
Reasoning about policy behavior in logic-based
trust management systems: Some complexity results

and an operational framework

Edelmira Pasarella
Department of Computer Science

Universitat Politècnica de Catalunya

Email: edelmira@cs.upc.edu

Jorge Lobo
DTIC

ICREA - Universitat Pompeu Fabra

Email: jorge.lobo@upf.edu

Abstract—In this paper we show that the logical framework
proposed by Becker et al. [1] to reason about security policy
behavior in a trust management context can be captured by an
operational framework that is based on the language proposed
by Miller in 1989 to deal with scoping and/or modules in logic
programming. The framework of Becker et al. uses proposi-
tional Horn clauses to represent both policies and credentials,
implications in clauses are interpreted in counterfactual logic, a
Hilbert-style proof system is defined and a system based on SAT is
used to prove whether properties about credentials, permissions
and policies are valid, i.e. true under all possible policies. Our
contributions in this paper are three. First, we show that this kind
of validation can rely on an operational semantics (derivability
relation) of a language very similar to Miller’s language, which is
very close to derivability in logic programs. Second, we are able
to establish that, as in propositional logic, validity of formulas
is a co-NP-complete problem. And third, we present a provably
correct implementation of a goal-oriented algorithm for validity.

Index Terms—Trust Management Systems, Semantics, Answer
Set Programming, Logic Programs.

I. INTRODUCTION

Trust Management Systems (TMS) [2] are perhaps the most

common models to describe distributed access control. In these

types of models, there are (1) policies that define under what

conditions a subject is able to access resources, (2) credentials

provided by the subject in order to fulfill policies and (3)

decisions as to whether a subject has particular permissions.

One of the most popular ways to describe TMS is to use logic

programming and Datalog-like languages for the definition

of policies and credentials (see for example [3], [4], [5],

[6]). Then, permissions are decided by inferences combining

policies and credentials.

Working under this framework, Becker et al. [1] have re-

cently proposed a logic system in which one can reason about

TMS in general. In this system, a Hilbert-style axiomatization

is defined and SAT solvers are used to prove TMS properties.

In their logic, policies and credentials are propositional logic

programs, while permissions are propositional Boolean formu-

las. Trust management behavior, i.e. to determine whether a

permission p is true under a policy P when presented with a

set of credentials Q, is captured by proving that the statement

�Q p holds in the policy P. This statement is true if p holds

in the policy P extended with those clauses in the credentials

Q: P∪Q � p.

Example 1.1: To illustrate how policies, credentials and

permissions are expressed, let us consider a very simple

example about purchasing digital goods. The policy of the

seller is:

X .paid(Music,1.99)⊃ X .download(Music)
veri f y(paypal,X ,V)⊃ paypal(X ,V)
veri f y(wire,X ,V)⊃ wire transfer(X ,V)

These statements represent schemes of policies that will be

applied to specific values of the arguments. The statements

say that if X paid 1.99 as fee for the music Music, X is able

to download Music, that there are two ways in which X can

pay a fee V , either by means of PayPal or by means of a wire
transfer and that these payments can be verified by calling an

external procedure. Credentials for paying the fee presented by

a subject alice to request download permission can be written

as follows:1

�{
paypal(alice,1.99)⊃ alice.paid(song,1.99)
veri f y(paypal,alice,1.99)

}alice.download(song)

To allow the subject alice to download the song, the policy

and the two credentials

paypal(alice,1.99)⊃ alice.paid(song,1.99)
veri f y(paypal,alice,1.99)

must be joined by the system in a single theory and then

the system verifies that the permission alice.download(song)
holds in the expanded theory.

The important contribution of Becker et al.’s work is the

definition of valid formulas in TMS. Informally, these are

formulas that are true regardless of the policies and credentials

that can be defined in the TMS. With this definition in hand,

they are able to describe how to approach proofs such as

1We make the simplifying assumption that no third party is involved in the
TMS and that alice gets a signed certificate from PayPal.

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Edelmira Pasarella. Under license to IEEE.

DOI 10.1109/CSF.2015.23

232

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Edelmira Pasarella. Under license to IEEE.

DOI 10.1109/CSF.2015.23

232

probing attacks (i.e. discovering policies) for a given instance

of a TMS, or general properties such as the transitivity of

credential-based derivations.

The authors, however, argue that Hilbert style axiomatiza-

tions are difficult for finding proofs because the proofs are

not goal-oriented. Hence, they resort to an algorithm that

interleaves syntactic transformations of formulas and calls to

SAT solvers in order to do automatic verification. In their paper

there is an argument but not a proof that the verification is

sound and complete. The authors implied that the proof is very

involved and they said that part of the proof of correctness was

done using automatic verification tools.

In this work we show that the logical framework proposed

by Becker et al. can be captured by an operational framework

that is based on a language proposed by Miller in 1989 to deal

with scoping and/or modules in logic programming and later

extended with negation by Pasarella et al. [7]. Our contribution
is to show that we can rely on the operational semantics (deriv-
ability relation) of Miller’s and Pasarella et al.’s languages,
which are very close to derivability in logic programs, to do
goal-oriented formula verification. Furthermore, our proofs are

much simpler because we are able to use previous results from

logic programming. More specifically, the proximity to logic

programs gets us two results. We are able to show that as

in propositional logic, validity of formulas in TMS is co-

NP-complete, answering an open question left by Becker et

al. And second, we are able to provide a provably correct

implementation of a goal-oriented validity check algorithm

based on logic programs under the stable model semantics [8].

The connection to logic programs also opens the possibility

of extending Becker et al.’s framework to the more practical

first-order case since Miller’s and Pasarella et al.’s languages

are first order.

The rest of the paper is organized as follows. Section II first

introduces Becker et al.’s TMS logic framework (Sec. II-A),

and then our framework is presented and the equivalence is

shown (Sec. II-B to II-D). In Section III the complexity of

verifying validity is established. Section IV describes how a

validity algorithm can be implemented using logic programs

under the Answer Set Programming semantics. In sections V

and VI a few applications are discussed and some final remarks

are presented.

II. REASONING IN TRUST MANAGEMENT SYSTEMS

A. Becker et al. trust management systems

In this section we recall some definitions and main results

from the trust management logical framework defined by

Becker et al. [1], and althought the axiom schemas and

inference rules of the proof system in this framework are

not required to understand this paper, they can be found in

Appendix A. First, from a syntactic point of view, Becker et

al. define (1) a Datalog-like trust management language, (2)

a derivability relation and, (3) in order to establish universal

truths, a notion of validity based on this derivability relation.

