
The Anatomy and Facets of Dynamic Policies

Niklas Broberg Bart van Delft David Sands
Chalmers University of Technology, Sweden

Abstract—Information flow policies are often dynamic; the
security concerns of a program will typically change during exe-
cution to reflect security-relevant events. A key challenge is how to
best specify, and give proper meaning to, such dynamic policies.
A large number of approaches exist that tackle that challenge,
each yielding some important, but unconnected, insight. In this
work we synthesise existing knowledge on dynamic policies, with
an aim to establish a common terminology, best practices, and
frameworks for reasoning about them. We introduce the concept
of facets to illuminate subtleties in the semantics of policies, and
closely examine the anatomy of policies and the expressiveness of
policy specification mechanisms. We further explore the relation
between dynamic policies and the concept of declassification.

I. INTRODUCTION

Many of the security concerns that arise in software can
be understood in terms of information flows. For example,
confidentiality requires that sensitive data does not flow to
places where it can be observed by unauthorised subjects,
whereas integrity requires that untrusted data does not flow to
places which are trusted by other components in the system.
Although information flow policies can express these concerns,
in practice the desired information flows that a system permits
is not a static notion, but one which may change during
the running of the system to reflect security-relevant events.
For example, information under a restrictive information flow
policy may be less restricted if the information has been
purchased. Conversely, the privileges of a principal may be
revoked, thus reducing the information flows deemed accept-
able. We refer to information flow policies that may change
during a single instance of a system as dynamic information
flow policies, or simply dynamic policies.

Over the last twenty years a large number of systems
and mechanisms presented answers to questions as “How
can we express policies that let us specify which flows are
acceptable?” and “How can we express semantic properties
that precisely and succinctly capture what it means for a
program not to contain unintended leaks?”. With this plethora
of answers, another set of questions naturally arise: which are
the best answers, in a given context or for a specific task? By
which means can we compare such systems and mechanisms
to one another? Which policy specification mechanisms are
suitably expressive to capture the security requirements of
a specific use case? What proposed semantic property gives
strong enough guarantees against a particular kind of attacker?

To these new meta-questions, we have far fewer answers.
With a few exceptions, what we have for guidance are case
studies that compare systems in the light of one specific context
or task [3,24,32,38]. While certainly useful and valuable for
the insights they do give, case studies are by nature not suited
for drawing general conclusions or establishing principles.

This paper also provides no distinct answers to these

questions; rather it aims to give guidance to those who seek
to answer them by providing a synthesis of knowledge on
dynamic policies. Our over-arching aim and contribution is
to provide a clearer picture of information flow control in
the presence of dynamic policies, to facilitate understanding,
defining, analysing, comparing, and discussing properties and
mechanisms. One of our key contributions, running as a theme
through the paper, is therefore to establish and argue for a
common vocabulary, and to identify common best-practices in
how we work with dynamic information-flow policies.

Our study explores three main areas: how policies are given
semantics; a classification of the types of dynamic policies that
exist; and finally a reflection on the relationship to the concept
of declassification. We summarise the contributions of each of
these in turn.

Semantic Specification of Dynamic Policies (§III) What is
the semantic meaning of a dynamic policy, and what are the
best practices for specifying them? To give a semantics to an
information flow policy one must define a security property:
what does it means for a program to satisfy the given policy? In
other words, when are the information flows that occur when
executing a program permitted by the policy? When a program
satisfies a given policy we say that the program is secure (with
respect to that policy). But giving a semantics to a dynamic
policy can be subtle, complicated, and often unintuitive. It
turns out, as we will show, that small and seemingly minor
changes to the details of a security property can lead to
fundamental differences in which programs are considered
semantically secure, differences that were previously poorly
studied and understood. To help put focus on these differences,
we introduce the general concept of facets of dynamic security
properties. A facet captures a type of information flow which is
permitted by some definitions but not by others. We identify a
number of such facets, argue for how they can be approached,
and review how the literature treats these facets.

Classification of Dynamic Policies (§IV) Dynamic policies
can be specified in a variety of ways, offering a variety of
expressiveness. In the second part of our synthesis we take a
closer look at policy specification mechanisms. We explain the
general anatomy of a dynamic policy in terms of a three-level
hierarchy of control. Level 0 control refers to the ability of a
policy mechanism to specify which flow relations can arise in a
dynamic policy. Level 1 control refers to the way a mechanism
controls how the policy changes during execution. Level 2
control refers to the meta-policy, i.e. how a mechanism controls
which policy changesmay occur. From this hierarchy we derive
a framework for formal comparisons of the expressiveness of
policy specification mechanisms, in terms of what invariants
they can enforce. For example, can a given mechanism repre-
sent an invariant such as “flows from top-secret to secret are
never allowed”? Can a mechanism enforce that the permitted
information flows always increase (or always decrease) over

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Niklas Broberg. Under license to IEEE.

DOI 10.1109/CSF.2015.16

122

2015 IEEE 28th Computer Security Foundations Symposium

© 2015, Niklas Broberg. Under license to IEEE.

DOI 10.1109/CSF.2015.16

122



time? On top of our hierarchy we apply the “dimensions of
declassification” introduced by Sabelfeld and Sands [36] to
shed new light on the actual meaning and influence of these
“dimensions” on dynamic policies.

Declassification (§V) Finally, we reflect on the concept of
“declassification” and its relation to dynamic policies. We look
at two different flavours of declassification – relabelling and
copying release – and discuss how these can be interpreted
and explained through dynamic policies. Further we identify
relationships between support for declassification, and the
choices we make for certain facets of security properties.

II. TERMINOLOGY

Much of the terminology used in this paper is overloaded
and used inconsistently across the literature. Here we fix
the basic terminology used in this paper, with the additional
explicit purpose to establish a common vocabulary.

An information flow policy refers to a specification of
the information flows which are permitted during program
execution. At any given point, the permitted flows are given
by a flow relation. This, for example, might be a specification
that input variable x is allowed to flow to output channel y.
When the permitted information flows do not change over
time, i.e. a single flow relation is used exclusively throughout
computation, we refer to the policy as a static policy. When
the permitted flows (may) change during computation, we call
it a dynamic policy. A dynamic policy is thus a specification
of a set of flow relations, any one of which is active at a given
point in time, together with a specification of how the system
transitions between them.1

Information flow policies are often specified indirectly via
a set of labels. For example, the classic static two-level security
setting is defined by a set of two labels {L,H} (for low
and high confidentiality, respectively). A flow relation is then
described by (i) assigning labels to appropriate sources and
sinks in a configuration, and (ii) defining a relation between
labels, indicating allowed flows. For example in the classic
two-level setting, secret inputs are labelled H , and public
outputs are labelled L, and the flow policy is specified by
saying that the may-flow relation is the smallest reflexive
relation such that L may flow toH , which we write as L → H .

A policy scheme is a set of labels, their flow relations
and transitions, viewed in isolation from the label assignment
in any particular program or system. In a policy scheme, a
flow relation therefore only consists of the relation between
labels (point (ii) above). Finally, different approaches provide
different mechanisms (languages) with which to construct such
policy schemes, and different ways to assign labels to relevant
entities. We refer to these as a policy specification mechanism.

III. SEMANTICS OF SECURITY PROPERTIES

Non-interference is the name usually given to the semantic
definition of when a program (or system) satisfies a static pol-
icy. In the absence of subtleties arising from non-determinism

1Observe the difference between a dynamic policy and a dynamic label. The
latter refers to a security label which is only known at run time. The label
itself however does not change during execution, neither does its relation to
other labels (see e.g. [46]).

and interaction, non-interference could be argued to be a
simple and intuitive property, easily stated in the following
or any one of several equivalent forms: If information from
input i is not allowed to flow to output o, then no variety in i
may result in a different output o [20].

Even in the settings where there exist various forms of non-
interference, they are often related according to various trade-
offs between security and permissiveness [21,43]. However,
once we abandon static policies the situation changes dra-
matically. Not only does each new mechanism for specifying
dynamic policies introduce a new semantic definition, the
definitions are typically formulated in completely new styles
with different attacker models. How these models relate to one
another is not easy to see even with extensive scrutiny. Nor is
it intuitively clear at first glance just what notion of security
a particular property actually guarantees.

In the case of dynamic policies we believe that different
systems have more fundamentally different semantic require-
ments, and different notions of security and attacks. Our grand
quest then changes, from one of finding the security property,
to that of identifying how best to state a security property for
a specific set of requirements.

In this section we discuss various aspects of the art
of defining information flow security properties. We do not
propose any new security properties, instead we identify and
illuminate relevant principles and facets that affect such prop-
erties, and suggest practical consequences and interpretations
of the various choices that can be made. Furthermore, we give
a survey of previously proposed properties from other work
and show how they fall within the spectrum of our facets.

Our purpose here is two-fold: firstly, we hope to provide
tools for comparing and reasoning about security properties, to
more easily understand how they relate or differ. Secondly, we
want to provide the would-be property author with a toolbox
of best practices and relevant concerns, to assist in stating a
property suitable for that author’s specific context.

This section will proceed as follows: First, we argue
strongly for why so-called knowledge-based, or epistemic,
formulations of properties are preferable to the traditional two-
run-style formulations. Attempts at such arguments have been
made previously [4,5,12], but in passing and never with a
complete and coherent picture. Second, we identify a number
of facets of information flow security properties. We give
illustrating examples, and discuss how previously proposed
semantic properties differ, sometimes subtly, in the choices
made. As we will show, typically no universally “best” choice
exists for these facets, which further emphasises the futility of
trying to find a single property that works for all situations.
Finally we categorise existing work according to the facets we
identify.

