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Abstract—We view a distributed system as a graph of active
locations with unidirectional channels between them, through
which they pass messages. In this context, the graph structure of
a system constrains the propagation of information through it.

Suppose a set of channels is a cut set between an information
source and a potential sink. We prove that, if there is no disclosure
from the source to the cut set, then there can be no disclosure to
the sink. We introduce a new formalization of partial disclosure,
called blur operators, and show that the same cut property is
preserved for disclosure to within a blur operator. A related
compositional principle ensures limited disclosure for a class of
systems that differ only beyond the cut.

I. INTRODUCTION

In this paper, we consider information flow in a true-

concurrency, distributed model. Events in an execution may

be only partially ordered, and locations communicate via syn-

chronous message-passing. Each message traverses a channel.

The locations and channels form a directed graph.

Evidently, the structure of this graph constrains the flow of

information. Distant locations may have considerable informa-

tion about each other’s actions, but only if the information in

intermediate regions accounts for this. If a kind of information

does not traverse the boundary of some portion of the graph

(a cut set), then it can never be available beyond that. We

represent these limits on disclosure, i.e. kinds of information

that do not escape, using blur operators. A blur operator

returns a set of behaviors local to the information source; these

should be indistinguishable to the observer. Blur operators

formalize the semantic content of limited disclosures, and

they cover similar ground to other forms of what-dimension

declassification [51], [52]. Their definition, however, identifies

the principles that localize information flow.

When disclosure from a source to a cut set is limited to

within a blur operator, then disclosure to a more distant region

is limited to within the same blur operator (see Thm. 28, the

cut-blur principle). The cut-blur principle combines our what-
dimension declassification with a where-dimension perspec-

tive. It gives a criterion that localizes those disclosure limits

within a system architecture.

A related result, Thm. 32, supports compositional security.

Consider any other system that differs from a given one only

in its structure beyond the cut. That system will preserve

the flow limitations of the first, assuming that it has the

same local behaviors as the first in the cut set. We illustrate

this (Examples 33–34) to show that secrecy and anonymity

properties of a firewall and a voting system are preserved under

some environmental changes. Flow properties of a simple

system remain true for more complex systems, if the latter

do not distort behavior at the edge of the simple system.

Our model covers many types of systems, including net-

works, software architectures, virtualized systems, and dis-

tributed protocols such as voting systems. Network examples,

which involve little local state, are easy to describe, and rely

heavily on the directed graph structure. Blur operators high-

light their security goals as information-flow properties. Voting

systems offer an interesting notion of limited disclosure, since

they must disclose the result but not the choices of the

individual voters. Their granularity encourages composition,

since votes are aggregated from multiple precincts.

Motivation. A treatment of information flow that relies on the

graph structure of distributed systems facilitates compositional

security design and analysis.

Many systems have a natural graph structure, which is

determined early in the design process. Some are distributed

systems where the components are on separate platforms, and

the communication patterns are a key part of their security

architectures. In other cases, the components may be software,

such as processes or virtual machines, and the security archi-

tecture is largely concerned with their communication patterns.

The designers may want to validate that these communication

patterns support the information flow goals of the design early

in the life cycle. Thm. 32 justifies the designers in concluding

that a set of eventual systems all satisfy these security goals,

when those systems all agree on “the part that really matters.”

Contributions of this paper. Our main result is the cut-blur

principle, Thm. 28, which Thm. 32 brings to compositional

form. The definition of blur operator is a supplementary

contribution. We show that any reasonable notion of partial

disclosure satisfies the conditions for a blur (Lemma 22). We

regard these simple structural conditions as giving the “logical

form” of composable limited disclosure. The conditions lead

to very clean proofs of Thms. 28, 32.

Structure of this paper. After discussing motivating ex-

amples (Section II) and some related work (Section III), we

introduce our systems, called frames, and their execution

model in Section IV. In this static model, the channels

connecting different locations do not change during execution.

Section V proves the cut-blur principle for the simple case of

no disclosure of information at all across the boundary.

Section VI formalizes partial disclosure via blur operators,

and Section VII extends the cut idea to blurs (Thms. 28, 32).

Section VIII provides rigorous results to relate our model

to the literature. We end by indicating some future directions.

Appendix A contains longer proofs, and additional lemmas.
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Fig. 1. A Two-Router Firewall

II. TWO MOTIVATING EXAMPLES

We first propose two problems we view in terms of infor-

mation flow. One is about network filtering; the other concerns

anonymity in voting. In each, we want to prove an information

flow result once, and then reuse it compositionally under

variations that do not affect the core mechanism itself.

Example 1 (Network filtering). Fig. 1 shows a two-router

firewall separating the public internet (node i) from two

internal network regions n1, n2. The firewall should ensure

that any packet originating in the internal regions n1, n2

reaches i only if it satisfies some property of its source and

destination addresses, protocol, and port (etc.); we will call

these packets exportable. Likewise, any packet originating in

i reaches n1, n2 only if it satisfies a related property of its

source and destination addresses, protocol, and port (etc.); we

will call these packets importable.

These are information flow properties. The policy provides

confidentiality for non-exportable packets within n1, n2, en-

suring that they are not observable at i. It provides a kind

of integrity protection for n1, n2 from non-importable packets

from i, ensuring that n1, n2 cannot be damaged, or affected

at all, if they are malicious.

We assume here that packets are generated independently, so

that (e.g.) no process on a host in n1, n2 generates exportable

packets encoding confidential non-exportable packets it has

sent or received. If some process on a host is observing

packets and coding their contents into packets to a different

destination, this is a problem firewalls were not designed to

solve, and security administrators worry about it separately.

A firewall configuration enforcing a flow goal against the

internet viewed as a single node i should still succeed if i has

internal structure. Similarly, the internal regions n1, n2 may

vary without risk of security failure. ///

We will return to this example several times to illustrate

how we formalize the system and specify its flow goals.

Example 33 proves that some information flow goals of Fig. 1

remain true as the structure of i, n1, n2 varies.

Example 2. As another key challenge, consider an electronic

voting system such as ThreeBallot [42]. Fig. 2 shows the voters

v1, . . . , vk of a single precinct, their ballot box BB1, a channel

delivering the results to the election commission EC , and then

a public bulletin board Pub that reports the results.

The ballot box should provide voter anonymity: neither

EC nor anyone observing the results Pub should be able to
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Fig. 2. A single precinct
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Fig. 3. Multiple precincts report to EC

associate any particular vote with any particular voter vi. This

also is an information flow goal.

However, elections generally concern many precincts. Fig. 3

contains i precincts, all connected to the election commission

EC . Intuitively, a voter vn cannot lose their anonymity in the

larger system: BB1 has already anonymized the votes in this

first precinct. Accumulating precinct summaries at EC cannot

change the causal consequences of BB1’s actions. ///

We formalize the flow goals of this example in Example 26,

and justify Fig. 3 in Example 34.

These simple examples illustrate the payoff from a compo-

sitional approach to flow goals. Conclusions about a firewall

should be insensitive to changes in the structure of the net-

works to which it is attached. An anonymity property achieved

by a ballot mechanism should be preserved as we collect votes

from many precincts. These are situations where we want to

design, justify, and then reuse mechanisms, with a criterion

ensuring the mechanisms remain safe under changes outside

them. Thm. 32 below is the criterion we propose.

III. SOME RELATED WORK

Noninterference and nondeducibility. There is a massive

literature on information-flow security; Goguen and Meseguer

were key early contributors [20]. Sutherland introduced the

non-deducibility idea [53] as a way to formalize lack of infor-

mation flow, which we have adopted in our “non-disclosure”

(Def. 11). Subsequent work has explored a wide range of

formalisms, including state machines [47]; process algebras

such as CSP [44], [43], [48] and CCS [18], [19], [6]; and

bespoke formalisms [36], [29].

Irvine, Smith, and Volpano reinvigorated a language-based

approach [25], inherited from Denning and Denning [16],

in which systems are programs. Typing ensures that their

behaviors satisfy information-flow goals; cf. [50]. Distributed
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execution has been considered also, e.g. [58], [9], [5]. Our

work here is not specifically language-based, since the behav-

iors of our locations are sets of traces, not necessarily specified

by programs. Moreover, language-based work emphasizes

information flows from certain inputs to outputs, where the

system is often regarded as a function. Our systems need not

have any particular inputs, and information flow concerns the

correlation of behaviors in different regions.

Declassification. Declassification is a major concern for us.

A blur operator (Def. 21) determines an upper bound on what

a system may declassify. It may declassify information unless

its blur operators require those details to be blurred out. Like

escape-hatches [51] or relaxed noninterference [28], this is

disclosure along the what-dimension, in the Sabelfeld-Sands

classification [52]. The cut-blur principle connects this what
declassification to where the processing responsible for the

declassification will occur in a system architecture. In this

regard, it combines a semantic view of what information is

declassified with an architectural view related to intransitive

noninterference [47], [54]. Balliu et al. [4] connect what,
where, and when declassification via epistemic logic, although

without a compositional method.

