efficiency but intro-
duces additional complexity. Finer MV resolutions lead to 
increased complexity in subpixel interpolations. Addition-
ally, representing higher-resolution MVs requires more 
bits. Thus, there is a tradeoff in MV resolution to balance 

ME accuracy for improved coding gains, the bit budget al-
located for signaling MVs, and encoding complexity.

Moreover, the length of the chosen interpolation filter 
impacts the amount of data fetched from memory and the 
number of operations performed. The number of multipli-
cations and additions per sample required for interpolat-
ing the block is very significant when compared to other 
steps in the ME process, especially for smaller blocks of 
size NxM when MVs represent fractional displacements in 
both horizontal and vertical directions.

Both encoders employed used a 256 x 256 pixel refer-
ence and current coding unit (CU) sizes and a 32 x 32 PB 
size to aid testing. This PB size strikes an intermediate per-
formance balance, as reducing it is known to increase the 
bit rate and decoding time, but can compromise quality.6

HEVC: ME Matlab Implementation
In HEVC, two search methods for ME aim to find the best-
matched predicted block: Full Search and Fast Motion Search.

The Full Search method checks all points within the 
search window, which can be blocks of pixels or subpixels, 
depending on the resolution. While simple, it is time-con-
suming. On the other hand, Fast Motion Search checks 
a subset of points in multiple iterations. This method is 
faster than Full Search but sacrifices accuracy, making it a 
more common choice for software implementations.

The Test Zone (TZ) Search scheme (a Fast Motion Search 
method), implemented in the Matlab simulator, follows 
these steps:

• �Square Search: it calculates the best distance (best-
Distance) as the minimum cost among all the blocks 
scanned.

• �If  bestDistance > iRaster (typically set as 4), do Raster 
Search.

• �If  0 < bestDistance < iRaster, do a Raster Refinement 
Search. FIGURE 1. Block Matching Algorithm.

MATLAB PROVIDES  
A CLEAR AND 
STRAIGHTFORWARD 
COMPARISON  
PLATFORM, ALLOWING 
FOR PRECISE CONTROL 
OF CONFIGURATION  
PARAMETERS AND  
FEATURES. 
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During this refinement process, subpixel interpolation 
of the last selected block occurs, necessitating compari-
sons of all pixels and subpixels from the reference frame 
with the current frame. This additional level of precision 
in the ME comes at the cost of increased computational 
complexity and higher energy consumption.

The complexity of an encoder is also influenced by the 
choice of metric used to express the similarity between a 
current and a reference image during ME. The most com-
monly used metric in HEVC is Sum of Absolute Differenc-
es (SAD). For subpixel accuracy (½- and ¼-pel), Sum of Ab-
solute Transform Differences (SATD) is employed. SATD is 
more complex as it involves computing the transform of a 
block. Equations 1 and 2 define SAD and SATD, respectively:

In both equations, C(i, j) and R(x + i, y + j) represent pixel 
intensities of two images, and M and N are the dimensions 
of a block within the images. The coordinates (x, y) indi-
cate the MV coordinates of the reference block, and H de-
notes the Hadamard transform.7

The Hadamard transform is a type of linear transforma-
tion with elements of +1 and -1. In the context of SATD, it 
is applied as a means of decorrelating the pixel values or 
capturing the spatial frequency information in an image or 
block of pixels. H is used to transform the pixel differences 
between two corresponding blocks before calculating the 
sum of their absolute values. This transformation helps cap-
ture the spatial frequency characteristics of the differences.

SAD is a simpler metric that calculates the sum of ab-
solute differences between corresponding pixel values in 
two image blocks. 

Both functions are fundamental operations in the 
block-matching ME subsystem.

VP9: ME Matlab Implementation
The implementation of the VP9 inter-prediction process 
in Matlab is an adaptation of the pseudo-code detailed in 
Ref. 8.

• �Motion vector selection: finding the MV for the cur-
rent block. 

• �Motion vector clamping: changing the MV into the ap-
propriate precision and clamping MVs that go too far off 
the edge of the frame, i.e., beyond the boundaries of the 
frame or outside the permissible search range defined 
by the encoder settings. Choosing the motion vector 
clamping limit significantly impacts encoding efficien-
cy, balancing accurate representation and resource allo-
cation. The correct limit optimizes the process by exclud-
ing irrelevant data without compromising video quality.  