A. Epistemic information flow security

Askarov and Sabelfeld introduced the Gradual release
property [4] for information flow control using an explicit
model of attacker knowledge evolution (also called an epis-
temic property) when observing a single program run. Askarov
and Sabelfeld drew inspiration from work on deducibility
[4], which in turn borrowed the technique from work on

123123



possibilistic security [23,43]. Some later systems have used
epistemic formulations [5,7,9,12].

The main purpose of this section is to argue that epistemic
formulations are attractive in that they capture the desired
property in a natural and direct fashion. We wish to be clear
that the definitions in this section are not essentially novel, but
generalised versions of those presented in the cited literature.

The core feature of an epistemic formulation of security
is that we consider the system from the perspective of an
attacker’s knowledge of that system, and how observations
on the system change this knowledge. For some observation,
we refer to the information that is allowed to be revealed
at the moment that observation is produced as the release
policy (terminology cf. Balliu [7]), denoted Rnow , and to the
attacker’s knowledge just before and after this observation as
Kbefore and Know . With these simple terms we can present the
general form of an epistemic security property:

Rnow allows increase(Kbefore ,Know )

We now continue by specifying a concrete computational
system and what is meant with knowledge, although different
models could have been used. We say that the execution of
a program yields a trace of program events. We deliberately
remain abstract in the nature of the events themselves. For a
program P and an initial memory store S, we denote with
〈P, S〉 t−−→ that t is a prefix of the event trace produced by
P . Let obsA(t) be a function determining what observation
the attacker A makes on the event trace t. Again we remain
abstract to what these observations are, but options include
the series of values output on A’s channel and updates to
memory locations observable by A. It also possible to have
more complicated observation functions, an example of which
can be found in the work by Askarov and Chong [5].

We model the inputs to the system as the initial memory.
The attacker’s knowledge can thus be expressed as how much
the attacker knows about these initial values in the memory,
based on the observations made. In existing work such as
Gradual Release, this is presented as the set of initial memory
stores for which the program can produce the observation made
by A. That is, if 〈P, S〉 t−−→ with obsA(t) = o, the attacker A’s
knowledge on S is:

kA(P, o) = {S′|〈P, S′〉 t′−−→ and obsA(t′) = o}
To arrive at a more natural definition of knowledge increase
we follow the example of van Delft et al. [42] and work instead
with the complementary notion of exclusion knowledge – the
set of initial memories that could not have led to the observed
trace, i.e. the set complement of kA:

ekA(P, o) = kA(P, o)

Knowledge gain can then conveniently be expressed as the set
of stores that the attacker additionally excludes after making
a next observation. Let 〈P, S〉 t·e−−−→ denote that event e was
preceded by the trace of events t. A’s increase in knowledge
is described as the difference between A’s knowledge before
and after event e:

ekA(P, obsA(t · e)) \ ekA(P, obsA(t))

where \ is the set difference operator. Finally, the release
policy that specifies the permitted increase in knowledge can
be expressed as an upper bound on the knowledge gained:

ekA(P, obsA(t · e)) \ ekA(P, obsA(t)) ⊆ Rnow

where Rnow is also a set of memory stores. For example, in
the setting of two-level non-interference we want to forbid the
attacker from learning anything about the secrets in the initial
store. Hence, non-interference can be encoded by making
Rnow the set of stores that have different values from the
actual initial store S on the locations not containing secrets.

Depending on the policy language used, Rnow can be
parameterised over a wide range of aspects – in particular the
attacker A and the flow relation dictated by the dynamic policy
when e was produced. Other possible aspects include the event
e itself, the trace t, the current memory store at the time of the
observation, the current program at the time of the observation,
or some entirely external entity, for example the system clock.

In words, this abstract property can be expressed as “an
attacker observing an event produced by a running program
cannot learn anything about the initial memory that is not
allowed by the policy at the point of the event”.

We posit that this very simple abstract formulation captures
the vast majority of properties we want to express through
different instantiations of observation models obsA(·), release
policies Rnow and observable traces of events t · e. But while
this abstract form is quite simple, instantiating it properly can
be quite tricky.

Why epistemic? Consider a two-run formulation of non-
interference for a deterministic program. If spelled out in
words, it would read something like (disregarding termination):
“if the program is run twice with the same public inputs but
possibly different secrets, the public outputs must be the same
in both runs”. We treat the concepts of inputs, outputs and the
notion of public informally here, what is important is that the
above quote conveys the gist of such a two-run formulation.
Now consider how one would convince a non-expert that this
is indeed a suitable characterisation of a program that does not
leak any secret information. That argument would very likely
be something like: “if this holds, then an attacker observing
the outputs of running the program could not deduce anything
about what the secret inputs are.” But that is exactly what the
epistemic property states! The notion of security intrinsically
has nothing to do with observing two separate runs – but rather
what can be deduced from observing a single run.

The above argument strongly suggests that the epistemic
formulation is the most natural way we can state the desired
property. A two-run formulation could certainly be very useful
as part of the strategy to prove e.g. the correctness of an
enforcement mechanism; often a (mechanical) two-run formu-
lation can lend itself well to the structure of a proof over
execution traces. But that property is then only a stepping
stone, and should, for completeness, be shown to imply the
natural epistemic property.

Another, purely technical reason to prefer epistemic formu-
lations over bisimulation-based two-run properties is pointed
out by [12]: the latter are often overly conservative. We return
to this point in section III-C.

124124



B. Facets of Semantic Security Properties

When defining an information flow security property,
choices are made that ultimately affect what programs are
considered secure according to that property. These choices
determine what we call the facets of security properties.

Facet

An aspect of a security property that determines whether a
particular class of information flows is accepted as secure.

Note: The aim of this section is not to formally define
these particular classes of information flows. Rather, we point
out several examples that underline the existence of facets as
a design space for security properties.

Various effects could be regarded as facets of a security
property. A well-known facet is termination sensitivity: a
property can either allow programs to leak sensitive infor-
mation through their termination behaviour, or not. This is
a facet of which current designers of security properties (and
enforcement mechanisms) are well aware. A conscious choice
is made if this facet is addressed, often motivated from the
pragmatic perspective that an enforcement for a termination
insensitive property is easier to achieve and less restrictive.
More facets of security properties exist, but their existence is
largely unknown and hence how a property treats these facets
is not by conscious choice.

In this paper we are interested in those facets that arise in
various semantics properties of dynamic policies. Each facet is
not universal among the works that we have surveyed – some
definitions permit a facet while at least one other does not. But
in most cases the choice for each facet is far from explicit. We
attempt to present a justification for both the permissive as well
as the restrictive treatment of each facet, although arguably
these pleas are not equally compelling in all cases.

Our main contribution of this section is not to identify
these facets – some facets were identified before, and we make
no claim that we have identified all facets – but to argue for
recognising the existence of facets and provide the designer
of a security condition with the background to make informed
choices for them.

The facets that are discussed in this paper are time-
transitive flows, replaying flows, direct release and whitelisting
flows. We phrase each of these facets in terms of what it means
to consider these flows as secure, and attempt to present the
same flow in two contexts, each motivating whether the flow
should be considered secure or not.

Note: It is important to point out that the (in)security of
these examples is argued only using the code fragments and
potential application context, not in the view of any particular
security condition. This underlines the principle we aim to
convey: when designing a security condition, first decide how
the condition should treat these facets and then construct the
right condition to match those choices, not vice-versa.

Remark 1 (Notation): In our examples we maintain the
convention that program locations are labelled with a fixed
security level. The lower-case first letter of the program

location matches the upper-case first letter of the security level
(e.g. a has level A and hos has level Hospital). We assume
that initially no information flows are allowed between any two
levels. The syntax B −→ A changes this ordering and allows
information to flow from level B to A, whereas B �−→ A revokes
this permission. Note that these are only conventions used to
present the flows; the flows themselves do not rely on them.
This notation is taken from [5].

Time-transitive flows A flow is time-transitive if it moves
information from security level A to level C via a third level
B, while there is no moment in time where the flow from A to
C itself is allowed by the flow relation.

Secure Insecure
User −→ XSSFree

x := escapeHTML(uIn);
User �−→ XSSFree
XSSFree −→ DB

db := escapeSQL(x);

Patient −→ Hospital
hos := patData;
Patient �−→ Hospital
Hospital −→ DrPhil

drPhil := hos;

In a context where the flow of information reflects some
declassifying or sanitising intention, one can argue that time-
transitive flows are secure. In this example, user input uIn

is first passed through the sanitiser escapeHTML to prevent
XSS attacks, and later through the sanitiser escapeSQL before
storing the information in the database. Here, it is of no
relevance that the user input was never allowed to flow directly
to the database.

The time-transitive flows facet was previously identified
under the name transitive flow by Swamy et al. in the
development of RX [39]. We purposely refer to them as
time-transitive flows to avoid confusion with intransitive non-
interference [33], which is discussed further in Section IV-B.
Swamy et al. argue that time-transitive flows should be con-
sidered insecure, using the following example. Patients allow
their data to only flow to the doctors of the hospital while they
are under treatment. When a patient leaves the hospital, this
information should no longer be available and in particular not
to doctor Phil, who joined the hospital staff after the patient
has left. Here, it is sensible to disallow the time-transitive flow.