McCamant and Ernst [34] study quantitative information

flow when programs run. A directed acyclic graph representing

information flow is generated dynamically from a particular

execution or set of executions. The max-flow/min-cut theorem

bounds flow in those runs by what can traverse minimal cuts.

Apparently, other possible executions may not respect the

bounds. Their flow conclusions are not compositional.

Composability and refinement. McCullough first raised

the questions of non-determinism and composability of

information-flow properties [35], [36]. This was a major focus

of work through much of the period since, persisting until

today [27], [57], [30], [31], [46], [41]. Mantel, Sands, and

Sudbrock [32] use a rely/guarantee method for compositional

reasoning about flow in the context of imperative programs.

Roscoe [45], [44] offers a definition based on determinism,

which is intrinsically composable. Morgan’s [39] program-

ming language treatment clarifies the refinements that preserve

security. Our results do not run afoul of the refinement paradox

either [26], [39]: our theorems identify the assumptions that

ensure that blurs are preserved.

Van der Meyden [55] provides an architectural treatment

designed to achieve preservation under refinement. Our work is

distinguished from it in offering a new notion of composition,

illustrated in Examples 1–2; in focusing on declassification;

and in applying uniformly to a range of declassification

policies, defined by the blur operators.

Van der Meyden’s work with Chong [10], [11] is most

closely related to ours. They consider “architectures,” i.e. di-

rected graphs that express an intransitive noninterference style

of what-dimension flow policy. The nodes of an architecture

are security domains, intended to represent levels of infor-

mation sensitivity. The authors define when a (monolithic)

deterministic state machine, whose transitions are annotated

by domains, complies with an architecture. The main result

in [10] is a cut-like epistemic property on the architecture

graph: Roughly, any knowledge acquired by a recipient about

a source implies that the same knowledge is available at every

cut set in the architecture graph.

A primary contrast between this paper and [10] is our

distributed execution model. We consider it a more local-

ized link to development, since components are likely to be

designed, implemented, and upgraded piecemeal. Chong and

van der Meyden focus instead on the specifications, in which

sensitivity levels of information (rather than active system

components) form the directed graph. This new and unfamiliar

specification is needed before analysis. Their epistemic logic

allows nested occurrences of the knowledge modality KG, or

occurrences of KG in the hypothesis of an implication. How-

ever, this surplus expressiveness is not used in their examples,

which do not have nested KG operators, or occurrences of KG

in the hypothesis of an implication. Indeed, our clean proof

methods suggest that our model may have the right degree of

generality, and be easy to understand, apply, and enrich.

Recently [11], they label the arrows by functions f , where

f filters information from its source, bounding visibility to its

target. They have not re-established their cut-like epistemic

property in the richer model, however. Van der Meyden and

Chong’s refinement method [55], [11] applies when the refined

system has a homomorphism onto the less refined one. It

covers Example 1 but not Example 2, where the refined system

contains genuinely new components and events.

We return to related work passim, and in Sections VIII–IX.

IV. FRAMES AND EXECUTIONS

We represent systems by frames. Each frame is a directed

graph. Each node, called a location, is equipped with a set

of traces defining its possible local behaviors. The arrows are

called channels, and allow the synchronous transmission of a

message from the location at the arrow tail to the location at

the arrow head. Each message also carries some data.

A. A Static Model

In this paper, we will be concerned with a static version of

the model, in which channel endpoints are never transmitted

from one location to another. Section IX mentions a dynamic

alternative, in which these endpoints may be delivered over

other channels. Each frame uses three disjoint domains:

Locations LO: Each location � ∈ LO is equipped with a

set of traces, traces(�) and other information, further

constrained below.

Channels CH: Each channel c ∈ CH is equipped with two

endpoints, entry(c) and exit(c). It is intended as a one-

directional conduit of data values between the endpoints.

Data values D: Data values v ∈ D may be delivered through

channels.

We will write EP for the set of channel endpoints, which we

formalize as EP = {entry, exit}×CH, although we generally

write entry(c) and exit(c) to stand for 〈entry, c〉 and 〈exit, c〉.
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A frame F supplies sets of endpoints ends(�) and traces(�)
for each location � ∈ LO. When entry(c) ∈ ends(�) we write

sender(c) = �; when exit(c) ∈ ends(�) we write rcpt(c) = �.
Thus, sender(c) can send messages on c, while rcpt(c) can

receive them. We write chans(�) for {c : sender(c) = � or

rcpt(c) = �}.

We say that λ is a label for � if λ = (c, v) where c ∈
chans(�) and v ∈ D; and we categorize labels c, v as:

local to � if sender(c) = � = rcpt(c);
a transmission for � if sender(c) = � �= rcpt(c);
a reception for � if sender(c) �= � = rcpt(c).

With this notation we define frames:

Definition 3. Given domains LO, CH,D, F = (ends, traces)
is a frame iff, for each � ∈ LO:

1. ends(�) ⊆ EP is a set of endpoints such that

(a) 〈e, c〉 ∈ ends(�) and 〈e, c〉 ∈ ends(�′) implies � = �′;
and

(b) there is an � such that entry(c) ∈ ends(�) iff

there is an �′ such that exit(c) ∈ ends(�′);
2. traces(�) is a prefix-closed set, each trace t ∈ traces(�)

being a finite or infinite sequence of labels λ. ///

In this definition, we do not require that the local behaviors

traces(�) should be determined in any particular way. They

could be specified by associating a program to each location,

or a term in a process algebra, or a labeled transition system,

or a mixture of these for the different locations.

Each F determines directed and undirected graphs:

Definition 4. If F is a frame, then the graph of F , written

gr(F), is the directed graph (V,E) whose vertices V are the

locations LO, and such that there is an edge (�1, �2) ∈ E iff,

for some c ∈ CH, sender(c) = �1 and rcpt(c) = �2.

The undirected graph ungr(F) has those vertices, and an

undirected edge (�1, �2) whenever either (�1, �2) or (�2, �1) is

in the edges of gr(F). ///

B. Execution semantics

The execution model for frames uses partially ordered sets

of events. The key property is that the events at any single

location � should be in traces(�). Our semantics is reminiscent

of Mattern [33], although his model lacks the underlying graph

structure. We require executions to be well-founded, but no

later results in this paper depend on that.

Definition 5 (Events; Executions). Let F be a frame, and let E
be a structure 〈E, chan,msg〉. The members of E are events,

equipped with the functions:

chan : E → CH returns the channel of each event; and

msg : E → D returns the message passed in each event.

B = (B,�) is a system of events, written B ∈ ES(E), iff (i)

B ⊆ E; (ii) � is a partial ordering on B; and (iii) for every

e1 ∈ B, {e0 ∈ B : e0 � e1} is finite.

Hence, B is well-founded. If B = (B,�), we refer to B as

ev(B) and to � as �B.

Now let B = (B,�) ∈ ES(E), and define proj(B, �) =

{e ∈ B : sender(chan(e)) = � or rcpt(chan(e)) = �}.
B is an execution, written B ∈ Exc(F) iff, for every � ∈ LO,

1. proj(B, �) is linearly ordered by �, hence—by the finite-

ness condition (iii)—a sequence, and

2. proj(B, �) ∈ traces(�). ///

We often write A,A′, etc., when A,A′ ∈ Exc(F). The

choice between two structures E1, E2 makes little difference:

If E1, E2 have the same cardinality, then to within isomorphism

they lead to the same systems of events and hence also

executions. Thus, we suppress the parameter E , henceforth.

This semantics associates a set of executions with each

frame, without imposing any notion of inputs and outputs,

or regarding a frame as a program-like function.

Definition 6. Let B1 = (B1,�1),B2 = (B2,�2) ∈ ES(F).

1. B1 is a substructure of B2 iff B1 ⊆ B2 and �1 = (�2 ∩
B1 ×B1).

2. B1 is an initial substructure of B2 iff B1 is a substructure

of B2, and for all y ∈ B1, if x �2 y, then x ∈ B1. ///

Lemma 7. 1. If B1 is a substructure of B2 ∈ ES(F), then

B1 ∈ ES(F).
2. If B1 is an initial substructure of B2 ∈ Exc(F), then

B1 ∈ Exc(F).
3. Being an execution is preserved under chains of initial

substructures: Suppose that 〈Bi〉i∈N is a sequence where

each Bi ∈ Exc(F), such that i ≤ j implies Bi is an initial

substructure of Bj . Then (
⋃

i∈N Bi) ∈ Exc(F). ///

Example 8 (Network with filtering). To localize our descrip-

tions of functionality, we expand the network of Fig 1; see

Fig. 4. Regions are displayed as •; routers, as ��; and interfaces,

as 
. When a router has an interface onto a segment, a

pair of locations—representing that interface as used in each

direction—lie between this router and each peer router [21].

