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Abstract—The Android Security Framework controls the
executions of applications through permissions which are stat-
ically granted by the user during installation. However, the
definition of security policies over permissions is not supported.
Security policies must be therefore manually encoded into the
application by the developer, which is a dangerous practice and
may cause security breaches. We propose an improvement over
the Android permission system that supports the specification
and enforcement of fine-grained security policies. Enforcement is
achieved by reducing policy decision problems to propositional
satisfiability and leveraging a state-of-the-art SAT solver. Unlike
alternative proposals, our approach does not require changes in
the operating system and, therefore, it can be readily deployed
in any commercial device.

I. INTRODUCTION

Android security has been widely studied in the last years.
The motivation of this interest is threefold: (i) Android is the
most popular mobile operating system; (ii) most people own
and routinely use smart-phones for personal reasons and—
increasingly often—on the workplace; finally, (iii) even if
the Android security framework offers a number of well-
established security mechanisms (e.g., sandboxing through
virtualization), it provides inadequate support to application
developers for the specification of security policies. This last
aspect has been often reported in the literature. For instance,
after a systematic study of more than thousand applications,
Enck et al. [7] remark this weakness and conclude that “many
developers fail to take necessary security precautions”.

Beside OS-level security, which is mostly inherited from
the Linux kernel, Android application security mainly builds
on a permissions system. Permissions are labels that developers
must attach to their software, i.e. in the application manifest, if
they want to access sensitive resources. When the user installs
a new application, the required permissions are prompted (with
a description in natural language) and she decides whether to
grant them or cancel the installation. After the installation, the
application can access the resources through the permissions
provided by the user.

This approach has several drawbacks, e.g., the coarse-
grained description of permissions and the all-or-nothing
choice of the user. Among them, the most evident is the
lack of guarantees that the user correctly understands the
security implications of granting the permissions. This problem
also arises whenever the user decides to launch a certain
application. As a matter of fact, an ideal, security-aware user
should consider whether it is safe to run the application
in the current execution context, which might involve many

other applications. More realistically, users simply neglect the
security requirements of the applications.

In this paper we present an extension of the Android secu-
rity support that allows developers to apply their own security
policies over applications executions and interaction. This is
done by slightly extending the syntax of the Android manifest
so to support the specification of security policies. Moreover,
we associate security policies and permissions to components
(as opposed to the whole application as normally done in
Android). Permissions remain unchanged, while policies are
declared through a compact, yet expressive, language. The
policy language mostly consists of propositional logic and few
modal operators.

Our approach offers a number of advantages, the most
relevant ones being listed below.

No new development skills. Application developers keep
using the standard Android permission system they are already
familiar with (Section II). They just need to define permissions
and policies for the components having security requirements
(rather than for the application as a whole, see Section III).

Fine-grained policies. Security policies are defined through a
formal language that significantly extends the basic security
framework. Also, policies are attached to each component,
thereby allowing developers to define local security require-
ments (Section III).

Policy scope. Our policy language includes scope modalities.
For instance, developers can define local as well as global
policies. Moreover, policies can be sticky (i.e. affecting other
components after an invocation, see Section III).

No runtime errors. Illegal interactions among components
are dynamically verified before invocation and cannot generate
security violations (Section IV).

No OS customization required. Although feasible, our so-
lution does not require modifications to the Android OS. We
present a prototype implementation which enables our security
framework on existing Android devices. Users only need to
install an extra application and developers just link a library
in their code (Section VI).

No user’s responsibility. When the user selects a component
from a list, she cannot cause policy violations. Application
permissions are checked automatically and the user is always
prompted with a list of policy-compliant solutions (Section V).

Structure of the paper. In Section II we briefly recall the An-
droid application model and security mechanisms. Section III
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describes our enhancement of the Android application frame-
work and Section IV details our SAT-based runtime security
policy enforcement framework. In Section V we apply our
methodology to a rich case study consisting of an ecosystem
of applications. Then, in Section VI we describe a prototype
implementation, some technical aspects and future directions,
while in Section VII we survey on some related work. Finally,
Section VIII concludes the paper.

II. ANDROID APPLICATION MODEL

In this section we briefly describe the Android application
framework and the Android permission system. Moreover,
we introduce a working example which will be gradually
developed in this section and along the paper. In Section V
the working example will be enriched to build a complete case
study.

Working example. MaplePay.com is a (hypothetical) on-
line payment service. Registered customers can use it to
transfer/receive money from/into their account. Apart from
money transfers, users can also check current balance and
read transfer history. The MaplePay developers want to design
and implement a mobile account management application. The
main purpose of the application is to allow users to perform
payments from their devices. To this aim, the application
must include two payment modalities, i.e. small payments and
normal payments. Small payments (a.k.a. micro payments),
i.e. those for amounts less or equal to 25$, can be performed
without specific authorizations, in a contactless fashion. Nor-
mal payments require a specific user authorization. Moreover,
MaplePay interacts with the Android environment in two ways.
First, it provides an appropriate interface through which other
applications can trigger the payment procedure. Secondly,
users must be allowed to send their reports to their favourite
document viewer.

A. Application Components

Android applications consist of collections of components,
where a component can be

• an activity, i.e. a foreground component dedicated to
the interaction with the user,

• a service, i.e. a background component used for asyn-
chronous operations,

• a content provider, i.e. a component mediating access
to resources, or

• a broadcast receiver, i.e. an interface component
handling incoming, inter-application messages, called
intents.

Android packages include a manifest file listing the compo-
nents that the application exports/offers to the platform.

Example 1: Consider the application MaplePay described
above. It consists of four activities (namely, MainActiv-
ity, LoginActivity, BalanceActivity, PaymentActivity), three
broadcast receivers (SmallPaymentReceiver, NormalPaymen-
tReceiver, ContactPaymentReceiver), one service (Connection-
Service) and one content provider (HistoryProvider), briefly
described in Table I. ��

TABLE I. MAPLEPAY COMPONENTS DESCRIPTION.

Name Description

MainActivity Lists the application functionalities

LoginActivity Authenticates the user via id + password

BalanceActivity Shows the current balance

PaymentActivity Summarizes payment data before confirmation

SmallPaymentReceiver Receives intents for micro payments

NormalPaymentReceiver Receives intents for normal payments

ContactPaymentReceiver Receives intents from contacts applications

ConnectionService Mediates the access to the MaplePay web service

HistoryProvider Handles locally stored data

B. Execution Environment

The Android application framework relies on a customized
Java virtual machine, namely the Dalvik virtual machine
(DVM)1. VMs are the interpreters of an intermediate lan-
guage, i.e. the bytecode. Whenever an Android application
is launched, its code is loaded by a fresh instance of the
VM running on a separated system process. Also, each VM
process loads and executes a copy of the runtime support,
i.e. Java libraries, and belongs to a distinct Linux user. This
approach aims to guarantee isolation and to prevent malicious
interactions among applications2. For instance, applications
cannot access the installation directories of others. Legal
interactions among applications rely on a few channels called
inter-process communications (IPCs).

• Intents are used to activate three out of the four An-
droid application components, i.e. activities, services
and broadcast receivers. When an intent is fired in
broadcast mode and several compatible receivers exist
in the system, the user is asked to select the recipient.

• Content resolving is used to obtain direct access to a
content provider by specifying the identifier, i.e. URI
scheme, of the requested resources.

• Service binding allows a component to register to an
existing service and receive asynchronous notifications
from it.