One way to differentiate between these in the security
property is to either limit the attacker’s increase in knowledge
by what can be learnt from the observable part of the current
memory (allowing time-transitive flows)2 or from the initial
memory (disallowing time-transitive flows).

Replaying flowsWhen the release of information is considered
permanent, this information flow can be repeated without
breaking the information security of the system.

As an example, consider the scenario where the National
Security Agency (NSA) releases a file to the US military. Once
released, the military can access this file at any time, regardless
of whether this information is currently in their possession.

2This can be translated into knowledge on the initial memories that could
have resulted in the current observable memory.

125125



Secure Insecure
NSA −→ Military

mil := nsaFile
mil := 0;
NSA �−→ Military

mil := nsaFile;

Creditcard −→ Log
log.write(cc);
log.clear();
Creditcard �−→ Log

log.write(cc);

Considering information as permanently released is not
the natural choice in every situation, as the insecure example
demonstrates. Since the log file has been cleared, the credit
card information is no longer available. Hence the effect of
the earlier release has disappeared, and to store the same
information in the log file again requires the flow relation to
agree with this flow again.

To make this difference even more explicit, we include
a second example for both the secure and insecure context
which combines replay with time-transitive flows. If the NSA
information has been permanently released to the military,
when Bob later joins the military he should have access to this
information as well, again regardless of whether it is currently
in the military’s possession. In the insecure context, the vendor
is allowed to see the information in the log file, and since it
does not contain the credit-card number, the vendor should not
be allowed to observe it.

Secure Insecure
NSA −→ Military

mil := nsaFile;
mil := 0;
NSA �−→ Military
Military −→ Bob

bob := nsaFile;

Creditcard −→ Log
log.write(cc);
log.clear();
Creditcard �−→ Log
Log −→ Vendor

vendor.receive(cc);

The restricting interpretation appears more natural when
taking a language-based perspective on information release.
The view of permanently releasing information matches more
closely the original use of the term “declassification” in
a military context, whereas the language-based approach is
more related to how the same term “declassification” is often
used in current information flow research. We return to this
disambiguation of the term declassification in Section V.

The language-based view suggests that we can make a
second distinction in this facet, which we call weak replaying
of flows. Weak replay captures the idea that information is only
considered released as long as it is still available at the level to
which it was released. A motivating example for weak replays
is again the setting where the same credit card information is
added to the log file, but before the log has been cleared.

Secure Insecure
Creditcard −→ Log

log.write(cc);
Creditcard �−→ Log

log.write(cc);

Ezine −→ Customer
customer := ezine;
Ezine �−→ Customer

customer := ezine;

To argue for the insecurity of weak replaying flows, con-
sider a scenario where a customer pays for a time-limited
subscription on an online magazine (“e-zine”). When the
subscription runs out, the customer should no longer be able
to download magazine, even if they have an old copy of the
same edition.

This facet was previously identified by Askarov and Chong,
and we use their approach as a technique for addressing
this facet in its various degrees [5]. To allow for (strong)
replaying of flows, we can set the attacker’s observation
power to remember all observations made. That is, obsA(t)
could be said to be the sequence of events observable by A.
Hence, after observing an event e which contains the same
information flow in earlier observations obsA(t), we have that
ekA(P, obsA(t · e)) = ekA(P, obsA(t)) and the release is
considered secure regardless of the current flow relation. To
disallow any replaying of flows, we can consider attackers who
do not have a perfect recall of all observations made, and to
whom the replay may therefore come as a revelation.

Again, our aim is only to argue for the existence of facets,
not to state that one treatment of a facet should be preferred
over another. For replaying flows we see examples of both
choices in the reviewed literature in Section III-C.

Although allowing for (only) weak replaying flows seems
to arguably better match the language-based view, we are not
aware of any literature that addresses the facet in exactly this
way. One possible encoding would consider attackers without
perfect recall, but allow the attacker to observe the (currently)
non-secret part of the current memory.

Direct Release A security condition supports direct release if
information is considered released as soon as the current flow
relation permits it to flow. This means that a revocation of that
permission does not affect this information.3

Secure Insecure
Data −→ App

send(app, "Hello");
Data �−→ App

send(app, data);

Salary −→ Screen
screen.show("Hello");
Salary �−→ Screen

screen.show(salary);

Considering such flows secure can be justified if we model
attackers as constantly observing, directly in memory, all the
information which they have permission to know. As an ex-
ample, the attacker could be an application running in parallel
with the code displayed above. Hence it does not matter that
no data was actively sent to the application, we consider the
data as released directly when this is allowed. Note that direct
release does not imply that revocation (changing the policy to
be more restrictive) is irrelevant: new information that arrives
at level Data (either via input channels or from a different
security level) is considered to be not yet released to App.

On the other hand, we can argue that the same kind of flow
is insecure when the attacker can only observe information
that is actively provided. In the code above no information
about the salary has been released to the screen, and hence it
makes sense to assume that an observer does not know this
information yet.

If we chose to allow direct release, we could reflect this in
the security property by modelling an attacker’s observation as
the part of the current memory that the attacker is allowed to

3Note that despite the similarity in our examples, direct release is not merely
an even stronger version of replaying flows. Direct release is concerned with
what an attacker is assumed to have learned everything that is permitted at the
point when the flow relation becomes more liberal – not whether the attacker
may learn it again once the flow relation no longer explicitly permits it.

126126



T R D W
N
I Swamy et al. (RX) [39] + - + +

Hicks et al. [25] + - - +

B
I Boudol and Matos (Non-disclosure) [1] + - - +

Broberg and Sands (Flow Locks) [11] + - - +

E
p
is
te
m
ic

Askarov and Sabelfeld (Gradual Release) [4] N/A + - +
Banerjee et al. (Flowspecs) [9] N/A + - +
Balliu [7] +/- + +/- +
Askarov and Chong [5] - +/- - +
Broberg and Sands (Paralocks) [12,13] + + - +

T: time-transitive, R: replay, D: direct release, W: whitelisting

TABLE I. CLASSIFYING EXISTING SECURITY CONDITIONS ALONG

THE FACETS. + INDICATES THAT FLOWS OF THIS FACET ARE ALLOWED,
- THAT THEY ARE NOT. +/- SIGNIFIES THAT THE FACET IS NOT FIXED BY

THE CONDITION. N/A DENOTES THAT THE FACET DOES NOT APPLY TO

THIS SECURITY CONDITION. GROUPED BY NATURE OF CONDITION:
NON-INTERFERENCE (NI), BISIMULATION (BI) OR EPISTEMIC.

observe according to the current flow relation. This opposed
to only considering “active” flows, such as observing changes
in the memory, which we could use if we want to consider
direct release insecure.

Whitelisting flows A security property is whitelisting if a flow
is allowed whenever there is some part of the policy that allows
for it. This opposed to blacklisting, where a flow is disallowed
whenever there is some part of the policy that does not allow
it. The facet becomes apparent when a flow is permitted by
one part of the policy, but denied by the other.

As an example of such a situation, and an argument for
whitelisting, consider the release of an encryption key. It is
reasonable to accept that with the release of this key an
observer also learns the secret information that was earlier
released encrypted under that key, even though part of the
policy does not allow the secret to be released.

Secure Insecure
Secret −→ Pub
Key −→ Pub

output(k XOR secret);
Secret �−→ Pub

output(k);

Bob −→ Report
Carla −→ Report

r.avg := (b.s+c.s)/2;
Carla �−→ Report

r.bob := b.s

The insecure example shows the creation of a report r,
storing the average of the salaries s of Bob and Carla. Then,
when Carla explicitly no longer allows information about her
salary to flow to the report, we add Bob’s salary to the report
from which an observer can derive Carla’s salary. This we
could argue violates Carla’s concern and should be regarded
as an illegal flow.

Whitelisting appears to be the norm for language-based
security conditions as is confirmed by the literature that we
discuss in this paper, which all treat the policy as a whitelist
of permitted flows. Treating the policy as a blacklist rather
than a whitelist is more common in the interpretation of
noninterference in event-based systems [22,45].

C. Classification of facets in literature

In this section we present a collection of existing security
definitions for dynamic policies and classify them along our
facets. Although we think that our discussion is rather com-
plete, our goal is not to give a full survey of the field. Rather,
the purposes of this section are a) to illustrate that the listed
facets indeed occur in literature; b) to identify what compo-
nents in a security condition determine which classification,

as an aid for the developer of new security conditions; c) to
demonstrate that the facets can be used as a terminology for
discussing security conditions for dynamic policies (similar to
the intention of Sabelfeld and Sands introducing the dimen-
sions for declassification [35]); and d) to convince the reader
that the intended facets should be considered before defining
a security condition, to ensure that it matches these intentions.

With this setting in mind, we purposefully left out some
literature that could be considered related to dynamic policies,
but does not fit the goal of this section. Examples include
the non-interference until conditions property from Chong and
Myers [17] (since it is unspecific in its treatment of information
once released) and λAIR by Swamy et al. [40] (which presents
a type system for enforcing user-specified security properties,
but does not present such properties itself).

An overview of the security conditions in the surveyed
literature along our facets is listed in Table I. We remind the
reader that the facets do not serve as an objective measure for
the quality of a security condition: arguments can be made both
in favour and against each facet as illustrated in Section III-B.
Since none of the discussed literature interprets the policy as a
blacklisting of information flows rather than a whitelisting, we
omit this facet from this discussion. Similarly, direct release is
not permitted by most properties by virtue of their observation
model and we only discuss this facet for the properties that do
permit it.

