
Symbolic Malleable Zero-knowledge Proofs

Michael Backes∗†, Fabian Bendun∗, Matteo Maffei∗, Esfandiar Mohammadi∗, Kim Pecina‡
∗ CISPA, Saarland University, Saarbrücken, Germany

Email: {backes,bendun,maffei,mohammadi}@cs.uni-saarland.de
† MPI-SWS, Saarbrücken, Germany

‡ peloba UG & Co. KG, Saarbrücken, Germany
Email: pecina@peloba.de

Abstract—Zero-knowledge (ZK) proofs have become a central
building block for a variety of modern security protocols. Mod-
ern ZK constructions, such as the Groth-Sahai proof system,
offer novel types of cryptographic flexibility: a participant
is able to re-randomize existing ZK proofs to achieve, for
instance, message unlinkability in anonymity protocols; she
can hide public parts of a ZK proof statement to meet her
specific privacy requirements; and she can logically compose
ZK proofs in order to construct new proof statements. ZK
proof systems that permit these transformations are called
malleable. However, since these transformations are accessible
also to the adversary, analyzing the security of these protocols
requires one to cope with a much more comprehensive attacker
model – a challenge that automated protocol analysis thus far
has not been capable of dealing with.

In this work, we introduce the first symbolic abstraction
of malleable ZK proofs. We further prove the computational
soundness of our abstraction with respect to observational
equivalence, which enables the computationally sound ver-
ification of privacy properties. Finally, we show that our
symbolic abstraction is suitable for ProVerif, a state-of-the-
art cryptographic protocol verifier, by verifying an improved
version of the anonymous webs of trust protocol.

Keywords-computational soundness; equivalence properties;
privacy; zero-knowledge proofs

I. INTRODUCTION

Proving security and privacy properties of protocols that
rely on cryptographic operations constitutes a highly com-
plex and error-prone task. As a consequence, research has
strived for the automation of such proofs soon after the first
protocols were developed [1]–[3]. To tame the inherent com-
plexity of such proofs, the cryptographic operations were
abstracted as symbolic terms that obey simple cancelation
rules, so-called Dolev-Yao models [1].

While Dolev-Yao models in the beginning included only
basic cryptographic primitives such as encryption and digital
signatures, the Dolev-Yao models have been extended over
the years to on the one hand more basic primitives (e.g.,
DH exponentiation, bilinear pairings, and AC-operators [4]),
requiring more sophisticated verification techniques, and
on the other hand more complex primitives (e.g., secure
multi-party computation [5]). In this work, we focus on
zero-knowledge proofs [6], which have rapidly become a
central building block for a variety of modern privacy

protocols, such as verifiable computation [7], [8], e-voting
systems [9], anonymous credentials [10], group signatures,
and many others. A zero-knowledge proof consists of a
message or a sequence of messages that combines two
seemingly contradictory properties: First, it constitutes a
proof of a statement x (e.g, x = “the message within this
ciphertext begins with 0”) that cannot be forged, i.e., it is
impossible, or at least computationally infeasible, to produce
a zero-knowledge proof of a wrong statement. Second, a
zero-knowledge proof does not reveal any information other
than the sole fact that x constitutes a valid statement.

In addition to these core properties, commonly used ZK
proof schemes, such as the Groth-Sahai proof system [11]
and partly the ZK-SNARKs used in Pinocchio [7] or AD-
SNARK [8], offer additional cryptographic functionalities.
First, a participant is able to re-randomize existing ZK
proofs, which is fundamental for achieving unlinkability in
anonymity protocols. Second, in order to adhere to individ-
ual privacy requirements, a participant can hide public parts
of a ZK proof statement to selectively hide information of
third-party proofs (e.g., this enables the design of privacy-
preserving credentials for open-ended systems [12]–[14]).
Third, a participant can logically compose ZK proofs in
order to construct new proof statements.

Existing symbolic abstractions, however, are restricted to
non-malleable ZK proofs, which are modelled as monolithic
building blocks that cannot be further transformed [15]–
[17]. There have even been two corresponding computational
soundness results for these abstractions [18], [19]. How-
ever, these computational soundness results only hold for
trace properties, neglecting the privacy properties that zero-
knowledge proofs offer, and these abstractions do not model
malleable proofs, that can either be re-randomized or com-
posed and existentially quantified without the knowledge of
secret values.

Designing a symbolic model for malleable ZK proofs is
hard given the number and complexity of the cryptographic
functionalities to be considered, even more so automating
security proofs in such a setting. Furthermore, the symbolic
models of non-malleable ZK proofs have been justified by
computational soundness results, i.e., a successful symbolic
analysis carries over to the corresponding cryptographic ZK

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Michael Backes. Under license to IEEE.

DOI 10.1109/CSF.2015.35

412

realizations [18], [19]. These results, however, are limited
to trace properties, and therefore do not apply to privacy
properties, which are the primary reason for deploying zero-
knowledge proofs.

A. Our Contribution

First, we provide a symbolic abstraction of malleable
ZK (MZK) proofs by means of an equational theory.1 The
main conceptual challenge we faced when devising this
abstraction was to identify a representation that is amenable
to automated verification and yet captures an expressive
and computationally sound class of transformations. In par-
ticular, we categorize transformations as one of the three
types: (i) re-randomization (used, e.g., to make forwarded
proofs unlinkable), (ii) logical transformations (used, e.g.,
to produce a proof of the statement x∧ y from independent
proofs of x and y), and (iii) existential quantification
(used to selectively hide information from existing proofs).
To render automated verification feasible in the presence
of these rich transformations, we tailor our abstraction to
conjunctive statements. As a case study, we use the protocol
verifier ProVerif to verify an improved version of anonymous
webs of trust using ProVerif.

Second, we prove the computational soundness of the
abstractions with respect to the kind of equivalence prop-
erties that can be verified by the ProVerif cryptographic
protocol verifier. These results are given in CoSP [20], [21],
a modular and generic framework for symbolic protocol
analysis and computational soundness proofs. The process of
embedding calculi is decoupled from computational sound-
ness proofs of cryptographic primitives: as a result, our
work immediately entails a computationally sound symbolic
model in the applied-pi calculus, and we show that our result
also entails a computationally sound symbolic abstraction in
ML (building on results from [22]).
Outline of the Paper. We first present and discuss our
symbolic abstraction of malleable ZK proofs in § II. Then,
we review the CoSP framework in § III. Finally, we show
computational soundness in § IV. § VI concludes this work
and outlines future work.

Proofs and technical details are reported in the full ver-
sion [23].

II. SYMBOLIC ABSTRACTION OF MALLEABLE ZK
PROOFS

A. The applied pi-calculus

We concisely review the syntax and the operational se-
mantics of the applied pi-calculus [24]. The set of terms is
generated by a countably infinite set of names (denoted as
a, t, m, and n), variables x, and constructors f that can be
applied to terms. We denote vectors by underlining, e.g., x

1We further consider asymmetric encryptions and digital signatures,
handled in a standard way [20].

for x = (x1, . . . , xk) for some k. Destructors, ranged over
by D, are partial functions that processes can apply to terms.

Plain processes, ranged over by P , are defined as follows.
The null process 0 does nothing; new n.P generates a fresh
name n and then executes P ; a(x).P receives a message
m from channel a and then executes P{m/x}]; a〈m〉.P
outputs message m on channel a and then executes P ; P | Q
runs P and Q in parallel; !P behaves as an unbounded
number of copies of P in parallel; let x = D(t) in P else Q
applies the destructor D to the terms t and, if the application
succeeds and produces the term t′ (D(t) = t′) then the
process behaves as P{t/x}, otherwise (i.e., if D(t) = ⊥)
the process behaves as Q. The scope of names and variables
is bound by restrictions, inputs, and lets. A process is closed
if it does not have free variables. A context C[•] is a
process with a hole • in the place of a subprocess, while an
evaluation context is a context where the hole is not under
a replication, a conditional, an input, or an output.

The operational semantics of the applied pi-calculus is
defined in terms of structural equivalence (≡) and internal
reduction (→); the former allows for a syntactic rearrange-
ment of processes, the latter rules process synchronizations
and let evaluations.

Intuitively, two processes are said to be observationally
equivalent if no context (i.e., adversary) can distinguish
them. Observational equivalence is the symbolic counterpart
of the indistiguishability property in the cryptographic set-
ting, and it is typically used to formalise various privacy
properties. Automated tools for the verification of obser-
vational equivalences typically focus on bi-processes: a bi-
process is a pair of processes that only differ in the terms
they operate on. Formally, they contain expressions of the
form choice[a, b], where a is used in the left process and
b is used in the right one. The semantics of bi-processes is
defined such that they can only reduce if both its processes
can reduce in the same way.

Definition 1 (Uniform bi-process). A bi-process Q is uni-
form if left(Q) → Rleft implies that Q → R for some
bi-process R with left(R) ≡ Rleft, and symmetrically for
right(Q)→ Rright with right(R) ≡ Rright.

Verifying uniformity suffices to enforce observational
equivalence.

Theorem 1. Let Q be a closed biprocess. If, for all plain
evaluation contexts C[•] and reductions C[Q] → P , the
biprocess P is uniform, then left(Q) is observationally
equivalent to right(Q).

For a complete description of the applied pi-calculus, we
refer to [24].

B. Anonymous Webs of Trust

Before describing our symbolic model of malleable zero-
knowledge proofs, we introduce the running example utilised

413

in this paper.
In cryptography, one of the most daunting tasks is to

ensure that a public key belongs to a certain person. The
two most prevailing methods are public-key infrastructures
(PKIs) and webs of trust. In both cases, the overall idea is
the same: a trusted third party vouches for the connection
between a pair of public keys, i.e., encryption key and
verification key, and its owner by using a digital signature.
The main difference between these two approaches is that
the PKI defines several third parties as trust anchors that
manage the trust whereas in webs of trust every participant
can choose whom to trust.