Second, semantically, a counterfactual Kripke model theory

for trust management is introduced, as well as a notion of

validity in terms of these models. It is also shown that the

syntactic and semantic definitions of validity are equivalent

(see Theorem IV.11 in [1]). Finally, a proof theory with a

Hilbert-style axiomatization is defined and it is shown that the

aximatization is sound and complete with respect to the Kripke

semantics (see Theorem V.3, in [1]). Accordingly, the notion of

validity, denoted by �ϕ, in the proof theory is equivalent to the

notion of validity in the model theory and, as a consequence

of Theorems IV.11 and V.3, equivalent to the notion of validity

defined on the derivability relation.
In addition to the logic-based trust management framework,

another contribution of Becker et al.’s work is a procedure to

decide whether a formula is valid or not. This procedure is

obtained by “mechanizing” the logic in two main steps: (i)

translating trust management formulas into a series of classical

propositional formulas and (ii) using a standard SAT solver to

verify the satisfiability of those formulas. Despite the empirical

evidence about its functionality that is given in the paper,

step (i) is somewhat involved because it needs to do some

intermediate calls to a SAT solver to do some checks before

getting the propositional formulas.
In the remainder of this section, we present those definitions

from [1] that we need in our work. In this work the existence

of an underlying signature Σ which consists of a countable

set of propositional atoms is assumed. As is usual in logic

programming and Datalog, a Σ-clause is an expression of

the form p :- p1, . . . , pn where n ≥ 0 and p, p1, . . . , pn, are Σ-

atoms. The atom p and the sequence of atoms p1, . . . , pn are

called the head and the body of the clause, respectively. A

Σ-policy γ is defined as a finite set of Datalog Σ-clauses [9].

Whenever n = 0, the clause is denoted by p. For instance, the

fact “Maria can download the music file Happy” is represented

by a propositional atom in this language. The set of all Σ-

policies is denoted by Γ. In the rest of this section, when it is

clear from the context, we drop the prefix Σ- . To establish if

an atom p is derivable from a policy γ, a derivability relation,

� is defined as follows.

γ � p if and only if

(i) p ∈ γ, or

(ii) ∃p :- p1, . . . , pn ∈ γ,n≥ 0 and

∀i ∈ {1, . . . ,n} : γ � pi

This derivability is extended to deal with the relation between

policies and classical propositional compound formulas that

can be formed using atoms, including the constant true, and

the non-logical symbols ∧ and ¬. As in logic programs, we

will call atoms and their negation literals. Atoms are called

positive literals and negated atoms are called negative literals.

Compound formulas will be denoted by ϕ (with subindexes

when necessary). Thus, the relation � is extended as follows.

(iii) γ � true
(iv) γ � ¬ϕ if and only if γ
� ϕ
(v) γ � ϕ1∧ϕ2 if and only if γ � ϕ1 and γ � ϕ2

and γ � ϕ is read as “ϕ holds in the policy γ.” As in Datalog,

this definition interprets negation using the minimal model of

233233

the policy. Furthermore, without Σ-credentials (which will be

introduced in the next paragraph), the derivability relation �
is equivalent to derivability in Datalog, �Datalog. Then, given a

formula ϕ, a policy γ and its minimal model Mγ, γ � ϕ if and

only if ϕ holds in Mγ (γ �Datalog ϕ). The minimal model Mγ is

the smallest set such that Mγ = {p | p is a Σ-atom and Mγ |=
γ}.

To reason about the interaction between policies and cre-

dentials, Becker et al. also represent credentials as finite sets of

clauses and extend the syntax of queries to formalize dynamic

credential submissions. This interaction is represented by (trust

management) formulas of the form �γϕ and the derivability

relation is extended as follows:

(vi) γ ��γ1
ϕ if and only if γ∪γ1 � ϕ (1)

Intuitively this means that given a policy γ, a credential (set

of clauses) γ1 and a formula ϕ, once the credential γ1 has been

submitted, the formula ϕ is checked against both the policy γ
and the credential γ1, γ∪γ1.

The (operational) notion of validity based on the derivability

relation � is the following. A formula ϕ is valid, denoted by

� ϕ, if and only if for every policy γ, γ � ϕ. It is worth noting

that the symbol � ϕ corresponds to a unary relation and it is

not equivalent to the standard reading: /0 � ϕ. Indeed, when

it has two arguments, a policy and a formula, it has to be

interpreted as the derivability relation but when it is unary it

represents the validity of a formula.

B. Adapting Miller’s logic program modules to TMS

We will denote our operational framework to reason about

policies, credentials and permissions by Ô-TMS. The Ô-TMS

framework is based on the language introduced by Miller in

[10]. In his language, the semantics is presented in terms of

a derivation relation over sequents. A sequent is a pair of the

form P �M G, where P is a logic program with modules (i.e.

sub-programs) called the antecedent and G a goal or query

that might also include modules called the succedent. To pass a

module Q as part of a query G, the query will look like Q⊃G′.
Given a program P, to prove the query Q⊃G′ it is necessary

to prove G with the program P∪Q. This is formalized in [10]

using the following inference rule:

P∪Q �M G
P �M Q⊃ G

Considering that programs are sets of clauses that represent

policies and credentials, and goals are clauses that represent

general formulas, the intuitive interpretation of this rule is the

same as (1). The difference is that Miller allows modules

in P (i.e. P could be of the form {q ⊃ p∧ r ⊃ p} ⊃ s) and

we will not. As in regular logic programs and in TMS, the

Ô-TMS framework assumes the existence of an underlying

propositional signature Σ of Σ-atoms. In the rest of the paper

we adopt a notation quite similar to Miller’s notation.

Definition 2.1: Policies, clauses and goals are defined by the

following BNF grammar, where A, F , C, P and G range over

(1) atoms, conjunctions of atoms, (2) clauses, (3) policies and

(4) goals, respectively.

(1) F ::= true | A | F ∧F
(2) C ::= F ⊃ A
(3) P ::=C |C;P
(4) G ::= F | ¬G | P⊃ G | G∧G | G∨G

For the sake of simplicity, in the following, we omit the

prefix Σ- and assume that Σ is given by the atoms appearing

in the policies and goals. In Miller’s terms, policies are called

programs. In this paper we consider the terms equivalent.

A goal is either an expression of the form P ⊃ G, where

P is a policy and (inductively) G is a goal, or an expression

corresponding to a propositional formula built with the stan-

dard connectives ¬, ∧ and ∨. Intuitively, a policy in a goal

represents a credential. A more formal description will follow

but we want to observe first that our goals are the formulas or

queries in Becker et al.’s framework. We also note that Becker

et al. use two different notations for ⊃, one to define clauses

in a policy (:-) and a second one to introduce credentials in

goals (�). We follow Miller and use a single operator since

their semantics are equivalent.

As usual, we define classical implication, G1 → G2, as

¬G1∨G2 and equivalence, G1↔ G2, as (G1→ G2)∧ (G2→
G1). Throughout the rest of the paper, we adopt the following

conventions: P and Q denote programs or policies. Clauses

may be enclosed in parenthesis. A clause of the form true⊃ p
is simply written as p. Additionally, as in logic programming,

clauses of the form A1∧A2∧ ·· ·∧Ak ⊃ A, k ≥ 1 are denoted

by A1,A2, . . . ,Ak ⊃ A.

Definition 2.2 (Ô-proof rules): The inference rules for

sequents in Ô-TMS are defined over Programs×Goals in

Table I.