Remark 2 (Disclaimer): We present all conditions in the
same computational model, despite some of the surveyed con-
ditions being defined in a different context. As a consequence,
some of the classifications in Table I do not directly apply on
these original security properties. For example, time-transitive
flows do not apply on a property for a model where obser-
vations are made on output channels instead of state changes.
We allow ourselves to make the following transformations:

• Modified sources: We define sensitive information as the
information in the initial state, instead of values input on
channels.

• Modified sinks: We define observations as state modifica-
tions, instead of values output on channels.

We acknowledge that restricting ourselves to this single model
may not be sufficiently general, and additional facets may
be revealed under a different model (e.g. considering input
channels instead of initial states, cf. Clark and Hunt [19]).

We here only discuss the conditions to the extent needed
to understand their classification. An extended version of
this section discussing several of the security properties in
more detail can be found in the technical report version of
this paper [15]. We group the security conditions according
to whether they are of a non-interference, bisimulation, or
epistemic nature.

1) Non-interference (NI) based conditions: These condi-
tions are built directly on top of non-interference properties
phrased in two-run style. Dynamic policies are enforced by
varying how non-interference is included as a building block
in the security condition, not by changing the non-interference
property itself.

127127



a) Swamy et al. (RX) [39]: With the clearly stated goal
of disallowing time-transitive flows (referred to as transitive
flows) RX introduces the notion of a transaction. Transactions
are defined together with a fixed flow relation on parts of the
information in the system. If this specified flow relation is
modified during the transaction, the operational semantics rolls
back to the pre-state of the transaction, undoing the changes to
memory but preserving the changes in policy. This operational
guarantee allows the static check to assume the fixed flow
relation to hold throughout the transaction.

The security condition considers a program secure for
attacker A if it is non-interfering between policy changes that
are declassifying (i.e. that allow more flows to A). Therefore
the security condition allows for the replay of flows only until
the next declassifying policy change, after which the non-
interference requirement is restarted, effectively “forgetting”
the earlier flows and thus no longer allowing replays. We
conclude that RX therefore does not (in general) support
replaying of flows. Observations are modelled as projections
of what the attacker may observe from the current memory
under the current flow relation. Revocation thus does not affect
the classification of released information, making the security
condition permit direct release.

Interestingly, although disallowing time-transitive flows
was the motivation behind the transaction system, the security
condition itself does not rule them out. Consider the time-
transitive flow of information from security level C to B,
followed by B to A, as seen by an observer on level A. Since
allowing the flow from B to A is regarded as a declassifying
change for A, the non-interference condition restarts. Conse-
quently the security condition only considers memory stores
that agree on all values of level B for this second part of the
flow, ruling the program as secure. This is as a clear example
where the security property does not exhibit the intended facet.

b) Hicks et al. [25]: The Decentralized Label Model
(DLM) is a well-established language for specifying informa-
tion flow security labels based on principals [30]. The ordering
between security labels is partly influenced by an acts-for
hierarchy between these principals, which may vary over time.
Jif, an extension to Java adding support for the DLM, assumes
that these variations occur only very occasionally. This justifies
branching on queries on the hierarchy, ruling the following
program secure [29]:

if (A −→ B) { long_computation(); b := a; }

The work by Hicks et al. introduces a calculus that re-
moves this assumption. Coercion checks (permission tags) are
statically introduced to summarise the parts of the program
for which constraints on the acts-for hierarchy need to hold
in order to be secure. When, at run-time, an (asynchronous)
request to change the acts-for hierarchy presents itself, this is
delayed until it is consistent with the permission tags.

A program is said to be secure if it is non-interfering
for an unknown, but fixed, acts-for hierarchy. Effectively,
this results in the property non-interference between pol-
icy updates. To classify this condition along our facets,
the flows need to be rephrased to use policy queries
in a way that matches the appropriate policy changes.
For example, a replay of flow can be exemplified by:

A −→ B
if (A −→ B) { b := a }

A �−→ B
b := a

This example shows that the security condition does not allow
replay, since this program is interfering for a fixed policy in
which A may not flow to B. For a similarly phrased program
with time-transitive flows there is no fixed policy for which the
program is interfering, hence time-transitive flows are allowed.

2) Bisimulation (BI) based conditions: Bisimulations are
used frequently to formulate security conditions. A style of
bisimulation introduced by Sabelfeld and Sands [34], called
strong low-bisimulation, arises in several works dealing with
dynamic policies: the non-disclosure property by Boudol and
Matos [1] as well as the original Flow Locks security condition
by Broberg and Sands [11] in particular.

Strong low-bisimulation relates two programs P1, P2 if,
when started in equivalent memory stores according to the
current flow relation they perform observationally matching
steps. In addition, the programs from the resulting config-
urations should also be bisimilar. A program is considered
secure if it is bisimilar to itself. An important property of
strong low-bisimulation is that it quantifies over all equivalent
stores at each step. Effectively this means that it considers
combinations of memory stores and commands which are
impossible in a single-threaded system. For example, for the
command if (x > 0) { y := x} bisimulation is required for
the sub-command y := x for stores where x ≤ 0.

Since bisimulation is required on all sub-commands re-
gardless of previous flows, security conditions based on strong
low-bisimulation do not allow for replaying of flows nor direct
release. For the second half of a time-transitive flow, the
condition considers only those memory stores equivalent by
the current flow relation, thus allowing time-transitive flows.

3) Epistemic security conditions:

a) Askarov and Sabelfeld (Gradual Release) [4]: The
use of epistemic formulations in security conditions for infor-
mation flow was first found in the Gradual Release property.
The policy language contains two security levels Low and
High. The programming language includes a declassification
primitive to allow information flows from High to Low, explic-
itly marking the resulting observations as “release events”. The
security condition is then that the knowledge of a Low observer
should not increase on observations that are not release events.
Here, the knowledge of an attacker includes both knowledge
of the Low-labelled part of the initial store as well as what can
be learned from the observations produced by the program.

Gradual Release is only defined for a setting with two
security levels and there appears to be no natural extension
for multiple levels without making determining choices on
allowing transitive flows. We therefore classify this facet as
not available for gradual release. Neither does the definition
involve an actual dynamic policy as such. Hence in order
to classify the definition along the facets they need to be
phrased using the declassification primitive instead of policy
change. For example, replaying flows can be exemplified with:

a := declassify(b)
a := b

As the first observation is a release event, the requirement that

128128



the observer’s knowledge stays the same applies only on the
second observation. Having already observed the value of b in
the first observation, the second observation does not teach the
observer anything new: replaying flows is allowed.

The concept of Gradual Release can be used to denote
more fine-grained policies specifying what information may be
revealed at each release event, see e.g. [6,8]. Such extensions
do not change how the facets are addressed.

b) Banerjee et al. (Flowspecs) [9]: Banerjee et al.
introduce a modular approach to statically enforcing secure in-
formation release. Standard type-checking for non-interference
is employed on all program code except for those parts marked
as declassifying. These declassifications need to agree with a
flowspec, a specification of what information may be released
and under which circumstances. Program verification is used to
verify that each declassification matches a justifying flowspec.

The enforced security condition, conditioned gradual re-
lease, is very similar to gradual release except that for each
releasing observation there has to be a flowspec which allows
for this release. This additional expressiveness in the specifi-
cation of policies has no impact on the classification in our
facets, but can provide more guarantees than a gradual release
policy. We discuss the expressiveness of policy specification
mechanisms in detail in Section IV-C.

c) Broberg and Sands (Paralocks) [12,13]: The Flow
Locks policy language and its successor Paralocks have similar
security properties to which we refer collectively as Paralocks
security. In the Paralocks policy language, information flows to
actors are guarded by locks which can be opened and closed.
That is, the flow relation depends on the set of open locks: the
more locks are open, the more flows are permitted.

Based on gradual release, Paralocks security also defines at-
tacker knowledge as the combination of what can be observed
from the initial memory store and what is learned additionally
from observations produced by the program. As identified for
the previously discussed epistemic properties, this means that
Paralocks security necessarily allows for replaying flows since
this knowledge does not increase when the same information
flows again.

An attacker consists of a pair of an actor (the observer) and
a set of locks called capabilities (this attacker can observe as
if these locks were open). Let t·e be a trace produced by some
command c. The Paralocks security property says that, if the
capability locks of the attacker were open at the moment of
event e, the attacker’s knowledge should remain the same.

This makes the property time-transitive. Let A be an
attacker observing the second observation resulting from a
time-transitive flow. If the locks necessary for this flow exceed
A’s capability, the security condition directly considers this
secure for A. Otherwise, A would necessarily also have made
the first observation of the time-transitive flow, making this
effectively a replay for A which we already argued as secure.

d) Balliu [7]: In his work, Balliu shows how trace-
based conditions such as separability and generalised non-
interference fit in a generic security condition and how they can
be characterised in epistemic temporal logic. This condition is
of a format similar to the property discussed in Section III-A.

ekA(P, obsA(t · e)) \ ekA(P, obsA(t)) ⊆ Rnow

q0start qf

q1

q2

1

2

1

2

Fig. 1. An automaton modelling a forgetful attacker who only remembers
the second value observed (in the domain {1, 2}), in the style of Askarov and
Chong [5].

The security condition is parametric in the release policy
Rnow , and therefore does not fix all of the facets until this
release policy is instantiated. In the technical report version of
this paper we show how this condition may both permit and
deny direct release or time-transitive flows depending on the
instantiation of the release policy [15].