For instance, if Charlie has been issued a signature sig
on his verification key vkB by Bob,2 represented by his
verification key vkB , everybody that trusts Bob can accept
that vkC belongs to Charlie. In this way, it is possible to
build trust chains: if Alice trusts Bob and Bob trusts Charlie,
Alice can derive some degree of trust into messages signed
by Charlie.
Anonymous webs of trust. While the web of trust ap-
proach solves the problem of central trusted entities, it
lacks important privacy properties: when sending a signed
message, Charlie naturally reveals his identity and, in the
process authenticates the message. Alice can check that the
received message is authentic by checking the signature
verify(m, sign(m, skC), vkC) = true to ensure that there is
a trust chain from her to Charlie.

Technically, skC = sk(sC) for some value sC only to
known to Charlie. Analogously, vkC = vk(sC), i.e., the two
keys are connected via sC . The verification key is derived
by using the destructor vkofsk(sk(s)) = vk(s). If by the
context, it is clear which verification key belongs to which
signing key, we neglect to write them as constructors.

The design of webs of trust inherently reveals the creator
of a message. Backes, Lorenz, Maffei, and Pecina [25]
solved this problem by introducing the concept of anony-
mous webs of trust. Intuitively, they use zero-knowledge
proofs to show that there exists a trust chain from the
recipient of the message to the sender without disclos-
ing the signatures or the verification keys of the princi-
pals along the chain, i.e., the sender remains anonymous.3

The message is authenticated by the proof that shows
that there is a trust chain from Alice to the sender of
m as depicted in Figure 1. More precisely, the proof
shows that ∃sig1, vk1, sig2, vk2, sig3. verify(vkA, sig1, vk1)∧
verify(vk1, sig2, vk2) ∧ verify(vk2, sig3,m) (we silently as-
sume that every verification returned true).
Decentralised anonymous webs of trust. Anonymous webs

2For the sake of simplicity, we restrict signatures in webs of trust to
verification keys. Actual webs of trust also consider encryption keys and
attributes.

3The anonymity guarantee is not unconditional since the structure of
the web of trust may reveal information about the sender. We refer the
interested reader to the paper for a detailed discussion.

A B B0 C 0C
t

A

∃sig1, vk1, sig2, vk2, sig3. verify(vkA,sig1, vk1)
 ∧ verify(vk1, sig2, vk2) ∧ verify(vk2, sig3, m)

∃sig1, vk1, sig2, vk2, sig3. verify(vkA,sig1, vk1)
 ∧ verify(vk1, sig2, vk2) ∧ verify(vk2, sig3, m)

A B C

∃sig1, vk1, sig2, vk2, sig3. verify(vkA, sig1, vk1) ∧ verify(vk1, sig2, vk2) ∧ verify(vk2, sig3, m)

∃sig. verify(vkA,sig, vkB) ∃sig. verify(vkB,sig, vkC)

Figure 1. In decentralized anonymous webs of trust, zero-knowledge
proofs are exchanged between Alice and Bob, and Bob and Charlie. Since
these proofs are reused when proving a trust chain, denoted by the dotted
arrows, the proofs have to be re-randomized. Otherwise, Bob, respectively
Alice, will be able to identify the proof send to Charlie, respectively Bob,
with the corresponding part in the proof send from Charlie to Alice.

T ::= enc(ek(N), T,N) | ek(N) | dk(N) | pair(T, T) |
sig(sk(N), T,N) | vk(N) | sk(N) | S | N
zkp(R) | com(T, (M,N))

Q ::= ε | string0(Q) | string1(Q)

R ::= (R,R) | (M,N)

S ::= S | O(S)

M ::= N | cmb(N,M) N ::= n n ∈ N

Figure 2. The syntax of terms

of trust still require a centralized server that provides access
to the signatures on the public keys. In a decentralized
anonymous webs of trust, participants do not issue signatures
but zero-knowledge proofs.

Zero-knowledge proofs used in a completely distributed
setting need to have the following properties: (i) Charlie
needs to be able to combine her proof issued by Bob
with a fresh proof that authenticates the message (the
combined proof shows ∃sig1, sig2. verify(vkB , sig1, vkC) ∧
verify(vkA, sig2,m); (ii) since the combined proof reveals
Alice’s identity, she needs to be able to selectively hide her
identity from the combined proof; (iii) since combining
proofs and selectively hiding parts of the statements in
general leaves the zero-knowledge proof itself unchanged,
Alice needs to be able to re-randomize the proof: otherwise,
Bob can check for equality of the proof part that he issued
with previously issued proofs to identify Alice as originator
of the message, as described in Figure 1. Malleable zero-
knowledge proofs satisfy all these requirements.

C. Symbolic Model of Malleable Zero-Knowledge Proofs

This section details the symbolic model of malleable zero-
knowledge proofs. For devising this model, we encountered
several subtle pitfalls, which we highlight and show how to
circumvent.

A symbolic zero-knowledge proof consist of the proof π
itself (i.e., the concrete bit string), the commitments ci
that are used in the proven statement, and the opening
information oi to some or all of the commitments. This
model closely resembles existing zero-knowledge schemes
(e.g., [11]) and it is capable of satisfying all our require-
ments. In the following, we denote zero-knowledge proofs

414

as triples (π, c, o). For better readability, we refer to π as
zero-knowledge proof or proof and to the triple (π, c, o) as
zero-knowledge triple or triple. Furthermore, we let ε denote
empty opening information that have been removed from the
proof; removing the opening information directly translates
to selectively hiding the corresponding value.

For instance, the symbolic proof sent from Alice to Bob
in Figure 1 consists of three combined proofs and looks as
follows:

(πA→B , (cvkA , csig1 , cvkB), (ovkA , ε, ε))
(πB→C , (cvkB , csig2 , cvkC), (ε, ε, ε))
(πm, (cvkC , csig3 , cm), (ε, ε, om))

where cx denotes a commitment to x and oy the opening
information for y. Notice that the commitments to vkB
(respectively, vkC) in the first and the second (respectively,
the second and the third) verification are equal. This is
necessary to connect the malleable proofs [14].

The most notable difference between non-malleable and
malleable zero-knowledge proofs is the re-randomization
property of the latter. Since this influenced the model most,
we start by describing the re-randomization property. In the
remainder of this section, we let n denote the number of
commitments contained in a proof. Furthermore, we write
the superscript i/n to denote that the destructor handles the
i-th of n entries, i.e., commitments or opening information.
Symbolic re-randomization. Computationally, re-
randomization typically works by adding (or multiplying,
depending on the group structure) a uniformly random value
r to some value v and, using a one-time pad argument, the
resulting value is uniformly random and independent of
v. Although appealing, modeling such algebraic properties
symbolically is inherently unsound [26].

We circumvent this issue by requiring honest protocol
participants to always use freshly-chosen random values
for the re-randomization process: since the randomness is
always fresh and chosen uniformly at random, algebraic
properties do not play a role.

At the same time, the model must consider that the
attacker cannot be restricted in any way. A first approach
is to let re-randomization replace randomness in a zero-
knowledge triple consistently in π and in c. Since the
attacker can re-randomize a proof and commitments can be
opened once the randomness is known, such an approach
cannot provide any privacy properties. Another idea is to
symbolically combine the randomness. While functional,
this approach effectively leads to non-termination in the
verification due to the unbounded number of possible com-
binations that the attacker can derive.

We solve the two aforementioned problems by introduc-
ing for every term that contains randomness two different
random values: one that can only be modified by honest
protocol participants and one that can be arbitrarily modified
by the attacker. If a protocol participant applies a re-
randomization operation, we distinguish two cases: if the

corresponding opening information is available, we replace
the existing honest randomness; otherwise, we combine the
existing honest randomness and the new randomness using
the constructor cmb. Since a protocol only comprises a
finite number of re-randomization operations, the number
of nested cmb constructors is bounded, making automated
verification viable. If the attacker applies re-randomization,
we replace the corresponding attacker randomness.

This unusual treatment of the honest randomness is nec-
essary to obtain computational soundness while still being
able to connect the malleable proofs [14].

At first, this over-approximation seems to let the attacker
selectively replace the randomness and, consequently, learn
the committed values used in a proof. The attacker, however,
cannot touch the honest randomness. Consequently, the at-
tacker can only know the complete randomness (honest and
attacker randomness) of a commitment, if the randomness
was revealed in the first place.

We describe the re-randomization destructors after we
described the symbolic model of all the zero-knowledge
proof ingredients.
Modeling symbolic zero-knowledge proofs. The next step is
to model the proof π. Consider the following scenario: the
attacker has a valid proof (π, (c), (ε)). Furthermore, the at-
tacker has some commitment c′ 6= c. Notice that even though
c is different from c′, they may still be commitments to the
same value. Our model needs to prevent the following attack:
the attacker checks whether the triple (π, (c′), (ε)) verifies
and, in the process, learns that c and c′ are commitments to
the same value. This purely symbolic attack does not exist
for computational zero-knowledge proofs, thus the model
would not be unsound. Leaving it in the symbolic model,
however, would virtually break all protocols and therefore
render the symbolic model essentially useless.