• �Motion vector scaling: computing the sampling lo-
cations in the reference frame based on the MV. The 
sampling locations are also adjusted to compensate 
for any difference in the size of the reference frame 
compared to the current frame. 

• �Block inter-prediction: obtaining the 2D array con-
taining inter-predicted samples. The sub-sample in-
terpolation is obtained using two one-dimensional 
convolutions. First, a horizontal filter is used to build-
up a temporary array, and then, this array is vertically  
filtered to obtain the final prediction.

Among these, motion vector scaling and block in-
ter-prediction stand out as the most demanding opera-
tions. Motion vector scaling involves computing sampling 
locations in the reference frame based on MVs and adjust-
ing them to account for any discrepancies in frame size 
between the current and reference frames. This process 
requires numerous arithmetic operations and addressing 
calculations, significantly contributing to computation-
al overhead. On the other hand, block inter-prediction 
involves sub-sample interpolation using two one-dimen-
sional convolutions to generate the 2D array of inter-pre-
dicted samples. These convolution operations are compu-
tationally intensive, particularly for larger block sizes and 
high-resolution videos.

Key Features of Metaverse Videos
A typical metaverse video is a dynamic and immersive me-
dium that plays a crucial role in shaping the user experi-
ence within the virtual environment. Several key features 
define the quality and realism of metaverse videos:

• �Resolution: it refers to the number of pixels used to 
display the video image. Higher- resolution videos pro-
vide sharper and more detailed visuals, enhancing the 
overall immersive experience. Common resolutions 
include HD (720p), Full HD (1080p), 2K (1440p), and 4K 
Ultra HD (2160p). As the metaverse aims for realism, 
higher resolutions are often preferred to create lifelike 
and detailed virtual worlds.

• �Frames Per Second (FPS): it denotes the number of indi-
vidual frames displayed per second in the video. High-
er FPS values result in smoother motion and reduced 
motion blur, which is crucial for interactive experienc-
es within the metaverse. Standard frame per sec values 
are 24, 30, and 60, but for an optimal virtual reality (VR) 
experience, 60 frames/s or higher is recommended to 
ensure fluid and comfortable interactions.

• �Dynamic Lighting and Shading: Metaverse videos incor-
porate dynamic lighting and shading techniques to sim-
ulate realistic lighting conditions. Real-time rendering of 
shadows, reflections, and global illumination improves 
the visual fidelity and adds depth to virtual scenes.

• �Interactive Elements: Metaverse videos often feature 
interactive elements, allowing users to participate and 
influence the virtual environment. This could include 
real-time interactions with objects, characters, and 
other users, enabling a sense of agency and immer-
sion within the virtual world.

• �Compression and Streaming: Efficient video com-
pression is essential for streaming metaverse content 
smoothly over the internet. High-quality video codecs, 
such as HEVC or VP9, are commonly used to reduce 
file sizes without significant loss in visual fidelity.
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• �Stereoscopic Rendering: This technique can be em-
ployed in metaverse videos designed for VR experi-
ences. It creates a sense of depth and three-dimen-
sionality, providing an immersive and realistic visual 
perception when viewed through VR headsets.

In this study, a 4K (UHD-1) raw video with a frame rate 
of 60 frames/sec and a duration of 120 sec served as the 
source material for studying ME in VP9 and HEVC com-
pression. For this research, a single frame from the video 
(i.e., the same for both codecs) was selected to perform 
the ME analysis. The chosen frame provided a represen-
tative snapshot of the dynamic and interactive content 
present in metaverse environments. Figure 2 depicts the 
metaverse frame utilized for these tests.

By focusing on a single frame, the study aimed to iso-
late and evaluate the performance of the ME algorithms 
employed by VP9 and HEVC in capturing the motion and 
temporal redundancies within the metaverse video. This 
approach allowed for an accurate comparison and a thor-
ough investigation of the efficiency and accuracy of the 
ME process.

The frame’s UHD-1 resolution ensured high detail and 
smooth motion representation, essential for accurately as-
sessing the ME algorithms’ capabilities. Through this target-
ed analysis, the study sought to shed light on the strengths 
and weaknesses of VP9 and HEVC’s ME techniques.

Proposed Metrics Included in Motion Estimation
A combination of three metrics was used to evaluate each 
codec.