Before presenting the definitions of proofs and proof trees

we would like to make a few remarks about the inference

rules. All rules except for NHYP are from Miller’s module sys-

tem [10]. NHYP deals with negation over ⊃. Miller introduces

negation in the form of constraints: G⊃⊥. Thus, the negation

of a goal becomes a clause and he adds it to the program. Then,

what needs to be proved is that these constraint clauses do

not introduce any inconsistency, i.e. P
�M⊥ when P contains

constraints. For proofs, he treats the symbol ⊥ as if it were

another atom, therefore, we can deduce from the SLD rule that

if P �M G then P �M⊥ since G ⊃⊥∈ P. Now assume that G
is of the form Q ⊃ G′. In this case, from the HYP inference

rule we get that if P∪Q �M G′ then P �M⊥. Therefore, to

avoid inconsistencies, it must be the case that P∪Q
�M G′.
Informally speaking, we could say that we want ¬G′ to hold

according to the minimal model semantics in P∪Q. This is the

intuition behind the NHYP inference rule and it first appeared

in a more generalized first order form in [11] (see also [12] for

a comprehensive discussion of modules in logic programs with

234234

negation). The corresponding version of this rule in Becker’s

et al. framework is captured by the following axiom schema

of their proof system:

��γ¬ϕ ←→ ¬�γϕ

Definition 2.3: (Ô-TMS basics)

1) An Ô-sequent is a sequent of the form P �Ô G.

2) An initial sequent is a sequent of the form P�Ô G where

G is a negative literal that is true in the minimal model,

MP, of P or a sequent of the form P �Ô true.

3) An Ô-tree for P�Ô G is a tree in which nodes are labeled

with sequents such that (i) the root node is labeled with

P �Ô G and (ii) the internal nodes are instances of one

of the inference rules in Definition 2.2.

4) An Ô-proof for P �Ô G is an Ô-tree for P �Ô G in which

all leaf nodes are labeled with initial sequents.

5) The Ô-frontier of an Ô-tree T for P �Ô G, denoted

by F (T), is the set that contains all the leaves of T .

Whenever T is an Ô-proof, F (T) is a successful Ô-

frontier. Otherwise, F (T) is a failed Ô-frontier.

For the sake of simplicity, in what follows we drop the

prefix Ô- when it is not necessary.

The rules above are the inference rules used for the trust

management system in order to make decisions about per-

missions. In Fig. 1 we can see an Ô-tree of /0 �Ô G, where

G = {q ; r ⊃ a} ⊃ ¬a∧{r ; q⊃ a} ⊃ ¬a∧{r ; q} ⊃ a. Let us

call this Ô-tree T . The frontier of T ,

F (T) = {{q ; r ⊃ a} �Ô ¬a, {r ; q⊃ a} �Ô ¬a, {r ; q} �Ô a}
is a failed frontier since not all its elements are initial sequents.

C. Ô-Validity

A fundamental notion in Becker et al.’s logical framework

for TMS is the definition of validity of a formula [1]. A

formula ϕ is valid if and only if it holds in all policies.

This is equivalent to saying that ϕ is a universal truth.

Intuitively, from the TMS point of view, a valid formula ϕ
represents a query for a permission such that no matter which

policy is considered, the permission will be granted given the

appropriate credentials.

Since our inference rules are goal-oriented, our notion of

validity will be based on the idea of not being able to find a

counterexample. In other words, our definition uses the fact

that, if a goal G is valid, then there cannot exist a policy from

which its negation, ¬G, can be proved. As we will see below,

this definition will suggest a refutation procedure [13] to prove

the validity of a goal.

Definition 2.4: Let G be a goal and ΣG be the signature

formed by the set of propositional atoms occurring in G. G is

valid, �Ô G, in the Ô-TMS if and only if it is not possible to

find a ΣG-policy Δ such that Δ �Ô ¬G

As we will see in the next section, our definition of validity

in TMS is equivalent to Becker et al.’s definition.

Example 2.1: We now illustrate how Definition 2.4 can be

used to prove the validity of the formula from Example V.4. of

[1]: let G be (¬a∧(d ⊃¬e)∧(a⊃ b∧c⊃ d)⊃ e)→ (c∧(d ⊃
a)) where ΣG = {a,b,c,d,e}.

Following Definition 2.4, �Ô G if and only if it is not possible

to find a ΣG-policy Δ such that Δ �Ô ¬G. Hence, we would

have to prove that there is no Δ such that

Δ �Ô ¬((¬a∧d ⊃ ¬e∧ (a⊃ b∧ c⊃ d)⊃ e)→ c∧d ⊃ a)

This is (classically) equivalent to:

Δ �Ô ¬a∧ (d ⊃ ¬e)∧ ((a⊃ b∧ c⊃ d)⊃ e)∧ (¬c∨¬(d ⊃ a))

Distributing ∧ over ∨ we obtain that we have to prove there

is no Δ in the following two cases:

1) Δ �Ô ¬a∧ (d ⊃ ¬e)∧ (a⊃ b∧ c⊃ d)⊃ e∧¬c
a) Δ �Ô ¬a, Δ �Ô ¬c: Since we are looking for a

counter-example, we need to make these sequents

initial sequents, so we have to find a policy Δ such

that a does not belong to its minimal model, MΔ.

Similarly it must be the case for c. Observe that

the scoping of any Δ will be the whole formula.

b) Δ �Ô d ⊃ ¬e: if and only if Δ∪{d} �Ô ¬e and

this must become an initial sequent. That is, e /∈
MΔ∪{d}.

c) Δ �Ô (a ⊃ b∧ c ⊃ d) ⊃ e: if and only if Δ∪{a ⊃
b;c⊃ d} �Ô e but this is not possible since from 1b

¬e must hold in MΔ and from 1a the new clauses

cannot help with the proof since ¬a and ¬c must

also hold in MΔ.

Therefore, there is no Δ such that Δ �Ô ¬a∧ d ⊃ ¬e∧
(a⊃ b∧ c⊃ d)⊃ e∧¬c

2) Δ �Ô ¬a∧ d ⊃ ¬e∧ (a ⊃ b∧ c ⊃ d) ⊃ e∧¬(d ⊃ a). In

this case, directly by item 1c above we get that such Δ
does not exist.

Since we cannot construct a (counter-example) policy for ¬G,

�Ô G.

The next example illustrates a proof of a very simple non-

valid formula.

Example 2.2: Let G = b∧ c→ a be a goal. In this case, to

prove that b∧ c→ a is valid, we would have to prove that

there is no Δ such that Δ �Ô ¬(b∧ c→ a). This means that

there is no Δ such as Δ �Ô b∧ c∧¬a. But we can see that

Δ = {b,c} allows us to prove b∧ c→ a and hence, b∧ c→ a
is not valid.