We solve this problem by incorporating into π the ran-
domness of the commitments used in the proven statements.
The verification checks that the randomness contained inside
the commitments matches the randomness inside π. If a
commitment is exchanged, the randomness in that com-
mitment differs from the randomness contained in π and
the verification fails (naturally, if the randomness is the
same but the committed values are different, the verification
fails as well). Additionally, π contain its own randomness.
This enables us to re-randomize the proof only, without re-
randomizing any commitments.

We use the constructor zkp to construct symbolic zero-
knowledge proofs π = zkp(rH0 , r

A
0 , . . . , r

H
n , r

A
n) where rHi

and rAi denote the honest and the attacker randomness of the
i-th commitment, respectively; rH0 and rA0 denote the honest
and the attacker randomness, respectively, of the proof π
itself.
Modeling symbolic commitments. Given the insight from
the re-randomization, modeling of commitments is straight-
forward: we model the commitment ci to the i-th committed

415

Re-randomization, if the opening information is available

rerandi((zkp(rHj , r
A
j)nj=0, (com(mj , r

H
j , r

A
j))nj=1, (oj)nj=1), rH

′
) = (zkp(rHj

′
, rAj
′
)nj=0, (com(mj , r

H
j
′
, rAj
′
))nj=1, (o

′
j)nj=1)

where rHj
′

:= rHj , rAj
′

:= rAj , and o′j := oi for i 6= j; rHi
′

:= rH
′
, rAi

′
:= rAi , and o′i := (mi, r

H
i
′
, rAi) if oi = (mi, r

H
i , r

A
i)

Re-randomization, if the opening information has been removed

rerandi((zkp(rHj , r
A
j)nj=0, (com(mj , r

H
j , r

A
j))nj=1, (oj)nj=1), rH

′
) = (zkp(rHj

′
, rAj
′
)nj=0, (com(mj , r

H
j
′
, rAj
′
))nj=1, (o

′
j)nj=1)

where rHj
′

:= rHj , rAj
′

:= rAj , and o′j := oi for i 6= j; rHi
′

:= cmb(rHi , r
H ′), rAi

′
:= rAi , and o′i := ε if oi = ε

att-rerandi((zkp(rHj , r
A
j)nj=0, (com(mj , r

H
j , r

A
j))nj=1, (oj)nj=1), rA

′
) = (zkp(rHj

′
, rAj
′
)nj=0, (com(mj , r

H
j
′
, rAj
′
))nj=1, (o

′
j)nj=1)

where rHj
′

:= rHj , rAj
′

:= rAj , and o′j := oi for i 6= j; rHi
′

:= rHi , rAi
′

= rA
′

and o′i := (mi, r
H
i , r

A
i
′
) if oi = (mi, r

H
i , r

A
i) and o′i := ε if oi = ε

hidei((zkp(rHj , r
A
j)nj=0, (com(mj , r

H
j , r

A
j))nj=1, (oj)nj=1)) = (zkp(rHj , r

A
j)nj=0, (com(mj , r

H
j , r

A
j))nj=1, (o

′
j)nj=1)

where o′i := oj for i 6= j and oi := ε

open(com(m, rH , rA), (m, rH , rA)) = m iscom(com(m, rH , rA)) = com(m, rH , rA)

Table I
SET OF CONSTRUCTOR AND DESTRUCTOR EQUATIONS FOR A ZERO-KNOWLEDGE PROOF THAT CONTAINS n COMMITMENTS.

message mi as ci = com(mi, r
H
i , r

A
i). Honest participants

put ε as attacker randomness.
Modeling symbolic opening information. Analogously to
computational opening information, the symbolic opening
information consist of the three arguments to the com
constructor. If the opening information has been removed
because the corresponding committed value has been selec-
tively hidden, it consists of the dedicated value ε.
Modeling symbolic verification. The symbolic zero-
knowledge verification destructor verzk has to enforce two
properties: first, it needs to assert that the randomness in π
matches the randomness in c; second, it must ensure, that the
proven statement holds. As a result, we cannot state a general
verification function. The structure, however, is always the
same: the destructor takes as input the proof π and the tuple
of commitments. The verification of the proven statement
is encoded by requiring that the input terms have a given
shape. The verification ignores the opening information as
it is not necessary to verify a given zero-knowledge proof.

To illustrate the verification mechanism, we detail the
zero-knowledge verification for anonymous webs of trust.
The destructor looks as follows:

verzkAWOT

zkp(rH , rA, rHvk , r

A
vk, r

H
sig, r

A
sig, r

H
m, r

A
m), com(vk(s), rHvk , r

A
vk),

com(sign(m, sk(s)), rHsig, r
A
sig),

com(m, rHm, r
A
m)

The equality on the randomness is enforced as expected.
The signature verification verify(m, sign(m, sk(s)), vk(s)) is
encoded inside the commitments.
Symbolic selective hiding destructors. The destructor
hidei/n for selectively hiding a value is straightforward:
the opening information of the respective commitment is

replaced with the special value ε. The destructor equations
are shown in Table I.
Symbolic re-randomization destructors. The destructors
need to treat honest and attacker randomness in different
ways. We accommodate the distinction between the two
kinds of randomness by introducing two destructors for re-
randomization: rerandi/n that can only be used by honest
protocol participants and att-rerandi/n that give the attacker
access to the re-randomization operations. The proof π itself
is re-randomized using i = 0.
Modeling symbolic verification. The symbolic zero-
knowledge verification destructor verzk consists of two
parts: first, it needs to enforce that the proof π matches
the commitments c; second, it must ensure, that the proven
statement holds true. As a result, we cannot state a general
verification function. The structure, however, is always the
same: the destructor takes as input the proof π and the
tuple of commitments. The verification of the proven state-
ment is encoded by enforcing that the input terms have a
given shape. Notice that the verification ignores the opening
information as it is not necessary to verify a given zero-
knowledge proof.

To illustrate the verification mechanism, we detail the
zero-knowledge verification for anonymous webs of trust.
Naturally, the verification must ensure that the randomnesses
contained in π and in the commitments match. Additionally,
the verification must ensure, that the signature verification
succeeds. The destructor looks as follows:

verzkAWOT

zkp(rH , rA, rHvk , r

A
vk, r

H
sig, r

A
sig, r

H
m, r

A
m), com(vk(s), rHvk , r

A
vk),

com(sign(m, sk(s)), rHsig, r
A
sig),

com(m, rHm, r
A
m)

416

The equality on the randomness is enforced as expected.
The signature verification verify(m, sign(m, sk(s)), vk(s)) is
encoded inside the commitments.
Symbolic selective hiding destructors. The destructor
hidei/n for selectively hiding a value is straightforward: the
opening information of the respective commitment is re-
placed with the special value ε. The superscript i/n denotes
that the destructor removes the i-th opening information of a
proof that contains n commitments. The destructor equations
are shown in Table I.
Symbolic re-randomization destructors. The destructors
need to treat honest and attacker randomness in different
ways. We accommodate the distinction between the two
kinds of randomness by introducing two destructors for re-
randomization: rerandi/n that can only be used by honest
protocol participants and att-rerandi/n that give the attacker
access to the re-randomization operations. The superscript
i/n denotes that the destructor is used to re-randomize the
i-th commitment of a proof that contains n commitments;
the proof π itself is re-randomized using i = 0.
Symbolic length. We use the same notion of symbolic length
as in [21]. Length is modelled in a Peano arithmetic manner:
by the two constructors S and O(S). To every term the length
destructor can be applied and returns the symbolic length.

Figure 2 depicts the full syntax of our symbolic model.
Table I depicts the destructors connected to zero-knowledge
proofs. The destructors for all other terms are as in the
basic model of the full version [23] and similar to previous
work [20], [21].
Difference to the soundness result’s symbolic model. The
symbolic model presented here differs from the one used
for the computational soundness result. The sound model is
more complex in the sense that it allows arbitrary logical
operations on statements whereas we restrict the model in
the body of the paper to a specific class of statements.
The advantage of the restriction is that it allows ProVerif
to terminate, however, we additionally need to show that
we can reduce the model used in the paper’s body to the
generalized one. The transformation and its soundness proof
can be found in [23]. The intuition behind the reduction
is that we cannot construct proofs for certain statements,
but also our verification of these proofs fails in the simpler
model.

D. Verification

In this section, we focus of the verification of anonymity
properties. We model the decentralized anonymous webs of
trust as an bi-process in the applied pi-calculus as described
in § II-A: two distinguished, honest principals act in a web of
trust set up by the attacker and one of them authenticates a
message by proving a trust chain chosen by the attacker.
If the attacker cannot guess which of the two principals
generated the corresponding proof, then the protocol guar-
antees anonymity. Our model includes an arbitrary number

of honest and compromised parties as well as the two
(honest) principals engaging in the anonymity game. Due
to limitations of ProVerif, we concentrate on chains of length
3 and on a setting without re-randomization. Concerning the
length of the chains, there is a straight-forward interpretation
for chains of length 3: “I trust some who certifies the
trustworthiness of a verification key.” For longer chains, the
trust guarantees are hard to interpret. Concerning the lack of
re-randomization, the case study does not include protocol
re-randomization, but the protocol does include the more
verification-intensive re-randomization rules for the attacker.

For a verification of the fully fledged protocol, stronger
verification tools are required, e.g., the Tamarin prover
can be given invariants that simplify the analysis of larger
protocols and an extension to observational equivalence
has been announced [27].4 Moreover, this simplified model
only allows a bounded length for verification chains, which
should still provide a useful protocol for many practical
purposes.

