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Abstract— In this letter, a packaged bandpass filter (BPF) with
a compact size of 1.5 × 1.5 × 0.315 mm3 operating at 28 GHz
is proposed. This BPF is implemented based on a multilayers
printed circuit board (PCB) fabrication process with ultra-thin
substrate. With the packaged configuration, the filter can not
only reduce the circuit size and component insertion loss, but also
eliminate the effect of electromagnetic (EM) radiation. To verify
the mechanisms mentioned above, a packaged millimeter-wave
(mm-wave) BPF with three transmission zeros is designed and
fabricated. The measured results show that the proposed BPF has
the merits of low insertion loss, high selectivity, and compact size.
Meanwhile, this BPF can suppress harmonics with a rejection
level of more than 24 dB up to 110 GHz. With these merits, the
proposed BPF is attractive for 5G mm-wave application.

Index Terms— 5G, bandpass filter (BPF), high selectivity,
millimeter-wave (mm-wave), wide stopband.

I. INTRODUCTION

W ITH ever-increasing demands of wireless commu-
nication systems, high performance bandpass fil-

ters (BPFs) are essential to 5G applications including
sub-6-GHz and millimeter-wave (mm-wave). The BPFs
using stepped-impedance resonator (SIR) [1]–[3], defected
ground structure (DGS) [4]–[7], and substrate-integrated DGS
(SIDGS) [8]–[11] are reported with low loss and wide stop-
band for sub-6-GHz application. To satisfy the requirements
of 5G mm-wave system, the cavity [12]–[16] and substrate-
integrated waveguide (SIW) [17]–[21] are used for BPF
with good in-band performance. However, the relatively large
circuit size cannot integrate for 5G wireless applications
(e.g., mobile phone). To reduce the circuit size, on-chip mm-
wave BPFs [22]–[30] are introduced, while the relatively poor
passband/stopband performance and high fabrication cost limit
the applications. Recently, the semiadditive patterning process
[31] and low temperature co-fired ceramic (LTCC) technol-
ogy [32]–[36] are utilized for BPF designs. Nevertheless, these
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Fig. 1. Configuration of the proposed packaged BPF. (a) 3-D view. (b) Top
view of layer L1. (c) Top view of layer L2. (d) Top view of layer L3.

BPFs are not easy to integrate with antenna, power supply, and
chip in a packaged micro-system. Therefore, the design of 5G
mm-wave BPF with merits of low loss, compact size, low cost,
and easy for integration remains great challenges.

In this letter, a compact BPF with high selectivity and wide
stopband is proposed for 5G mm-wave applications. It is fab-
ricated by a commercially five-layer PCB technology. Three
controllable transmission zeros are allocated based on the
proposed coupling topology to improve passband selectivity.
Meanwhile, U-shape resonators and feed lines are stacked
up to minimize the circuit size. To verify the mechanism
mentioned above, a prototype BPF operating at 28 GHz is
implemented and fabricated. The measured results show that
the proposed BPF has advantages of low insertion loss, high
selectivity, wide stopband, compact size, and easy to integrate.

II. SCHEMATIC AND OPERATION

The 3-D-view configuration of the proposed filter is shown
in Fig. 1(a). The material (i.e., Panasonic, Megtron 7) is
selected as the substrate. The loss tangent is 0.013, which is
obtained from the measured results with the sample thickness
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Fig. 2. (a) Traditional CT-type coupling topology. (b) CT-type coupling
topology with source/load coupling. (c) Proposed coupling topology.

Fig. 3. Calculated S-parameters with different coupling topologies
(i.e., Case I–III).

of 0.06 mm at 60 GHz. Besides, the thicknesses of each
metal and dielectric layers are 15 and 60 μm, respectively.
As shown in Fig. 1(b)–(d), two U-shape feed-lines and three
packaged stripline resonators are placed at middle three layers
(i.e., layer L1–L3), respectively. To verify the mechanism,
the electromagnetic (EM) simulator high frequency structure
simulator (HFSS) are used.

A. Coupling Topology for High Selectivity

In this section, a low-order filter with high selectivity is
discussed. First, the coupling topology of traditional CT-type
is introduced in Fig. 2(a). It can allocate a transmission zero
at the lower passband. However, the passband selectivity is
relatively low. As shown in Fig. 2(b), the passband selectively
is improved once the source/load coupling is introduced, since
two additional transmission zeros are allocated at both sides
of the passband. To further improve the passband selectivity,
a novel cross coupling between source/load and resonator R2 is
added, as depicted in Fig. 2(c). The positions of transmission
zeros can be finely adjusted by the coupling strength of
MS2/L2, which can further improve the passband selectivity.
Based on the proposed coupling topology, the design coupling
matrix [M] can be obtained by the method in [37]. The
calculated S-parameters between different coupling topologies
(i.e., Case I–III in Fig. 2) are compared in Fig. 3. The
proposed coupling topology can allocate three transmission
zeros (i.e., fz1, fz2, and fz3) to effectively improve passband
selectivity. Meanwhile, the calculated S-parameters of trans-
mission zeros with different MSL and MS2/L2 are depicted in
Fig. 4(a) and (b), respectively. The positions of transmission
zeros can be finely adjusted by MSL and MS2/L2.

Fig. 4. (a) Variation of transmission zeros with different MSL . (b) Variation
of transmission zeros with different MS2/L2.