Notice that our proof is constructive. We provide a coun-

terexample for the validity of b ∧ c → a. That is, we find

evidence that ¬(b∧ c→ a) is satisfiable. This fact suggests

that we could use a procedure to find this set of rules as an

intermediate step to prove the validity of a formula. We will

present the implementation of such a procedure in Section

235235

TABLE I
Ô- PROOF RULES

P �Ô F
P �Ô A

∃F ⊃ A ∈ P (SLD)
P �Ô Gi

P �Ô G1 ∨G2
i = 1,2 (OR)

P �Ô G1 P �Ô G2

P �Ô G1 ∧G2
(AND)

P∪Q �Ô G
P �Ô Q⊃ G

(HYP)

P �Ô Q⊃ ¬G
P �Ô ¬(Q⊃ G)

(NHYP)
P �Ô A

P �Ô ¬¬A
(DNEG)

P �Ô ¬G1 ∨¬G2

P �Ô ¬(G1 ∧G2)
(DMAND)

P �Ô ¬G1 ∧¬G2

P �Ô ¬(G1 ∨G2)
(DMOR)

{q ; r ⊃ a} �Ô ¬a
/0 �Ô {q ; r ⊃ a} ⊃ ¬a

{r ; q⊃ a} �Ô ¬a
/0 �Ô {r ; q⊃ a} ⊃ ¬a

{r ; q} �Ô a
/0 �Ô {r ; q} ⊃ a

/0 �Ô {q ; r ⊃ a} ⊃ ¬a∧{r ; q⊃ a} ⊃ ¬a∧{r ; q} ⊃ a

Fig. 1. An Ô-tree of /0 �Ô {q ; r ⊃ a} ⊃ ¬a∧{r ; q⊃ a} ⊃ ¬a∧{r ; q} ⊃ a

Δ∪{q ; r ⊃ a} �Ô ¬a
Δ �Ô {q ; r ⊃ a} ⊃ ¬a

Δ∪{r ; q⊃ a} �Ô ¬a
Δ �Ô {r ; q⊃ a} ⊃ ¬a

Δ∪{r ; q} �Ô true

Δ∪{r ; q} �Ô r
Δ∪{r ; q} �Ô true

Δ∪{r ; q} �Ô q
Δ∪{r ; q} �Ô a
Δ �Ô {r ; q} ⊃ a

Δ∪ /0 �Ô {q ; r ⊃ a} ⊃ ¬a∧{r ; q⊃ a} ⊃ ¬a∧{r ; q} ⊃ a

Fig. 2. An Ô-proof of /0 �Ô {q ; r ⊃ a} ⊃ ¬a∧{r ; q⊃ a} ⊃ ¬a∧{r ; q} ⊃ a where Δ = {r,q⊃ a}

III. In summary, whenever no such counterexample exists for

some formula G (that is, there is no Δ such that Δ �Ô ¬G), it

means that G is Ô-valid, �Ô G.

D. Equivalence of Ô-TMF and Becker et al.’s TMS

Let us start with the following lemma that establishes the

equivalence of both derivability relations.

Lemma 2.1: Let Q⊃ G be a goal. Then, for all policies P

P � Q⊃ G if and only if P �Ô Q⊃ G

The proof follows by induction, showing that P �
�Q1

. . .�Qk G if and only if P �Ô Q1 ⊃ . . .Qk ⊃ G using the

definition of � and the HYP rule in Table I. As a corollary

we also have

P � G if and only if P �Ô G (2)

Now, we use Theorem V.3 in [1] that establishes the

equivalence between their derivability and their proof system.

Given a goal G,

� G if and only if � G (3)

Theorem 2.1: Let G be a goal. Then,

� G if and only if �Ô G

Proof: From (2) and (3) it follows that � G if and only

if � G if and only if �Ô G.

III. COMPLEXITY OF CHECKING VALIDITY

Definition 2.4 suggests a proof procedure for validity. If we

want to find out if a goal G′ is valid we can implement the

following refutation algorithm:

Algorithm 3.1:
INPUT: A program P and a goal G

OUTPUT: Δ⊆ clauses(Σ) or f ail
1) Find Δ⊆ clauses(Σ). such that P∪Δ �Ô G holds.

2) If Δ exists return Δ. Otherwise, return fail.

and run it with P = /0 and G =¬G′. If the program returns fail

G′ is valid; otherwise is not. This algorithm terminates since

clauses(Σ) is finite. However, at first glance the complexity

can be high since even though one can show that Ô-proofs

are polynomial with respect to the size of the program P plus

the size of the goal G, the size of Δ can be exponentially larger

than the size of P plus G. In the remainder of this section we

will refine the algorithm to prove that the problem of finding

Δ is NP-complete and, therefore, that proving validity is co-

NP-complete. This is done by showing that there is always a

Δ that is not much larger than the size of the program plus

the goal (if one can be found).

Before getting into the details of the algorithm and the proof

let us go over a few examples. Note that if in the example of

236236

{r ⊃ q} �Ô a
/0 �Ô {r ⊃ q} ⊃ a

{s} �Ô ¬a
/0 �Ô {s} ⊃ ¬a

/0 �Ô {r ⊃ q} ⊃ a∧{s} ⊃ ¬a

Fig. 3. An Ô-tree of /0 �Ô {r ⊃ q} ⊃ a∧{s} ⊃ ¬a

Δ∪{r ⊃ q} �Ô true

Δ∪{r ⊃ q} �Ô r
Δ∪{r ⊃ q} �Ô q
Δ∪{r ⊃ q} �Ô a
Δ �Ô {r ⊃ q} ⊃ a

Δ∪{s} �Ô ¬a
Δ �Ô {s} ⊃ ¬a

Δ∪ /0 �Ô {r ⊃ q} ⊃ a∧{s} ⊃ ¬a

Fig. 4. An Ô-proof of /0 �Ô {r ⊃ q} ⊃ a∧{s} ⊃ ¬a where Δ = {r ; q⊃
a}

Fig. 1 we make Δ = {r,q⊃ a} and add it to the antecedent of

each sequent in the Ô-tree, it becomes the Ô-proof of Fig. 2.

This example shows that Δ may need to include clauses with

more than one atom in the body.

The example in Fig. 3 and Fig. 4 illustrates that Δ may

contain several clauses that need to be used in a single proof.

Our last example in Fig. 5 shows that Δ may also have more

than one clause with the same atom in the head. For G
=

(b ⊃ (¬c∧ a))∧ (c ⊃ (¬b∧ a))∧¬a, the simplest Δ that can

be found is {b⊃ a ; c⊃ a}.
To show that the problem of deciding whether Δ exists is

in NP we will show first that if such a Δ exists then there is

one whose size is at most polynomially larger than the size of

the program plus the size of the goal.

We will need the following definition in our algorithm.

Definition 3.1: A potential Ô-proof for (P,G) is a tree
T

in which nodes are labeled with sequents such that (i) the

root node is labeled with P �Ô G, (ii) the internal nodes are

instances of Ô-proof inference rules and (iii) the leaf nodes are

labeled with potential initial sequents. Potential initial sequents

are either initial sequents of the form P′ �Ô true or P′ �Ô¬A or sequents of the form P′ �Ô A where A is an atom for

which none of the Ô-proof inference rules can be applied. The

frontier of a potential Ô-proof T , F (T), is the set of potential

initial sequents not having the form P′ �Ô true.