Components appearing in the manifest are candidates for
receiving intents and requests.

Example 2: Consider again our working example. From
the specifications, we want MaplePay to handle some IPC
messages (originated by other apps triggering the payment
process). Moreover, the MainActivity of MaplePay can be
launched as a standard application. Finally, MaplePay can
trigger an external document viewer by firing a specific intent.
The actions are schematically reported in Table II (where the
column Sys indicates whether the action is natively defined
in Android). The architecture of MaplePay is depicted in
Figure 1. Arrows denote the interactions among components,
i.e. how they invoke each other. Input and output actions are
denoted by ◦− and •− respectively. ��

C. Application Permissions

Android applications list the permissions they require and
declare in their manifest file. Before installation, application

1Currently, the DVM is being replaced by a different VM, called ART.
Since it is VM-independent, this transition has no effect on our proposal.

2Android Application Security, available at: http://source.android.com/
tech/security/index.html
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Fig. 1. The MaplePay components and interactions.

TABLE II. ACTIONS HANDLED BY MAPLEPAY APPLICATION.

Action Abbrev. Payload Sys Behaviour

ACTION MAIN start — � Launch an activity

ACTION SEND send r,m � Send message m to recipient r

ACTION VIEW view o � Trigger a viewer for object o

PAYMENT pay e, a Pay amount a to entity e

permissions are shown to the user who decides whether to
accept or reject to grant them all. To illustrate, consider the
following fragment of an application manifest:

<manifest package="com.example.app">

<uses-permission android:name="a.p.INTERNET"/>

<application>. . .</application>
</manifest>

It states that the application requires the INTERNET3 per-
mission. If granted, the permission enables the use of the
APIs for network connectivity. It is worth pointing out that
all application components share the permissions granted to
the application even though they do not necessarily use them.

Component access to resources: Optionally, compo-
nents can define access policies. These constraints are de-
fined in the manifest file through component attributes. The
attributes list permissions that the caller must have to perform
an invocation. For instance, the following fragment defines
a service component which only accepts invocations, e.g.,
binding, from applications owning the INTERNET permission.

<service name="com.example.app.service"

permission="a.p.INTERNET"> . . .
</service>

At runtime, the IPC framework compares the requests
against the access rules of the existing components and returns
a list of legal ones. Typically, the user selects the actual
component from the list.

According to the official documentation4 developers use
permissions to implement access control rules for IPC inter-
action with their application. Thus, the considered attacker
model consists of one or more (possibly colluded) malicious
applications attempting to illegally access sensitive data and
functionalities of a target application. In this work we consider
the same model.

3We use a.p as a shorthand for android.permission.
4http://developer.android.com/training/articles/security-tips.html

III. APPLICATION MODELLING AND ANALYSIS

In this section we present our security framework and we
describe how we model components, permissions and security
policies.

A. Modelling Components and Configurations

Components invoke each other and suspend their exe-
cution until the callee returns the control. Here we model
this behaviour and formally define the execution semantics of
Android components.

Component Stack and System Configuration: We define
the runtime behaviour of a system by introducing the notion of
component stack5. Intuitively, a component stack is a collection
of frames, each of them representing a component. A certain
component becomes active when the top element of a stack
invokes it, i.e. through an IPC message. In that case, the new
component is pushed on the stack, i.e. on top of the caller. We
define frames and stacks as follows.

Definition 1: A component frame is a triple F = 〈C,P,Φ〉
where C (∈ C) is a component, P is a set of permissions and
Φ a set of policies. (In the following we may use CF , PF and
ΦF to denote the elements of a frame F .)

Thus, a frame includes the name of the invoked component,
its permissions, and the associated policies.

Definition 2: A component stack S (∈ S) can either be
empty, i.e. ε, or consists of a frame F on top of a stack S′,
i.e. F :: S′ (we write F ∈ S whenever a frame F appears in
some location on stack S and Si for the i-th frame of S).

Intuitively, a stack denotes the invocation trace of the compo-
nents involved in an execution. Still, multiple executions can
coexist in a system, e.g., due to suspended applications which
can be resumed or services running in background. Hence,
a system configuration Σ = [S1;S2; . . .] ∈ S

∗ is a finite
sequence of component stacks, being ∅ the empty one, and
Σi a shorthand for Si ∈ Σ. (Again, S ∈ Σ means that the
configuration Σ includes the stack S.)

5Not to be confused with the Android stack specifically defined for browsing
among the activities, namely the activity stack.
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B. Policy Specification and Verification

Policy Language: For highlighting and motivating the
features of our policy language we propose the following
example.

Example 3: Consider again our working example (see Sec-
tion II). We informally define some permissions and security
policies which arise from the description of the expected
behaviour of the application.

• Access and contacts. Applications can trigger a pay-
ment via the send action only if they received an
explicit authorization. Authorizations can be granted
by both the user and the MaplePay service. Hence,
we introduce permissions User Authorized (UAP ) and
Application Payment (APP ) for them. The required
policy says that a component can access if it has the
APP permission or, otherwise, it must own UAP .
Moreover, the operation should be allowed if and
only if at least one of the “ancestors” of the access-
ing component has appropriate permissions for read-
ing the contact list (permission READ CONTACTS,
RCP ) and the user account information (permission
GET ACCOUNTS, GAP ).

• Payment type. As said, MaplePay provides two pay-
ment modalities, i.e. micro and normal payments.
Then, we use Micro Payment permission (MPP ) and
Normal Payment permission (NPP ). Normal pay-
ments must be authorized by users (UAP ) while small
ones can also be authorized by MaplePay (APP ).

• Eavesdropping mitigation. Password eavesdropping
could be carried out by using device sensors. For
instance, microphone and camera could capture the
interaction of the user with the keyboard of the device.
A possible countermeasure consists in globally pre-
venting the existence of components which can either
access the microphone or the camera. These operations
require permissions RECORD AUDIO (MIC) and
CAMERA (CAM ), respectively.

• Data flow control. Sensitive information can leave
MaplePay when a balance report is visualized in an
external viewer. To prevent data leakage, the viewer
is required to have no access to either the internet,
INTERNET (NET ) permission, the external mem-
ory, WRITE SD (WSD) permission, or the bluetooth
transmitter, BLUETOOTH (BTT ) permission. Fur-
thermore, such policy should persist and be enforced
on all the components which could have received a
sensitive data flow. Such restriction should not apply
to internal MaplePay components.

��

Definition 3: A security policy φ, φ′ is a formula generated
by the following syntactic rules.

π, π′ ::= � | pi | ¬π | π ∧ π′ | π ∨ π′ | π → π′

φ, φ′ ::= �π | ♦π | �π

where pi are permission names ranging over the finite set P =
{p1, . . . , pN}.

Thus, a security policy consists of a modal, scope operator
followed by a propositional formula. The scope of a policy
can be either direct (�), local (♦), or global (�). Intuitively,
the scope has to do with the permissions which are considered
when evaluating a policy. A direct policy is compared against
the permissions of a single frame (i.e. the frame below the
policy’s one), a local one against the permissions of an entire
stack (i.e. the stack where the policy is located), and global
ones against all the permissions of the configuration. Besides
its scope, i.e. direct, local or global, a policy can also be
sticky. A sticky policy behaves like a standard policy, i.e. it is
satisfied under the same conditions (see below). The difference
between simple and sticky policies resides in the way they
propagate along the frames of a stack (see Section III-C). In
the following, we denote that a policy �π, ♦π, �π is sticky,
by writing �π, �π, �π respectively.