The anonymity game is defined by two distinct processes
that are replicated (that is, spawned an unbounded number
of times) and in parallel composition (i.e., concurrently
executed). In the first process, each of the two distinguished
principals signs public-key pairs as dictated by the attacker.
Since the attacker controls also the digital signatures released
by the other parties in the system, both honest and compro-
mised ones, the attacker controls the topology of the whole
web of trust. In the second process, the two distinguished
principals receive two (possibly different) certificate chains
from the attacker. If both certificate chains are valid and
of the same length, we non-deterministically choose one
of the two principals C and C ′, and we let it output the
corresponding proof. The observational equivalence relation
≈ (see Figure 3) says that the attacker should not be able
to determine whether model MAnon

1 in which C outputs the
proof or MAnon

2 in which C ′ outputs the proof is being
executed. In other words, the attacker cannot tell if C or C ′

generated the proof, i.e., they are anonymous.

Theorem 2 (Anonymity). For the two processesMAnon
1 and

MAnon
2 , the observational equivalence relation MAnon

1 ≈
MAnon

2 holds true.

Proof: This statement is proven using ProVerif. The
scripts can be found online [28].
Discussion. Malleable zero-knowledge models are concep-
tually simple and often yields more compact and cleaner
models than non-malleable counterparts. The reason is that
malleability requires only the modeling of the atomic proofs
occurring in the protocol. Complex proofs can be assembled
from the atomic proofs, exploiting the malleable nature.
In the non-malleable case, proofs cannot be combined and

4For Tamarin, the uniformity would either have to be proven by hand or
by lemmas that are formulated in Tamarin.

417

A B B0 C 0C
t

A

∃sig1, vk1, sig2, vk2, sig3. verify(vkA,sig1, vk1)
 ∧ verify(vk1, sig2, vk2) ∧ verify(vk2, sig3, m)

∃sig1, vk1, sig2, vk2, sig3. verify(vkA,sig1, vk1)
 ∧ verify(vk1, sig2, vk2) ∧ verify(vk2, sig3, m)

A B C

∃sig1, vk1, sig2, vk2, sig3. verify(vkA,sig1, vk1)
 ∧ verify(vk1, sig2, vk2) ∧ verify(vk2, sig3, m)

Figure 3. Anonymity game. A dashed arrow from principal I to principal J denotes that I signed the public-key pair of J . A solid arrow from principal
I to J denotes that I send a zero-knowledge proof for the shown statement to J .

all used constellations of atomic proofs occurring in the
protocol have to be explicitly considered in the model. This
conceptual simplicity becomes apparent in the anonymous
webs of trust case because the protocol relies solely on
signature verifications. Using the malleability property, these
verifications are stringed-together to prove trust chains. The
malleable nature, however, causes problems in the termina-
tion behaviour of automated verification techniques.

Malleable proofs are designed to be separable and arbitrar-
ily combinable. As already hinted in § II, the resulting sheer
number of possible combinations causes problems for auto-
mated verification techniques underlying such as ProVerif.
The biggest performance impact, however, is credited to
the re-randomization: the model without re-randomization
terminates within a few minutes while the model with re-
randomization requires several days.

III. REVIEWING THE COSP FRAMEWORK FOR
EQUIVALENCE PROPERTIES

In this section, we review the basic concepts underlying
the CoSP framework for equivalence properties [21]. For
technical details, we refer to the previous work [20], [21].
Symbolic Model. In CoSP, symbolic abstractions of proto-
cols and, more importantly, of the attacker, are formulated in
a symbolic model M = (C,N,T,D): a set of free functions
C, a countably infinite set N of nonces, a set T of terms,
and a set D of partial mappings from terms to terms (called
destructors). To unify notation, we introduce evalF (t): if
F is a constructor, evalF (t) := F (t) if F (t) ∈ T and
evalF (t) := ⊥ otherwise. If F is a nonce, evalF () := F .
If F is a destructor, evalF (t) := F (t) if F (t) 6= ⊥ and
evalF (t) := ⊥ otherwise.
Protocols. In CoSP, protocols are represented as infinite
trees with the following nodes: computation nodes are used
for drawing fresh nonces, and applying constructors and
destructors; input and output nodes are used for sending
and receiving operations; control nodes are used for allow-
ing the attacker to schedule the protocol. A computation
node is annotated with its arguments and has two outgoing
edges: a yes-edge, used for the application of constructors,
for drawing a nonce, and for the successful application

of a destructor, and a no-edge, used if an application of
a constructor or destructor F on a term t fails, i.e., if
evalF (t) = ⊥. Nodes have explicit references to other nodes
whose terms they use.
Bi-protocols. For the definition of symbolic indistinguisha-
bility, we represent pairs of protocols as so-called bi-
protocols, which are pairs of protocols that are encoded in
one extended CoSP protocol tree. Bi-protocols are pairs of
protocols that only differ in the messages they operate on.
Symbolic operations. As a next step, we model the capa-
bilities of the symbolic attacker. We capture formalize the
tests or operations that the attacker can perform on protocol
messages with so-called symbolic operations. A symbolic
operation is (similar to a CoSP tree) a finite tree, whose
nodes are labeled with constructors, destructors, or nonces
from the symbolic model M, or formal parameters, e.g., xi,
denoting pointers to the ith protocol-message. There is a
natural evaluation function for a symbolic operation O and
a list t of terms that the attacker received so far (the view).
Symbolic execution. A symbolic execution is a path through
a protocol tree.

Definition 2 (Symbolic Execution). Let a symbolic model
M = (C,N,T,D) and a CoSP protocol Π be given. A
symbolic view of the protocol Π is a (finite) list of triples
(Vi, νi, fi) satisfying the following conditions. Initially, we
have V1 = ε, ν1 is the root of Π, and f1 is an empty partial
function, mapping node identifiers to terms. For every two
consecutive tuples (V, ν, f) and (V ′, ν′, f ′) in the list, let
ν̃ be the nodes referenced by ν and define t̃ through t̃j :=
f(ν̃j). Figure 4 depicts a case distinction over ν for defining
valid successors ν′, f ′, V ′.

SViews(Π) is set of all symbolic views of Π. VOut is the
list of the terms t contained in (out, ti) ∈ V . VOut-Meta is
the list the terms l contained in (control, (l, l′)) ∈ V . VIn
(the attacker strategy) is the list of terms that contains only
entries from V of the form (in, (∗, O)) or (control, (∗, l′)),
where the first termhas been masked with the symbol ∗.
[VIn]SViews(Π) is the equivalence class of all views U ∈
SViews(Π) with UIn = VIn .

Symbolic knowledge. The symbolic knowledge of the at-

418

switch ν with
case “ν is a computation node with constructor, destructor or
nonce F .”

Let V ′ = V .
if m := evalF (t̃) 6= ⊥ then
ν′ is the yes-successor of ν in Π, and f ′ = f(ν := m).

else
ν′ is the no-successor of ν, and f ′ = f .

case “ν is an input node.”
if there is a term t ∈ T and a symbolic operation O on M
evalO(VOut) = t then

Let ν′ be the successor of ν in Π, V ′ = V :: (in, (t, O)),
and f ′ = f(ν := t).

case “ν is an output node.”
Let V ′ = V :: (out, t̃1), ν′ is the successor of ν in Π, and
f ′ = f .

case “ν is a control node with out-metadata l.”
if there is no edge with label l′ then

Let ν′ be the lexicographically smallest edge.
else

Let ν′ be the successor of ν with the in-metadata l′.
Let f ′ = f , and V ′ = V :: (control, (l, l′)).

Figure 4. Symbolic execution

tacker comprises the results of all the symbolic tests the
attacker can perform on the messages output by the protocol.
Given a view V with |VOut | = n, we define the symbolic
knowledge KV as a function from symbolic operations on
M to {>,⊥}, where > comprises all results of evalO(VOut)
that are not ⊥.
Equivalent views. As preparation for symbolic indistin-
guishability, we define two views two be equivalent, denoted
as V ∼ V ′, if they (i) have the same structure (i.e., the same
order of out, in, control entries), (ii) have the same out-
metadata (i.e., VOut-Meta = V ′Out-Meta), and (iii) lead to
the same knowledge (i.e., (KV = KV ′)).
Defining symbolic indistinguishability. Finally, we define
two protocols (e.g., the left and right variant of a bi-protocol)
to be symbolically indistinguishable if its two variants lead
to equivalent views when faced with the same attacker
strategy.

1) Computational Indistinguishability: On the computa-
tional side, the constructors and destructors in a symbolic
model are realized with cryptographic algorithms, which we
call computational implementations.
Computational Implementation. A computational imple-
mentation is a family A = (Ax)x∈C∪D∪NP

of deterministic
polynomial-time algorithms AF for each constructor or de-
structor F ∈ C∪D well as a probabilistic polynomial-time
(ppt) algorithm AN for drawing protocol nonces N ∈ N.
Computational Execution. The computational execution of
a protocol is a randomized interactive machine, called the
computational challenger, that runs against a ppt attacker
E. The transcript of the execution contains the computa-
tional counterparts of a symbolic view. The computational
challenger is a probabilistic machine that traverses the pro-
tocol tree and interacts with the attacker: at a computation

node the corresponding algorithm is run and depending on
whether the algorithm succeeds or outputs ⊥, either the
yes-branch or the no-branch is taken; at an output node,
the message is sent to the attacker, and at an input node a
message is received by the attacker; at a control node the
attacker sends a command that specifies which branch to
take.
Computational Indistinguishability. We use termination-
insensitive computational indistinguishability [29] (tic-
indistinguishability) to capture that two protocols are com-
putationally indistinguishable. In comparison to standard
notion of indistinguishability, tic-indistinguishability does
not require the interactive machines to be polynomial-time;
instead, it only considers decisions that were made for
polynomially-bounded prefix of the interaction (where, both,
the attacker’s and the protocol’s steps are counted). We write
the fact that a machine M terminates after n steps with the
output a as M ⇓n a.