Notice that the Ô-tree in Fig. 1 is a potential Ô-proof.

Let

F (P,G) = {F (T) |T is an Ô-tree of (P,G)}
It is easy to show that the following algorithm non-

deterministically decides the existence of a Δ:

Algorithm 3.2:
INPUT: The program P and the goal G

OUTPUT: yes or fail

1) Choose F in F (P,G) and Δ⊆ clauses(Σ)\P
2) If for every Pi �Ô �i ∈ F , Pi∪Δ �Datalog �i holds return

yes
3) Otherwise, return fail.

In other words, after finding the frontiers the problem

is transformed into finding proofs in propositional Datalog.

Based on this algorithm we can show the polynomial bound

on the size of Δ.

Lemma 3.1: Given a program P and a goal G. If there is

a Δ′ ⊆ clauses(Σ) such that P∪Δ′ �Ô G holds then there is a

Δ⊆ clauses(Σ) such that P∪Δ �Ô G holds and |Δ| ≤ |G|×|Σ|2

Proof: From Alg. 3.2 we know there is an F in F (P,G)
such that for every Pi �Ô �i ∈ F , Pi∪Δ′ �Datalog �i holds.

Observe that the size of any F in F (P,G) is bounded by the

size of G. Hence, the number of Pis is never more than |G|.
Furthermore, every Pi contains P and cannot grow more than

the size of G. Therefore, |Pi| ≤ |P|+ |G|. Take now any Pi
and first assume that �i is a positive literal. Select from Δ′
a minimal subset Δi ⊆ Δ′ needed to show Pi∪Δi �Datalog �i
holds. Because Pi∪Δi is a propositional Datalog program

there cannot be two different clauses in Δi with the same

propositional variable in the head of the clause; otherwise Δi
will not be minimal – this is because there are no disjunctions

in a Datalog program. This property limits the number of

clauses in Δi to a maximum of |Σ| and the size of each clause

to be no larger than |Σ| as well since otherwise an atom repeats

in the body of the rule and can be removed. Hence, |Δi| ≤ |Σ|2.

Let Δ be the union of these minimal Δis. Again, because Pi∪Δ′
is propositional Datalog, for any Δ′′ ⊆ Δ′ and for any negative

�, if Pi∪Δ′ �Datalog � holds then Pi∪Δ′′ �Datalog � also holds

since the minimal model of Pi∪Δ′′ will always be a (not

necessarily proper) subset of the minimal model of Pi∪Δ′.
Given that Δ⊆ Δ′, then for every Pi �Ô �i ∈ F , Pi∪Δ �Datalog �i
holds. And |Δ| ≤ |G|× |Σ|2.

Now we can show that deciding the existence of a Δ is

NP-Complete.

Theorem 3.1: Given a program P and a goal G, deciding if

there is a Δ such that P∪Δ �Ô G holds is NP-complete.

Proof: Using Alg. 3.2 and limiting the size of Δ to be no

more than |G| × |Σ|2 we can check in polynomial time with

respect to the size of |P|+ |G| that P∪Δ �Ô G holds since

guessing an F in F (P,G) can be done in linear time with

respect to |G|, and the fact that checking that Pi∪Δ �Datalog �i
holds is also polynomial in the size of |Pi∪Δ| (see [14]). This

shows that the problem is NP.

It is easy to see that if one takes any instance of SAT and

sets it as G and sets P = /0, a satisfying assignment can be

extracted from any Δ returned by Alg. 3.2. If such a Δ does

not exist then the instance is not satisfiable.

Corollary 3.1: Checking validity of a formula in TMS is

co-NP-complete.

Proof: Follows from Theorem 3.1 and the fact that valid

propositional formulas are also valid TMS formulas.

237237

{b} �Ô ¬c {b} �Ô a
{b} �Ô ¬c∧a

/0 �Ô {b} ⊃ ¬c∧a

{c} �Ô ¬b {c} �Ô a
{c} �Ô ¬b∧a

/0 �Ô {c} ⊃ ¬b∧a /0 �Ô ¬a
/0 �Ô ({b} ⊃ ¬c∧a)∧ ({c} ⊃ ¬b∧a)∧¬a

Fig. 5. An Ô-tree of /0 �Ô ({b} ⊃ ¬c∧a)∧ ({c} ⊃ ¬b∧a)∧¬a

Δ∪{b} �Ô ¬c

Δ∪{b} �Ô true

Δ∪{b} �Ô b
Δ∪{b} �Ô a

Δ∪{b} �Ô ¬c∧a
Δ �Ô {b} ⊃ ¬c∧a

Δ∪{c} �Ô ¬b

Δ∪{c} �Ô true

Δ∪{c} �Ô c
Δ∪{c} �Ô a

Δ∪{c} �Ô ¬b∧a
Δ �Ô {c} ⊃ ¬b∧a Δ �Ô ¬a

Δ∪ /0 �Ô ({b} ⊃ ¬c∧a)∧ ({c} ⊃ ¬b∧a)∧¬a

Fig. 6. An Ô-proof of /0 �Ô ({b} ⊃ ¬c∧a)∧ ({c} ⊃ ¬b∧a)∧¬a where Δ = {b⊃ a ; c⊃ a}

IV. IMPLEMENTING ALG. 3.2

We can take advantage of the fact that in Alg. 3.2 proofs

are reduced to proofs in logic programs to use logic pro-

grams as an implementation. Finding a frontier is an easy

process so we concentrate on generating Δ. For this we

proceed as follows. Let us consider a frontier F ∈ F (P,G),
F = {P1 �Ô �1, . . . ,Pn �Ô �n}. Here we want to find a Δ such

that Pi∪Δ �Datalog �i holds for every i. Note that if �i = true
there is nothing to prove. Let us assume that after removing

those sequents we are left with k proofs. We do a simple

transformation to each Pi and �i to get a new P′i and a new

�′i such that if we find a Δ′ for which P′1∪·· ·∪P′k∪Δ′ �Datalog
�′1∧ ·· ·∧ �′k we can easily get Δ from Δ′. In other words, we

will work with a single propositional logic program to find Δ.

For this, we will use the Answer Set Programming framework

(ASP). Programs in ASP are very general logic programs [8],

[15], but we will limit our description to Datalog programs

extended with negation, often called Datalog¬. More precisely,

a propositional Datalog¬ program is a finite set of clauses of

the form p :- p1, . . . , pn,not q1, . . . ,not qm, n ≥ 0, m ≥ 0. If

n=m= 0, we will just write p. ASP relies on the stable model

semantics to interpret negation [8]. Under the stable model

semantics programs may have several models and is defined as

follows. Let P be a propositional Datalog¬ program and S a set

of atoms. We denote by PS the Datalog program resulting from

P by (1) removing any clause, p :- p1, . . . , pn,notq1, . . . ,notqm,

from P such as there is an qi ∈ S, and by (2) dropping all

negative literals from the remaining clauses. For example, if

S = {q,r} and P is:

p :- r,not q.
q :- r,not p.
r.