Let Dir = {inb, outb} represent the inbound direction and

the outbound directions from routers, respectively. Suppose Rt
is a set of routers r, each with a set of interfaces intf(r), and

a set of network regions Rg containing end hosts.

Each member of Rt,Rg is a location. Each interface-

direction pair (i, r) ∈ (
⋃

r∈Rt intf(r))×Dir is also a location.

The channels are those shown. Each interface has a pair of

channels that allow datagrams to pass between the router and

the interface, and between the interface and an adjacent entity.

We also include a self-loop channel at each network region

i, n1, n2; it represents transmissions and receptions among the

hosts and network infrastructure coalesced into the region.

Thus:

LO = Rt ∪ Rg ∪ ((
⋃

r∈Rt intf(r))× Dir);
CH = {(�1, �2) ∈ LO × LO : �1 delivers datagrams directly

to �2};

D = the set of IP datagrams;

ends(�) = {entry(�, �2) : (�, �2) ∈ CH} ∪ {exit(�1, �) :
(�1, �) ∈ CH}, for each � ∈ LO.
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Fig. 4. Expanded representation of network from Fig. 1

The traces are easily specified. Each router r ∈ Rt receives

packets from inbound interfaces, and chooses an outbound

interface for each. Its state is a set of received but not yet

routed datagrams, and the sole initial state is ∅. The transition

relation, when receiving a datagram, adds it to this set. When

transmitting a datagram d in the current set, it removes d from

the next state and selects an outbound channel as determined

by the routing table. For simplicity, the routing table is an

unchanging part of determining the transition relation.

A directed interface enforces filtering rules. The state again

consists of the set of received but not-yet-processed datagrams.

The transition relation uses an unchanging filter function

to determine, for each datagram, whether to discard it or

retransmit it.

If n ∈ Rg is a region, its state is the set of datagrams it has

received and not yet retransmitted. It can receive a datagram;

transmit one from its state; or else initiate a new datagram.

If it is assumed to be well-configured, these all have source

address in a given range of IP addresses. Otherwise, the source

addresses may be arbitrary. ///

If the router is executing other sorts of processing, for

instance Network Address Translation or the IP Security

Protocols, then the behavior is slightly more complex [1],

[21], but sharply localized. Many other problems can be

viewed as frames. Beyond voting schemes (Ex. 2), attestation

architectures [13] and other secure virtualized systems are,

at one level, sets of virtual machines communicating through

one-directional channels.

Partially vs. totally ordered executions. Def. 5 does not

require the ordering � of “occurring before” to be total. When

events occur on different channels, neither has to precede the

other. Thus, our executions need not be sequential.

This has three advantages. First, it is more inclusive, since

executions with total orders satisfy our definition as do those

with (properly) partial orders. Indeed, the main claims of

this paper remain true when restricted to executions that are

totally ordered. Second, reasoning is simplified. We do not

need to interleave events when combining two local executions

to construct a global one, as encapsulated in the proofs of

Lemmas 15, 41. Nor do we need to “compact” events, when

splitting off a local execution, as we would if we used a

particular index set for sequences. This was probably an

advantage to us in developing these results. Third, the minimal

partial order is a reflection of causality, which can be used also

to reason about independence. We expect this to be useful in

future work.

There is also a disadvantage: unfamiliarity. It requires some

caution. Moreover, mechanized theorem provers have much

better support for induction over sequences than over well-

founded orders. This inconvenienced a colleague who used

PVS [40] to formalize parts of this work, and eventually chose

to use totally ordered executions for induction-oriented proofs.

With that difference, Thms. 28 and 32 have been confirmed

in PVS, as have the basic properties of Example 34.

V. NON-DISCLOSURE

Following Sutherland [53], we think of information flow

in terms of deducibility or disclosure. A participant observes

part of the system behavior, trying to draw conclusions about

a different part. If his observations exclude some possible

behaviors of that part, then he can deduce that those behaviors

did not occur. His observations have disclosed something.

These observations occur on a set of channels Co ⊆ CH,

and the deductions constrain the events on a set of channels

Cs ⊆ CH. Co is the set of observed channels, and Cs is the

set of source channels. The observer has access to the events

on the channels in Co in an execution, using these events to

learn about what happened at the source. The observed events

may rule out some behaviors on the channels Cs.

Definition 9. Let C ⊆ CH, and B ∈ ES(F).

1. The restriction B |̀ C of B to C is (B0, R), where

B0 = {e ∈ B : chan(e) ∈ C}, and

R = (� ∩ B0 ×B0).

2. B ∈ ES(F) is a C-run iff for some A ∈ Exc(F), B =
A|̀ C. We write C-runs(F), or sometimes C-runs, for the

set of C-runs of F . A local run is a member of C-runs
for the relevant C.

3. JC′�C(B) gives the C ′-runs compatible with a C-run B:

JC′�C(B) = {A |̀ C ′ : A ∈ Exc(F) and

A |̀ C = B}. ///

B |̀ C ∈ ES(F) by Lemma 7. In JC′�C(B), the lower right

index C indicates what type of local run B is. The lower left

index C ′ indicates the type of local runs in the resulting set.

J stands for “joint.” JC′�C(B) makes sense even if C and

C ′ overlap, though behavior on C ∩ C ′ is not hidden from

observations at C.

Lemma 10. 1. C-runs = JC�∅(∅, ∅), i.e. the local runs at

C are all those compatible with the empty event set (∅, ∅)
at the empty set of channels.

2. B �∈ C-runs implies JC′�C(B) = ∅.

3. B ∈ C-runs implies JC�C(B) = {B}.

4. JC′�C(B) ⊆ C ′-runs. ///

111111



A witnesses for B′ ∈ JC′�C(B) iff A ∈ Exc(F), B = A|̀ C,

and B′ = A |̀ C ′.
No disclosure means that any observation B at C is com-

patible with everything that could have occurred at C ′, where

compatible means that there is some execution that combines

the local C-run with the desired C ′-run.

We summarize “no disclosure” by the Leibnizian slogan:

Everything possible is compossible, “compossible” being his

coinage meaning possible together. If B,B′ are each separately

possible—being C,C ′-runs respectively—then there’s an exe-

cution A combining them, and restricting to each of them.

Definition 11. F has no disclosure from C to C ′ iff, for all

C-runs B, JC′�C(B) = C ′-runs. ///

A. Symmetry of disclosure

Like Shannon’s mutual information and Sutherland’s non-

deducibility [53], “no disclosure” is symmetric:

Lemma 12. 1. B′ ∈ JC′�C(B) iff B ∈ JC�C′(B′).
2. F has no disclosure from C to C ′ iff F has no disclosure

from C ′ to C.

Proof. 1. By the definition, B′ ∈ JC′�C(B) iff there exists an

execution B1 such that B1 |̀ C = B and B1 |̀ C ′ = B′. Which

is equivalent to B ∈ JC�C′(B′).
2. There is no disclosure from C ′ to C iff for every C-run B
and C ′-run B′, B′ ∈ JC′�C(B). By Clause 1, this is the same

as B ∈ JC�C′(B′).
Because of this symmetry, we speak of no disclosure

between C and C ′.

Lemma 13. 1. Suppose C0 ⊆ C1 and C ′0 ⊆ C ′1. If F has

no disclosure from C1 to C ′1, then F has no disclosure

from C0 to C ′0.

2. When C1, C2, C3 ⊆ CH,

JC3�C1(B1) ⊆
⋃

B2∈JC2�C1
(B1)

JC3�C2(B2). ///

This is not always an equality. B1 ∈ C1-runs and B3 ∈
C3-runs may make incompatible demands on a location �.
The location � may have endpoints on channels in both C1

and C3; or paths may connect � to both C1 and C3 without

traversing C2. Lemma 15 shows that otherwise equality holds.

See Appendix A for this, and longer subsequent, proofs.

B. The Cut Principle for Non-disclosure

Our key observation is that non-disclosure respects the

graph structure of a frame F . If cut ⊆ CH is a cut set in

the undirected graph ungr(F), then disclosure from a source

set src ⊆ CH to a sink obs ⊆ CH is controlled by disclosure to

cut. If there is no disclosure from src to cut, there can be no

disclosure from src to obs. As we will see in Section VII,

this property extends to limited disclosure in the sense of

disclosure to within a blur operator.

We view a cut as separating one set of channels as source

from another set of channels as sink. Although it is more usual

to take a cut to separate sets of nodes than sets of channels, it

is easy to transfer between the channels and the relevant nodes.