Policy Evaluation: The validation of a configuration
requires to evaluate all the policies against the appropriate (ac-
cording to the policy scope) set of permissions. Formally, we
start by defining a satisfiability relation |= for the propositional
core of our policy language. Briefly, satisfiability of a formula
π (against a set of permissions P , in symbols P |= π) follows
the standard rules for propositional logic. For instance, P |= p
iff p ∈ P , and P |= π∧π′ iff P |= π and P |= π′. We write (i)
F |= π whenever PF |= π, (ii) S |= π whenever

⋃
F∈S

PF |= π

and (iii) Σ |= π whenever
⋃

S∈Σ

⋃
F∈S

PF |= π. Then we define

a semantic function �φ�ji mapping each formula to the set of
configurations satisfying it. The function is defined as follows:
��π�ji = {Σ | (Σi)j−1 |= π}6, �♦π�ji = {Σ | Σi |= π}, and

��π�ji = {Σ | Σ |= π}. Slightly abusing the notation, we write

�Φ�ji for
⋂

φ∈Φ

�φ�ji .

Figure 2 graphically represents the evaluation contexts,
i.e. the portion of configuration whose permissions must be
considered, for direct, local and global policies (in a con-
figuration consisting of three stacks). Roughly, each policy
is evaluated against (the union of) the permissions of the
highlighted frames. We briefly describe them from left to right.
If (Σ2)3 carries a policy �π it must be compared against the
permissions appearing in the frame underneath. Instead, in case
of ♦π the union of the permissions appearing in the stack Σ2

must be considered. Finally, for a policy �π all the permissions
of Σ are taken into account.

We extend the notion of validity to configurations as
follows.

Definition 4: Let Σ be a configuration and let Φ(i, j) be
the set of policies associated with the frame (Σi)j . We say

that Σ is valid (in symbols � Σ) if and only if Σ ∈ �Φ(i, j)�ji
for each stack i and frame j of Σ.

In words, we say that Σ is valid if all of its stacks and frames
satisfy the policies they are subject to.

Adequacy of the Policy Language: Intuitively, our
policy language supports the definition of security properties
involving two dimensions. On the one hand, our three modal-
ities allow a component to discriminate on the space of the

6Where, for any i, (Σi)0 |= π iff ∅ |= π.
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Fig. 2. A representation of the evaluation context for the three policy scopes.

possible configurations. As a matter of fact, they can filter
the invocations it receives (�), the stacks it lays on (♦) and
the whole system configurations it is involved in (�). On the
other hand, sticky policies affect the changes of configuration
over time, e.g. they persist after the disposal of the component
which initially carried them. In order to compare the expressive
power of our proposal against the current Android security
support we need to formalize the Android-definable policies.

Definition 5: (Android-definable policies) Let R be a set
of permissions requested by component C and P be a set of
permissions owned by component D, then D can invoke C if
and only if R ⊆ P .

The augmented expressive power is witnessed by the
following statement.

Property 1: The Android-definable policies are a (proper)
subset of the policy language of Section III-B (restricted to the
� operator).

Example 4: We provide a formalization of the security
policies of Example 3.

• Access and contacts. Components can start a pay-
ment if they have the APP permission. Otherwise,
they must own UAP . Thus, the resulting policy is
�(¬APP → UAP ). Instead, RCP and GAP must
be present somewhere in the underlying stack when
ContactPayReceiver is invoked. A suitable policy is
♦(RCP ∧GAP ).

• Payment type. Normal payments can be requested
by components having both NPP and UAP permis-
sions. In symbols, �(NPP ∧UAP ). Instead, for mi-
cro payments, MPP permission is needed. Also, the
caller must have either UAP or APP . The resulting
policy is �(MPP ∧ (UAP ∨APP )).

• Eavesdropping mitigation. We want to prevent Logi-
nActivity from executing when there are components
having permissions CAM or MIC. The correspond-
ing policy is �¬(CAM ∨MIC).

• Data flow control. We introduce a special permis-
sion only assigned to internal components, i.e. Au-
thorized Component (ACP ). The resulting formula is
�(¬ACP → ¬(NET ∨WSD ∨BTT )).

The architecture of MaplePay enriched with security an-
notations, i.e. permissions and policies (we use ∅ and � for
the empty set of permissions and policies, respectively), is
reported in Figure 3. As expected, the policies described above

BalanceAct.

HistoryProv.

MainActivity

PaymentAct.

ConnectionSer.

NormalPayRec.

ContactPayRec.

MicroPayRec.

LoginActivity

∅

{RSD,WSD,ACP}

�

∅

∅

�

∅

�∅

♦RCP ∧GAP

�¬APP→UAP

�NPP ∧ UAP

∅

�MPP∧(UAP ∨APP ) �

{NET,ACP}

∅

�¬(MIC∨CAM)

�(¬ACP → ¬
(NET∨WSD∨BTT ))

start

pay(e, a)

send(r,m)

pay(e, a)

view(o)

Fig. 3. The MaplePay architecture annotated with permissions and policies.

are applied to the components which need to be guarded. For
instance, the policy for password eavesdropping is used in the
LoginActivity. Finally, we assign permissions for accessing the
internet (NET ) to ConnectionService and for reading/writing
the external memory (RSD and WSD) to HistoryProvider.
Since they are components of MaplePay and they interact
with BalanceActivity, they are also provided with the ACP
permission. ��

As a consequence of the previous dissertation, we can provide
a characterization of the expressive power of the policy lan-
guage. Trivially, our language permits to define both safety
and liveness properties [1] (over the structure of configu-
rations). Nevertheless, here we restrict to safety properties.
Since our policy framework relies on dynamic verification
(see Section III-C), liveness properties cannot be effectively7

enforced [17]. Additionally, from Property 1 we know that the
Android access rules are a proper subset of our direct policies.
Reasonably, other families of security policies of interest may
be encoded with our language. For instance, we expect that
stack inspection [18] can be obtained through the composition
of one or more local policies (as it only refers to a single call
stack). Since it is not directly related to the Android application
security model, we defer its formalization to future research.

The set of policies defined through the three modal oper-
ators are independent, i.e. none of them can be obtained as
a composition of the other two. The resulting taxonomy is
summarized by the following diagram.

7Although there exist enforcement models supporting liveness properties
(e.g., see [13], [3]), they require to change the runtime behaviour of the
applications.
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We mapped in the diagram the policies of Example 4, i.e.,
access and contacts (A&C1 and A&C2), payment type (PT1

and PT2), eavesdropping mitigation (EM) and data flow control
(DFC). Also, we use � to denote the trivial, empty policy.

C. Structural Operational Semantics

Usually, the structural operational semantics (SOS) de-
scribes the effect of a set of operations over the states of a
system. According to Section III-A, a state consists of a con-
figuration, being a finite collection of stacks. Hence, the basic
operations that we want to model are insertions and removal of
frames, i.e. push and pop. Each of the component invocations
described in Section II results in a push operation. Instead, the
pop operation represents the disposal of a component which
concluded its life-cycle.

We start by defining few support functions as follows.