The definition of knowledge does have a fixed definition:
the attacker excludes any memory store that could not have led
to the series of observations made. Once again, this implies that
ekA(P, obsA(t ·e))\ekA(P, obsA(t)) = ∅ when event e is the
replay of earlier flows, and replays are permitted.

e) Askarov and Chong [5]: The security condition by
Askarov and Chong, by intention, does not necessarily allow
for replaying information flows. As for Balliu, the security
property of the form described in Section III-A, except that
Rnow is fixed to the set of stores that do not appear equivalent
to the attacker A under the flow relation when the last event e
was produced. As observed by Buiras and van Delft, this makes
the security condition disallow time-transitive flows [16].

What sets this security condition apart is its definition of
attacker knowledge. Rather than assuming an attacker with
perfect recall, Askarov and Chong allow attackers to “forget”
(parts of) earlier observations. An attacker A is modelled
as a combination of a level and an automaton which makes
transitions based on the observed values. As an example, the
automaton in Figure 1 models an attacker who remembers the
second output but forgets the value of the first observation.

Suppose that trace t puts an attacker’s automaton in state
s. Thus s models what the attacker can remember from trace
t. The knowledge from a trace t is the set of states the attacker
can exclude, namely those that could not have led the attacker
in state s. Consider an attacker with the automaton from
Figure 1 observing the output on level A of the following
program (assuming that b ∈ {1, 2}):
A −→ B

b := a
A �−→ B

b := a

Only after the second observation does this attacker learn the
value of b, that is at a time when this is not allowed by the
current flow relation. Hence, the forgetful attacker model is
an effective way to rule out replays of previous information
flows. Replays can still be permitted if only the perfect-recall
attacker is considered.

Unfortunately, as identified by Askarov and Chong, de-
manding security against all possible forgetful attackers could
be argued unreasonable as it includes “wilfully stupid” and
unrealistic attackers. Van Delft et al. [42] identify a definitive

129129



set of attackers for a progress-insensitive version of the security
condition, but identifying a reasonable set for the progress-
sensitive version remains an open question.

D. Directions for Future Research

It could be useful to formulate a generic security property
which is modular in its facet classification. Such a property
would allow the designer to make a choice for each facet,
and then simply achieve this by enabling or disabling the
necessary components in the generic property (although not
all combination of facets may be possible, as the existing
properties in Table I suggests). The security property by
Balliu exhibits some of this genericity, but lacks identifiable
components for each facet.

We consider it possible that our set of facets is incomplete
and additional facets of security properties will be identified
in the future. For each new facet, we recommend a similar
treatment to survey existing security conditions and identify
what influences its classification.

When the security condition determines the facets, all
information releases are treated equally. An interesting gen-
eralisation would be to let the program explicitly state the
intended facets per release. For example, a program could
annotate some releases as “permanent”, indicating to the
security property that these may be replayed (as opposed to
the unannotated releases). The security property has to treat
such specified intentions properly.4

IV. CLASSIFICATIONS OF DYNAMIC POLICIES

In this section we take a closer look at the anatomy of
policy schemes and policy specification mechanisms, with the
intention of introducing a standard terminology for discussing
and comparing them. We discuss the different control levels
at which a scheme can operate, and how these levels taken
together, in combination with assignment of labels in a system,
form what we generally refer to as a policy. We further use this
anatomy as an overlay to shed new light on the “dimensions
of declassification” introduced by Sabelfeld and Sands [36],
and resolve some perceived unclarities and ambiguities among
the dimensions. We categorise existing policy specification
mechanisms in the literature accordingly. Finally we derive
a framework for reasoning about the kinds of invariants a
mechanism can express in a generated policy scheme, as a
starting point for comparing expressiveness between different
mechanisms.

A. The anatomy of dynamic policies

A dynamic policy scheme can be understood, discussed
and classified in terms of a hierarchy of control, consisting of
the following control levels:

• Level 0 control – F , a set of possible flow relations
between the information sources and sinks available in
the system.

4One could argue that RX already presents such a system. By placing
code in a transaction the programmer indicates the intention to disallow time-
transitive flows within this code block. However, as argued in the discussion
of RX, these intentions are ignored by the security condition which still treats
all releases as allowing for time-transitive flows.

• Level 1 control – δ, a determining function selecting
which flow relation in F should be active. We refer to
the arguments to this function as the discriminator.

• Level 2 control – μ, a meta policy controlling the way in
which the current flow relation may be changed.

The control levels allow us to be explicit about what it is that
makes a policy dynamic: the possibility to define a determining
function and have an input to this function that changes during
program execution. Arguably, one could have a meta-meta
policy which in turn controls the meta policy. However, with
no loss of generality we group all further abstractions in the
meta policy class, since the meta policy can also be taken to
control itself.

As a concrete example, consider a scheme consisting of
two security labels, Secret and Public. Potentially the set F
could contain all four possible flow relations that involve these
two security labels, but in this example it contains only two:
one in which Public information may flow to Secret but not
vice-versa; and one in which information may also flow from
Secret to Public. The former flow relation is the default, and the
latter is available when using a special “declassify” operator.
The determining function δ then decides whether information
may be released from Secret to Public or not, based on the
current value of its argument, S. In this example, S can range
over boolean values, indicating whether “declassify” is used
or not. The meta-policy simply always allows transitions back
and forth between true and false.

Formally we characterise the determining function as:

δ : S → F
Here S is the information used to determine which flow
relation is currently active. S could range over boolean values
as in our simple example; it could be partial information from
the current program state, as is the case in Paragon [14] or the
work by Chong and Myers [17]. S may also consist of other
information such as lexical location in the source code (as is
done by Boudol and Matos [1]) or ‘asynchronous’ information
external to the program (e.g. the acts-for hierarchy among
principals used by Hicks et al. [25]).

In turn, the meta policy controls the changes between flow
relations caused by the determining function. Strictly speaking,
a meta policy aims to control the transitions between flow
relations, and does not require the determining function as a
“proxy”. For example, a meta policy could, again based on
some (meta) information M such as program state, impose a
constraint on the progress of flow relations:

μ : M → 2F×F

Here the pair (f1, f2) ∈ F × F indicates that transition from
flow relation f1 to f2 is permitted. In this way, it would be easy
to for example define a μ specifying the meta policy that the
flow relation between information only becomes more liberal.
However in the surveyed literature, we find that the meta policy
is typically defined in terms of controlling how the information
S used by δ may change, rather than the resulting flow relation
determined by δ – simply an extra level of indirection. That
is, a meta policy instead typically has the characterisation:

μ : M → 2S×S

130130



Note that the determining function does not solely serve as
a level of indirection for the meta policy: the meta policy
specifies how the current flow relation may be changed, but
it is the determining function that specifies what the current
flow relation is.

To demonstrate that the control hierarchy functions as a
terminology for policy specification mechanisms, we show
how various mechanisms from literature fit onto these levels:

• The programming language Jif [29] has a declassification
function which can be described as temporarily chang-
ing S, making the intent clear such that δ provides a
flow relation which allows for the declassification. The
relation between declassification and dynamic policies is
discussed in more detail in Section V. The decision to
declassify is restricted by components such as authority
and declassification robustness [44], which constitute M .
Both δ and μ are pre-determined. The flow relations in
F are determined by the labels used, in combination with
the acts-for hierarchy. If changes to the acts-for hierarchy
are allowed, as per Hicks et al [25], then this hierarchy
is also included in S.

• The programming language Paragon [14] allows for the
specification of Paralocks policies (see Section III-C) in
a Java-like language. Hence the current flow relation is
determined by the lock state, which constitutes S. In turn,
these locks are information in the program state and are
protected by locks themselves5, making that second set
of locks determine the meta-policy, i.e. when the first set
of locks can be opened and closed. The labels include
specification of how they are interpreted with respect to
changes in the lock state, meaning that the set of flow
relations, and the behaviour of δ (as well as μ) can be
customised for each specific policy scheme.

• The programming language RX [39] incorporates the
RT framework [26] to specify a flow relation among
roles. The active flow relation is determined by the set
of memberships and delegations specified on each role,
which form S. Roles also carry labels which specify who
can observe the current members of a role, hence forming
the set M determining on which secret data the decision
to change flow relation (add or remove memberships and
delegations) may depend.

• Matos and Cederquist [2] present a security condition for
distributed computations (Distributed Non-interference).
The default flow relation between security labels can be
relaxed using the lexical construct from earlier work on
the non-disclosure property [1], making S the locality in
the code. These scopes with more liberal flow relations
may only be entered when the node on which the com-
putation runs allows for it. Each node specifies its own
regulation on the allowed added flows, making M the
locality in the network.

We note that the apparently clear separation offered by
the levels of control is not necessarily mirrored in actual
specification mechanisms. As noted, in Paragon each data
source and sink is annotated with a security label that specifies

5We observe that the possibility to place locks on policies is part of the
specification mechanism used in Paragon, but not included in the Paralocks
specification language.

What Who Where When

F + - Level locality only -
δ - + + +
μ - + + +

TABLE II. REVISITING THE DECLASSIFICATION DIMENSIONS; +
INDICATES THAT A DIMENSION CONCERN CAN BE ADDRESSED BY THAT

POLICY COMPONENT, - THAT IT CANNOT.

not only a static behaviour, but also how that label should
be interpreted in different lock states. In other words, the
information on what the flow relations are and how they are
determined is distributed across all the labels in a program, not
cleanly as a single determining function. This does not mean
that Paragon could not still be understood and described in
terms of the levels of control.