If C ⊆ CH, we let ends(C) = {� : ∃c ∈ C . sender(c) = � or

rcpt(c) = �}; conversely, chans(L) = {c : sender(c) ∈ L or

rcpt(c) ∈ L}. For a singleton set {�} we suppress the curly

braces and write chans(�).

Definition 14. Let src, cut, obs ⊆ CH be sets of channels; cut
is an undirected cut (or simply a cut) between src, obs iff

1. src, cut, obs are pairwise disjoint; and

2. every undirected path p1 in ungr(F) from any �1 ∈
ends(obs) to any �2 ∈ ends(src) traverses some member

of cut. ///

For instance, in Fig. 4, {c1, c2} is a cut between chans(i)
and chans({n1, n2}). Lemma 15 serves as the heart of the

proofs of the two main theorems about cuts, Thms. 16 and 28.

Lemma 15. Let cut be an undirected cut between src, obs,
and let Bo ∈ obs-runs. Then

Jsrc�obs(Bo) =
⋃

Bc∈Jcut�obs(Bo)

Jsrc�cut(Bc). ///

Proof. (Key idea; cf. App. A.) First, partition LO into three

classes. Let left contain � if � has an endpoint on obs, or if �
can be reached by a path not traversing cut. Let right contain

� if � has an endpoint on src, or if � can be reached by a path

not traversing cut. Let mid be the remainder, i.e. locations

separated from both left and right by a channel in cut.
Suppose that A1 witnesses for Bc ∈ Jcut�obs(Bo), and A2

witnesses for Bs ∈ Jsrc�cut(Bc). A1 and A2 agree for events

involving mid, namely the events in Bc shared between them.

We build a witness A for Bs ∈ Jcut�obs(Bo) by taking the

events in A1 involving left ∪mid, union the the events in A2

involving right ∪mid. A is an execution because no location

has a conflict between events from A1 and A2.

The partial order semantics means that no arbitrary inter-

leaving is needed to create the instance A. Lemma 15 is in fact

a corollary of Lemma 31, which makes an analogous assertion

about a pair of overlapping frames.

Theorem 16. Let cut be an undirected cut between src, obs
in F . If there is no disclosure between src and cut, then there

is no disclosure between src and obs.

Proof. Suppose that Bs ∈ src-runs and Bo ∈ obs-runs. We

must show Bs ∈ Jsrc�obs(Bo). To apply Lemma 15, let A ∈
Exc(F) such that Bo = A |̀ obs; A exists by the definition of

obs-run. Letting Bc = A |̀ cut, we have Bc ∈ Jcut�obs(Bo).
Since there is no disclosure between cut and src, Bs ∈

Jsrc�cut(Bc), and Lemma 15 applies.

Example 17. In Fig. 4 let r1 be configured to discard all

inbound packets, and r2 to discard all outbound packets. Then

the empty event system is the only member of {c1, c2}-runs.
Hence there is no disclosure between chans(i) and {c1, c2}.

By Thm. 16, there is no disclosure to chans({n1, n2}). ///

112112



Disconnected portions of a frame cannot interfere:

Corollary 18. If there is no path between src and obs in

ungr(F), then there is no disclosure between them.

Proof. Then cut = ∅ is an undirected cut set, and there is

only one cut-run, namely the empty system of events. It is

thus compatible with all src-runs.

Thm. 16 and its analogue Thm. 28, while reminiscent of

the max flow/min cut principle (cf. e.g. [14, Sec. 26.2]), are

however quite distinct from it, as the latter depends essentially

on the quantitative structure of network flows. Our results

may also seem reminiscent of the Data Processing Inequality,

stating that when three random variables X,Y, Z form a

Markov chain, the mutual information I(X;Z) ≤ I(X;Y ).
Indeed, Thm. 16 entails the special case where I(X;Y ) = 0,

choosing gr(F) to be a single path X → Y → Z. For more

on quantitative information flow, see the conclusion (Sec. IX).

VI. BLUR OPERATORS

We will now adapt our theory to apply to partial disclosure

as well as no disclosure. An observer learns something about

a source of information when his observations are compatible

with a proper subset of the behaviors possible for the source.

Thus, the natural way to measure what has been learnt is the

decrease in the set of possible behaviors at the source (see

among many sources of this idea e.g. [17], [3]).

This starting point suggests focusing, for every frame and

regions of interest src ⊆ CH and obs ⊆ CH, on the

compatibility equivalence relations on src-runs:

Definition 19. Let src, obs ⊆ CH. If B1,B2 are src-runs, we

say that they are obs-equivalent, and write B1 ≈obs B2, iff, for

all obs-runs Bo, B1 ∈ Jsrc�obs(Bo) iff B2 ∈ Jsrc�obs(Bo). ///

Lemma 20. For each obs and Bo ∈ obs-runs:

1. ≈obs is an equivalence relation;

2. Jsrc�obs(Bo) is a union of ≈obs-equivalence classes: let

{Si}i∈I be the family of all ≈obs-equivalence classes.

For some I0 ⊆ I , Jsrc�obs(Bo) =
⋃

i∈I0 Si. ///

No disclosure means that all src-runs are obs-equivalent,

i.e. I0 always equals I . Any notion of partial disclosure must

respect obs-equivalence, since no observations can possibly

“split” apart obs-equivalent src-runs. Partial disclosures always

respect unions of obs-equivalence classes.

Rather than working directly with these unions of obs-
equivalence classes, we instead focus on functions on sets

of runs that satisfy three properties. These properties express

the structural principles on partial disclosure that make our

cut-blur and compositional principles hold. We call operators

satisfying the properties blur operators. Lemma 22 shows

that an operator that always returns unions of obs-equivalence

classes is necessarily a blur operator.

When we want to prove results about all notions of partial

disclosure, we prove them for all blur operators. When we

want to show a particular relation is a possible notion of partial

disclosure, we show that it generates an equivalence relation;

Lemma 22 then justifies us in applying Thms. 28, 32.

Definition 21. A function f on sets is a blur operator iff it

satisfies:

Inclusion: For all sets S, S ⊆ f(S);
Idempotence: f is idempotent, i.e. for all sets S, f(f(S)) =

f(S); and

Union: f commutes with unions: If Sa∈I is a family indexed

by the set I , then

f(
⋃

a∈I
Sa) =

⋃

a∈I
f(Sa). (1)

S is f -blurred iff f is a blur operator and S = f(S). ///

By Idempotence, S is f -blurred iff it is in the range of the

blur operator f . Since S =
⋃

a∈S{a}, the Union property says

that f is determined by its action on the singleton subsets of

S. Thus, Inclusion could have said a ∈ f({a}).
Monotonicity also follows from the Union property; if S1 ⊆

S2, then S2 = S0 ∪ S1, where S0 = S2 \ S1. Thus f(S2) =
f(S0) ∪ f(S1), so f(S1) ⊆ f(S2).

Lemma 22. Suppose that A is a set, and R is a partition

of the elements of A. There is a unique function fR on sets

S ⊆ A such that

1. fR({a}) = S iff a ∈ S and S ∈ R;

2. fR commutes with unions (Eqn. 1).

Moreover, fR is a blur operator.

Proof. Since S =
⋃

a∈S{a}, fR(S) is uniquely defined by

the union principle (Eqn. 1).

Inclusion and Union are immediate from the form of the

definition. Idempotence holds because being in the same R-

equivalence class is transitive.

Although every equivalence relation determines a blur op-

erator, the converse is not true: Not every blur operator is of

this form. For instance, let A = {a, b}, and let f({a}) = {a},

f({b}) = f({a, b}) = {a, b}. However, by Lemma 20 (cf. [24,

Prop. 8]), useful partial disclosure is of this form:

Lemma 23. If S = Jsrc�obs(Bo) is f -blurred, and Bs ∈ S,

then f({Bs}) is a union of ≈obs-equivalence classes. ///

The importance of Def. 21 is to identify the proof principles

that make Thm. 28 true. The intuition comes from blurring an

image: The viewer no longer knows the details of the scene,

but only that it was some scene which, when blurred, would

look like this, as the following example indicates.

Example 24. Imaginary Weather Forecasting Inc. (IWF) sells

tailored, high-resolution weather data and forecasts to airlines,

airports, etc., and low-resolution weather data more cheaply to

TV and radio stations. IWF’s low-tier subscribers should not

learn higher resolution data than they have paid for. There is

some disclosure about high resolution data because (e.g.) when

low-tier subscribers see warm temperatures, they know that
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the high-resolution data is inconsistent with snow. We can

formalize this partial disclosure as a blur.

Suppose IWF creates its low-resolution data dL by applying

a lossy compression function comp to high-resolution data dH .