Ξ(Φ, ε) = ε Ξ(Φ, 〈C,P,Φ′〉 :: S) = 〈C,P,Φ′ ∪ Φ〉 :: Ξ(Φ, S)

PSticky(Φ) = {�π,�π,�π ∈ Φ}

Briefly, the function Ξ(Φ, S) denotes the stack obtained
by adding Φ to the policies of every frame. Instead, we use
PSticky(Φ) = Φ′ to denote the subset of all the sticky policies
in Φ. Finally, we abbreviate with CType(C) ∈ {Activity,
Service, Receiver, Provider} the type of a component C.

The SOS for push and pop operations is formally defined
by the rules in Table III.

TABLE III. STRUCTURAL OPERATIONAL SEMANTICS.

CType(C) �= Service PSticky(Φ ∪
⋃

Fi∈S

Φi) = Φ′

� [. . . ; Ξ(Φ′, 〈C,P,Φ〉 :: S); . . .]
(PUSHcmp )

push(〈C, P,Φ〉, [. . . ;S; . . .])→ [. . . ; Ξ(Φ′, 〈C,P,Φ〉 :: S); . . .]

CType(C) = Service

PSticky(Φ) = Φ′ PSticky(
⋃

Fi∈S

Φi) = Φ′′

� [. . . ; Ξ(Φ′, S); . . . ; Ξ(Φ′, 〈C,P,Φ〉 :: S); . . .]
(PUSHsrv )

push(〈C, P,Φ〉, [. . . ;S; . . .])→
[. . . ; Ξ(Φ′, S); . . . ; Ξ(Φ′, 〈C,P,Φ〉 :: S); . . .]

CType(C) �= Service � [. . . ;S; . . .]
(POPcmp )

pop([. . . ; 〈C,P,Φ〉 :: S; . . .])→ [. . . ;S; . . .]

CType(C) = Service � [. . . ; ε; . . .]
(POPsrv )

pop([. . . ; 〈C,P,Φ〉 :: S; . . .])→ [. . . ; ε; . . .]

For the sake of presentation, we use push(F, [. . . ;S; . . .])
as a shorthand for push(k, F, [. . . ;Sk−1;S; . . .]), i.e. to denote
the operation consisting of pushing a frame F onto the k-
th element of Σ = [. . . ;Sk−1;S; . . .] (and analogously for
pop). In words, rule (PUSHcmp) states that a frame 〈C,P,Φ〉
(such that C is not a service) can be pushed on a stack S if
the new configuration is valid. Analogously, rule (PUSHsrv)
describes how the push operation works when applied to a
frame 〈C,P,Φ〉 where C is a service. In that case, the new
configuration is obtained by allocating a fresh stack for the
service frame. The new stack is initialized so to provide the
execution context (that is a copy of the caller’s stack) of the
service. As expected, the pop operation (POPcmp) consists of
removing the first frame of a stack. Instead, when a service is
popped (rule (POPsrv )) its execution context is also eliminated.

In the following, we write Σ
push(F,S)
−−−−−−→ Σ′ (with

Σ = [. . . ;S; . . .]) in place of push(F, [. . . ;S; . . .]) →

Σ′. Analogously, we write [. . . ;S; . . .]
pop(S)
−−−−→ Σ′ for

pop([. . . ;S; . . .]) → Σ′. Given a configuration Σ, a stack
S ∈ Σ and a frame F , such that the premises of rules (PUSH)
are not satisfied, we say that push(F,Σ) fails and we indicate

it with Σ 

push(F,S)
−−−−−−→. Moreover, we write Σ 


pop(S)
−−−−→, mutatis

mutandis.

Example 5: Let consider a configuration consisting of a
single stack S = F :: ε such that F = 〈C, {NPP,UAP,
MIC},�〉 (where the permissions are the same as in Ex-
ample 4). Now we imagine that component C invokes the
NormalPaymentReceiver of Example 1, i.e. through an intent
pay(e, a). This amounts to say that the following operation is
performed.

push(〈NormalPayRec., ∅, {�NPP ∧ UAP}〉, [F :: S])

Since NormalPaymentReceiver is not a service, we apply rule
(PUSHcmp). Hence, we need to check whether8

�

Σ︷ ︸︸ ︷⎡
⎣ 〈NormalPayRec., ∅, {�NPP ∧ UAP}〉

:: 〈C, {NPP, UAP,MIC},	〉
:: ε

⎤
⎦

As only one policy appears in the configuration, it corresponds
to verifying that Σ ∈ ��NPP ∧ UAP �21 which holds if and
only if {NPP,UAP,MIC} |= NPP∧UAP (trivially valid).
Thus, we can write

[S]
push(〈NormalPayRec.,∅,{�NPP∧UAP}〉,S)
−−−−−−−−−−−−−−−−−−−−−−−−−−→ Σ

Applying a similar reasoning we can show that

Σ 

push(〈LoginAct.,∅,{�¬(MIC∨CAM)}〉,S)
−−−−−−−−−−−−−−−−−−−−−−−−−−→

��

IV. SAT ENCODING AND SAFE COMPONENT SELECTION

In this section we present our SAT-based framework for
the encoding and verification of security policies. Briefly, we
generate an instance of the Boolean satisfiability problem
(SAT) which admits valid assignments if and only if a given

8Notice that we omit function Ξ as PSticky({�NPP ∧ UAP}) = ∅.
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configuration can evolve without violating any security poli-
cies. Moreover, we show how the solution of the SAT problem
is used to find policy-compliant components. We define the
following concepts:

(a) We say that a stack S has a permission p if there
exists at least a frame F = Sj (for some j) having
permission p.

(b) We say that a configuration Σ has a permission p if
there exists at least a stack S = Σi (for some i) having
permission p.

For brevity, we define direct policies of F the set of all
the direct policies appearing in ΦF . Similarly, we define local
policies of S the set of all the local policies of the frames in
the stack S, and global policies of Σ the set of all the global
policies of all the frames the stacks of Σ.

As stated in Section III, a frame can be safely pushed
on (popped from) a stack S if and only if the resulting
configuration Σ is valid, i.e., iff � Σ. In particular with
reference to the definition of the function �φ�ji , this condition
is satisfied if the following three sub-conditions are so.

(C1) The direct policies of each frame hold against the
permissions of the frame underneath in the stack.

(C2) The local policies of each stack hold against the
permissions of the stack.

(C3) The global policies of the configuration hold
against the permissions of the configuration.

A. SAT Reduction and Frame Safety

To reduce the problem presented to SAT, preliminarily we
introduce the following propositional variables:

• pji to represent the statement: “the frame j in the
stack i has permission p”. For all i, p0i stands for the
propositional constant false.

• pi to represent the statement: “the stack i has permis-
sion p”

• p to represent the statement: “the configuration has
permission p”

Thus, we consider the conjunction of the following for-
mula, for each frame j in the stack i having permission p:

pji (1)

Definitions (a) and (b) are enforced by the following
propositional formulae, for each permission p. (a) is encoded
as follows:

n∨
j=1

pji ↔ pi, (2)

for each stack i, having n frames, in the configuration. (b) is
encoded as follows:

m∨
j=1

pj ↔ p, (3)

where m is the number of stacks in the configuration.