(4)

Then PS is:

q :- r.
r. (5)

Definition 4.1: Let P be a Datalog¬ program and S be a

set of atoms. S is a stable model of P if and only if S is the

minimal model of the Datalog program Ps.

First note that the only stable model of any Datalog program is

its minimal model. Next note that a program can have 0, one

or many stable models. In the example above, S is a stable

model of P as is {p,r}, and the program {p :- not p} has

no stable model. In the ASP framework, this multiplicity of

models is used constantly to solve search problems.

An ASP-program solving search problem is generally struc-

tured in three parts [16]: (1) a generate, (2) a test and (3) a

define part.

1) Generate a superset of potential solutions. This is

achieved by using a choice rule mechanism that arbi-

trarily chooses sets of atoms. For example, the following

ASP-rule uses this mechanism.

{a,q} :- r. (6)

This rule can be intuitively interpreted as “if r is

included in the solution, i.e. in a stable model of the

program, then we need to choose a subset of {a,q} to

be part of the stable model as well”. Hence, the stable

model may contain the atom a, the atom q, both or none

of them. This is just syntax sugar for the set of rules:

a in :- not a out.
a out :- not a in.
q in :- not q out.
q out :- not q in.
a :- r,a in.
q :- r,q in.

(7)

This is one of several ways of translating (6)

into a logic program. Note that if r is added to

this program, the program has four stable models:

{r,a out,q out}, {r,a,a in,q out}, {r,q,a out,q in}
and {r,a,q,a in,q in}. The auxiliary atoms do not need

to be shown to the users, and the models are just listed

as {r}, {r,a}, {r,q} and {r,a,q}. In ASP, choice rules

238238

can be annotated with a cardinality constraint as the

following example shows [17]:

{a,q}<= 1 :- r. (8)

This constraint restricts the stable models to models with

at most one atom from the set {a,q}. Thus, from our

previous example the stable model {r,a,q} is ignored

since it violates the cardinality constraint. In general, a

constrained rule is an expression of the form:

L≤ {r1, . . . ,rk} ≤U :−p1, . . . , pn,notq1, . . . ,notqm

where L ≤U are non-negative integers. And all stable

models containing fewer than L or more than U atoms

from {r1, . . . ,rk} are discarded.

2) The test part consists of eliminating potential “bad”

solutions by means of ASP constraint rules. These are

clauses with no head. For instance, adding the constraint

:- notq. (9)

to the rules in the previous example eliminates the stable

models in which q does not occur. Hence, the only

stable model of the program will be {r,q}. In general,

a constraint is an expression of the form:

:- p1, . . . , pn,notq1, . . . ,notqm

And every stable model making all ps true and all qs

false is discarded. Constraints can be implemented using

a regular clause as follows:

f :- p1, . . . , pn,notq1, . . . ,notqm,not f

with f being an atom not used in the remaining program.

This rule uses the fact that the program { f :- not f} has

no stable models.

3) The define part corresponds to Prolog-like rules. For

example,
r.
m :- s, t. (10)

are define rules.

To simplify notation ASP programs can use clause schemas

to represent a set of propositional clauses. As in non-

propositional Datalog, atoms in a clause schema are first-

order predicates of the form p(t1, . . . , tn), where each ti is

either a variable or a constant symbol, equality and inequality

constraints. In addition, at least one instance of every variable

appearing in a clause schema must appear in a positive literal

in the body of the clause. Clauses of this form are called safe.

For example, the following clause

p(X) :- q(X ,Y,Z),not r(Y),Z= b

is safe since the three variables used in the rule appear in

q(X ,Y,Z). Note that if the body of the clause is empty the

clause cannot have variables. This restriction ensures that

the program can be transformed into a propositional logic

program by the so-called variable replacement or grounding.

The grounding of a clause schema generates all the instances

of the clause schema obtained by substituting every variable

with every constant appearing in the signature of the program.2

We will use choice rules to find Δs and constrain the Δs

to those that given P′1∪·· ·∪P′k∪Δ′ satisfy �′1∧·· ·∧ �′k. Let us

start first by defining the P′i s. Let us first look at an example.

Take the frontier in Fig. 5. We have five sequents. We can

enumerate them from left to right and write the following five

programs:

P′1 = {b(1).}
P′2 = {b(2).}
P′3 = {c(3).}
P′4 = {c(4).}
P′5 = {}

In general, for a clause q1∧·· ·∧qk ⊃ p in Pi, we will have

p(i) :- q1(i), . . . ,qk(i) in P′i .
Correspondingly, �′i = �i(i). In our example, we then have

�′1 = ¬c(1), �′2 = a(2), �′3 = ¬b(3), �′4 = a(4), and �′5 = ¬a(5).
If we want all these literals to be simultaneously true in all of

our solutions then we need to add to our program the following

five constraints:

:- c(1).
:- not a(2).
:- b(3).
:- not a(4).
:- a(5).

Now we need rules for the generation of Δ. This is not

obvious since clauses in Δ can be used by any of the Pis. Let

us first see how we decide which rules will be in Δ. Recall

from Lemma 3.1 that only Pis where �i is positive may need

rules in Δ to prove �i, and that at most one rule in Pi for each

proposition in the language is needed. Hence, in our example

of Fig. 5 we need at most two rules for each atom for the

proofs of a in P2 and in P4. And a rule may have from 0

to as many as all the atoms in the language in its body. Let

us take a. The rules for a will be derived from the following

ASP-rule:

{rule4a(0,0),rule4a(0,1),rule4a(1,0),rule4a(1,1))} ≤ 2.

The idea here is that, for example, if the atom rule4a(0,1) is

in the stable model then Δ will contain the clause c⊃ a. If the

atom rule4a(1,1) is in the stable model then Δ will contain the

clause b,c⊃ a. We will pick no more than two rules and there

might even be 0 rules for a. We will have similar ASP rules for

the predicates rule4b and rule4c. ASP uses syntactic sugar to

compactly represent several atoms in the head of choice rule.

The choice rule can use schema variables to instantiate the

possible values of the atoms to choose to be part of for the

stable model. The domains of the variables are defined by extra

predicates added to the head of the choice rule. For example,

2In practice, this can be done more efficiently by some syntactic analysis
of the clauses.

239239

the rule above can be equivalently written using the following

three ASP rules:

bool(0).
bool(1).
{rule4a(B,C) : bool(B),bool(C)} ≤ 2.

In this case the domain of both variables, B and C, in the

choice rule is defined by the predicate bool. Note that these

three rules are not equivalent to the rules:

bool(0).
bool(1).
{rule4a(B,C)} ≤ 2 :- bool(B),bool(C).

since the last clause schema represents the following four

propositional clauses:

{rule4a(0,0)} ≤ 2 :- bool(0),bool(0).
{rule4a(0,1)} ≤ 2 :- bool(0),bool(1).
{rule4a(1,0)} ≤ 2 :- bool(1),bool(0).
{rule4a(1,1)} ≤ 2 :- bool(1),bool(1).

