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Abstract—Access control is fundamental to computer security,
and has thus been the subject of extensive formal study. In
particular, relative expressiveness analysis techniques have used
formal mappings called simulations to explore whether one
access control system is capable of emulating another, thereby
comparing the expressive power of these systems. Unfortunately,
the notions of expressiveness simulation that have been explored
vary widely, which makes it difficult to compare results in the
literature, and even leads to apparent contradictions between
results. Furthermore, some notions of expressiveness simulation
make use of non-determinism, and thus cannot be used to define
mappings between access control systems that are useful in
practical scenarios. In this work, we define the minimum set
of properties for an implementable access control simulation;
i.e., a deterministic “recipe” for using one system in place of
another. We then define a wide range of properties spread
across several dimensions that can be enforced on top of this
minimum definition. These properties define a taxonomy that
can be used to separate and compare existing notions of access
control simulation, many of which were previously incomparable.
We position existing notions of simulation within our properties
lattice by formally proving each simulation’s equivalence to a
corresponding set of properties. Lastly, we take steps towards
bridging the gap between theory and practice by exploring
the systems implications of points within our properties lattice.
This shows that relative expressive analysis is more than just a
theoretical tool, and can also guide the choice of the most suitable
access control system for a specific application or scenario.

I. INTRODUCTION

Access control is foundational to computer security and,

as such, has been the topic of extensive formal study. Much

of this work has focused on comparing different techniques

for representing and enforcing access control, deemed access

control models, systems, or schemes. By far the most common

type of comparative study in access control techniques is the

expressiveness simulation (e.g., [1]–[14]). A simulation is a

formal mapping from, say, system S to system T that proves

T is at least as expressive as S: that is, T possesses the raw

capability to be used in operating environments in place of S .

However, the formal definitions of the various simulations

used in the literature vary widely. Different simulations have

been used to prove various types of results, ranging from

very specific properties about whole ranges of models (e.g.,

monotonic access control models with multi-parent creation

cannot be simulated by monotonic models with only single-

parent creation [6]) to the ability to replace certain specific

models with others in practice (e.g., role-based access control

can be configured to enforce mandatory and discretionary

policies [9]). However, this disparity in the goals of these

works has led to many different definitions of access control

simulation, often tailored to the particular result sought. It

has been shown that these different simulations prove wildly

different notions of expressiveness, often not preserving any

particular security properties [13].

Furthermore, not all of these notions of simulation are

practically useful. For instance, some make use of non-

determinism, manipulating the policy differently depending

on what future queries will be asked. While this may allow

a theorist to show that system T is capable of doing all the

things S is, if a practitioner wants to use system T in place

of system S , she needs a deterministic procedure for doing so.

In this work, we build a taxonomy for expressiveness

simulations based on the simulation properties that they satisfy.

We determine the minimum requirements for a mapping to

be implementable, or applicable toward using one system in

place of another in practice. We use these requirements to

construct a general definition of implementable simulation, and

provide a taxonomy of additional restrictions on this definition

for simulations that enforce more stringent properties. We then

position existing simulations from the literature within this

lattice, providing the first such comparison in the literature.

To this end, we make the following contributions.

Definition of implementable access control simulation We

propose a general definition of an implementable access control

mapping that is broad enough to encompass much of the wide

range of existing access control simulations, yet precise enough

to guarantee implementability. Intuitively, an implementable
simulation of S in T shows that T can accomplish everything

S can, and deterministically shows how (Section III).

Lattice of simulation properties We decompose and expand

upon the properties enforced by various access control simula-

tions from the literature, forming a lattice relating the range

of access control simulations to one another. This lattice

allows us to formally compare the guarantees offered by

existing notions of access control simulation (many of which

were not formerly known to be comparable) and points to

unexplored combinations of properties that can yield different

expressiveness results (Section IV).
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Positioning of existing simulations We construct formal

proofs positioning existing notions of access control simu-

lation within our lattice of simulation properties, including a

comparative discussion of simulations that previously seemed

incomparable. We thus systematize the formal relationships be-

tween previously-published simulations, allowing reconciliation

of previously disparate expressiveness knowledge (Section V).