When low-tier subscribers receive dL, they know that the high-

resolution data IWF measured from the environment is some

element of comp−1(dL) = {dH : comp(dH) = dL}. These

sets are f -blurred where f({dH}) = {d′H : comp(d′H) =
comp(dH)}. ///

Curiously, IWF wants the low-tier customer, who receives

one set of outputs, not to be able to infer too much about the

outputs delivered to the high-tier customers. The inputs to the

system—sensor values for temperature, wind, pressure etc. at

different locations—are not of high value [22].

We will study information disclosure to within blur opera-

tors f , which we interpret as meaning JC′�C(Bc) is f -blurred.

This is an “upper bound” on how much information about

the local run at C ′ may be disclosed when Bc is observed.

The observer will know an f -blurred set S ∈ P(C ′-runs) to

which the behavior at C ′ belongs, without being able to infer

anything finer than this f -blurred set.

Definition 25. Let obs, src ⊆ CH and f : P(src-runs) →
P(src-runs).

F restricts disclosure from src to obs to within f iff f is

a blur operator and Jsrc�obs(Bo) is f -blurred, for every Bo ∈
obs-runs.

We also say that F f -limits src-to-obs flow. ///

At one extreme, no-disclosure is disclosure to within a blur

operator, namely the one that ignores S and adds all C ′-runs:

fall(S) = {A |̀ C ′ : A ∈ Exc(F)}.
At the other extreme, the maximally permissive security policy

is disclosure to within the identity fid(S) = S. The blur fid
shows that every frame restricts disclosure to within some blur

operator. Every set is a union of fid-blurred sets.

F may f -limit src-to-obs flow even when the intersection

obs ∩ src is non-empty, as long as f is not too fine-grained;

see below (Def. 38).

Example 26. Suppose that F is an electronic voting system

such as ThreeBallot [42]. Some locations LEC are run by the

election commission. We will regard the voters themselves as a

set of locations LV . Each voter delivers a message containing,

in some form, his vote for some candidate.

The election officials observe the channels connected to

LEC , i.e. chans(LEC). To determine the correct outcome, they

must infer a property of the local run at chans(LV ), namely,

how many votes for each candidate occurred. However, they

should not find out which voter voted for which candidate [15].

We formalize this via a blur operator. Suppose B′ ∈
chans(LV )-runs is a possible behavior of all voters in LV .

Suppose that π is a permutation of LV . Let π · B′ be the

behavior in which each voter � ∈ LV casts not his own

actual vote, but the vote actually cast by π(�). That is, π

represents one way of reallocating the actual votes among

different voters. Now for any S ⊆ chans(LV )-runs let

f0(S) = {π · B′ : B′ ∈ S ∧ π is a permutation of LV }. (2)

This is a blur operator: (i) the identity is a permutation; (ii)

permutations are closed under composition; and (iii) Eqn. 2

implies commutation with unions. The election commission

should learn nothing about the votes of individuals, meaning

that, for any B ∈ chans(LEC)-runs the commission could

observe, Jchans(LV )�chans(LEC)(B) is f0-blurred. Permutations

of compatible voting patterns are also compatible.

This example is easily adapted to other considerations. For

instance, the commissioners of elections are also voters, and

they know how they voted themselves. Thus, we could define

a (narrower) blur operator f1 that only uses the permutations

that leave commissioners’ votes fixed.

In fact, voters are often divided among different precincts,

and tallies are reported on a per-precinct basis. Thus, we have

sets V1, . . . , Vk of voters registered at the precincts P1, . . . , Pk

respectively. The relevant blur function says that we can

permute the votes of any two voters v1, v2 ∈ Vi within the

same precinct. One cannot permute votes between different

precincts, since that could change the tallies in the individual

precincts. ///

Example 27. Suppose in Fig. 4: The inbound interface from

i to router r1 discards downward-flowing packets unless their

source is an address in i and the destination is an address in

n1, n2. The inbound interface for downward-flowing to router

r2 discards packets unless the destination address is the IP for

a web server www in n1, and the destination port is 80 or 443,

or else their source port is 80 or 443 and their destination port

is ≥ 1024.

We filter outbound (upward-flowing) packets symmetrically.

A packet is importable iff its source address is in i and

either its destination is www and its destination port is 80 or

443; or else its destination address is in n1, n2, its source port

is 80 or 443, and its destination port is ≥ 1024.

It is exportable iff, symmetrically, its destination address is

in i and either its source is www and its source port is 80 or

443; or else its source address is in n1, n2, its destination port

is 80 or 443, and its source port is ≥ 1024.

We will write selectB p for the result of selecting those

events e ∈ ev(B) that satisfy the predicate p(e), restricting

� to the selected events. Now consider the operator fi on

chans(i)-runs generated as in Lemma 22 from the equivalence

relation:

B1 ≈i B2 iff they agree on all importable events, i.e.:

selectB1 (λe .msg(e) is importable) ∼=
selectB2 (λe .msg(e) is importable).

The router configurations mentioned above are intended

to ensure that there is fi-limited flow from chans(i) to

chans({n1, n2}). This is an integrity condition; it is meant

to ensure that systems in n1, n2 cannot be affected by bad

(i.e. non-importable) packets from i.
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Outbound, the blur fe on chans({n1, n2})-runs is generated

from the equivalence relation:

B1 ≈e B2 iff they agree on all exportable events, i.e.:

selectB1 (λe .msg(e) is exportable) ∼=
selectB2 (λe .msg(e) is exportable).

The router configurations are also intended to ensure that there

is fe-limited flow from chans({n1, n2}) to chans(i).

This is a confidentiality condition; it is meant to ensure

that external observers learn nothing about the non-exportable

traffic, which was not intended to exit the organization.

In this example, transmission of an exportable packet is

never dependent on reception of a non-exportable packet, and

similarly for importable packets. In applications lacking this

simplifying property, proving flow limitations is harder. ///

VII. THE CUT-BLUR PRINCIPLE

The symmetry of non-disclosure (Lemma 12) no longer

holds for disclosure to within a blur. We have, however, the

natural extension of Thm 16:

Theorem 28 (Cut-Blur Principle). Let cut be an undirected

cut between src, obs in F . If F f -limits src-to-cut flow, then

F f -limits src-to-obs flow.

Proof. By the hypothesis, f is a blur operator. Let Bo be a

obs-run. We want to show that Jsrc�obs(Bo) is an f -blurred

set, i.e. Jsrc�obs(Bo) = f(Jsrc�obs(Bo)).

For convenience, let Sc = Jcut�obs(Bo).

By Lemma 15, Jsrc�obs(Bo) =
⋃
Bc∈Sc

Jsrc�cut(Bc). Thus,

we must show that the latter is f -blurred.

By the assumption that each Jsrc�cut(Bc) is f -blurred and

by idempotence, Jsrc�cut(Bc) = f(Jsrc�cut(Bc)). Now:

⋃

Bc∈Sc

Jsrc�cut(Bc) =
⋃

Bc∈Sc

f(Jsrc�cut(Bc))

= f(
⋃

Bc∈Sc

Jsrc�cut(Bc)),

applying the union property (Eqn. 1). Hence,⋃
Bc∈Sc

Jsrc�cut(Bc) is f -blurred.

This proof is the reason we introduced the Union principle

Eqn. 1, rather than simply considering all closure opera-

tors [37]. Eqn. 1 distinguishes the closure operators that allow

the “long distance reasoning” summarized in the proof.

Example 29. The frame of Example 27 has fi-limited flow

from chans(i) to the cut {c1, c2}. Thus, it has fi-limited flow

from chans(i) to chans({n1, n2}).
It also has fe-limited flow from chans({n1, n2}) to the cut

{c1, c2}. This implies fe-limited flow to chans(i). ///

A. A Compositional Relation between Frames

Our next technical result gives us a way to “transport” a

blur security property from one frame F1 to another frame

F2. It assumes that the two frames share a common core,

some set of locations L0. These locations should hold the same

channel endpoints in each of F1,F2, and should engage in the

same traces. The boundary separating L0 from the remainder

of F1,F2 necessarily forms a cut set cut. Assuming that the

local runs at cut are respected, blur properties are preserved

from F1 to F2.

Definition 30. A set L0 of locations is shared between F1 and

F2 iff F1,F2 are frames with locations LO1,LO2, endpoints

ends1, ends2 and traces traces1, traces2, resp., where L0 ⊆
LO1 ∩ LO2, and for all � ∈ L0, ends1(�) = ends2(�) and

traces1(�) = traces2(�).
When L0 is shared between F1 and F2, let:

left0 = {c ∈ CH1 : both endpoints of c are locations � ∈ L0};

cut0 = {c ∈ CH1 : exactly one endpoint of c is a location

� ∈ L0}; and

righti = {c ∈ CHi : neither endpoint of c is a location � ∈
L0}, for i = 1, 2.