Fig. 5. 5G mm-wave frequency band and design specifications of proposed
filter.

B. Filter Design

To meet the requirements of 5G mm-wave bands (i.e., n258,
n257, and n261, as shown in Fig. 5), the proposed BPF is set
to support three mm-wave frequency bands, simultaneously.
Besides, the frequency band (i.e., 22.5–22.55 GHz) is used
for control and non-payload communications (CNPCs) of
unmanned aerial vehicle (UAV) in Rep-ITU-R [38], which
should be suppressed with a high rejection level. Therefore,
a prototype of mm-wave packaged BPF is proposed with the
following design specifications: passband of 24.25–29.5 GHz,
insertion loss lower than 2 dB, return loss higher than 15 dB,
and |S21| lower than −25 dB from 22.5 to 22.55 GHz.

To achieve the specifications based on the proposed
coupling topology, two grounded λ/4 stripline resonators
(i.e., R1 and R3) and one λ/2 stripline resonator (i.e., R2)
are utilized. Meanwhile, the unloaded Q of grounded
λ/4 resonators and λ/2 resonator are 102 and 94
(i.e., simulated by HFSS) in filter implementation,
respectively. Two U-shape striplines act as the feed-line. The
configurations are shown in Fig. 1, which are placed at layer
L1–L3, respectively. As shown in Fig. 6(a) and (b), the main
couplings (i.e., MS1/L3 and k12/23) are achieved by top-bottom
coupling scheme. The k13 is the different coupling type in
CT-type filter design, which is implemented by two coupled
grounded λ/4 resonators in Fig. 6(c). The edge-coupled
scheme is used to generate source/load coupling (i.e., MSL)
between two feed-lines, as depicted in Fig. 6(d). Then, the
cross coupling MS2/L2 is achieved by cross-layer coupling
in Fig. 6(e). Therefore, the configuration of core circuit is
shown in Fig. 6(f). Besides, the grounded λ/4 resonators and
λ/2 resonator have different harmonic distribution due to
the stepped-impedance configuration. Thus, a wide stopband
response can be achieved by mutual suppression of harmonics
[39]. The values of coupling coefficients ki j between two
coupled resonators can be extracted by the method in [40].
To achieve the desired couplings coefficients, the design
curves of Qe against l3 are shown in Fig. 7(a). Besides, the
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TABLE I

COMPARISON OF THE REPORTED mm-WAVE BPF WITH STATE-OF-THE-ARTS

Fig. 6. (a)–(e) Coupling schemes between resonators and feed-lines. (f) Con-
figuration of core circuit.

Fig. 7. (a) Influence of l3 on the Qe. (b) Influence of w4 on the k12 and
k23. (c) Influence of s4 on the k13.

w4 and s4 can be properly adjusted to achieve a specific
coupling coefficient for the passband response, as shown in
Fig. 7(b) and (c).

III. MEASUREMENT

Based on proposed principles, a compact packaged
mm-wave BPF based on multilayer PCB technology is fabri-
cated. The photographs and 3-D-view configuration are shown
in Fig. 8. The measurement is performed by the Agilent
N5244A PNA-X microwave network analyzer (i.e., including
external mm-wave converters) from 10 MHz to 110 GHz
and the short-open-load-thru (SOLT) calibration is used for
measurement. The measured center frequency of the BPF
is 28 GHz with 3-dB fractional bandwidth (FBW) of 27.9%
and minimum passband insertion loss of 1.3 dB. Meanwhile,
the largest insertion loss from 24.25 to 29.5 GHz is only 2.5 dB

Fig. 8. Photographs of proposed filter and its simulated and measured results
(w1 = 0.05, w2 = 0.03, w3 = 0.05, w4 = 0.13, w5 = 0.12, w6 = 0.18,
w7 = 0.125, w8 = 0.34, l1 = 0.67, l2 = 0.235, l3 = 0.705, l4 = 0.675,
l5 = 0.115, l6 = 0.645, l7 = 0.64, l8 = 0.15, l9 = 0.965, s1 = 0.155,
s2 = 0.27, s3 = 0.065, s4 = 0.09, s5 = 0.045, and s6 = 0.09, unit: mm).

(i.e., @24.25 GHz). More than 27.6 dB stopband suppression
is achieved for this design from 22.5 to 22.55 GHz, while
24 dB suppression level from 35 to 110 GHz is obtained.
The measured insertion loss is slightly smaller than the sim-
ulation results at the passband, since the simulation results
are obtained by substrate loss tangent at 60 GHz (i.e., the
substrate loss tangent is lower than 0.013 around 28 GHz).
A comparison of the proposed BPF with state-of-the-arts is
shown in Table I, which reveals that this BPF has merits
of low insertion loss, compact size, and multi transmission
zeros. Besides, this BPF can significantly improve stopband
suppression without increasing the overall circuit size.

IV. CONCLUSION

In this letter, a compact packaged mm-wave BPF based on
multilayer PCB technology is presented. Three controllable
transmission zeros are allocated by proposed coupling topol-
ogy. To reduce the circuit size and extend stopband bandwidth,
three U-shape SIRs with stacked up coupling scheme are
used. The measured results show that the fabricated BPF has
the merits of low insertion loss, wide stopband, and high
selectivity. With such good performance, the proposed BPF
is attractive for 5G mm-wave applications.
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