Another observation is that the higher levels of control, δ
and μ, have two components where control can be exercised:
in the definition of δ, resp. μ, and in the argument to the
respective function. To contrast these two possibilities, RX
allows control over the argument provided to μ (who can
observe the members of a role), but μ itself is fixed. This is
opposed to the meta-policy by Matos and Cederquist where the
argument to μ is fixed to be the node on which the computation
runs, but μ itself can be defined by the policy designer.

B. Rethinking the Dimensions of Declassification

Looking at the literature, it is clear that the four “dimen-
sions of declassification” introduced by Sabelfeld and Sands
[36] – “what”, “who” “where” and “when” – are significantly
different from each other in nature. In particular aspects of the
“what” dimension are largely orthogonal from the other three,
while many uses of “where” and “when” often coincide. There
are also different aspects grouped within the same dimension
that are so disparate as to be incomparable. For example, the
“where” dimension intends to cover both code locality and
level locality, which are only remotely related at best.

We propose that these dimensions should be discussed
for each of our identified dynamic policy levels individually.
We identify that not every dimension is relevant for every
policy level, as summarised in Table II. This insight resolves
some of the confusion in the declassification dimensions,
showing that by taking the anatomy of a policy into account
while discussing its “declassification’ dimensions, we arrive
at a clearer framework for discussing and comparing security
conditions.

We present a short summary of each of the declassifica-
tion dimensions and discuss them with respect to the policy
anatomy.

What – Policies can dictate that only parts of a secret may
be released (e.g. the last digits of a credit card). In addition
this dimension covers quantitative release which is better
characterised by “how much” and can be achieved using
an information-theoretic approach (e.g. [18]). Although the
decision to e.g. increase the amount of information that may
be released comes from different components, the possibility
to express this dimension only exists naturally in the ordering
between information itself, i.e. when specifying flow relations.

Who – This dimension is concerned with being able to express
who controls the release. In particular, it is sensible to prevent

131131



an attacker from abusing the release mechanism, as is the mo-
tivation for robust declassification [44]. Since the decision to
declassify can be controlled both by the determining function
and the meta policy, this dimension can be addressed on either
level. By nature this dimension talks about control over flow
relations, and therefore is not relevant on the level of the flow
relation itself.

Where – This dimension is split into two different forms of
locality: level locality and code locality.

Level locality addresses the concern where information
may flow relative to the security levels of the system.
This dimension is particularly present in intransitive non-
interference [33], which is exemplified by a policy which
allows information to flow from security level Secret to De-
classify and from Declassify to Public, but not directly from
Secret to Public. This can be expressed in a flow relation
using downgrading relations (Mantel [27]), but could also be
addressed by the δ and μ controls on the ordering. The latter
is achieved by changing between flow relations such that only
one of the two flows is permitted at any specific time (this
essentially requires time-transitive flows, see Section III-B).

Code locality allows policies to describe where syntacti-
cally in the code information may be released. One could sort
of view this as level locality except the information should
not pass through the Declassify level but through a lexical
declassification construct in the program’s code. Similar for the
Who dimension, code locality is concerned with controlling
which flow relation is active, and can therefore only be
addressed by δ or μ.

When – A policy can dictate that information may only be
released after (or before) a certain time has passed. This
temporal restriction can be based on various elements, such as
real time, the size of the secret or relative to other events in the
system. Although the original presentation of this dimension
splits it into various classes, all temporal controls need to be
addressed by δ and μ as they concern the decision to change
the ordering of information.

When we now reclassify policy mechanisms by the levels
first and the dimensions second, the classification becomes
clear and unambiguous. We briefly show this for the examples
used in Section IV-A. 6

For Jif, the discriminator for the determining function δ
is given by a combination of the declassification construct,
which concerns the “where” dimension (both code and level
locality), and the acts-for hierarchy, which concerns the “who”
dimension. As a meta-policy, authority provides a meta control
on the decision to declassify in the “who” dimension. Ro-
bustness does so as well, and in addition partially addresses
the “what” dimension by limiting what information can be
declassified. For Paragon, both δ and μ are regulated by locks
which concern the “when” dimension: information flows are
allowed relative to the actions of opening and closing locks.
Paragon also has a lexically scoped version of opening a
lock, which works in the “where” dimension (code locality).

6None of the considered examples addresses the “what” dimension, or
support intransitive flows in the flow relations, thus we do not discuss this
dimension further.

Implementations in Jif and Paragon can combine the program-
ming and policy language to encode requirements in other
dimensions [3,14,41], but these are not a natural part of the
policy language.

Both δ and μ in RX use the “who” dimension: who
is a member of a role determines the active flow relation,
and who can view the current members of a role decides
what policy change can be made. The security framework for
distributed non-interference by Matos and Cederquist finds a
fit in the “where” dimension for δ as the lexical flow construct
determines where in the code the additional flows are allowed.
The meta policy also fits in that dimension, as it determines
where in the network each flow construct is allowed.

C. The expressiveness of policy languages

Different policy specification mechanisms offer a variety
of expressiveness, from the simplest fixed two-level systems,
up to full policy specification languages like those found in
Jif [31], RX [39] or Paragon [14]. We can have intuitive ideas
regarding the relative expressiveness of such mechanisms, but
what are the measures by which we can compare them for-
mally? In this section we speculate on how a formal framework
for comparison could be constructed.

Montagu et al [28] construct a framework for comparing
“label models”, or policy schemes in our terminology. We
argue that such an approach is too simple for comparing
expressiveness of full policy specification languages.

Consider a policy scheme which has three labels called
TopSecret, Secret and Public. By default, the flow relation con-
sists of the three flows Public → Secret, Public → TopSecret
and Secret → TopSecret, so the labels form a strict hierarchy
of security levels. The policy scheme also allows data to be
declassified from Secret to Public. When declassifying, the
flow relation is then the same three flows from before, with
Secret → Public added. These are the only two flow relations
possible. We refer to this scheme as TSP.

A second scheme has three labels simply called A, B and
C. Any of the six possible flows between two labels can be
allowed or not independently of other flows. In other words, all
26 conceivable flow relations involving these three labels are
possible, and a programmer can freely change between them.
We refer to this scheme as ABC.

A first attempt at comparing expressiveness could look at
the possibility to embed one policy scheme in the other7. That
is, the embedding scheme should contain at least the same set
of flow relations as the embedded scheme. In this case we
could embed TSP in ABC using TopSecret = A, Secret = B
and Public = A, and use the corresponding two matching
flow relations. We could then claim that the second is at least
as expressive as the first, by virtue of having at least as many
labels allowing at least the same flow relations. However, such
an attempt misses an important aspect of expressiveness. If we
were to use ABC in place of TSP, what (other than regimen)
stops us from making one of the “other” flow relations active?
In particular, we have no guarantees that we will not use a flow
relation in which A, proxying as TopSecret, can flow to other
labels. ABC is certainly more flexible than TSP – but when

7This is the comparison done by Montagu et al [28].

132132



embedding, added flexibility is not a good thing. Restrictions
matter!

For a policy scheme, the degree of flexibility is already
fixed, so there is never any room for expressiveness. Truly,
expressiveness should be compared at the level of policy
specification mechanisms. Consider mechanisms PSM1 and
PSM2: we have that PSM1 is at least as expressive as PSM2

if, for every possible policy scheme that PSM2 can generate,
PSM1 can generate a scheme that can embed it – including
restrictions. But how can we express restrictions formally?

The examples used so far show the need for restrictions
at the level of what flow relations are possible. However, not
all such restrictions are equally important. For our example
above, the fact that when using ABC we could end up in
contexts where the flow relation allows fewer flows than any
of the ones matching those of TSP, is arguably acceptable –
the system would still be secure. But the fact that we could
end up in a context where A, representing TopSecret, can flow
at all is not acceptable, as it means that using ABC we cannot
give the same security guarantees by construction. Hence, what
matters is the ability to express invariants over flow relations
– specifically, invariants that concern the absence of some (set
of) flows.

In this work we identify two principal forms of invariants
that we want the ability to express. The first form are the
invariants over sets of flow relations. Such invariants can be
global, for example “no flow from TopSecret to any other
level is ever allowed”; or conditional, for example “flows from
Secret to Public are not allowed, except when declassifying”.
The second principal form are the invariants over sequences
of flow relations. A simple example could be the Gradual
Release property [4] that the policy may only change to
become more liberal over time. Another more complicated
example is a strong Chinese Wall property stating that if a
flow CompanyOne → X has ever been allowed at any point,
then X → CompanyTwo may not be allowed at any point in
the future [10].

To formalise these notions we first observe that given some
starting state S0 and the set of possible transitions as given by
the range of μ8, we can enumerate all possible sequences of
discriminators by iteratively applying all possible transitions.

Let
−→
S be the set of all such sequences. A global invariant over

sets of reachable flow relations is then a property Φ such that

∀S0 · . . . · Sn ∈ −→
S .Φ(δ(S0)) ∧ . . . ∧ Φ(δ(Sn))

holds. A conditional invariant adds a filter Ψ such that

∀S0 · . . . · Sn ∈ −→
S .

[Ψ(S0) ⇒ Φ(δ(S0))] ∧ . . . ∧ [Ψ(Sn) ⇒ Φ(δ(Sn))]

holds. An invariant over sequences of flow relations is a
property Φ such that

∀S0 · . . . · Sn ∈ −→
S .Φ(δ(S0) · . . . · δ(Sn))

8If we also know how the argument M to μ may change over time, we can
have better precision than considering the whole range of μ. As argued, this
could be accomplished using yet another level of meta-policy that governs
how M may change, or baking this into μ itself.

holds. We can easily imagine a conditional version of invari-
ants over sequences too, with a similar filter based on the
domain of μ, however we have not identified any compelling
examples.