Definition 3 (Tic-indistinguishability [29]). Given
two machines M,M ′ and a polynomial p, we write
Pr[〈M |M ′〉 ⇓p(k) x] for the probability that the
interaction between M and M ′ terminates within p(k)
steps and M ′ outputs x. Two machines A and B are
tic-indistinguishable for a machine E (A ≈Etic B) if for all
polynomials p, there is a negligible function µ such that for
all z, a, b ∈ {0, 1}∗ with a 6= b, Pr[〈A(k) | E(k, z)〉 ⇓p(k)

a] + Pr[〈B(k) | E(k, z)〉 ⇓p(k) b] ≤ 1 + µ(k).
Here, z represents an auxiliary string. We call A and
B tic-indistinguishable (A ≈tic B) if A ≈Etic B for all
polynomial-time machines E.

With the notion of tic-indistinguishability, we define a
bi-protocol to be computationally indistinguishable if the
corresponding challengers are tic-indistinguishable for every
ppt attacker E.

Finally, we are ready to define computational soundness,
which means that symbolic indistinguishability implies com-
putational indistinguishability.

Definition 4 (Computational Soundness). Let a symbolic
model M and a class P of efficient bi-protocols be given.
An implementation A of M is computationally sound for M
if for every Π ∈ P, we have that Π is computationally indis-
tinguishable whenever Π is symbolically indistinguishable.

A. From trace properties to uniformity of bi-protocols

For the connection to trace properties, we concentrate on
uniform bi-protocols. A bi-protocol is uniform if for each
symbolic attacker strategy, both its variants reach the same
nodes in the CoSP tree, i.e., they never branch differently.
As shown in previous work [21], uniformity of bi-protocols
in CoSP corresponds to uniformity of bi-processes in the ap-
plied pi-calculus, i.e., the equivalence property that ProVerif
can verify.

419

Self-monitor. The key observation for the connection to
trace properties is that, given a bi-protocol Π, some com-
putationally sound symbolic models allow to construct a
self-monitor protocol Mon(Π) (not a bi-protocol!) that has
essentially the same interface to the attacker as the bi-
protocol Π and checks at run-time whether Π would behave
uniformly. In other words, non-uniformity of bi-protocols
can be formulated as a trace property bad, which can be
detected by the protocol Mon(Π).

The self-monitor Mon(Π) is basically constructed as an
intern execution of the other bi-protocol by the simulator,
that outputs a distinguishing event bad whenever the bi-
protocols could be distinguished. This basically leads to a
reduction from observational equivalence — in the case of
bi-protocols — to a trace property. The detailed construction
of Mon(Π) needs many technical details such as ensuring
that the protocol does something after outputting bad since
CoSP protocols are defined as infinite trees. However, these
details do not give particularly more insights; hence, we refer
to the work of Backes, Mohammadi, and Ruffing [21] for the
actual construction of Mon(Π) and define here only the final
properties that we require in order to reduce observational
equivalence to trace equivalence.

Definition 5 (Distinguishing self-monitors). Let M be a
symbolic model and A a computational implementation of
M. Let Π be a bi-protocol and Mon(Π) its self-monitor.
Let e ∈ {bad-knowledge, bad-branch} and nbad-knowledge

denote the node type output node and nbad-branch denote
the node type control node. Then the function fe,Π(b, tr),
which takes as input b ∈ {left, right} and the path to
the root node, including all node and edge identifiers, is
a distinguishing self-monitor for e for Π and M if it is
computable in deterministic polynomial time, and if the
following conditions hold for every i ∈ N:

1) symbolic self-monitoring: If Πi is symbolically in-
distinguishable, bad does symbolically not occur in
Mon(Πi−1), and the ith node in Πi is of type ne, then
the event e does not occur symbolically in Mon(Πi).

2) computational self-monitoring: If the event e in
Mon(Πi) occurs computationally with negligible prob-
ability, Πi−1 is computationally indistinguishable, and
the ith node in Πi is of type ne, then Πi is computa-
tionally indistinguishable.

We say that a M and a protocol class allow for self-
monitoring if for every bi-protocol Π in the protocol class
P, there are distinguishing self-monitors for bad-branch and
bad-knowledge such that the resulting self-monitor Mon(Π)
is also in P.

Theorem 3. Let M be a symbolic model and P be an

efficient uniformity-enforcing5 class of bi-protocols. If M and
P allow for self-monitoring (in the sense of Definition 5),
then the following holds: If A is a computationally sound
implementation of a symbolic model M with respect to
trace properties then A is also a computationally sound
implementation with respect to equivalence properties.

IV. COMPUTATIONAL SOUNDNESS

In this section, we show the computational soundness
of our symbolic model using the CoSP framework. We
establish our computational soundness in three steps. We
first identify necessary restrictions on the class of pro-
tocols for which we can show computational soundness
(Section IV-A). We then introduce necessary implemen-
tation conditions for computationally sound realizations
(Section IV-B). Finally, we conduct the actual proof (Sec-
tion IV-C). Due to space constraints, we primarily elaborate
on the protocol restrictions and the implementation condi-
tions, as these illustrate the major insights how to achieve
computational soundness for MZK proofs.

A. MZK-safe protocols

We first characterize the class of computationally sound
protocols, which we call MZK-safe. Mainly, our protocol
conditions exclude adaptive corruption and regulate the
usage of randomness. In this section, we concentrate on the
most insightful conditions. To prevent standard problems
of adaptive corruption, we disallow decryption keys to
be sent over the network. Similarly, we require that the
plaintext message of a commitment is either publicly known
or secret for the entire execution by imposing the condi-
tion that unveiling information uv(m, r) of a commitment
com(crs(n),m, r) is only sent over the network as part
of an MZK proof. In other words, we basically restrict
the usage of commitments to MZK proofs. Moreover, for
MZK proofs generated by honest protocol participants, we
require that all commitments of one ZK proof use the
same honestly generated CRS. Finally, we limit the way
in which randomness can be reused. We only allow reusing
randomness terms as witnesses of MZK proofs. For technical
reasons, we exclude protocols that reuse the randomness
of signatures as witnesses in MZK proofs. However, this
restriction is not severe in practice, since we are not aware
of any protocol that uses the signature randomness in a ZK
proof.

Disallowing the re-usage of randomness completely, how-
ever, would result in excluding statements about owner-
ship of ciphertexts, i.e., statements of the form ∃r,m.c =
enc(ek,m, r). There are IND-CCA secure encryption
schemes that allow an attacker to retrieve the plaintext

5The property of uniformity-enforcing is basically a syntactic property
and required to construct Mon(Π). It requires that the attacker is informed
whenever the left and the right protocol of the bi-protocol Π take different
branches (see [21] for details).

420

once he knows the randomness of the ciphertext. Since
we consider malleable zero-knowledge proofs, we cannot
exclude that an attacker uses the randomness from some
witness and a ciphertext to compute a proof with the
plaintext as a witness. Instead of granting the symbolic
attacker this possibility, we require that every proof that
carries a randomness terms N of some (protocol) ciphertext
enc(ek,m,N) also carries the corresponding plaintext m. In
summary, a randomness term r cannot be used for different
terms unless the randomness belongs to a protocol ciphertext
enc(ek,m, r). In this case, r may additionally occur as a
witness of a zero-knowledge proof if the same proof uses
the corresponding plaintext m as a witness.

Typically, a group operation underlies the re-
randomization procedure, e.g., fresh randomness is
simply added to the previous randomness. Naturally, the
question arises whether the impossibility result of the
XOR operation [26], [30] applies to our setting as well.
If we include protocols that use attacker randomness or
re-use previous protocol randomness for re-randomization,
it turns out that we run into similar problems as with
XOR: the attacker would be able to cause the protocol to
construct two message that are computationally equal but
symbolically distinct. Fortunately, for re-randomization we
can assume that the protocol always uses fresh randomness
and does not re-use this randomness anywhere else, except
in the unveil information, which eliminates any influence
of the attacker and thereby remedies the above-mentioned
problems.

B. Implementation conditions

For the computational soundness result, we define nec-
essary implementation conditions. The conditions can be
partitioned into cryptographic requirements to cryptographic
primitives and sanity conditions that ensure that the imple-
mentation behaves similar to the symbolic model.
Sanity conditions. We require that for each constructor and
destructor f ∈ C∪D, there is a polynomial-time computable,
deterministic algorithm Af and the algorithm AN for draw-
ing nonces is randomized. Moreover, for all algorithms the
length of the output solely depends on the length of the
input. Moreover, we require that all symbolic cancellation
rules hold computationally as well, e.g., fst(pair(x, y)) = x
for all x, y ∈ {0, 1}∗.