Selecting simulation properties We observe that many of the

dimensions upon which our simulation property lattice is built

have implications for the use of simulations for satisfying real-

world requirements using existing access control systems (e.g.,

required storage, whether data structures must be locked for

concurrent usage). Thus, in addition to positioning existing

notions of simulation within our lattice of properties, we

assist in creating new notions of simulation by selecting

the properties that should be enforced in an expressiveness

analysis based upon the scenario in which an eventual access

control deployment will occur. To this end, we discuss in detail

various interactions between simulation properties, the results

of enforcing different properties, and how a specific deployment

scenario dictates which properties are relevant (Section VI).

We begin by providing background on the goals of and

techniques used in relative expressiveness analysis.

II. RELATIVE EXPRESSIVENESS ANALYSIS

In this section, we describe how relative expressiveness

analysis is conducted, survey the history of the technique,

and point out the wide variety in existing access control

expressiveness simulations.

A. Motivating Examples

An access control system’s expressiveness (or expressive

power) is a measure of the range of policies that it can

represent and the transformations it can make to those policies.

Statements of relative expressiveness state that one system

is capable of replacing another (that is, it can represent all

the same policies and transform them in equivalent ways).

Assume, for instance, that an organization is considering

transitioning from one access control solution to another, in

order to accommodate evolving requirements. The organization

may have specific desired features for this new access control

system, but it certainly must be able to represent all of the

policies that the existing system can, or it would not be a

suitable replacement. Thus, this organization is searching for

a new system that is at least as expressive as its old system.

Another use of relative expressiveness is in suitability

analysis. Prior work has noted that practically evaluating an

access control system must take into account the application

in which the system is to be used, as well as additional

cost metrics (e.g., computation, ease of use). This analysis

problem has been identified as a system’s suitability to a

particular application [15], [16]. Suitability analysis formalizes

an application’s access control requirements (a workload), and

uses expressiveness to prove that an access control system

can satisfy those requirements. Assume, in this case, that

the aforementioned organization is choosing an initial access

control system for a new collection of data. Comparing the

candidates’ relative expressiveness is not particularly enlight-

ening, since the most expressive system may not be the most

suitable; the organization should instead formalize their access

control workload and use relative expressiveness analysis to

identify which of the candidates are expressive enough to satisfy

this workload. Thus, while work in suitability analysis has

shown that expressive power alone is insufficient for evaluating

an access control system, expressiveness is a fundamentally

important component of a more general suitability analysis

workflow: one cannot determine which access control system

is best for a particular use case without first determining which

are capable of satisfying that use case.

B. Prior Work

Relative expressiveness analysis generally starts by formal-

izing a pair of access control systems as state machines. These

state machines include, at a minimum: a set of states, each of

which encapsulates a snapshot of the access control system’s

data structures; a procedure describing how to interpret the

states’ data structures to determine which authorization requests

are granted; and a set of commands, used to manipulate the data

structures and thus transition between states. Some formalisms

for access control systems also include additional queries

beyond access requests [13], [14]. A simulation, then, is a

structure that proves T is at least as expressive as S—or, that

T can be used in place of S. The term simulation is rather

vague, here, and for good reason: various notions of simulation

in the literature have meant very different things (e.g., What

type of behavior must be simulated? How closely must T
represent the information in S?), and as a result have implied

very different types of expressiveness results.

The works of Sandhu, Ganta, Munawer, and Osborn [2]–[4],

[7]–[9] include some of the earliest access control simulations.

In these works, a simulation of S in T must show that a

permission can be granted in S if and only if it can also be

granted in T . No other formal properties are enforced, though

in some cases additional properties become part of the de
facto definition of simulation. For instance, while there is no

requirement for T to have a state equivalent to each S state

(merely for T to be able to grant each access that S does,

in some state), the example simulations all include methods

for mapping each S state to a T state (as this is the simplest

way to show the required property). In addition, although the

definition does not prohibit the use of an unbounded number

of T commands to simulate a single S command, Sandhu and

Munawer [7] only use simulations in which an S command is

simulated using a constant number of T commands.

Ganta’s PhD dissertation [5] attempts to formalize a more

rigorous notion of expressiveness simulation. In his simulation,

the state correspondence is explicit, requiring that each state

in S have a corresponding state in T that grants all the same

accesses (at least, all those that exist in S—those that exist in

T but not in S are unconstrained). In addition, to ensure that

T cannot grant accesses that S cannot, any state that can be

entered in T must also have a corresponding reachable state in
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S . Finally, to ensure accesses in T cannot be combined in ways

that cannot occur in S , the following restriction is made: when

simulating a T command in S, multiple commands may be

used, but each state along the way must allow either a subset

of the accesses of the start state or a subset of the accesses

of the end state. Thus, no two accesses can be allowed in the

same state in T that are not allowed in a single state in S.