Comparing expressiveness of policy languages

A policy specification mechanism PSM1 is at least as
restrictive as another mechanism PSM2, if for every pos-
sible policy scheme that PSM2 can generate, PSM1 can
generate a scheme that can embed it, including enforcing
the same (negative) invariants.

The kinds of invariants we have categorised here cap-
ture the majority of all conceivable invariants that we may
want a policy scheme to enforce, however, there are more
complex invariants that cannot be expressed in these terms.
Our invariants are essentially safety properties, and not all
desired invariants can be expressed in terms of these. Our
framework of invariants should thus be seen as a starting
point for formalising comparisons between policy specification
mechanisms, not a completed journey, and the formalisation
of further points in the space of invariants is an open research
question.

V. RELATION TO DECLASSIFICATION

The term declassification (or more generally downgrading)
has long been used to signify the deliberate change of security
label on data, to allow it to be used more liberally than before.
This is not specific to research on information flow, or even
security in general – the term is used with this meaning outside
of technical contexts as well.

For information flow specifically, however, the exact mean-
ing of the term is not clear. It has been used, we argue, to refer
also to things that are not aligned with the natural definition
given above.

We will first argue for proper uses of the term declassifica-
tion, and consequently also for what we consider mis-uses of
the term. We will then go on to discuss, within the proper uses,
different meanings that can be given to the term; specifically
we identify two different flavours of declassification, discuss
their distinctive differences, and relate these to the facets from
section III-B.

A. The term “declassification”

For terminology, we want to establish a clear difference
between the use of the term “declassification” (or “down-
grading”) and dynamic policy change. In technical terms,
mechanisms that achieve declassification can be treated as
specific uses of dynamic policies, but the concepts are not
equivalent. The important distinction we want to make is
that declassification is, by nature, data-centric, as opposed to
affecting a policy. It is possible to declassify a piece of data,
but it is not possible to “declassify” a policy. A policy can
be changed to become more (or less) liberal – data can be
declassified and then used more liberally. Further, it seldom
makes sense to talk about “declassifying” a program or a

133133



computation9 – instead that program or computation can be
said to run under a more liberal policy.

Historically this distinction has not been entirely clear,
leading to some confusion about specifically which aspects
of a policy specification mechanism or semantic property that
are referred to when talking about the declassification taking
place in a system. In particular the survey on “Dimensions and
principles of declassification” by Sabelfeld and Sands [36] uses
the term “declassification” as an umbrella to include everything
related to dynamic policies – and even some mechanisms
which are purely static orderings. We now hope to foster a
more fine-grained use of the terminology.

B. Flavours of declassification

In the literature we identify two distinctly different flavours
of the (proper) use of the term: relabelling and copying release.

Relabelling In classic military terms, declassification corre-
sponds to the physical operation of changing the security
classification of a document. This process is mirrored in some
systems that declassify data by effectively replacing its label
with a more liberal one. We refer to this as the relabelling
approach to declassification. In information flow systems, this
behaviour can be simulated by changing a sufficiently fine-
grained global policy in such a way that it puts less restriction
on the usage of the data in question. Gradual Release [4] is
an example of such a policy. It should be clear that this use of
the term can be seen as a direct instance of dynamic policies,
where the policy is made successively more liberal.

Copying Release The other flavour of the term declassification
is the systems that use a specific declassifying operator10
that allows a single exceptional flow that would otherwise
violate the prevailing policy. In effect, declassifying in this
sense creates a copy of the original data11 available under
a more liberal label. We refer to this as the copying release
approach. Systems with this form of declassification include Jif
[31] and JOANA [37]. Semantic properties for such systems
are typically phrased in terms of a flow against the normal
ordering being allowed specifically if the operation causing it
is a distinguished declassification operation.

We can also view such operators as instances of dynamic
policy change, where an application of the operator corre-
sponds to a sequence of operations in which: the global policy
is temporarily weakened, the flow happens, and the policy is
restored to its previous state. This is how declassification is
typically encoded in e.g. Paragon [14]. Note that this works
in a sequential setting; when we introduce concurrency one
would need to prevent concurrent threads from exploiting the
temporary policy change, for example by making the sequence
of operations atomic.

Interestingly, a semantic property intended to accommodate
such operations is restricted in the choices that can be made
for the various facets introduced in Section III-B. Table III

9 Unless one is literally revealing a previously secret piece of source code.
10More generally operation – it does not need to be an operator per se,

even if that is the most common case.
11More generally, the result of an expression whose result depends on the

original data.

T R D W

Relabelling + + +/- +
Copying release + - +/- +

T: time-transitive, R: replay, D: direct release, W: whitelisting

TABLE III. NECESSARY FACETS FOR A SEMANTIC PROPERTY

ACCOMMODATING DIFFERENT DECLASSIFICATION FLAVOURS.

summarises the compatibility of the facits with the two flavours
of declassification.

The information made available by a copying release is
intended to be persistent, but not permanent. The operator ef-
fectively releases a copy of the information to a location with a
different security level. This makes the release persistent, since
the information can now be accessed from that security level
instead, and the original classification of the copy is forgotten.
As a consequence an accompanying security property needs
to allow for both time-transitive flows and whitelisting. The
release is, however, not permanent, as the released information
is intended to be accessed only from the location containing the
copy. If the declassified copy of the data is deleted, it is simply
no longer available under the liberal label. This demands that
the security property does not allow (weak) replaying of flows.

The only facet (of the ones we discuss in this paper) that is
not fixed when employing a declassification operator, is in the
treatment of direct release. Direct release can be allowed only
if the policy is fine-grained enough to distinguish between each
possible data item to be declassified. In practice, if the result of
arbitrary expressions can be declassified, direct release would
not be feasible.

VI. CONCLUDING DISCUSSION

We reiterate that our aim has been to synthesise knowledge
about dynamic policies, with the purpose to increase under-
standing and help facilitate future work within the domain of
information flow control. Our anatomy of policy schemes can
give would-be authors of policy specification mechanisms a
better understanding of the nature of what they propose, and
the tools to sharpen it to achieve the desired expressiveness.
Would-be creators of programming languages and systems
incorporating information flow policies can draw inspiration
and understanding from our discussion on the nature of de-
classification, and further look to our facets to make conscious
choices regarding the nature of their security properties, to
ensure that they truly capture the desired degree of security.
And interested researchers can draw inspiration from the less
illuminated and understood corners and areas that we leave
uncovered or identify as open research questions. In short, we
believe that the foundations laid down in this paper will make
future work on information flow control sharper, easier, and
stronger.

Acknowledgments This paper benefited from the comments
of Musard Balliu, Pablo Buiras, Owen Arden, Sebastian Hunt,
Andrei Sabelfeld, and the anonymous reviewers. This work is
partly funded by the Swedish funding agencies SSF and VR.

REFERENCES

[1] A. Almeida Matos and G. Boudol, “On declassification and the non-
disclosure policy,” in Proc. IEEE Computer Security Foundations Work-
shop, 2005, pp. 226–240.

134134



[2] A. Almeida Matos and J. Cederquist, “Distributed Noninterference,”
in Euromicro Int. Conf. on Parallel, Distributed, and Network-Based
Processing. IEEE Computer Society, 2014, pp. 760–764.

[3] A. Askarov and A. Sabelfeld, “Security-typed languages for implemen-
tation of cryptographic protocols: A case study,” in Proc. European
Symp. on Research in Computer Security, ser. LNCS, vol. 3679.
Springer-Verlag, 2005.

[4] A. Askarov and A. Sabelfeld, “Gradual release: Unifying declassifi-
cation, encryption and key release policies,” in Proc. IEEE Symp. on
Security and Privacy, May 2007, pp. 207–221.

[5] A. Askarov and S. Chong, “Learning is change in knowledge:
Knowledge-based security for dynamic policies,” in Computer Security
Foundations Symposium (CSF), 2012. IEEE, 2012, pp. 308–322.

[6] A. Askarov and A. Sabelfeld, “Tight Enforcement of Information-
Release Policies for Dynamic Languages,” in IEEE Computer Security
Foundations Symposium, 2009, pp. 43–59.

[7] M. Balliu, “A logic for information flow analysis of distributed pro-
grams,” in Secure IT Systems. Springer Berlin Heidelberg, 2013, vol.
8208, pp. 84–99.

[8] M. Balliu, M. Dam, and G. Le Guernic, “Epistemic temporal logic for
information flow security,” in Proceedings of the ACM SIGPLAN 6th
Workshop on Programming Languages and Analysis for Security, ser.
PLAS ’11. ACM, 2011, pp. 6:1–6:12.

[9] A. Banerjee, D. Naumann, and S. Rosenberg, “Expressive declassifica-
tion policies and modular static enforcement,” in Proc. IEEE Symp. on
Security and Privacy. IEEE Computer Society, 2008, pp. 339–353.

[10] D. F. Brewer and M. J. Nash, “The chinese wall security policy,” in
Security and Privacy, 1989. Proceedings., 1989 IEEE Symposium on.
IEEE, 1989, pp. 206–214.

[11] N. Broberg and D. Sands, “Flow locks: Towards a core calculus for
dynamic flow policies,” in Programming Languages and Systems. 15th
European Symposium on Programming, ESOP 2006, ser. LNCS, vol.
3924. Springer Verlag, 2006.