We will also use C-runs1 and C-runs2 to refer to the local runs

of C within F1 and F2, resp.; and J1
C′�C(B) and J2

C′�C(B)
will refer to the compatible C ′ runs in the frames F1 and F2,

resp. ///

Indeed, cut0 is an undirected cut between left0 and righti
in Fi, for i = 1 and 2. In an undirected path that starts in

left0 and never traverses cut0, each arc always has both ends

in L0. We next prove a two-frame analog of Lemma 15.

Lemma 31. Let L0 be shared between frames F1,F2. Let

src ⊆ left0, and Bc ∈ cut0-runs1 ∩ cut0-runs2.

1. J1
src�cut0(Bc) = J2

src�cut0(Bc).
2. Assume cut0-runs(F2) ⊆ cut0-runs(F1). Let obs ⊆

right2, and Bo ∈ obs-runs2. Then

J2
src�obs(Bo) =

⋃

Bc∈J2
cut0�obs(Bo)

J1
src�cut0(Bc).

Part 1 states that causality acts locally. The variable por-

tions right1, right2 of F1 and F2 can affect what happens

in their shared part left. But it does so only by changing

which cut0-runs are possible. Whenever both frames agree

on any Bc ∈ cut0-runs1 ∩ cut0-runs2, then the left-runs runs

compatible with Bc are the same. Distant effects from righti
to left occur only via local runs at the boundary cut0.

The assumption cut0-runs(F2) ⊆ cut0-runs(F1) in Part 2

and Thm. 32 is meant to limit this variability in one direction.

Theorem 32. Suppose that L0 is shared between frames

F1,F2, and assume cut0-runs(F2) ⊆ cut0-runs(F1). Consider

any src ⊆ left0 and obs ⊆ right2. If F1 f -limits src-to-cut0
flow, then F2 f -limits src-to-obs flow.

The proof is similar to the proof of the cut-blur principle,

which effectively results from it by replacing Lemma 31 by
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Lemma 15, and omitting the subscripts on frames and their

local runs. The cut-blur principle is in fact the corollary of

Thm. 32 for F1 = F2.

B. Two Applications

Thm. 32 is useful as a compositional principle. It implies

that in Example 29 non-exportable traffic in n1, n2 remains

unobservable even as we vary the top part of Fig. 4:

Example 33. Regarding Fig. 4 as the frame F1, let L0 be

the locations below {c1, c2}, and let cut = {c1, c2}. Let F2

contain L0, cut as shown, and have any graph structure above

cut such that cut remains a cut between the new structure and

F0. Let the new locations have any transition systems such

that the local runs agree, i.e. cut-runs(F2) = cut-runs(F1).
Then by Thm. 32, external inferences about chans({n1, n2})
are guaranteed to blur out non-exportable events. ///

It is appealing that our security goal is independent of

changes in the structure of the internet that we do not control.

A similar property holds for the integrity goal of Example 29

as we alter the internal network. The converse questions—

preserving the confidentiality property as the internal network

changes, and the integrity property as the internet changes—

appear to require a different, refinement-oriented theorem.

Example 34. Consider a frame F1 representing a precinct, as

shown in Fig. 2. It consists of a set of voters v = {v1, . . . , vk},

a ballot box BB1, and a channel c1 connecting that to the

election commission EC . The EC publishes the results over

the channel p to the public Pub.

We have proved that a particular implementation of BB1

ensures that F1 blurs the votes; we formalized this within the

theorem prover PVS. That is, if a pattern of voting in precinct

1 is compatible with an observation at c1, then any permutation

of the votes at v is also compatible.

The cut-blur principle implies this blur also applies to

observations at channel p to the public. Other implementations

of BB1 also achieve this property. ThreeBallot and VAV [42]

appear to have this effect; they involve some additional data

delivered to Pub, namely the receipts for the ballots.1

However, elections generally concern many precincts.

Frame F2 contains i precincts, all connected to the election

commission EC (Fig. 3). Taking L0 = v ∪ {BB1}, we may

apply Thm. 32. We now have cut = {c1}. Thus, to infer that

F2 blurs observations of the voters in precinct 1, we need only

check that {c1} has no new local runs in F2.

By symmetry, each precinct in F2 enjoys the same blur.

Thus—for a given local run at p—any permutation of the

votes at v preserves compatibility in F2, and any permutation

of the votes at w preserves compatibility in F2. However,

Thm. 32 does not say that any pair of permutations at v and

w must be jointly compatible. That is, does every permutation

on v∪w that respects the division between the precinct of the

vs and the precinct of the ws preserve compatibility? Although

1Our claim is possibilistic. Quantitatively, this may no longer hold: Some
permutations may be more likely than others, given the receipts [12], [38].

•d1
cin1

��

· · · •dk
cin1

��
•Mcout1

��
coutk

��

Fig. 5. Machine M , domains {d1, . . . , dk}

Thm. 32 does not answer this question, the answer is yes, as

we can see by applying Lemma 41 to F2. ///

Thm. 32 is a tool to justify abstractions. Fig. 4 is a sound

abstraction of a variety of networks, and Fig. 2 is a sound

abstraction of the various multiple precinct instances of Fig. 3.

VIII. RELATING BLURS TO NONINTERFERENCE AND

NONDEDUCIBILITY

If we specialize frames to state machines (see Fig. 5), we

can reproduce some of the traditional definitions. Let D =
{d1, . . . , dk} be a finite set of domains, i.e. sensitivity labels;

↪→ ⊆ D × D specifies which domains are visible to others,

and may influence them. We assume ↪→ is reflexive, though not

necessarily transitive. A is a set of actions, and dom : A → D
assigns a domain to each action; O is a set of outputs.

M = 〈S, s0, A, δ, obs〉 is a (possibly non-deterministic)

state machine with states S, initial state s0, transition relation

δ ⊆ S × A × S, and observation function obs : S ×D → O.

M has a set of traces, and each trace α determines a sequence

of observations for each domain [47], [54], [55].

M accepts commands from A along the incoming channels

cini from the di; each command a ∈ A received from di
has sensitivity dom(a) = di. M delivers observations along

the outgoing channels couti . The frame requires a little extra

memory, in addition to the states of M , to deliver outputs over

the channels couti .

F is star-like, since M holds an endpoint for each channel.

Hence, if A ∈ Exc(F), all events are in proj(A,M), and �A
is linearly ordered. Let us write:

Ci = {cini , couti } for di’s input and output for M ;

vis(di) = {cinj : dj ↪→ di} for inputs visible to di;
IN = {cinx : 1 ≤ x ≤ k} for the input channels;

input(A) = A |̀ IN for all input behavior in A.

Noninterference and nondeducibility. Noninterference [20]

and its variants are defined by purge functions p for each target

domain di, defined by recursion on input behaviors input(A).
The original Goguen-Meseguer (GM) purge function po for

di [20] retains the events e ∈ input(A) satisfying the predicate

chan(e) ∈ vis(di).

A purge function for intransitive ↪→ relations was subsequently

proposed by Haigh and Young [23]. In the purge function

for domain di, any input event e0 ∈ input(A) is retained if

input(A) has an increasing subsequence e0 � e1 � . . . � ej
where dom(chan(ej)) = di and, for each k with 0 ≤ k < j,

chan(ek) ∈ vis(dom(ek+1)).
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In [54], van der Meyden’s purge functions yield tree structures

instead of subsequences; every path from a leaf to the root

in these trees is a subsequence consisting of permissible

effects chan(ek) ∈ vis(dom(ek+1)). This tightens the notion

of security, because the trees “forget” ordering information

between events that lie on different branches to the root.

We formalize a purge function for a domain di ∈ D as

being a function from executions A to some range set A. It

should be sensitive only to input events in A (condition 1),

and it should certainly reflect all the inputs visible to level di
(condition 2). In most existing definitions, the range A consists

of sequences of input events, though in van der Meyden’s [54],

they are trees of input events. In [11], the range depends on

how declassification conditions are defined.

Definition 35. Let F be as in Fig. 5, and A any set. A function

p : Exc(F) → A is a di-purge function, where di ∈ D, iff

1. input(A) = input(A′) implies p(A) = p(A′);
2. p(A) = p(A′) implies A |̀ vis(di) = A′ |̀ vis(di).

If p is a di-purge, A ≈p A′ means p(A) = p(A′). ///

Each purge p determines notions of noninterference and

nondeducibility.

Definition 36. Let p be a purge function for di ∈ D. F is
p-noninterfering, written F ∈ NIp, iff, for all A,A′ ∈ Exc(F),

A ≈p A′ implies A |̀ Ci = A′ |̀ Ci.