Let us now consider the encoding of the policies. We
denote π(T ) a propositional formula π, where T is the tuple
of propositional variables occurring in π. Given a tuple of
permissions P = p1, . . . , pn, we denote P j

i = p1ji , . . . , pn
j
i ,

and Pi = p1i, . . . , pni. The following formulae encode the
statements (C1), (C2) and (C3), respectively. For all i, j
s.t. there exists the frame (Σi)j , we consider the direct policies
of each frame, and the propositional variables representing the
permissions of the frame underneath in the stack.∧

�π∈Φ(i,j)

π(P j−1
i ) (4)

For each stack i, we consider the formula obtained by the con-
junction of the local policies of the stack, and the propositional
variables representing the permissions of the stack i:∧

F∈Σi

∧
♦π∈ΦF

π(Pi) (5)

Then, we consider the conjunction of the global policies of the
configuration, and the propositional variables representing the
permissions of the configuration:∧

S∈Σ

∧
F∈S

∧
�π∈ΦF

π(P ) (6)

The conjunction of the conditions above can be encoded as
a single instance of the Boolean satisfiability problem (SAT).
Given a configuration Σ, we write SAT(Σ) if the conjunction
of formulae (1), (2), (3), (4), (5), and (6) is satisfiable. The fol-
lowing theorem provides an interpretation of the satisfiability
of the above formula in terms of configuration validity.

Theorem 1: For all Σ if SAT(Σ) then � Σ.

In words, Theorem 1 states that we can effectively verify
the validity of a configuration by checking the satisfiability of
its encoding (as specified by formulae (1), (2), (3), (4), (5), and
(6)). Hence, we can exploit SAT solving for the evaluation of
the premises of the SOS rules of Table III.

Example 6: Let us consider again the configuration Σ of
Example 5. According to Formula (1), the set of permissions
of each frame are encoded by the following formula:

NPP 1
1 ∧ UAP 1

1 ∧MIC1
1 (7)

Notice that NPP 2
1 , UAP 2

1 ,MIC2
1 are not constrained here

(i.e. they are not assigned a priori either to true or false), and
thus their truth values can be freely assigned by SAT solvers
in such a way to satisfy the policies. The idea underlying
this choice is to allow the SAT solver to suggest the user
to grant new permissions in case they are necessary for a
certain invocation. Then, before proceeding with the invocation
of the component, the user can decide whether she agrees to
provide the new permissions, or on the contrary she can block
it. Still, in order to follow the least privilege principle, we use
a heuristic provided by the SAT solvers, instructing them to
prefer the assignment of the propositional variables to false,
and thus minimizing the number of fresh permission requests.

Formulae (2) and (3) are as follows:

(NPP 1
1 ∨NPP 2

1 )↔ NPP1 ∧ (UAP 1
1 ∨ UAP 2

1 )↔ UAP1

∧ (MIC1
1 ∨MIC2

1 )↔MIC1

(8)
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NPP1 ↔ NPP ∧ UAP1 ↔ UAP ∧ MIC1 ↔MIC
(9)

While, in case of LoginAct. is invoked, no direct policies
are present, in case of NormalPayRec., formula (4) is as
follows:

NPP 1
1 ∧ UAP 1

1 (10)

Both in case of NormalPayRec. and LoginAct., no local
policies are present. Considering the global policies, in case
of LoginAct., Formula (6) is as follows:

¬(MIC ∨ CAM) (11)

Thus, the component NormalPayRec. can be invoked, be-
cause the formula obtained by the conjunction of formulae
(7), (8), (9), (10) is trivially satisfiable, e.g., by assigning to
true the variables NPP 1

1 , UAP 1
1 , MIC1

1 , NPP1, UAP1,
MIC1, NPP , UAP , MIC, and the other ones to false. On
the contrary, in case of LoginAct, the conjunction of formulae
(7), (8), (9), (11) is not satisfiable and thus this component
cannot be invoked. ��

Size of the encoding: SAT solvers require a reduction
of the formulae above into the conjunctive normal form
(CNF). The computational complexity and the time required
for solving the SAT problem is mainly affected by the number
of propositional variables and clauses of the CNF formula. This
is the reason why we express here the size of the encoding
proposed in terms of the number of variables and clauses, and
it will be used for the evaluation in Section VI.

Given a configuration Σ, we indicate with |Σ|P , |Σ|F ,
|Σ|S , the total number of permissions, frames, and stacks in Σ,
respectively. As mentioned above, we introduce propositional
variables to represent the permissions of each frame, each
stack and the whole configuration. Thus, the total number of
propositional variables considered is |Σ|P (|Σ|F + |Σ|S + 1).

As regards the number of clauses, formula (1) generates
|Σ|P unary clauses. Apart from the permissions, the complex-
ity of formula (2) is also dependent on the number and the
size of the stacks. In particular, the number of clauses for (2)

is |Σ|P (
|Σ|F
|Σ|S

+ 1)|Σ|S = |Σ|P (|Σ|F + |Σ|S). While for (3),

the number of clauses is |Σ|P (|Σ|S+1). Considering formulae
(4), (5), (6), the number of clauses is dependent on the number
and complexity of the policies considered. Let us call |Σ|Φ the
average number of clauses encoding the policies of each frame.
The total number of clauses encoding formulae (4), (5), (6) is
thus |Σ|Φ|Σ|F .

V. CASE STUDY

We propose an extended case study consisting of a small
ecosystem of applications, one of them being MaplePay.

Application Ecosystem: QRScanner. Figure 4 shows
a Quick Response code reader dedicated to fast payment
operations. The application consists of a single component,
i.e. the MainActivity. The CAM permission is required since
QR codes are scanned by taking a picture of them. Moreover, it
requests the MPP and UAP permissions for triggering micro
payments.

QRScannerActivity
pay(e, a)

start

{CAM,MPP, UAP}

�

Fig. 4. The QRScanner Application.

DocEditorAct.

OpenDocRec.

CloudSer.

EditorActivity

�

∅

start

view(o)

�

{RSD}

�

{NET}

{RSD}

�

Fig. 5. The FancyEditor Application.

FancyEditor. A document editor with cloud storage sup-
port is reported in Figure 5. The user can launch the Main-
Activity which displays the list of documents residing in the
SD card. Otherwise, the OpenDocReceiver can be activated
by an action view(o). In both cases, the RSD permission is
requested for accessing the SD card. The DocEditorActivity
shows the document to the user which can modify it. Even-
tually, the CloudService component is invoked for saving the
modified document on some remote server (thus requesting the
NET permission).

TamerReader. Figure 6 depicts a minimal, offline document
viewer.

A usage scenario: Let assume the user wants to donate
a small amount of money to a non-profit organization. To
do that, she uses the QRScanner application (cf. Figure 4)
to read a QR code from a brochure. Assuming an empty one,
launching the application results in the following configuration
(below we use a matrix-like notation and we omit the ε
elements).

S1

〈QRScannerAct., {CAM,MPP,UAP},�〉1

The application decodes the QR code. As a result, it
generates the action pay(donate@nonprofit.org, 10$).
Two receivers can handle this request, i.e., MicroPayReceiver
and NormalPayReceiver (cf. Figure 3). The system generates
the following specification for MicroPayReceiver.

∧{
(1) CAM1

1
∧MPP 1

1
∧ UAP 1

1
.
.
.

(4) MPP 1

1
∧ (UAP 1

1
∨ APP 1

1
)

}

Here and in the rest of this section, the numbers in brackets
refer to the general formula in Section IV used to generate
the corresponding formula. For instance, the formula in the
first line above refers to the formula (1) in Section IV, while
the last formula encodes the direct policy of MicroPayRe-
ceiver, according to the formula (4). The specification for
NormalPayReceiver is similar, being the last formula the only
difference. Indeed, it is replaced by the clause NPP 1

1 ∧UAP 1
1 ,

encoding the direct policy of NormalPayReceiver.
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ViewDocRec.