Ammann, Lipton, and Sandhu [1], [6] took a different (and

much more strict) approach to more rigorously defining a

simulation. First, they describe a strict state correspondence

that requires T to represent its states with the same sets and

relations as S, and for these sets to have identical contents

in corresponding T and S states. In other words, T cannot

include additional elements in any sets that S uses (although

additional, distinct sets may be stored). For example, one could

simulate the state {U = {a, b}, V = {c}} with state {U =
{a, b}, V = {c},W = {〈a, d〉, 〈b, d〉}}, but not with {U =
{a, b}, V = {c, d}}. Given this notion of state correspondence,

a simulation then shows that T can reach a state corresponding

to each reachable S state, and cannot reach any state that does

not have a reachable corresponding state in S . This strict notion

of simulation is used to show that monotonic, multi-parent

systems are more expressive than monotonic, single-parent

systems (e.g., there are monotonic multi-parent systems that

cannot be simulated by any monotonic single-parent system).

Chander, Dean, and Mitchell [10] restrict the definition of

simulation in a different way. Rather than force a more strict

state correspondence (the static portion of the simulation), they

more tightly restrict the way the simulation handles the system

as it executes (i.e., the command mapping). In these simulations,

the state correspondence is comparatively lax: to simulate an S
state, a T state must allow and deny all the same authorization

requests as its corresponding S state. Additional requests can

exist in T and are unconstrained, but all requests corresponding

to those in S must have the same value in corresponding states.

However, the process for simulating an S command using T
commands must be independent of the state: it cannot execute a

T command for each user, or otherwise inspect the state when

determining what commands should be executed. In addition,

in the strong form of simulation, each S command must be

simulated with a single T command. They then compare the

expressiveness of access control lists, trust management, and

two forms of capability systems (all systems studied in forms

with and without revocation and delegation).

Tripunitara and Li [12], [13] noted that the existing notions

of simulation did not correspond directly to any particular

safety analysis questions, and thus a simulation of any of

these types does not make any particular safety guarantees.

They formalize compositional security analysis (intuitively,

determining whether a certain set of access control queries

will always, never, or sometimes become true in any reachable

state), which is a generalization of simple safety analysis [17].

They then present a notion of simulation tailor-made to preserve

these types of analysis questions.

Their simulation, called the state-matching reduction, consid-

ers a broader range of queries than only authorization requests,

placing the strictness of its state correspondence somewhere

between the work of Ammann, Lipton, and Sandhu and that

of Chander, Dean, and Mitchell. The state-matching reduction

maps each query qS in S to a single query qT in T , and the

simulation must determine the value of qS in any state in T
by checking the value of qT . Finally, reachability constraints

ensure that T can reach a state corresponding to each reachable

S state, and cannot reach any state that does not have a

reachable corresponding state in S. Tripunitara and Li prove

that this notion of simulation preserves compositional security

analysis instances: that is, if there exists a state-matching

reduction from S to T , then any compositional security analysis

instance has the same truth value in both systems. Tripunitara

and Li’s reductions have since been used to analyze role-based

access control [18] and prove that newly-proposed systems are

more expressive than certain existing systems [19].

Work by Hinrichs et al. [14] recognizes the value of the

state-matching reduction but claims that, in practice, not all

scenarios require the preservation of all possible compositional

security analysis instances (nor are these the only types of safety

properties that are ever relevant). They present parameterized
expressiveness, which defines a baseline set of simulation

properties, and provides several additional properties that can be

enforced atop the baseline to provide additional guarantees. The

base simulation uses the same query-based state correspondence

as Tripunitara and Li, but relaxes the query mapping to allow

it to consult multiple T queries to determine the value of

an S query during simulation. Further properties enforced

above this baseline include using the identity query mapping

for authorization requests (to ensure that T ’s authorization

questions are the queries being used to simulate S’s autho-

rization requests), forbidding string manipulations (to prohibit

the state mapping from using arbitrary encodings to store

information in the contents of strings such as user names),

and restricting the command mapping from mapping non-

administrative commands in S to administrative commands

in T . This framework has since been used to evaluate the

suitability of certain general-purpose access control systems

for various unique, application-specific requirements [15], [16].