F is p-nondeducible (F ∈ NDp), iff, for all A,A′ ∈ Exc(F),

A ≈p A′ implies A′ |̀ IN ∈ JIN�Ci
(A |̀ Ci). ///

Here we take non-deducibility to mean that di’s obser-

vations provide no more information about all inputs than

the purge p preserves. Thus, A |̀ Ci is akin to Sutherland’s

view [53, Sec. 5.2], although slightly adapted.

Sutherland’s hidden from appears to mean A′ |̀ {cinj : dj �↪→
di}, i.e. the inputs that would not be visible to di. This

agrees with our proposed definition in the case Sutherland

considered, namely the classic GM purge for noninterference.

The assumption A ≈p A′ is meant to extend nondeducibility

for other purges. As expected, noninterference is tighter than

nondeducibility [53, Sec. 7]:

Lemma 37. Let p be a purge function for domain di. F ∈ NIp

implies F ∈ NDp.

Proof. Assume that F ∈ NIp and A,A′ ∈ Exc(F), where

A ≈p A′. By the definition, A|̀ Ci = A′ |̀ Ci. Thus, JIN�Ci(A|̀
Ci) = JIN�Ci

(A′ |̀ Ci). But A′ |̀ IN ∈ JIN�Ci
(A′ |̀ Ci), because

A′ is itself a witness.

NIp and NDp are not equivalent, as NDp has an additional

(implicit) existential quantifier. The witness execution showing

that A′ |̀ IN ∈ JIN�Ci
(A |̀ Ci) may differ from A′ on channels

c �∈ IN ∪ Ci, namely the output channels coutj for j �= i.
The symmetry of nondisclosure (Lemma 12) does not hold

for NIp and NDp. For instance, relative to the GM purge for

flow to di, there may be noninterference for inputs at dj , while

there is interference for flow from di to dj . The asymmetry

arises because the events to be concealed are only inputs at

the source, while the observed events are both inputs and

outputs [53].

The idea of p-noninterference is useful only when M is

deterministic, since otherwise the outputs observed on couti

may differ even when input(A) = input(A′). For non-

deterministic M , nondeducibility is more natural.

Purges and blurs. We can associate a blur operator fp with

each purge function p, such that NDp amounts to respecting

the blur operator fp. We regard NDp as saying that the

input/output events on Ci tell di no more about all the

inputs than the purged input p(A) would disclose. We use

a compatibility relation where the observed channels and the

source channels overlap on cini .

Definition 38. Let p be a purge function for di, and define the

equivalence relation R ⊆ (IN-runs×IN-runs) by the condition:

R(B1,B2) iff there exist A1,A2 ∈ Exc(F) s.t.:

(
∧

j=1,2

Bj = Aj |̀ IN) ∧ A1 ≈p A2. (3)

Define fp : P(IN-runs) → P(IN-runs) to close under the R-

equivalence classes as in Lemma 22. ///

In fact, ND is a form of disclosure limited to within a blur:

Lemma 39. Let p be a purge function for domain di. For all

F , F ∈ NDp iff F fp-limits IN-to-Ci flow.

Proof. 1. NDp implies fp-limited flow. Suppose that F ∈
NDp; Bi ∈ Ci-runs; and B1 ∈ JIN�Ci(Bi). If B2 ∈ fp(B1),
we must show that B2 ∈ JIN�Ci(Bi).

By Def. 38 there are A1,A2 such that

A1 |̀ IN = B1, A2 |̀ IN = B2, A1 ≈p A2.

Furthermore, let A witness B1 ∈ JIN�Ci(Bi). Then

A |̀ IN = B1 = A1 |̀ IN.
So Def. 35, Clause 1 says A ≈p A1, and, by transitivity of

≈p, also A ≈p A2. Since F ∈ NDp,

A2 |̀ IN ∈ JIN�Ci(A |̀ Ci).

That is, B2 ∈ JIN�Ci
(Bi) as required.

2. fp-limited flow implies NDp. Assume JIN�Ci
(Bi) is fp-

blurred for all Bi. We must show, for all A1,A2,

A1 ≈p A2 implies (A2 |̀ IN) ∈ JIN�Ci
(A1 |̀ Ci).

So choose executions with A1 ≈p A2. By Def. 38, R(A1 |̀
IN,A2 |̀ IN), since A1,A2 satisfy the condition. Thus,

A2 |̀ IN ∈ JIN�Ci(A1 |̀ Ci),

since JIN�Ci
(A1 |̀ Ci) is fp-blurred and contains A1 |̀ IN.

A frame F of this kind has definite inputs and outputs.

The inputs are the events on IN, and the outputs are the
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events on OUT = {coutx : 1 ≤ x ≤ k}. We may thus regard

it as a function from inputs to outputs (or, if M is non-

deterministic, to sets of outputs). In this context, one could

compare blurs with the partial equivalence relation model

or abstract noninterference [24], which apply only when the

system is a function mapping inputs to outputs. One can

also regard some dj as using a strategy for future inputs on

cinj based on current outputs on coutj , recovering a form of

nondeducibility on strategies [56].

Semantic sensitivity. Blur operators provide an explicit

semantic representation of the information that will not be

disclosed when flow is limited. This is in contrast to intran-

sitive non-interference [47], [23], [54], which considers only

whether the “↪→ plumbing” among domains is correct.

Example 40. We represent Imaginary Weather Forecasting

(IWF, see Example 24) as a state machine frame as in Fig. 5.

It has domains {ws, �, p, cmp} for the weather service, low-

tier customer, premium-tier customer and compression service

respectively. Let ↪→ be the smallest reflexive (but intransitive)

relation extending Eqn. 4, where all reports must flow through

the compression service:

ws ↪→ cmp ↪→ p and cmp ↪→ �. (4)

The cmp service should compress reports lossily before

sending them to � and compress them losslessly for p. How-

ever, a faulty cmp may compress losslessly for both � and p.

Purge functions [23], [47], [54] do not distinguish between

correct and faulty cmps. In both cases, all information from

ws does indeed pass through cmp. The blur of Example 24,

however, defines the desired goal semantically. With the faulty

cmp, the high-resolution data compatible with the observation

of � is more sharply defined than an f -blurred set. ///

IX. FUTURE WORK

We have explored how the graph structure of a distributed

system helps to constrain information flow. We have es-

tablished the cut-blur principle. It allows us to propagate

conclusions about limited disclosure from a cut set cut to more

remote parts of the graph. These ideas are much more widely

applicable than the simple examples that we have used here.

Quantitative treatment. It should be possible to equip

frames with a quantitative information flow semantics. One

obstacle here is that our execution model mixes some choices

which are natural to view probabilistically—for instance, se-

lection between different outputs when both are permitted by

an LTS—with others that seem non-deterministic. The choice

between receiving an input and emitting an output is an

example of this, as is the choice between receiving inputs on

different channels. This problem has been studied (e.g. [7],

[8]), but a tractable semantics may require new ideas.

A Dynamic Model. Instead of building ends(�) into the

frame, so that it remains fixed through execution, we may

alternatively regard it as a component of the states of the

individual locations. Let us regard traces(�) as generated by a

labeled transition system lts(�). Then we may enrich the labels

c, v so that they also involve a sequence of endpoints p ⊆ EP:

(c, v, p).

The transition relation of lts(�) is then constrained to allow

a transmission (c, v, p) in a state only if p ⊆ ends(�) holds

in that state, in which case p is omitted in the next state. A

reception (c, v, p) causes p to be added to the next state of the

receiving location.

The cut-blur principle remains true in an important case:

A set cut is an invariant cut between src and obs if it is

an undirected cut, and moreover the execution of the frame

preserves this property. Then the cut-blur principle holds in

the dynamic model for invariant cuts.

This dynamic model suggests an analysis of security-aware

software using object capabilities. Object capabilities may be

viewed as endpoints entry(c). To use it, one sends a message to

the object itself, which holds exit(c). To transfer a capability,

one sends entry(c) over some c′.
McCamant and Ernst [34]’s quantitative approach generates

a directed graph of this sort in memory at runtime. Providing

a maximum over all possible runs would appear to depend on

inferring some invariants on the structure of the graphs. Our

methods might be helpful for this.

Cryptographic Masking. Encryption is not a blur. Encrypt-

ing messages makes their contents unavailable in locations

lacking the decryption keys. In particular, locations lacking

the decryption key may form a cut set between the source

and destination of the encrypted message. However, at the

destinations, where the keys are available, the messages can

be decrypted and their contents observed. Thus, the cut-blur

theorem implies it would be wrong to view encryption as a

blur in this set-up: Its effects can be undone beyond the cut.

Several approaches are possible here. We would like to

use the resulting set-up to reason about cryptographic voting

systems, such as Helios and Prêt-à-Voter [2], [49].

We also intend to provide tool support for defining relevant

blurs and establishing that they limit disclosure in several

application areas.
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APPENDIX

We gather here additional lemmas, and a few longer proofs.