Finally, we assume that all messages have an efficiently
recognizable type. Given a message, we require that it is
efficiently possible to recognize whether the message is
a pair, a signature, a ciphertext, a commitment, a zero-
knowledge proof, or a key, in particular which type of
key.6 More specifically, we require that Avkof(m) 6= ⊥,
Aekof(m) 6= ⊥, and Acrsof(m) 6= ⊥ for a message m of

6This requirement is similar in spirit as the recent, more general, result
by Mödersheim and Katsoris [31] that characterizes which message formats
can be soundly abstracted in Dolev-Yao model.

type signature, ciphertext, and commitment, respectively.
These conditions can be achieved by minor changes in the
implementation.
Encryptions and signatures are secure. We require that
the encryption algorithms Aek, Adk, Aenc, Adec constitute
an IND-CCA secure encryption scheme. Moreover, we re-
quire that whenever Adec(dkN , c) succeeds, Aekof(c) = ekN
outputs the corresponding public key, and that Aek(r) =
Aekofdk(Adk(r)). For the signature algorithms Ask, Avk, Asig,
Aversig we require that they constitute a CMA-existentially
unforgeable signature scheme. We require that Asig produces
different signatures for different randomnesses.
Non-interactive zero-knowledge arguments of knowledge.
We require the following properties from zero-knowledge
proofs: (i) completeness (honest provers and honest verifiers
succeed for true statements); (ii) zero-knowledge (given
a simulation trapdoor, all valid proofs can be efficiently
simulated without using the witness); (iii) extractability
(given an extraction trapdoor, the witness is efficiently
extractable from valid proofs); (iv) unpredictability (fresh
proofs cannot be guessed even if the witness is known);
(v) length-regularity (the length of the output only depends
on the length of the input); (vi) deterministic verification
and extraction. The conditions (i) to (iii) are the minimal
requirements on proofs of knowledge. Conditions (iv) to
(vi) are properties that we need for our computational
soundness proof and that are easy to fulfill. For the FMZK
realization, we require that AZK, Averzk , Acrs, Acom constitute
a non-interactive argument of knowledge (NIZKAoK), and
the same commitment algorithms Acrs, Acom, Aopen belong
to an extractable non-interactive computationally hiding and
binding commitment scheme. We also assume an algorithm
AgetPub such that AgetPub(AZK(t, r)) = r and we assume
that the protocol transformations setPub, andZK, splitAnd,
orZK, commute, rerzk, rercom have an implementation. These
conditions are compatible with the widely deployed Groth-
Sahai proofs.
Computational statements. Each ZK-constructor represents
one set of statements. Hence, we simple hardcode this
statement computationally.

For the computational soundness proof and for the com-
putational implementation, we need four destructors extrSta,
extrWit, crsof, extrNon, which traverse through the statement
and extract the statement, the witness, the CRS, and the
list of nonces, respectively. The computational ZK relation
Rcomp

hon for the protocol is then defined as follows:{
((t, imgη(x)), imgη(w)) | t symb. statement ∧ x

= extrSta(t), w = extrWit(t))
}

Controlled malleability. As shown by Fuchsbauer [32,
Lemma 6], it is possible to transform the witness inside
a Groth-Sahai proofs. In a recent work, Chase, Kohlweiss,
Lysyanskaya, and Meiklejohn, introduced a relaxation of
simulation-sound extractability for controlled malleability:

421

controlled-malleable simulation sound extractability [33],
which states that an attacker can at most perform a fixed
set of unary transformations on an honestly generated proof.
We require that the zero-knowledge proof scheme satisfies
this notion of controlled-malleability w.r.t. to the following
two transformations: re-randomization of proofs and selec-
tively hiding public information, e.g., used for existential
quantification. In that work, additionally a generic construc-
tion for controlled-malleability out of non-interactive zero-
knowledge arguments of knowledge is presented. There are
two recent and practical examples that satisfy this notion of
controlled malleability: the Groth-Sahai proof scheme [11],
after the generic construction from [33] is applied to it, and
the malleable SNARKs of Chase, Kohlweiss, Lysyanskaya,
and Meiklejohn [34].

We stress that we do not need to require that conjunctions
are possible, since simply sending two proofs proves the con-
junctions of the two respective statements. For conjunctions
it is more important to require that a proof about the logical
conjunction A∧B of two proofs about A and B, respectively,
should be indistinguishable from a fresh proof about A∧B.
This additional requirement (derivation privacy) is described
below.
Derivation privacy. We require that a transformed proof is
indistinguishable from a freshly produced proofs, in particu-
lar for selectively hiding public information or for construct-
ing a proof about the logical conjunction of two given proofs.
This property has been formalized as derivation privacy by
Chase, Kohlweiss, Lysyanskaya, and Meiklejohn [33].
Efficient statements. In contrast to previous work on com-
putationally symbolic ZK proofs [18], [19], the FMZK and
the CMZK model have computationally sound realizations
that allow efficient statements for encryption schemes and
signature [11], [35], [36]. There are, in particular, encryption
and signature schemes that are compatible with the malleable
zero-knowledge proofs that satisfy our implementation con-
ditions.
MZK transformations. For MZK transformations, we
basically require that a transformed proof looks like a
freshly generated proof. We even require that a transformed
proof is indistinguishable from a simulated proof. This
property, called strong derivation privacy, was introduced
in [33]. The constructions of malleable zero-knowledge
proofs in [33], [34] that satisfy our implementation condi-
tions are also shown to satisfy this strong derivation privacy
property.

Moreover, we require that rerzk and rercom have indeed
re-randomizing implementations. Given z the proof z′ ←
Arerzk(z, r) is unpredictable, for a randomly chosen nonce
r. Similarly, given c the commitment c′ ← Arercom(c, r) is
unpredictable, for a randomly chosen nonce r.

The pure Groth-Sahai scheme, without any provision for
controlled malleability, enables even more transformations,
as pointed out by Fuchsbauer in his PhD Thesis. However, it

is not clear whether these transformations (such as squaring
the witness) are useful in practice.

C. Computational soundness w.r.t. trace properties

In this section, we discuss the main challenges for proving
computational soundness w.r.t. trace properties for the class
of MZK-safe protocols.

The core of the simulator are the construction function
β and the parsing function τ . The construction function
β maintains a memory. Whenever a bitstring β(t) for a
term t is computed for the first time, β(t) is stored; in
all future calls β(t) the stored bitstring is used. We re-
cursively define β over terms, e.g., β(enc(t1, t2, t3)) :=
Aenc(β(t1), β(t2), β(t3)).
Reconstructing protocol transformations. In the presence
of zero-knowledge transformations, it can happen that the
simulator parses (using τ) a zero-knowledge proof from the
attacker, sends it to the hybrid execution (i.e., the symbolic
execution) which symbolically transforms this proof term,
and then this transformed proof term is sent back to the
simulator which has to construct the corresponding bitstring
for the attacker. Then, the simulator needs to construct (using
β) a proof, even though some witnesses are only known to
the attacker. We let the simulator keep track of the transfor-
mations and apply these transformations computationally to
the zero-knowledge proof that lead to this term. In order to
be able to determine which zero-knowledge transformations
have been applied to a term, we modify the hybrid execution
with which the simulator interacts as follows: the result of
a destructor node is in the yes-branch instead of f(t) the
term f̂(t), where for every destructor f , we introduce a free
constructor f̂ . Moreover, instead of checking whether f(t)
holds, the hybrid execution first needs to get rid of the f̂
constructors, by evaluating each ti: eval(f̂(s)) := f(eval(s))
and eval(t) := t otherwise.
Parsing re-randomized proofs. The re-randomization op-
eration is typically implemented using group operations
and therefore prone to similar problems as computationally
sound symbolic abstractions of XOR [26], [30]. At its core,
the problem is that the attacker can potentially combine
protocol-generated messages in a way that is not captured
by the symbolic model. In particular, the attacker can find
a particular combination of fresh nonces that equals another
fresh nonce in the computational model, and, crucially,
the attacker can in general cause a protocol-check that
succeeds computationally and fails symbolically. In the
symbolic model, however, fresh nonce are always distinct.
Our protocol conditions for MZK-safe (see Section IV-A)
ensure for protocol parties that the randomness used in a re-
randomization operation is freshly chosen and stochastically
independent of any other messages. As a consequence, the
attacker cannot influence the randomness used in an honest
re-randomization operation. We show that then the attacker

422

cannot cause a protocol-check that succeeds computation-
ally.
Challenges in the construction of τ and β. We only discuss
the parts of the construction of τ and β that are different
from previous work since the other cases are conducted
as in previous work [18], [20]: Upon receiving a zero-
knowledge proof bitstring z that is different from the ones
that have been sent by the protocol, the parsing function τ
first symbolically checks whether the proof only contains
information that the attacker could have derived on his
own. If the check succeeds, τ outputs an purely attacker-
generated proof term tz and we store the bitstring z in the
index of the attacker-randomness Nz that we use for tz .
If the check fails, τ further checks symbolically whether
the public information pz of z coincides with the public
information pz′ of a protocol-generated proof z′ that has
been earlier sent, up to secret information in the received
proof that has potentially been hidden by the attacker and
was public in the original proof. If such an earlier proof z′

exists, τ first applies all potentially necessary selective hid-
ing transformations and then potentially a re-randomization
transformation, where τ stores in the index of the symbolic
attacker-randomness Nz the bitstring z. Let f denote this
sequence of transformations. Then, τ applies this sequence
of transformations f to the term tz′ that corresponds to the
original proof z′ and outputs the resulting term eval(f(z′)).
We stress that τ does not need to find exactly the randomness
bitstring that was used by the computational attacker since
the re-randomization transformation contained in f is purely
symbolic.

For the converse direction, the construction function β
we are given a proof term t. For all honestly generated
proofs t, we recursively evaluate β on its subterms, e.g.,
β(com3(m, rh,⊥)) = com3(β(m), β(rh),⊥). For proofs
that are not purely protocol-generated, there is a unique bit-
string z received by the attacker that has been transformed.
Moreover, recall that the transparent hybrid execution gives
us all transformations f̂ that have been applied to the proof
by the protocol. If the proof term t origins from a purely
attacker-generated proof (bitstring) z or proof (bitstring) z
that has been randomized by the attacker, the index of the
symbolic attacker-randomness Nz carries z. In this case, we
apply the implementations of the transformations f to z, i.e.,
β = Af (z) where Af denotes the implementations of the
sequence of transformations.