When evaluating video quality, metrics such as the 
Structural Similarity Index Measure (SSIM) play a crucial 
role. SSIM is a perception-based index that captures chang-
es in structural information within an image or between 
different images. It takes into account important perceptu-
al phenomena like luminance masking and contrast mask-
ing. Luminance masking refers to the phenomenon where 
image distortions are less visible in bright areas, while con-

trast masking refers to the phenomenon where distortions 
are less noticeable in regions with significant activity or 
texture. Equation 3 shows the calculation of SSIM:

where x and y are the two input images compared,  
l(x,y) represents the luminance comparison between the 
images and captures the differences in brightness, c(x,y) 
represents the contrast comparison and takes into account 
differences in contrast, s(x, y) represents the structure com-
parison, capturing differences in structural information, 
and  α  is a parameter that controls the influence of each 
component and is typically set to 1. Each component is 
calculated as the average of local measurements obtained 
by dividing the images into smaller windows (i.e., blocks). 
Luminance comparison is based on mean intensity values; 
contrast comparison considers standard deviations and 
structure comparison evaluates the covariance of intensi-
ty values. Combining these components and raising the re-
sult to the power of α provides an SSIM value that measures 
similarity between the images, accounting for differences 
in luminance, contrast, and structure. Higher SSIM values 
suggest a higher level of structural similarity between the 
two images. In the test, SSIM is utilized to assess the ref-
erence PB and the current PB to determine whether ME 
should be computed, conserving energy when the frames 
exhibit significant similarities. Therefore, ME is performed 
when the SSIM is less than the selected threshold of 0.90.

The second metric incorporated into the VP9 and HEVC 
Matlab implementations is the number of computations 
performed in each step of the algorithms. Quantifying the 
complexity of the software through counting the executed 
operations gains a comprehensive understanding of the 
computational demands. It is essential to carefully assess 
the computational complexity of mathematical opera-
tions, particularly within programming loops, and strive 
to minimize resource-intensive calculations such as multi- 
plications. Reducing this metric directly contributes to 
energy savings and subsequently reduces GHG emissions. 
Matlab’s Profiler9 proves to be a valuable tool in determin-
ing the complexity of different parts of the code, aiding in 
optimizing the software’s efficiency.

The analysis follows by deriving operational emissions 
(O),10 with a particular emphasis on the laptop’s power con-
sumption while executing each ME algorithm in Matlab. 
The computer utilized to do the tests was an ACER Aspire 
F5-573G, with the characteristics shown in Table 1.

Parameter Value
RAM 16 GB

CPU Intel(R) Core(TM) i7-7500U

CPU Frequency 2.7 GHz

OS Windows 10

Number of cores 2

TABLE 1. Laptop specifications.

FIGURE 2. Selected metaverse frame for this study.
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A power meter was utilized to measure the power con-
sumption accurately. Consequently, to assess the energy 
consumed by the software for a specific task, Equation 4 
is used:

where E represents the energy consumed by the soft-
ware for the task, measured in kWh. In this study, the task 
was defined as the execution of inter-prediction for one 
frame. E was determined by measuring the laptop’s pow-
er consumption with a power meter, during idle state, and 
while running each algorithm in Matlab. The difference 
between these two values was then converted to kWh us-
ing the total processing time for each algorithm obtained 
from Matlab. The parameter I, denoting location-based 
marginal carbon intensity, was obtained and defined as 
275 gCO2Eq/kWh.11 It embodies the carbon emissions as-
sociated with generating an extra unit of electricity at a 
specific location on the grid. This measure exemplifies the 
environmental impact of electricity generation in the se-
lected region, Europe, to enhance result precision, as the 
tests were performed in Spain.

Results
Before conducting ME, the SSIM is obtained, yielding a value 
of 0.86. Since it falls below the chosen threshold (i.e., 0.90), 
the ME computation was carried out for the two codecs.

For HEVC-ME, detailed performance measurements 
were obtained for each step, including the number of com-
putations performed and the corresponding processing 
time. The results are summarized in Table 2.

Step Computations Processing Time (seconds)

Initial Search 2,753 0.068

Raster Search 548 0.029

Refinement Search 2,644 0.062

TABLE 2. HEVC-ME execution performance in Matlab. 