[12] N. Broberg and D. Sands, “Flow-sensitive semantics for dynamic
information flow policies,” in ACM SIGPLAN Fourth Workshop on Pro-
gramming Languages and Analysis for Security (PLAS 2009). Dublin:
ACM, June 15 2009.

[13] N. Broberg and D. Sands, “Paralocks – role-based information flow
control and beyond,” in Symposium on Principles of Programming
Languages (POPL). ACM, 2010.

[14] N. Broberg, B. van Delft, and D. Sands, “Paragon for Practical Program-
ming with Information-Flow Control,” in Programming Languages and
Systems, ser. LNCS, 2013, vol. 8301, pp. 217–232.

[15] N. Broberg, B. van Delft, and D. Sands. (2015) The Anatomy and Facets
of Dynamic Policies - Technical Report. arXiv:1505.02021 [cs.CR].
http://arxiv.org/abs/1505.02021.

[16] P. Buiras and B. van Delft. Dynamic Enforcement of Dynamic Policies
- Technical Report. http://slio.bitbucket.org/slio-tr.pdf. Accessed: 2015-
02-11.

[17] S. Chong and A. C. Myers, “Security policies for downgrading,” in ACM
Conference on Computer and Communications Security, Oct. 2004, pp.
198–209.

[18] D. Clark, S. Hunt, and P. Malacaria, “Quantitative analysis of the
leakage of confidential data,” in QAPL’01, Proc. Quantitative Aspects
of Programming Languages, ser. ENTCS, vol. 59. Elsevier, 2002.

[19] D. Clark and S. Hunt, “Non-Interference for Deterministic Interactive
Programs,” in Proc. 5th International Workshop on Formal Aspects in
Security and Trust (FAST2008), ser. Lecture Notes in Computer Science.
Springer-Verlag, 2008.

[20] E. S. Cohen, “Information transmission in computational systems,”
ACM SIGOPS Operating Systems Review, vol. 11, no. 5, pp. 133–139,
1977.

[21] R. Focardi and R. Gorrieri, “A classification of security properties for
process algebras,” J. Computer Security, vol. 3, no. 1, pp. 5–33, 1995.

[22] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in Proc. IEEE Symp. on Security and Privacy, Apr. 1982, pp. 11–20.

[23] J. Y. Halpern and K. R. O’Neill, “Secrecy in multiagent systems,”
ACM Trans. Inf. Syst. Secur., vol. 12, no. 1, pp. 5:1–5:47, Oct. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1410234.1410239

[24] B. Hicks, K. Ahmadizadeh, and P. D. McDaniel, “From languages to
systems: Understanding practical application development in security-
typed languages,” in ACSAC. IEEE Computer Society, 2006.

[25] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic, “Dynamic updating
of information-flow policies,” in Foundations of Computer Security
Workshop, Jun. 2005, pp. 7–18.

[26] N. Li, J. Mitchell, and W. Winsborough, “Design of a role-based trust-
management framework,” in IEEE Symposium on Security and Privacy,
2002, pp. 114–130.

[27] H. Mantel, “Information flow control and applications—Bridging a
gap,” in Proc. Formal Methods Europe, ser. LNCS, vol. 2021. Springer-
Verlag, Mar. 2001, pp. 153–172.

[28] B. Montagu, B. C. Pierce, and R. Pollack, “A theory of information-
flow labels,” in Proceedings of the 2013 IEEE Computer Security
Foundations Symposium, Jun. 2013.

[29] A. C. Myers, “JFlow: Practical mostly-static information flow control,”
in Proc. ACM Symp. on Principles of Programming Languages, Jan.
1999, pp. 228–241.

[30] A. C. Myers and B. Liskov, “Protecting privacy using the decentralized
label model,” ACM Transactions on Software Engineering and Method-
ology, vol. 9, no. 4, pp. 410–442, 2000.

[31] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom, “Jif:
Java information flow,” Jul. 2001–2006, software release. http://www.
cs.cornell.edu/jif.

[32] S. Preibusch, “Information flow control for static enforcement of user-
defined privacy policies,” in Policies for Distributed Systems and
Networks (POLICY), 2011 IEEE International Symposium on. IEEE,
2011, pp. 133–136.

[33] J. M. Rushby, “Noninterference, transitivity, and channel-control secu-
rity policies,” SRI International, Tech. Rep. CSL-92-02, 1992.

[34] A. Sabelfeld and D. Sands, “Probabilistic noninterference for multi-
threaded programs,” in Proc. IEEE Computer Security Foundations
Workshop, Jul. 2000, pp. 200–214.

[35] A. Sabelfeld and D. Sands, “Dimensions and principles of declassifi-
cation,” in Proc. IEEE Computer Security Foundations Workshop, Jun.
2005, pp. 255–269.

[36] A. Sabelfeld and D. Sands, “Declassification: Dimensions and princi-
ples,” Journal of Computer Security, vol. 15, no. 5, pp. 517–548, 2009.

[37] G. Snelting, D. Giffhorn, J. Graf, C. Hammer, M. Hecker, M. Mohr, and
D. Wasserrab, “Checking probabilistic noninterference using joana,” it
- Information Technology, vol. 56, pp. 280–287, Nov. 2014.

[38] A. Stoughton, A. Johnson, S. Beller, K. Chadha, D. Chen, K. Foner,
and M. Zhivich, “You sank my battleship!: A case study in secure
programming,” in Proceedings of the Ninth Workshop on Programming
Languages and Analysis for Security, ser. PLAS’14. ACM, 2014, pp.
2:2–2:14.

[39] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic, “Managing Policy
Updates in Security-Typed Languages,” in Proceedings of the 19th IEEE
Workshop on Computer Security Foundations, 2006.

[40] N. Swamy and M. Hicks, “Verified Enforcement of Stateful Information
Release Policies,” in Proceedings of the Third ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security, ser. PLAS ’08.
ACM, 2008, pp. 21–32.

[41] B. van Delft, N. Broberg, and D. Sands, “Programming with Paragon,”
in Proc. 2013 Marktoberdorf Summer School, ser. NATO Science Series,
2013.

[42] B. van Delft, S. Hunt, and D. Sands, “Very Static Enforcement of
Dynamic Policies,” in Principles of Security and Trust. Springer, 2015.

[43] A. Zakinthinos and E. Lee, “A general theory of security properties,”
in In Proceedings of the IEEE Symposium on Security and Privacy.
Society Press, 1997, pp. 94–102.

[44] S. Zdancewic and A. C. Myers, “Robust declassification,” in Proc. IEEE
Computer Security Foundations Workshop, Jun. 2001, pp. 15–23.

[45] C. Zhang, “Conditional Information Flow Policies and Unwinding
Relations,” in Trustworthy Global Computing, ser. Lecture Notes in
Computer Science. Springer, 2012, vol. 7173, pp. 227–241.

[46] L. Zheng and A. C. Myers, “Dynamic security labels and noninterfer-
ence,” in Formal Aspects in Security and Trust. Springer, 2005, pp.
27–40.

135135



APPENDIX A
GLOSSARY OF TERMINOLOGY

Copying release
Making a copy of (derived) data available under
a more liberal security label.

Declassification
The deliberate change of the security level on
data to allow it to be used more liberally.

Determining function
Function that, based on its arguments (the
discriminator), determines a flow relation.

Dimension (of declassification)
A classifying axis on the basis of the
declassification goal (what, where, when, or
to whom information may flow).

Direct release
A Facet; information is considered released as
soon as the current flow relation allows it to flow.

Discriminator
Argument to the determining function.

Downgrading
See Declassification.

Dynamic policy
Information flow policy under which the flow
relations may change during computation.

Facet
An aspect of a security condition that determines
whether a particular class of information flows is
accepted as secure.

Flow relation
Relates components in the program or system
between which information is permitted to flow,
e.g. as an ordering between security labels.

Exclusion Knowledge
The set of secrets that could not have produced
a given observation.

Hierarchy of control
Division of a policy scheme in three levels of
control, each level controlling the one below it.

Information flow policy
Specification of the information flows permitted
during program execution.

Knowledge
The set of all secrets that could have produced a
given observation.

Meta policy
Specification of the way in which the current
flow relation may be changed.

Noninterference
Security condition that defines absence of
information flow, typically by saying that
changing a secret input will not cause a change
in public outputs.

Policy
See information flow policy.

Policy scheme
A set of flow relations and transition between
them, in isolation from any particular program or
system.

Policy specification mechanism
Mechanism or language to construct a policy
scheme.

Relabelling
Replacing the security label on information,
placing less restrictions on the usage of that
information.

Release Policy
Determines what information may be released
with each observation, possibly based on various
aspects such as the current flow relation when
the observation was produced, the attacker, or the
produced observation.

Replaying flows
A Facet; information that has flowed previously
can flow again, regardless of what the flow
relation dictates.

Security condition
Semantic specification of when a program
satisfies a given security policy.

Security label
A label attached to particular parts of the program
or system in order to express security concerns.

Static policy
Information flow policy under which the flow
relation may not change during computation.

Termination insensitivity
A Facet; when information that is revealed by the
termination or output progress of an application
is always permitted by the security condition.

Time-transitive flows
A Facet; information from security level A may
flow to level C via a third level B, while there
is no moment in time where the flow relation
allows flows from A to C directly.

Whitelisting flows
A Facet; an information flow is allowed whenever
some part of the flow relation permits it.

136136