Lemma 13.
1. Suppose C0 ⊆ C1 and C ′0 ⊆ C ′1. If F has no disclosure

from C1 to C ′1, then F has no disclosure from C0 to C ′0.
2. When C1, C2, C3 ⊆ CH,

JC3�C1
(B1) ⊆

⋃

B2∈JC2�C1
(B1)

JC3�C2
(B2).

Proof. 1. Suppose B0 is a C0-run, and B′0 is a C ′0-run. We

want to show that B′0 ∈ JC′
0�C0

(B0).
Since they are local runs, there exist A0,A′0 ∈ Exc(F) such

that B0 = A0 |̀ C0 and B′0 = A′0 |̀ C ′0. But let B1 = A0 |̀ C1 and

let B′1 = A′0 |̀C ′1. By no-disclosure, B′1 ∈ JC′
1�C1

(B1). So there

is an A ∈ Exc(F) such that B1 = A |̀ C1 and B′1 = A |̀ C ′1.

However, then A witnesses for B′0 ∈ JC′
0�C0

(B0): After all,

since C0 ⊆ C1, A |̀ C0 = (A |̀ C1) |̀ C0. Similarly for the

primed versions.

2. Suppose that B3 ∈ JC3�C1(B1), so that there exists an A ∈
Exc(F) such that B1 = A |̀ C1 and B3 = A |̀ C3. Letting

B2 = A |̀ C2, the execution A ensures that B2 ∈ JC2�C1
(B1)

and B3 ∈ JC3�C2
(B2).

We now consider different frames F1,F2 that overlap on

a common subset L0, and show how local runs in the two

can be pieced together. In this context, we use the notation of

Def. 30, such as left0 for channels between locations L0 shared

between F1 and F2, cut0 for the set of channels forming the

boundary, and righti for the channels unattached to L0 in Fi.

Lemma 41. Let L0 be shared between frames F1,F2. Let

Blc ∈ (left ∪ cut)-runs1 and Brc ∈ (right2 ∪ cut)-runs2

agree on cut, i.e. Blc |̀ cut = Brc |̀ cut. Then there is an

A ∈ Exc(F2) such that

Blc = A |̀ (left ∪ cut) and Brc = A |̀ (right2 ∪ cut).

Proof. Since Blc and Brc are local runs of F1,F2 resp., they

are restrictions of executions, so choose A1 ∈ Exc(F1) and

A2 ∈ Exc(F2) so that Blc = A1 |̀ (left ∪ cut) and Brc =
A2 |̀ (right2 ∪ cut). Now define A by stipulating:

ev(A) = ev(Blc) ∪ ev(Brc) (5)

�A = the least partial order extending �Blc
∪ �Brc.(6)

Since A1,A2 agree on cut, ev(A) = ev(Blc |̀ left) ∪ ev(Brc),
and we could have used the latter as an alternate definition of

ev(A), as well as the symmetric restriction of Brc to right2
leaving Blc whole.

The definition of �A as a partial order is sound, because

there are no cycles in the union (6). Cycles would require A1

and A2 to disagree on the order of events in their restrictions

to cut, contrary to assumption. Likewise, the finite-predecessor

property is preserved: x0 �A x1 iff x0, x1 belong to the same

B?c and are ordered there, or else there is an event in B?c |̀ cut

which comes between them. So the events preceding x1 form

the finite union of finite sets. Thus, A ∈ ES(F2).

Moreover, A is an execution A ∈ Exc(F2): If � ∈ L0,

then proj(A, �) = proj(Blc, �), and the latter is a trace in

traces1(�) = traces2(�). If � �∈ L0, then proj(A, �) =
proj(Brc, �), and the latter is a trace in traces2(�).

There is no � with channels in both left and right2.

What makes this proof work? Any one location either has

all of its channels lying in left0 ∪ cut0 or else all of them

lying in righti∪cut. When piecing together the two executions

A1,A2 into a single execution A, no location needs to be able

to execute a trace that comes partly from A1 and partly from

A2. This is what determines our definition of cuts using the

undirected graph ungr(F).

We next prove the two-frame analog of Lemma 15.

Lemma 31. Let L0 be shared between frames F1,F2. Let
src ⊆ left, and Bc ∈ cut0-runs1 ∩ cut0-runs2.

1. J1
src�cut0(Bc) = J2

src�cut0(Bc).
2. Assume cut0-runs(F2) ⊆ cut0-runs(F1). Let obs ⊆

right2, and Bo ∈ obs-runs2. Then

J2
src�obs(Bo) =

⋃

Bc∈J2
cut0�obs(Bo)

J1
src�cut0(Bc).

Proof. 1. First, we show that Bs ∈ J1
src�cut0(Bc) implies Bs ∈

J2
src�cut0(Bc).

Let A1 witness for Bs ∈ J1
src�cut(Bc), and let A2 witness

for Bc ∈ cut-runs2. Define

Blc = A1 |̀ (left ∪ cut) and Brc = A2 |̀ (right2 ∪ cut).

Now the assumptions for Lemma 41 are satisfied. So let A ∈
Exc(F2) restrict to Blc and Brc as in the conclusion. Thus,

A |̀ src = Bs.

For the converse, we rely on the symmetry of “L0 is shared

between frames F1,F2.”

2. By the assumption, whenever Bc ∈ J2
cut�obs(Bo), then

also Bc ∈ cut-runs1. Thus, we can apply part 1 after using

Lemma 13:

J2
src�obs(Bo) ⊆

⋃

Bc∈J2
cut0�obs(Bo)

J2
src�cut0(Bc)

⊆
⋃

Bc∈J2
cut0�obs(Bo)

J1
src�cut0(Bc).

For the reverse inclusion, assume that Bs ∈ J1
src�cut0(Bc),

where Bc ∈ J2
cut0�obs

(Bo). Thus, we can apply Lemma 41,

obtaining A ∈ Exc(F2) which agrees with Bs, Bc, and Bo.

So A witnesses for Bs ∈ J2
src�obs(Bo).

We now turn to the one-frame corollary, which we presented

earlier as Lemma 15.
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Lemma 15. Let cut be an undirected cut between src, obs,
and let Bo ∈ src-runs. Then

Jsrc�obs(Bo) =
⋃

Bc∈Jcut�obs(Bo)

Jsrc�cut(Bc).

Proof. Define L0 to be the smallest set of locations such that

1. � ∈ L0 if chans(�) ∩ src �= ∅;

2. L0 is closed under reachability by paths that do not

traverse cut.

L0 is shared between F and itself. Moreover, for the set of

channels cut0 defined in Def. 30, we have cut0 ⊆ cut: cut0
is the part of cut that actually lies on the boundary of L0.

By Lemma 31, we have

Jsrc�obs(Bo) =
⋃

Bc∈Jcut0�obs(Bo)

Jsrc�cut(Bc).

Since cut0 ⊆ cut,
⋃

Bc∈Jcut0�obs(Bo)

Jsrc�cut(Bc) ⊆
⋃

Bc∈Jcut�obs(Bo)

Jsrc�cut(Bc).

For the converse, suppose that Bs ∈ Jsrc�cut(Bc), for

Bc ∈ Jcut�obs(Bo). Then there is A such that A |̀ src = Bs

and A |̀ obs = Bo. Thus, Bs ∈ Jsrc�cut(A |̀ cut0) and

A |̀ cut0 ∈ Jcut0�obs(Bo).

The cut-blur principle is also the one-frame corollary of

Thm. 32. The proofs are very similar.

Theorem 32. Suppose that L0 is shared between frames
F1,F2, and assume cut-runs(F2) ⊆ cut-runs(F1). Consider
any src ⊆ left and obs ⊆ right2. If F1 f -limits src-to-cut flow,
then F2 f -limits src-to-obs flow.

Proof. By the hypothesis, f is a blur operator. Letting Bo ∈
obs-runs2, we want to show that J2

src�obs(Bo) is an f -blurred

set, i.e. J2
src�obs(Bo) = f(J2

src�obs(Bo)).
For convenience, let Sc = J2

cut�obs(Bo). By Lemma 31,

J2
src�obs(Bo) =

⋃

Bc∈Sc

J1
src�cut(Bc);

thus, we must show that the latter is f -blurred. By the assump-

tion that each J1
src�cut(Bc) is f -blurred, we have J1

src�cut(Bc) =
f(J1

src�cut(Bc)). Using this and the union property (Eqn. 1):
⋃

Bc∈Sc

J1
src�cut(Bc) =

⋃

Bc∈Sc

f(J1
src�cut(Bc))

= f(
⋃

Bc∈Sc

J1
src�cut(Bc)),

Hence, J2
src�obs(Bo) is f -blurred.
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