The analysis of the HEVC-ME computations yielded the 
following results:

• �The SAD function was called 2,305 times during the 
Initial Search, accounting for 17% of the computing 
time of this search algorithm. It was called 484 times 
in the Raster Search, accounting for 14.3% of this step’s 
processing time. In the Refinement Search, SAD was 
called 2,004 times, taking up 4.4% of the execution 
time for this part. SATD and subpixel interpolation 
were each called 64 times during the Refinement 
Search, constituting 33.6% and 32.9% of the total func-
tion time, respectively. Therefore, overall, SAD, SATD, 
and subpixel interpolation operations were the most 
demanding steps.

• �The average power consumption was 8.1 W without 
the refinement step and increases to 14 W when the 
refinement search is included.

• �The estimated operational emissions were 0.0006 
gCO2Eq without the refinement step and rise to 0.0009 

gCO2Eq when the refinement search is executed.
Furthermore, the computations and processing time 

for each of the VP9-ME steps were measured in Matlab, 
and the results are presented in Table 3.

Step Computations Processing Time 
(seconds)

Motion vector selection 28 0.0026

Motion vector clamping 1 0.0043

Motion vector scaling 1 0.0064

Block inter-prediction 18,471 0.072

TABLE 3. VP9-ME execution performance in Matlab. 

In this case, the following results were obtained:
• �The most time-consuming step is the “block inter-pre-

diction” function, which accounted for 84.4% of the total 
execution time. Within this function, 47.2% of the time 
was dedicated to the sub-sample interpolation process.

• �The average power consumption observed during the 
measurements was 5.1 W.

• �The estimated operational emissions associated with the 
process were found to be 0.0004 gCO2Eq.

The performance analysis of HEVC-ME and VP9-ME algo-
rithms provides valuable insights into their computational 
requirements and energy consumption. 

In HEVC-ME, the most time-consuming steps are the SAD, 
SATD, and subpixel interpolation functions. Particularly, the 
SATD function’s substantial time consumption is due to the 
linearithmic time complexity (nlogn) of the absolute value 
of the Walsh-Hadamard transform, where n represents the 
size of the subpixel interpolated reference and current CUs. 
This significantly contributes to the overall execution time, 
resulting in higher power consumption and operational 
emissions. 

Conversely, VP9-ME dedicates a considerable amount of 
time to sub-sample interpolation. This is due to VP9’s utili-
zation of an 8-tap fractional pixel interpolation filter, which 
enhances accuracy, although more computationally inten-
sive than the 6-tap interpolation filter used in HEVC. Overall, 
VP9-ME demonstrates superior energy efficiency, leading to 
lower power consumption and estimated operational emis-
sions compared to HEVC-ME. 

These findings underscore the importance of understand-
ing computational complexities and energy metrics when 
evaluating and optimizing video compression algorithms for 
improved efficiency and reduced environmental impact.

Discussion
In this study, we compared the environmental impact of vid-
eo compression algorithms, specifically focusing on VP9 and 
HEVC. Our results revealed that VP9 emitted lower carbon 
emissions and consumed less power during execution than 
HEVC. This suggests that VP9 performs faster predicting 
sample frames, while HEVC operations involve higher com-
plexity and more iterations in the search process.

To evaluate the carbon footprint of metaverse videos, 
we analyzed a 120-sec UHD-1 video with a frame rate of 60 
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frames/s. In the best-case scenario (i.e., VP9-ME), compress-
ing each frame resulted in 0.0004 gCO2Eq/frame emission. 
If this is extrapolated to the entire 120-sec video with 7,200 
frames, the total estimated carbon emissions would be 2.88 
gCO2Eq. With a data center using 50% renewable energy, 
overall carbon emissions could be reduced to 1.44 gCO2Eq.

Extending these findings to the vast number of 
metaverse users worldwide, there are approximately 400 
million active users each month,12 and assuming each user 
generates or interacts with an average of ten videos month-
ly, we can anticipate an annual carbon emission of approx-
imately 69,120 metric tons of CO2Eq. This carbon output is 
comparable to the annual emissions of hundreds of small 
to medium-sized power plants or tens of thousands of cars.13 
This highlights the significant environmental impact of 
metaverse videos on a global scale, comparable to specific 
industrial sectors in terms of carbon emissions. The magni-
tude of metaverse video emissions emphasizes the urgency 
for adopting sustainable practices in the rapidly expanding 
digital landscape.