If the proof term t origins from a proof z, received
from the attacker, that is in turn a transformed protocol-
generated proof, with a corresponding term t′, to which only
the selective hiding transformation f ′ has been applied, i..e,
t = evalf(f ′(t′)), we recursively construct β(f(f ′(t′))).
Dolev-Yaoness of Sim. The Dolev-Yaoness of Sim is proven
by constructing a faking simulator Simf that fakes all honest
encryptions, i.e., Simf instead computes encryptions of the
constant-zero bitstring, and simulates all proofs and handles

all transformations are simulated proofs. In this way no
plaintext is used while constructing encryptions, and no
witness is used while constructing zero-knowledge proofs.
Additionally, we go one step further and do not even use the
protocol randomness in the computation of β: Simf uses an
encryption faking oracle for constructing ciphertexts and a
simulation oracle for constructing zero-knowledge proofs.

The proofs contains two parts that are significantly dif-
ferent to previous work: parsing re-randomized proofs and
proving controlled malleability. As discussed above, we
show that we parse re-randomized proofs in a computa-
tionally sound way by leveraging the protocol condition
that honest re-randomizations always use fresh, and thus
stochastically independent, randomness.

We show that that the attacker can only perform those
transformations on zero-knowledge proofs that we sym-
bolically model by a reduction to the controlled-malleable
simulation sound extractability property (see Section IV-B).
The indistinguishability of Sim. We then show that Sim and
Simf are indistinguishable. This follows from the crypto-
graphic properties of the encryptions scheme, the commit-
ment scheme, and the ZK proof, and it can be shown using
standard techniques. Since Simf satisfies Dolev-Yaoness by
construction, this entails that Sim does as well.

There are two aspects in the indistinguishability proof
that are non-standard. First, our parsing function τ and
our construction function β potentially interpret transformed
proofs as freshly generated proofs. Using derivation pri-
vacy [33], we show that a simulator Sim that uses β
and τ is indistinguishable from the original computational
execution. Second, if the unveil information of a faked
commitment (i.e., in the simulated proofs) is leaked, the
indistinguishability breaks because the adversary can realize
that the commitments are faked. At this point, however, we
use the protocol condition that for each commitment the
unveil information is either publicly known or secret for the
entire execution.

Theorem 4 (MZK-safe-computational soundness w.r.t. trace
properties). Any computational implementation satisfying
the aforementioned implementation conditions is computa-
tionally sound w.r.t. trace properties for the class of MZK-
safe protocols.

D. Computational soundness w.r.t. uniformity: self-
monitoring

In this section, we discuss the distinguishing self-monitors
for the symbolic model M. Let b ∈ {left, right} throughout
this section and let, for a CoSP bi-protocol Π, b(Π) be for
the sake of exposition the protocol that is currently executed
and b(Π) the complementary protocol, which is internally
simulated. We construct a family of distinguishing self-
monitors fbad-branch,Π(b, tr) for computation nodes, which
we call branching monitors, and a family of distinguishing

423

self-monitors fbad-knowledge,Π(b, tr) for output nodes, which
we call knowledge monitors.

1) The branching monitor: We construct a distinguishing
self-monitor fbad-branch,Π(b, tr), the branching monitor, for a
computation node ν that investigates each message that has
been received at an input node (in the execution trace tr of
Mon(Π)) by parsing the message using computation nodes.
The distinguishing self-monitor then reconstructs an attacker
strategy by reconstructing a possible symbolic operation
for every input message. In more detail, in the symbolic
execution, fbad-branch,Π(b, tr) parses the input message by
applying (the implementation of) all symbolic operations in
the model M that the attacker could have performed as well,
i.e., by applying all tests from the shared knowledge. Parsing
the bitstrings of all primitives except for zero-knowledge
proofs is standard and done as in previous work. Parsing
the bitstrings of zero-knowledge proofs is conducted similar
to the parsing function τ of the computational soundness
simulator (see Section IV-C).

This enables fbad-branch,Π(b, tr) to simulate the symbolic
execution of b(Π) on the constructed attacker strategy. In the
computational execution of the self-monitor, the distinguish-
ing self-monitor constructs the symbolic operations (i.e., the
symbolic inputs) by parsing the input messages with the
implementations of all tests in the shared knowledge (i.e.,
lookups on output messages and implementations of the
destructors). With this reconstructed symbolic inputs (i.e.,
symbolic operations, from messages that were intended for
b(Π), fbad-branch,Π(b, tr) is able to simulate the symbolic
execution of b(Π) even in the computational execution. The
branching monitor fbad-branch,Π(b, tr) then checks whether
this simulated symbolic execution of b(Π) takes in the same
branch as b(Π) would take, for the computation node ν in
question. If this is not the case, the event bad-branch is
raised.
Symbolic self-monitoring. Symbolic self-monitoring follows
by construction because the branching monitor reconstructs
a correct attacker strategy and correctly simulates a symbolic
execution. We stress that a protocol is also able to change the
attacker-randomness during a re-randomization operation.
Since we only consider conjunctive statements, the symbolic
attacker does not need to be able to construct the disjunction
of two proofs, which is for all known ZK schemes not be
possible for the protocol. All present attacker-operations are
possible for a protocol as well. Hence, fbad-branch,Π(b, tr)
can find any distinguishing attacker strategy for b(Π) and
b(Π). The proof from [21] applies verbatim.

Lemma 1 (Symbolic self-monitoring of the branching mon-
itor). Let Π be a bi-protocol from the protocol class P, and
M be the symbolic model from Section II. The branching
monitor satisfies symbolic self-monitoring (see Definition 5).

Computational self-monitoring. We show computational
self-monitoring by applying the CS result for trace properties

to conclude that the symbolic simulation of b(Π) suffices
to check whether b(Π) computationally branches differently
from b(Π). The main idea in the proof is that every branch-
ing that is different can be reduced to the violation of a trace
property of the following protocol. The protocol implements
guards after every input node such that only those messages
are received that have also been received in the run in which
the branching violation took place. Then, the protocol runs
b(Π) and thereafter b(Π), using the same guards. If the
branching in the first and the second run differ, an alarm
is raised, i.e., the protocol goes into a bad state. The proof
goes along the lines of the proof in previous work [21].

Lemma 2 (Computational self-monitoring of the branching
monitor). The branching monitor satisfies computational
self-monitoring (see Definition 5).

2) The knowledge monitor: The distinguishing self-
monitor fbad-knowledge,Π(b, tr), the knowledge monitor, for
an output node ν starts like fbad-branch,Π(b, tr) by recon-
structing a (symbolic) attacker strategy and simulating a
symbolic execution of b(Π). However, instead of testing the
branching behavior of b(Π), the distinguishing self-monitor
fbad-knowledge,Π(b, tr) characterizes the message m that is
output in b(Π) at the output node ν in question, and then
fbad-knowledge,Π(b, tr) compares m to the message that would
be output in b(Π). This characterization must honor that
ciphertexts generated by the protocol are indistinguishable
if the corresponding decryption key has not been revealed
to the attacker so far. If a difference in the output of b(Π)
and b(Π) is detected, the event bad-knowledge is raised.
Symbolic self-monitoring. Symbolic self-monitoring for
the knowledge monitor fbad-knowledge,Π(b, tr) follows by the
same arguments as for fbad-branch,Π(b, tr).

Lemma 3 (Symbolic self-monitoring of the knowledge
monitor). Let Π be a bi-protocol. Let i ∈ N. Let Π′i be
the self-monitor for Πi. For all i ∈ N the following holds.
If there is an attacker strategy such that in Π′i the event
bad-knowledge occurs but in Π′i−1 the event bad does not
occur and Πi−1 is symbolically indistinguishable, then Πi

is symbolically distinguishable because of knowledge.

Computational self-monitoring. The core challenge in prov-
ing self-monitoring is the computational self-monitoring of
the knowledge monitor, as at this point it has to be shown
that all computationally distinguishing tests can be compu-
tationally reconstructed as a trace property by the knowl-
edge monitor. The proof for computational self-monitor is
along the lines of previous work [21]. First, we show that
the simulator-indistinguishability w.r.t. trace properties (see
Section IV-C) implies indistinguishability for the same sim-
ulators w.r.t. uniformity of bi-protocols. Then, we leverage
the indistinguishability results to the scenario with the faking
simulator Simf (see Section IV-C) from the computational
soundness proof for trace properties: in the faking setting,

424

all honestly generated ciphertexts generated by the protocol
do not carry any information about their plaintexts, all secret
commitments are faked, and all zero-knowledge proofs are
faked (i.e., simulated). Second, we discuss in a case distinc-
tion all kinds of messages that remain unfaked. We show
that in the faking setting, fbad-knowledge,Π(b, tr) is able to
characterize all information that is information theoretically
contained in a message. We conclude by showing that in the
execution with the faking simulator, the knowledge monitor
raises the event bad-knowledge whenever the bi-protocol Π
is distinguishable.
Simulator-indistinguishability. The first step, follows from
Lemma 12 in [37]. In that lemma it is shown that if
each protocol can be transformed to a so-called decision
variant, which between any two nodes enables the attacker
(in the proof the reduction) to store the distinguisher decision
in the trace, then simulator-indistinguishability w.r.t. trace
properties implies indistinguishability w.r.t. uniformity of
bi-protocols. Since our protocol conditions for the class of
MZK-safe protocols do not exclude such decision variants,
Lemma 12 holds.
Characterizing all messages in the faking setting. Since
the bitstrings contain no secret information7 in the faking
setting, we can show that applying the implementations of
all relevant symbolic operations, which are basically all se-
quences destructor applications, yields a full characterization
of the information that is contained in the bitstring.