DocViewAct.

ReaderActivity

{RSD}

�

start

view(o)

∅

�

{RSD}

�

Fig. 6. The TamerReader Application.

Converting the first set of clauses in CNF format and
applying the SAT solver, we obtain that it is satisfied by the
assignment

CAM1
1 ,MPP 1

1 , UAP 1
1 ←� 1

APP 1
1 ←� 0

Instead, for the second specification, rather than the last
assignment, we get the assignment NPP 1

1 ← � 1. As a result,
the user is prompted with the two choices. However, since
selecting the NormalPayReceiver would require the user to
grant an extra privilege, i.e., NPP to QRScannerActivity,
the selection interface prioritizes the MicroPayReceiver, e.g.,
by hiding the second element. Assuming the user selects the
MicroPayReceiver, the resulting configuration is

S1

1 〈QRScannerAct., {CAM,MPP,UAP},�〉

〈MicroPayRec., ∅,�MPP ∧ (UAP ∨APP )〉2

Then, the MicroPayReceiver triggers the ConnectionSer-
vice (cf. Figure 3) for the online payment. Without showing
the (trivial) evaluation steps, the configuration becomes

S1 S2

〈QRScannerAct., {CAM,MPP,UAP},�〉1

〈MicroPayRec., ∅,�MPP ∧ (UAP ∨ APP )〉2 ...

〈ConnectionSer., {NET,ACP},�〉3

Let suppose now that the user wants to check her online
balance. She returns to the home screen and launches the
MaplePay MainActivity. Trivially, the new configuration is
valid (as it introduces neither permissions nor policies) and
is structured as depicted below.

S1 S2 S3

1 〈MainAct., ∅,�〉

......

Immediately, MainActivity attempts to invoke the LoginActiv-
ity for authenticating the user. As a consequence, the following
specification must be verified9.

9For brevity, we omit writing few clauses for S2.

∧

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) (1) CAM1

1
∧MPP 1

1
∧ UAP 1

1

(1) CAM1

2
∧MPP 1

2
∧ UAP 1

2
∧NET 3

2
∧ ACP 3

2

(b) (2) CAM1

1
↔ CAM1

(2) MPP 1

1
↔MPP1

(2) UAP 1

1
↔ UAP1

(2) CAM1

2
↔ CAM2

.

.

.

(2) NET 3

2
↔ NET2

(2) ACP 3

2
↔ ACP2

(c) (3) (CAM1 ∨ CAM2)↔ CAM

(3) (MPP1 ∨MPP2)↔MPP
(3) (UAP1 ∨ UAP2)↔ UAP
(3) NET2 ↔ NET

(3) ACP2 ↔ ACP

(4) MPP 1

1
∧ (UAP 1

1
∨ APP 1

1
)

(4) MPP 1

2
∧ (UAP 1

2
∨ APP 1

2
)

(d) (6) ¬(MIC ∨ CAM)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

However, the specification is not satisfiable. As a matter
of fact, clauses (a), (b) and (c) can be satisfied only by
assignments such that CAM ←� 1, whereas clause (d) is
satisfied if and only if CAM ←� 0. Hence, before proceeding,
the system automatically disposes10 the inactive stacks S1

and S2 by popping their frames. When only S3 appears in the
configuration, the LoginActivity can be safely invoked. After
the user successfully logs in, the LoginActivity is popped and
the BalanceActivity invoked. The specification arising from
such invocation is simply:

(5) ¬ACP3 → ¬(NET3 ∨WSD3 ∨BTT3)

Which is trivially satisfied by the assignment:

ACP3, NET3,WSD3, BTT3 ←� 0

Finally, let consider the case in which the user wants
to open a report using one of the document viewer,
i.e., either FancyEditor or TamerReader. In that case, the
BalanceActivity component fires a corresponding action,
e.g., view(file : //tmp/report.pdf). The system reacts by
checking whether one of the existing receivers, i.e., Open-
DocReceiver (cf. Figure 5) and ViewDocReceiver (cf. Fig-
ure 6), can safely handle the request. For both of them, the
resulting specification is

∧{
(1) RSD3

3
.
.
.

(5) ¬ACP3 → ¬(NET3 ∨WSD3 ∨BTT3)

}

The satisfying assignment is

RSD3
3 ←� 1

ACP3, NET3,WSD3, BTT3 ←� 0

Let assume the user selects the OpenDocReceiver. In this
case, the configuration evolves to

S3

〈MainAct., ∅,�(¬ACP → ¬(NET ∨WSD ∨BTT ))〉

〈BalanceAct., ∅,�(¬ACP → ¬(NET ∨WSD ∨BTT ))〉

〈OpenDocRec., {RSD},�(¬ACP → ¬(NET ∨WSD ∨ BTT ))〉

1

2

3

10Recall that, according to the Android specification, disposing a component
is not an extraordinary measure. In fact it is a standard OS operation, e.g.,
used for deallocating locked resources.
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Then, the OpenDocReceiver invokes the DocEditorActiv-
ity. Clearly, the invocation succeeds (since no new permission-
s/policies are involved) so leading to the configuration

S3

1 〈MainAct., ∅,�(¬ACP → ¬(NET ∨WSD ∨BTT ))〉

〈BalanceAct., ∅,�(¬ACP → ¬(NET ∨WSD ∨ BTT ))〉2

〈OpenDocRec., {RSD},�(¬ACP → ¬(NET ∨WSD ∨ BTT ))〉3

〈DocEditorAct., ∅,�(¬ACP → ¬(NET ∨WSD ∨ BTT ))〉4

Finally, the DocEditorActivity attempts to activate the
CloudService component. The resulting specification is

∧
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1) RSD3

3
∧RSD3

4
∧NET 5

4

(2) NET 5

4
↔ NET4

(2) ACP 5

4
↔ ACP4

.

.

.
(5) ¬ACP3 → ¬(NET3 ∨WSD3 ∨ BTT3)
(5) ¬ACP4 → ¬(NET4 ∨WSD4 ∨ BTT4)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

which is satisfied by the assignment

RSD3
3, RSD3

4, NET 5
4 , NET4, ACP 5

4 , ACP4 ←� 1
ACP3, NET3,WSD3, BTT3,WSD4, BTT4 ←� 0

However, the solution assigns 1 to ACP 5
4 . This amounts to

say that a new permission, i.e., ACP , must be granted by the
user to the CloudService component in stack 4. Hence, the
system prompts the user who may as well decide to block the
invocation.

VI. IMPLEMENTATION AND DISCUSSION

In this section we introduce the prototype implementation
of our framework and we discuss some technical aspects.
Moreover, we outline some possible future directions which
are currently under evaluation.

A. Prototype

Our approach has been implemented and a working pro-
totype, called Safe Component Provider (SCP), is publicly
available11. The prototype includes two elements: SCPcore
and SCPlib. Users install the SCPcore application for enabling
their device with our security framework. Instead, developers
include the SCPlib in their applications. SCPlib contains
classes which resemble and mimic the standard Android IPC
library, e.g., it defines a ScpIntent to be used in place of
Intent. When an application including the SCPlib is installed
on a device mounting SCPcore, its components are registered
together with their permissions and policies. Below we outline
the differences between the classical Android IPC mechanism
(Figure 7) and our prototype (Figure 8). Briefly, application
A starts an interaction with an external component through
an Intent, that is a class provided by the runtime support
of the Android VM (e.g. Dalvik). As a result of firing an
intent, a kernel module, called Binder, is invoked to find a
suitable component. Finally, the Binder locates a component D
provided by application B and activates it through the runtime
support of the VM running it.