In general for a language of n atoms, {p1, . . . , pn}, we will

have, for each atom pi, the ASP-rule:

{rule4pi(X1, . . . ,Xi−1,Xi+1, . . . ,Xn) :
bool(X1), . . . ,bool(Xi−1),bool(Xi+1), . . . ,bool(Xn)
}<= M.

where the Xis are distinct variables and M is the number of

positive �is in the frontier under consideration. Now we need

to make the connection between the rule4pi predicates and

the programs. Let us go back to our example. To generate the

rules for the atom a we will add the following five rules to

the ASP program:

a(X) :-

rule4a(B,C),
set b4a(X ,B),
set c4a(X ,C).

set b4a(X ,0) :-

p(X).
set b4a(X ,1) :-

b(X).
set c4a(X ,0) :-

p(X).
set c4a(X ,1) :-

c(X).

As in the P′i s, the argument in a represents in which of the

five programs a will be true in case the body of the rule is

true. Since this is a rule for Δ this rule must be allowed to be

used by any of the five programs, hence, the use of a variable

X instead of a constant. Let us look at the rule more carefully.

If no atom rule4a is chosen, then there are no rules for a in

Δ. Assume now that rule4a(0,1) has been chosen. We want

set b4a(X ,0) to be true for all values of X since we don’t

care whether or not b is true in Pi∪Δ for any i to make a

true. This is done by the use of the predicate p(X). We will

add to our program five atoms:

p(1).
p(2).
p(3).
p(4).
p(5).

For c, on the other hand, we need c to be true in Pi∪Δ if

we want a to be true in Pi∪Δ. Hence the condition c(X) in

the body of the second rule set c4a is added to the body. In

our example that condition will make the body of the rule true

in P′3 and P′4. We will have similar rules with b(X) and c(X)
in the head (i.e. the left-hand side of the rule). In general, we

will add the atomic rules

p(1).
...

p(k).

to the program and a rule of the form:

pi(X) :-

rule4pi(X1, . . . ,Xi−1,Xi+1, . . . ,Xn),
set p14pi(X ,X1),
...

set pn4pi(X ,Xn).

and 2(n−1) rules of the form:

set p j4pi(X ,0) :-

p(X).
set p j4pi(X ,1) :-

p j(X).

for every j
= i. These rules complete the transformation. Take

F ∈ F (P,G) and denote by ASP(F) the transformation of F
into ASP rules. Let F = {P1 �Ô �1, . . . ,Pn �Ô �n}.

Theorem 4.1: There exists a Δ such that P1∪Δ �Ô
�1, . . . ,Pn∪Δ �Ô �n if and only if ASP(F) has a stable model.

Proof: (Sketch) Follows directly from the definition in

[17] of the stable model semantics with cardinality constraints.

More generally, we can show that from every stable model

we can extract different Δs for the frontiers.

All the examples in the paper have been implemented and

tested in the clingo ASP system [18]. The code in this section

can be copied verbatim and run in clingo version 4.4.0.

V. REGARDING APPLICATIONS

Becker et al. describe several practical examples where a

proof of validity can be used. They have an extended example

on probing attacks as well as mechanisms to do proofs for

meta-theorems. All these, of course, can be done using our

system, but given the fact that we are able to build Δs we

240240

are also able to expand the applications in other directions.

The process of guessing a Δ to prove a permission can be

thought of as generating the credentials needed to obtain the

permission. This idea has been suggested independently by

Bonatti and Becker in the context of abductive reasoning (see

[19] and the references therein). We are doing, in essence,

abductive reasoning. Most of the work on abduction has been

done in the context of logic programs and it has been limited

to guessing atoms. We are departing from that since we are

abducing clauses as well. This has been possible because

we are dealing with policies and credentials represented as

positive logic programs (i.e. no negation is used. Negation

would make the process of abduction much more difficult).

Abducing clauses could help us to deal with credentials which

are more complicated than simple facts, such as being able to

generate rules that delegate the verification of credentials to a

third party.

Our algorithm for generating policies can also assist in prov-

ing other properties. For example, [20] describes a methodol-

ogy to check whether a distributed proof system preserves

confidentiality under probing attacks. In a distributed proof

system there is a finite set of principals P = {p1, . . . , pn}, and

each principal p j has a knowledge based, Kj, represented by

a propositional Datalog program whose clauses can contain in

their bodies special propositional atoms of the form “pi says
f ” that are used to introduce delegations. To prove that this

atom is true two things must happen: (1) the atom f must

be proved by pi using its knowledge base, Ki, and (2) there

must be a delegation policy that allows pi to disclose f to

p j. More specifically, a delegation policy consists of a set of

inference rules that defines how to prove “pi says f ” using the

knowledge bases and possibly some auxiliary data (e.g. access

control lists). The method to check confidentiality is based on

the following definition of safe distributed proof systems.

Definition 5.1: Given a finite set of principals P =
{p1, . . . , pn} and delegation policy I, a distributed proof system

D[I] is safe if for every vector of knowledge bases KB =
〈K1, . . . ,Kn〉 and for every proper subset A of P , and for any

delegation of authority set Q over KB, there exists another

vector KB′, such that

1) The permissions that a principal in A can deduce from

KB and KB′ are the same.

2) Any delegation of authority that can be used from Q in

KB by any principal in A can also be used in KB′.

An example of delegation policy can be one for which each

Ki has atoms of the form release(p j, f) meaning that principal

p j can infer “pi says f ” if f and release(p j, f) can be proved

in Ki – the release(p j, f) atom indicates that pi is allowed to

disclose to p j that f is true if pi finds a proof for f .

We first note that two of the three delegation policies studied

in [20] are directly translatable into Datalog clauses. The

third depends on the syntax of the clauses in the KBis and

a language independent translation might not be possible.

Writing a safety proof manually might not be easy. The

two proofs in [20] are done to delegation policies for which

finding a KB′ for any KB is possible by just adding atoms to

KB′. In general, as we have seen from our simple examples,

this might not be the case. I could be very simple but we

might need to add clauses to find KB′. Even though we

cannot offer an automatic proof for safety, we can offer a tool

that lets the administrator test scenarios that might lead to a

proof. For a given KB, the administrator can select a clause

A1∧·· ·∧Ak ⊃ A and run Alg. 3.2 with P = Q and G defined

as follows. Take the minimal model MKM of KM. For a set

A = {p1, . . . , pk} of principals from which the administrator

wants to show safety, let MKM|pi be the projection of MKM
over the facts that are deduced by principal pi.

3 Then, let

G =
∧

ai∈MKM|pi
ai ∧¬({A1 ; . . . ; Ak} ⊃ A). The algorithm will

try to find a Δ that lets pi deduce exactly the same set of

permissions as the ones deduced from KB but Δ
= KB since

A1 ∧ ·· · ∧Ak ⊃ A
∈ Δ. If Δ does not exist another clause can

be selected. Note that instead of selecting a single clause

from KB we can select a subset and apply the transformation

from clause to goal to each clause, make a conjunction of

the individual goals and negate the conjunction. In this way

several clauses can be tested simultaneously.