Notably, the estimated 69,120 metric tons of CO2Eq 
closely align in magnitude with the results published by 
Meta,14 which state that 57,000 metric tons of CO2Eq pri-
marily originate from data centers processing videos and 
metaverse applications due to the nature of the company. 
This reinforces the need for increased attention to energy- 

efficient practices in video processing to mitigate the envi-
ronmental impact of the metaverse.

It is essential to acknowledge the intricate nature of ME 
steps in HEVC and VP9, which leads to a non-linear relation-
ship between the number of iterations and processing time. 
The complexity of the operations within each iteration is the 
primary factor responsible for the increased consumption of 
time and energy, as both processing time and energy usage 
exhibit a proportional connection. This emphasizes the im-
portance of optimizing these algorithms to achieve a balance 
between computational efficiency and energy consumption 
in practical video coding applications.

Regarding the comparison of VP9 and HEVC in Matlab, 
although the processing time may be longer compared to 
other software platforms, the number of computations re-
mains the same as it solely depends on the algorithm imple-
mentation. Thus, Matlab allows for a fair comparison of both 
codecs. 

Given the high volume of videos today, even if the pollu-
tion were cut in half by using faster software, the associated 
emissions would still be a concern. This highlights the need 
for more energy-efficient video compression algorithms that 
use real power consumption data and metrics like Opera-
tional Emissions (O). These metrics can be employed during 
algorithm development stages, where real measurements 
can be taken and specific hardware data can be obtained 
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from suppliers for accurate calculations. Furthermore, these 
metrics can be incorporated into the algorithms as decision 
values to optimize efficiency.

In line with the current investigation, perception-based 
metrics such as SSIM can be employed to assess the resulting 
compressed video and be integrated into the compression 
algorithm. This integration optimizes the balance between 
perceived quality and computational considerations, includ-
ing energy consumption. In regions characterized by high 
SSIM values, indicating substantial structural similarity, it 
becomes possible to skip the ME process, thereby reducing 
algorithmic complexity. Furthermore, in scenarios where 
CUs exhibit significant similarities, strategies like aggressive 
quantization, which reduces bit rate allocation without com-
promising perceived quality, could come into play.

Analyzing the efficiency of current algorithms, as demon-
strated in the Matlab code developed for this work, is an es-
sential initial step towards a more sustainable metaverse.

Conclusion
The rapid growth of mobile devices, internet accessibility, 
video-on-demand services, social media, and the emergence 
of the metaverse, have led to a significant surge in digital vid-
eo traffic. However, this growth has also increased process-
ing complexity in current compression methods, resulting in 
higher energy demand and associated pollution.

Addressing this issue requires lighter compression meth-
ods that can efficiently handle video encoding. This study 
compared the performance of VP9 and HEVC, focusing on 
their ME processes, using a custom implementation in Mat-
lab for a metaverse video sample frame. The findings re-
vealed that both codecs employ thousands of computations 
to predict a single video frame. While both codecs possess 
remarkable features and designs, the results underscore the 
urgency of developing more efficient and sustainable video 
compression techniques. Reduced video processing times 
and smaller file sizes enable quicker upload, download, and 
streaming, enhancing user experience and reducing overall 
energy demand on servers, data centers, and network infra-
structure.

Future research of this work will address inefficiencies in 
the full compression algorithms, optimize the entire com-
pression pipeline, and promote eco-conscious behavior 
among users. The overarching objective is to establish cri-
teria for novel video compression algorithms that combine 
ecological sustainability with superior experiential quality. 
To facilitate this pursuit, the Matlab code for VP9 and HEVC 
is accessible through the Harmony Valley research project’s 
website.15 

The code for two Android apps dedicated to video com-
pression and “eco-cam” functionality has also been shared. 
This initiative invites enthusiastic researchers to partake 
in the collective endeavor of advancing video compression 
standards with heightened efficiency. Energy consumption 
will be a primary design constraint in technological advance-
ments, ensuring that people can enjoy digital technology 
without causing harm to the planet. Prioritizing energy effi-
ciency in video processing for the metaverse and other digi-

tal applications is crucial. By optimizing video compression 
techniques and reducing computational complexity, we 
forge the way for a greener digital landscape.
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