11https://github.com/SCPTeam/Safe-Component-Provider

Native libraries

Linux kernel Binder

Android VM Android VM

Runtime support

Intent Component’

Runtime support

App A App B

C : Component D : Component’

Fig. 7. Android IPC component invocation.

Native libraries MiniSat

Android VM

Runtime support

Component’ jni

C : Component

Provider

CDB

Linux kernel Binder

Android VM

Runtime support

Intent

SCPcoreApp A

SCPlib ScpIntent

AbstractComponent’

Fig. 8. SCP component invocation.

Instead, SCP-enabled applications work as follows. When
an interaction is requested, an ScpIntent is activated. This class
converts the request into a standard Intent, but it replaces the
requested component with an abstract one, only provided by
the SCPcore application. In this way, the Binder is forced
to dispatch the intent to SCPcore. When triggered, SCPcore
queries its components database (CDB) and retrieves a list of
available components. Then, their permissions and policies are
converted into CNF specifications and submitted to the SAT-
solver for deciding the actual receiver of the intent12. SCPcore
relies on MiniSat [8], a minimalistic, state-of-the-art solver.

Comparing the two pictures, we can notice that modifi-
cations only appear at the top, application level. Since, the
prototype requires no modifications of the lower levels, e.g.,
OS kernel, it can be installed on any existing device.

Performances: For the time being, our prototype is still
under evaluation as a systematic analysis requires to set up
realistic usage patterns (possibly obtained from real users) and
security policies. We mounted our prototype on a Android
4.4.4 LG Nexus 7 device, mounting a 1.2 GHz, quad-core
ARM processor with 1 GB of RAM. Figure 9 reports the
execution times for the steps of our working example.

Each column reports the time required for generating the
list of candidate components of one of the steps presented in
Section V (from the beginning to the first request of Login-
Activity). The columns represent the invocation of QRScan-
nerAct. (QRA), MicroPayRec. (MPR), ConnectionSer. (CS),
MainActivity (MA) and LoginActivity (LA). The components

12Notice that few irrelevant details, e.g., user selection, have been omitted.
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Fig. 9. Case study execution times.
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list generation time includes (i) variables and (ii) policies
encoding plus (iii) solving time. We recall that every step
performs one instance of our encoding and solving procedure
for each available component of the requested type (e.g., QRA
verifies all the 9 activities of our case study).

We also used benchmark SAT problems for checking the
performances of MiniSat on a real mobile device. Since the
SAT-solving process is central, showing that it can scale over
reasonably big specifications is fundamental for the feasibility
of our approach. Hence, we used Tough SAT13 for generating
a heterogeneous set of CNF specifications. Then, we submitted
them to MiniSat running on our testing device. The results are
depicted in Figure 10.

Although preliminary, the results appear to be promising
as, even with large specifications, MiniSat takes less then
0.7 seconds. To provide an intuition about the size of actual
specifications, consider that the larger formula of our working
example consists of 23 variables and 43 clauses.

Manifest and compatibility: In our model application
policies and permissions are defined through an extension of
the manifest file. Also, applications using our security features
need to be compiled with a special runtime support library,
i.e., SCPlib. Hence, a platform running our system experiences
a separation between the two classes of applications: those
enabled with our security mechanism and the standard ones.
In practice, this results in an actual isolation of secured
applications that can neither invoke nor being invoked by
normal applications. Such isolation can be effectively enforced
by validating the apps bytecode (see below).

13https://toughsat.appspot.com/

Bytecode validation: Clearly, our approach relies on
the fact that applications cannot use both standard intents and
SCP ones. Currently, our prototype does not include code
checking steps, but few alternatives exist. A viable approach
for ensuring the isolation is through a reference monitor (e.g.,
see [17]). Nevertheless, runtime monitoring generates an extra
computational effort. To avoid this, an alternative solution
consists of a class loader which verifies the class files before
injecting them in the execution environment. The class loader
just needs to (syntactically) check that no illegal invocations
appear in the application code. A similar verification can also
be carried out at installation time.

Reflection: Another open issue is Java reflection.
Briefly, reflection is a powerful technique for dynamically ac-
cessing and modifying Java elements like classes and methods.
Many analysis techniques exploited in the implementation of
security enforcement frameworks simply do not cope with
it (e.g., see [14]). Hence, a common solution, also viable
for SCP, is to simply disable reflection. Nevertheless, code
modified through reflection does not avoid permission checks
in Android. Thus, our approach still applies as far as reflection
does not introduce the IPC/SCP primitives where not allowed.
In this case, a reference monitor could dynamically check
how these primitives are used, while a class loader would be
ineffective (as reflected code is not reloaded).

Dynamic permissions: Android also provides
APIs for dynamically assigning and revoking access
permissions. An application owning a resource res can
invoke grantUriPermission(app_id, res) and
revokeUriPermission(app_id, res) to modify
the access rights of app_id. Although not currently
implemented, a similar behaviour could be obtained in our
approach by allowing applications to edit their own entries in
the components database. In this way, according to runtime
values, an application could decide to enforce a different
policy on one or more of its components. Such improvement
would require to reconsider our operational semantics, but
not the verification process.

B. Policy granularity

Below we list few examples of security policies that
Android cannot enforce and we show how to encode them.

Confused deputy. An application A owns some security-
relevant resources and allows the access only to applications
having permission p. Application B (legally) owns p and
invokes A. Then, the unprivileged application X exploits an
interaction with B to access to the resources of A. With our
support A can declare a sticky policy �p which guarantees all
the future invocations of B to request permission p.

Application collusion. An application X owns permission p
needed to read data owned by A. However, A releases the
data only if the caller has no internet access (NET permission).
Since X has no other permissions but p, it legally accesses.
However, after collecting the data, X sends it to application
Y , having NET (thus violating A’s requirement). In our frame-
work, the policy of A can be expressed by �p→ ¬NET .

Permission re-delegation. In [10] the authors describe the
permission re-delegation problem and propose an enforcement
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mechanism for preventing it. Briefly, when at time t a compo-
nent D invokes C, the permissions of C are updated according
to the formula Pt(C) = Pt−1(C) ∩ Pt−1(D). In words,
the permissions of C are restricted (through set intersection)
before each IPC interaction. Clearly, removing permissions
can lead to runtime errors. Although this cannot happen with
our framework, a similar policy is to prevent interactions with
underprivileged components. A possible encoding is given by
the formula �

∧
p∈PC

p, i.e., C can only be invoked by com-
ponents owning a superset of its permissions. By leveraging a
sticky policy we can apply a restriction on future interactions
without revoking previously granted permissions.

C. Future developments

Securing SmartCampus Applications: The SmartCam-
pus14 platform offers a collection of Android applications aim-
ing at enhancing the quality of services provided by the city of
Trento to citizens and students. Each (open source) application
provides access to a specific service, e.g., public transportation
schedule and event organization news. Moreover, new services
arise from the interaction of applications, e.g., users can plan
a bus trip to reach an event location. Developers contribute
by publishing their own applications. We plan to apply our
approach to the SmartCampus ecosystem by considering the
specific security requirements of each application.