VI. FINAL REMARKS

In this work we have presented a very operational definition

of validity in TMS. Based on this result, we have designed a

top-down proof procedure of validity. This procedure works

similar to abduction in logic programs with the addition that

not only atoms but also rules can be assumed in order to

find validity proofs. It would be possible to also describe a

model theoretic semantics based on Kripke structures follow-

ing Miller’s models. In particular, Miller interprets a world

of a Kripke model as a program and the knowledge at each

world as its minimal model. This intuition can be explained

in terms of two basic ideas of modal logic. The first one is

the notion that a world may be considered to represent the

“knowledge” that we have at a certain moment. The second

idea is that a formula can be considered to hold if we can infer

its truth from the knowledge that we have now or one that we

may acquire in the “future”, capturing the idea of credentials.

Details will appear in the full version of this paper [21].

An important consequence of the connections between

Miller’s language and the propositional logic for reasoning

in TMS is that we can reuse many results from logic pro-

gramming as is evidenced by the complexity results and the

implementation we have presented in this paper. Another

important and speculative consequence is the possibility of

lifting the results to policies, credentials and permissions with

variables and negation. We cannot directly apply Miller’s

results because his logic doesn’t deal with negation. There

is, however, the extension to Miller’s logic introduced in [11]

that deals with normal logic programs that we could use, but

we need to work out the details of the axiomatization since

3 [20] describes a fixpoint computation that let us get this set. We can also
use a technique similar to the one we use in our implementation of Alg. 3.2
to distinguish different sequents in a fronter to get the atoms in MKM|pi.

241241

the approach in [7] uses a notion similar to Clark’s completion

as opposed to minimal models for negation. Complementary

to these extensions, we would also like to check how an

implementation of validity using our approach will compare

to the implementation of Becker et al.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for

their valuable comments, Deepak Garg for all his help prepar-

ing the final version of this paper and Alessandra Russo for

sharing her insights on abductive reasoning with us . Edelmira

Pasarella is partially supported by funds from the Spanish

Ministry for Economy and Competitiveness (MINECO) and

the European Union (FEDER funds) under grant COMMAS

(ref. TIN2013-46181-C2-1-R). Jorge Lobo is partially sup-

ported by the US Army Research Lab and the UK Ministry

of Defence under agreement number W911NF-06-3-0001 and

by the Secretaria d’Universitats i Recerca de la Generalitat de

Catalunya.

REFERENCES

[1] M. Y. Becker, A. Russo, and N. Sultana, “Foundations of logic-based
trust management,” in IEEE Symposium on Security and Privacy, 2012,
pp. 161–175.

[2] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” in IEEE Symposium on Security and Privacy, 1996, pp. 164–173.

[3] J. DeTreville, “Binder, a logic-based security language.” in IEEE Sym-
posium on Security and Privacy, 2002, pp. 105–113.

[4] T. Jim, “Sd3: A trust management system with certified evaluation,” in
IEEE Symposium on Security and Privacy, 2001, pp. 106–115.

[5] N. Li, B. N. Grosof, and J. Feigenbaum, “A practically implementable
and tractable delegation logic,” in IEEE Symposium on Security and
Privacy, 2000, pp. 27–42.

[6] N. Li and J. C. Mitchell, “Datalog with constraints: A foundation for
trust management languages,” in PADL, 2003, pp. 58–73.

[7] E. Pasarella, F. Orejas, E. Pino, and M. Navarro, “Semantics of struc-
tured normal logic programs,” The Journal of Logic and Algebraic
Programming, vol. 81, no. 5, pp. 559–584, 2012.

[8] M. Gelfond and V. Lifschitz, “The stable model semantics for logic
programming.” in ICLP/SLP, vol. 88, 1988, pp. 1070–1080.

[9] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, “Complexity and
expressive power of logic programming,” ACM Computing Surveys
(CSUR), vol. 33, no. 3, pp. 374–425, 2001.

[10] D. Miller, “A logical analysis of modules in logic programming,” J. Log.
Program., vol. 6, no. 1&2, pp. 79–108, 1989.

[11] F. Orejas, E. Pasarella, and E. Pino, “Semantics of normal logic
programs with embedded implications,” in Logic Programming, 17th
International Conference, ICLP 2001, Paphos, Cyprus, 2001, Proceed-
ings, ser. Lecture Notes in Computer Science, vol. 2237. Springer,
2001, pp. 255–268.

[12] E. Pasarella, “Some contributions to the semantics of normal logic
programs,” Ph.D. dissertation, Universitat Politècnica de Catalunya,
2008.

[13] K. R. Apt and M. H. Van Emden, “Contributions to the theory of logic
programming,” Journal of the ACM (JACM), vol. 29, no. 3, pp. 841–862,
1982.

[14] W. Marek and M. Truszczyński, “Autoepistemic logic,” Journal of the
ACM (JACM), vol. 38, no. 3, pp. 587–618, 1991.

[15] C. Baral, Knowledge representation, reasoning and declarative problem
solving. Cambridge university press, 2003.

[16] V. Lifschitz, “What is answer set programming?.” in AAAI, vol. 8, 2008,
pp. 1594–1597.

[17] P. Simons, I. Niemelä, and T. Soininen, “Extending and implementing
the stable model semantics,” Artificial Intelligence, vol. 138, no. 1, pp.
181–234, 2002.

[18] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele, “A user’ s guide to gringo, clasp, clingo, and iclingo,” 2008.

[19] P. A. Bonatti, “Datalog for security, privacy and trust,” in Datalog
Reloaded. Springer, 2011, pp. 21–36.

[20] K. Minami, N. Borisov, M. Winslett, and A. J. Lee, “Confidentiality-
preserving proof theories for distributed proof systems,” in Proceedings
of the 6th ACM Symposium on Information, Computer and Communi-
cations Security. ACM, 2011, pp. 145–154.

[21] E. Pasarella and J. Lobo, “Reasoning about policy behavior in logic-
based trust management systems,” Department of Computer Science,
Universitat Politècnica de Catalunya, Tech. Rep. LSI-15-2-R, under
preparation.

APPENDIX A

BECKER ET AL.’S PROOF SYSTEM

1) Axiom schemas:

� ϕ→ ϕ′ → ϕ (C11)

� (ϕ→ ϕ′ → ϕ′′)→ (ϕ→ ϕ′)→ ϕ→ ϕ′′ (C12)

� (¬ϕ→¬ϕ′)→ ϕ′ → ϕ (C13)

��γ(ϕ→ ϕ′)→�γϕ→�γϕ′ (K)

��γγ (C1)

��γϕ→ γ→ ϕ (C2)

��(p :-p1,...,pn)ϕ→ (p1∧·· ·∧ pn→ p)→ ϕ (DLog)

provided ϕ is �-free

��γ¬ϕ↔¬�γϕ (Fun)

��γ∧γ′ ↔�γ�γ′ϕ (Perm)

2) Proof rules:

If � ϕ and � ϕ→ ϕ′ then � ϕ′ (MP)
If � ϕ then ��γϕ (N)

If � γ→ γ′ and ϕ is ¬−free then ��γ′ϕ→�γϕ (Mon)

242242