Lemma 4 (Computational self-monitoring of knowledge
monitor). The parametric CoSP protocol fbad-knowledge,Π

satisfies computational self-monitoring (see Definition 5).

Plugging these results together it follows the symbolic
model allows for self-monitoring. Using Theorem 3, we
conclude that the symbolic model is computationally sound
w.r.t. uniformity of bi-protocols.

Theorem 5 (CS w.r.t. uniformity of bi-protocols). Let A
be an implementation that satisfies the conditions from Sec-
tion IV-B. Then, A is computationally sound w.r.t. uniformity
of CoSP bi-protocols for the class of MZK-safe CoSP bi-
protocols.

V. SOUNDNESS OF THE VERIFICATION

In section II-D, we have shown that the symbolic ab-
straction of the simplified AWoT protocol provides strong
anonymity, i.e., the processes MAnon

1 and MAnon
2 are ob-

servational equivalent in the applied Π calculus. Moreover,
we have shown in section IV that the symbolic model that
also contains re-randomization is computationally sound.
Combined we can conclude the following result for an
implementation:

7Technically, the bitstrings have been constructed without using secret
information.

Theorem 6 (Anonymity of the case study). The compu-
tational implementations of the two processes MAnon

1 and
MAnon

2 are tic-indistinguishable MAnon
1 ≈tic MAnon

2 .

Proof: We have the soundness result for the symbolic
model, cf., Theorem 5. Consequently, for the symbolic
model used in the case study, section II-D, it follows that
two processes are symbolically indistinguishable if and only
if they are computationally indistinguishable.

By Theorem 2 we have that MAnon
1 and MAnon

2 are
observational equivalent which concludes the theorem. Com-
bining these two facts, we get that the two processes are
computationally indistinguishable, i.e., tic-indistinguishable.

VI. CONCLUSION AND FUTURE WORK

We have presented a computationally sound, symbolic
abstraction of malleable ZK proofs by means of an equa-
tional theory that is accessible to existing tools for auto-
mated verification of security protocols. We have proved the
computational soundness of our abstraction with respect to
the class of uniformity properties (the class of equivalence
properties that ProVerif is able to verify). The abstraction
and the computational soundness result are presented in
CoSP, a framework for symbolic protocol analyses and
conceptually modular computational soundness proofs.c

REFERENCES

[1] D. Dolev and A. C. Yao, “On the security of public key
protocols,” IT’83, vol. 29, no. 2, pp. 198–208, 1983.

[2] S. Even and O. Goldreich, “On the security of multi-party
ping-pong protocols,” in FOCS’83, 1983, pp. 34–39.

[3] M. Merritt, “Cryptographic protocols,” Ph.D. dissertation,
Georgia Institute of Technology, 1983.

[4] B. Schmidt, R. Sasse, C. Cremers, and D. Basin, “Automated
Verification of Group Key Agreement Protocols,” in Proc. of
S&P’14. IEEE Computer Society Press, 2014, pp. 179–194.

[5] M. Backes, M. Maffei, and E. Mohammadi, “Computationally
Sound Abstraction and Verification of Secure Multi-Party
Computations,” in Proc. of FSTTCS’10. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2010, pp. 352–363.

[6] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge
complexity of interactive proof systems,” SIAM Journal on
Computing, vol. 18, no. 1, pp. 186–207, 1989.

[7] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio:
Nearly Practical Verifiable Computation,” in Proc. of S&P’13.
IEEE Computer Society Press, 2013, pp. 238–252.

[8] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk,
“ADSNARK: Nearly Practical and Privacy-Preserving Proofs
on Authenticated Data,” in Proc. of S&P’15. IEEE Computer
Society Press, 2015.

425

[9] M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward
a Secure Voting System,” in Proc. of S&P’08. IEEE
Computer Society Press, 2008, pp. 354–368.

[10] F. Baldimtsi and A. Lysyanskaya, “Anonymous Credentials
Light,” in Proc. of CCS’13. ACM Press, 2013, pp. 1087–
1098.

[11] J. Groth and A. Sahai, “Efficient non-interactive proof sys-
tems for bilinear groups,” in EUROCRYPT’08. Springer-
Verlag, 2008, pp. 415–432.

[12] M. Maffei and K. Pecina, “Position paper: Privacy-aware
proof-carrying authorization,” in PLAS 2011, 2011.

[13] M. Backes, M. Maffei, and K. Pecina, “Automated Synthesis
of Privacy-Preserving Distributed Applications,” in NDSS’12.
Internet Society, 2012.

[14] M. Maffei, K. Pecina, and M. Reinert, “Security and privacy
by declarative design,” in Proc. of CSF’13. IEEE Computer
Society, 2013.

[15] M. Backes, M. Maffei, and D. Unruh, “Zero-knowledge in the
applied pi-calculus and automated verification of the direct
anonymous attestation protocol,” in S&P’08, 2008, pp. 158–
169.

[16] M. Backes, C. Hriţcu, and M. Maffei, “Type-checking zero-
knowledge,” in Proc. 15th ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM Press,
2008, pp. 357–370.

[17] ——, “Union and intersection types for secure protocol
implementations,” in Proc. 2011 International Conference
on Theory of Security and Applications, ser. TOSCA’11.
Springer-Verlag, 2012, pp. 1–28.

[18] M. Backes, F. Bendun, and D. Unruh, “Computational sound-
ness of symbolic zero-knowledge proofs: Weaker assumptions
and mechanized verification,” in POST’13, 2013, pp. 206–
225.

[19] M. Backes and D. Unruh, “Computational soundness of
symbolic zero-knowledge proofs against active attackers,” in
Proc. 21th IEEE Computer Security Foundations Symposium
(CSF), 2008.

[20] M. Backes, D. Hofheinz, and D. Unruh, “Cosp: A general
framework for computational soundness proofs,” in Proc. 16th
ACM SIGSAC Conference on Computer and Communications
Security (CCS), November 2009, pp. 66–78.

[21] M. Backes, E. Mohammadi, and T. Ruffing, “Computa-
tional Soundness Results for ProVerif,” in Proc. of POST’14.
Springer, 2014, pp. 42–62.

[22] M. Backes, M. Maffei, and D. Unruh, “Computationally
sound verification of source code,” in Proc. 17th ACM
SIGSAC Conference on Computer and Communications Se-
curity (CCS). ACM Press, October 2010, pp. 387–398.

[23] “Full version: Symbolic Malleable Zero-knowledge Proofs,”
http://www.infsec.cs.uni-saarland.de/∼mohammadi/paper/
malleable zk.pdf.

[24] B. Blanchet, M. Abadi, and C. Fournet, “Automated Verifica-
tion of Selected Equivalences for Security Protocols,” Journal
of Logic and Algebraic Programming, vol. 75, pp. 3–51, 2008.

[25] M. Backes, S. Lorenz, M. Maffei, and K. Pecina,
“Anonymous webs of trust,” in Proceedings of the 10th
international conference on Privacy enhancing technologies,
ser. PETS’10. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 130–148. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1881151.1881159

[26] D. Unruh, “The Impossibility of Computationally Sound
XOR,” http://eprint.iacr.org/2010/389, 2010.

[27] S. Meier, B. Schmidt, C. Cremers, C. Staub, R. Sasse, and
D. Basin, Accessed on 19 April 2015 at
http://www.infsec.ethz.ch/research/software/tamarin.html.

[28] “Case Study: Verifying AWoT in ProVerif,”
http://e.mohammadi.eu/paper/awot.zip.

[29] D. Unruh, “Termination-Insensitive Computational Indistin-
guishability (and Applications to Computational Soundness),”
in Proc. 24th IEEE Computer Security Foundations Sympo-
sium (CSF). IEEE Computer Society Press, 2011, pp. 251–
265.

[30] M. Backes and B. Pfitzmann, “Limits of the Cryptographic
Realization of Dolev-Yao-Style XOR,” in Proc. of ES-
ORICS’05, ser. LNCS, vol. 3679. Springer Berlin Heidel-
berg, 2005, pp. 178–196.

[31] S. Mödersheim and G. Katsoris, “A Sound Abstraction of
the Parsing Problem,” in Proc. 27th IEEE Computer Security
Foundations Symposium (CSF). IEEE Computer Society
Press, 2014, pp. 259–273.

[32] G. Fuchsbauer, “Automorphic signatures and applications,”
Ph.D. dissertation, École normale supérieure, Paris, 2010.

[33] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meikle-
john, “Malleable proof systems and applications,” in EURO-
CRYPT’12, ser. LNCS, vol. 7237. Springer, 2012, pp. 281–
300.

[34] Chase, Melissa and Kohlweiss, Markulf and Lysyanskaya,
Anna and Meiklejohn, Sarah, “Succinct malleable nizks and
an application to compact shuffles,” in Proc. of TCC’13, ser.
LNCS, vol. 7785. Springer-Verlag, 2013, pp. 100–119.

[35] M. Chase and M. Kohlweiss, “A domain transformation for
structure-preserving signatures on group elements,” Cryptol-
ogy ePrint Archive, Report 2011/342, 2011.

[36] J. Camenisch, K. Haralambiev, M. Kohlweiss, J. Lapon, and
V. Naessens, “Structure preserving cca secure encryption and
applications,” in Proc. of ASIACRYPT’11. Springer-Verlag,
2011, pp. 89–106.

[37] M. Backes, E. Mohammadi, and T. Ruffing, “Full Version:
Computational Soundness Results for ProVerif,”
http://e.mohammadi.eu/paper/bridge.pdf, 2014.

426