Policy language extension: A further improvement
would be extending the policy language to first-order logic.
As a matter of fact, permissions could be considered as pred-
icates (rather than propositions) over data objects. In this way
we could model more comprehensive security policies also
including data flow and resource usage. Our approach could
be adapted by replacing SAT-solving with SMT-solving [2].
Clearly, the extended expressiveness would impact on the run-
time performances and new experiments would be necessary
to grant the sustainability of the new language.

VII. RELATED WORK

Several authors investigated the Android application secu-
rity framework, often exposing its limitations. Both Egners
et al. [6] and Felt et al. [9] discuss the potential misuse
of Android permissions. The former, shows that Android
permissions can hide unexpected vulnerabilities that can be
easily exploited by properly-crafted malicious applications. In
the latter, the authors empirically show that Android apps are
generally over-privileged and their interactions can lead to
privilege escalation attacks (i.e. an app can trigger another app
exploiting its permissions). These analyses do not charge the
Android permissions with the responsibility of the identified
issues; on the contrary, they show that many security concerns
derive from the misunderstanding of the role and purpose of
the permissions by both developers and users.

Nonetheless, many proposals have been put forward to
enhance the native set of permissions. In [16] the authors
propose a novel kind of app-centric permissions that are
suited to the needs of single apps. App-centric permissions
are built upon basic Android ones but require to instrument
apps. In [12], authors propose a set of fine-grained permissions

14www.smartcampuslab.it

and present RefineDroid, a tool that automatically infers them
from apps by means of static analysis techniques. Also the
authors of [11] propose a refinement of the existing Android
permissions. In particular, they focus on a subset of critical
permissions and analyse the most common pattern involving
them. As a result, they redefine a subset of the existing
permissions. Although more permissions can ideally provide a
better security characterization of the applications, they are not
sufficient to solve permission-related security issues without
relying on a well-defined policy language for supporting the
definition of security properties that the Android system is
expected to meet. To this aim, more structural approaches have
been proposed to reconsider the Android security facilities
rather than the set of permissions only. For instance, Felt
et al. [10] propose IPC Inspection. Briefly, their framework
restricts the actual permissions of an application whenever
it receives an IPC stimulus. The restriction amounts to the
intersection of its current permissions and those of the invoker.
Clearly, dynamic restrictions of the permissions can cause
runtime errors which cannot happen with our proposal. Indeed,
in our framework, when an invocation does not fulfil the
requirements, it is simply avoided. In [5] an approach to
detect malicious operations performed by apps without the
user consent is proposed. The idea is to build up Permission
Event Graphs (PEG) aimed at keeping track of the order in
which app permissions are exploited by applications. PEGs
are analysed by Pegasus, a model checking-based tool aimed
at verifying whether a PEG complies with a given security
property, expressed as a boolean formula. Bauer et al. [4]
present a runtime verification mechanism allowing to enforce
temporal properties, expressed in a LTL-like syntax, over
Android applications execution. Similarly, in [15] the authors
propose Apex as a policy enforcement system for Android
applications allowing the user to define her own security
policies. Unlike our proposal, these approaches are meant to
replace the current Android runtime security support. Thus,
their implementation requires a substantial modification of
the operating system. Enforcing permission at component-
level is a very recent proposal [19]. Here, authors propose
a solution allowing both users and developers to selectively
assign permissions to single app components. However, such
solution does not support the definition and enforcement of
security policies on sets of permissions, we do in this paper.

VIII. CONCLUSION

In this paper we presented an extension of the Android
permission system and security framework. Our proposal is
non-invasive as it relies on existing resources and can be im-
plemented on top of standard Android distributions. Moreover,
we enhanced the basic security support with an effective policy
enforcement mechanism. Under these settings, developers can
specify fine-grained security policies that will not be violated
at runtime. We released a prototype implementation and we
carried out some preliminary experiments which appear to
confirm the feasibility of our approach.
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APPENDIX

Property 1: The policy language of Section III-B (strictly)
includes all the Android-definable policies.

Proof. We show that all the Android-definable policies can be
encoded in our language. First we notice that any Android-
definable policy can be expressed by means of the policy φ =
�
∧

p∈R p. As a matter of fact, P |= φ if and only if ∀p ∈
R.P |= p. By definition, this is equivalent to ∀p ∈ R.p ∈ P
which trivially corresponds to R ⊆ P .

We have strict inclusion since some policies cannot be
represented as a finite set of permissions R. For instance,
φ = ♦p∨ q (for some p and q) is satisfied by both P = p and
P ′ = q. Hence the only possible R for this case is ∅ which
trivially does not represent φ. ��

Lemma 1: P |= π if and only if SAT(π ∧
∧

p∈P p).

Proof. Trivially, P |= π if and only if there exists an
assignment from variables to truth values σ : P → {0, 1}
satisfying both π and

∧
p∈P p. ��

Theorem 1: For all Σ if SAT(Σ) then � Σ.

Proof. We proceed by contradiction. Hence, we assume that
there exists a Σ such that SAT(Σ) and 
� Σ. By definition, 
� Σ
implies ∃i, j.Σ 
∈ �Φ(i, j)�ji or, unfolding the notation ∃φ, i, j
s.t. φ ∈ Φ(i, j) ∧ Σ 
∈ �φ�ji . Depending on the modality of φ,
we can have three branches.

1) if φ = �π. In this case we have Σ 
∈ ��π�ji which
implies F 
|= π (where F = (Σi)j−1), and PF 
|= π.
Applying Lemma 1, this entails ¬ SAT(π∧

∧
p∈PF

p).
By a straightforward variable renaming, this also im-
plies ¬ SAT(π(P j−1

i )∧
∧

p∈PF
pj−1
i ). Hence, we have

that also the formula (1) ∧ (4) is unsatisfiable and
therefore (by ∧ introduction), we find that ¬SAT(Σ),
which contradicts the hypothesis.

2) if φ = ♦π. Here Σ 
∈ �♦π�ji which implies⋃
F∈Si

PF 
|= π (where Si = Σi). By Lemma 1
this holds iff ¬ SAT(π ∧

∧
F∈Si

∧
p∈PF

p). Again,

by variable renaming, this holds iff ¬ SAT(π(Pi) ∧∧
F∈Si

∧
p∈PF

pi). However, from SAT(Σ) and (5) we

know that SAT(π(Pi)). Hence, there must be at least
a p̄i such that π(Pi) is only satisfied by assignments
mapping p̄i to 0. By construction, p̄ appears in stack
Si. Let assume p̄ ∈ Sk

i . By (1) (and SAT(Σ)), we
know that p̄ki must be set to 1. Nevertheless, by (2)
also p̄i must evaluate to 1, that is the contradiction.

3) if φ = �π. We apply a similar argument. From
Σ 
∈ ��π�ji we infer that

⋃
S∈Σ

⋃
F∈S PF 
|= π. By

Lemma 1 this happens if and only if ¬ SAT(π ∧∧
S∈Σ

∧
F∈S

∧
p∈PF

p). From SAT(Σ) and (6) we

know that SAT(π(P )). Again, there must be at least
a p̄ (in one of the frames of one of the stacks) such
that π(P ) is only satisfied by assignments mapping
p̄ to 0. Let assume p̄ ∈ (Σk)h. By (1) (and SAT(Σ)),
we know that p̄hk must be set to 1. Consequently, by
(2) also p̄k must evaluate to 1. Finally, by (3) this
implies that also p̄ evaluates to 1 and we conclude.
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