C. Usage and Implications

Unfortunately, there are several indications that research on

expressiveness analysis is being held back by the inability

to reconcile the vastly different notions of expressiveness

simulations and the disconnect between the properties preserved

by a simulation and those that are important to a practical de-

ployment. Several works have demonstrated scenarios in which

static notions of expressiveness indicate two systems are equally

capable of satisfying a set of operational requirements, but

in practice they are better-suited to very different deployment

scenarios [15], [20]. Bourdier et al. point out the existence

of several competing techniques for expressiveness analysis,

none of which consider the deployment. They approach one

facet of this problem by proposing a formalism for access

control systems that can more easily be transformed into

implementations using rewrite-based tools [21]. Several others
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simply express a desire to use expressiveness analysis, but

never do so, presumably due to the complexities of selecting

and using the right notion of simulation [22], [23].

A group at the National Institute of Standards and Technol-

ogy has developed Policy Machine, an attempt at a universal

access control system (one that can represent any policy

via only configuration changes) [24]. However, in evaluating

Policy Machine’s success, they avoid formally proving its

expressiveness and instead show informal mappings that

demonstrate how one might use Policy Machine to represent

several existing access control systems’ policies [25]. Soon

after, the group published a report bemoaning the lack of

quality metrics for evaluating access control systems, noting

that, in access control, “one size does not fit all,” and thus said

metrics must consider the deployment scenario [26].

This overview illustrates that while each notion of expres-

siveness simulation has been used to prove various results,

the body of knowledge is troublesome to interpret and utilize

due to the wide variation in the properties required by each

simulation. In this work, we fill this void in the literature

by (1) proposing a minimal definition of simulation that

satisfies properties guaranteeing that its results are practically

useful; (2) presenting a set of additional properties that

more strict simulations can enforce; and (3) categorizing the

above notions of simulation based on the properties that they

enforce. We make the additional contribution of (4) discussing

relationships between attributes of a deployment scenario and

the practical effects of enforcing simulation properties, thus

assisting analysts in selecting the most relevant properties (and

therefore conducting the most relevant form of expressiveness

analysis) for the environment in which an access control system

will be deployed.

III. IMPLEMENTABLE EXPRESSIVENESS SIMULATIONS

In this section, we give requirements for a simulation to be

implementable and define our general formulation of relative

expressiveness analysis through the lens of implementability.

A. Implementability Requirements

In this work, we aim to consider expressiveness simulations

that are implementable: i.e., practically useful for making

decisions about which system is most suitable for a particular

deployment. Implementability enforces the following intuition:

if a system T is at least as expressive as S , then one should be

able to determine a general way to use T in place of S . Thus,

we define a minimal set of properties for an expressiveness

mapping to be considered implementable.

State mapping In order to use T in place of S, it must be

possible to (uniquely) determine which T state to use in place

of a particular S state. Thus, the state mapping must be a

function from the simulated system states to the simulating

system states.1

1It is possible that multiple states in S can be represented using the same
state in T . Thus, we do not require the state mapping to be an injection.
Furthermore, there may be states in T that are not used to simulate S, and
thus the state mapping need not be an surjection.

Command mapping To use T in place of S, it must be

possible to execute commands in T that are equivalent to

the commands in S. It is not necessarily the case that each

S command can be simulated using a single T command, so

we require a function from S commands to sequences of T
commands.2 Finally, it may be necessary to map an S command

differently depending upon the state in which it is intended to

be executed. Since using T in place of S means we only have

a T state to inspect during execution, this function should map

an S command and a T state to a sequence of T commands.

Query decider For some simulations of S in T , we may only

care that T allows the same set of accesses that S would.

However some types of simulations may allow the overriding

of T ’s default method of deciding granted permissions (e.g.,

adding the additional requirement that the requesting user is a

member of the REAL_USERS group, to distinguish from other

data stored in the user-set). While some types of simulations do

not allow this, to remain general we simply require a function

that maps each S query and T state to either true or false.

In some formalisms, this only includes the queries requesting

access, while in other cases other types of queries are allowed

(e.g., “Is user u a member of role r?”).

We use these requirements to motivate our definition of the

general case of implementable relative expressiveness.

B. Expressiveness Mappings

To define relative expressiveness mappings, we must first

define the state machines that represent access control systems.

Since we aim to compare existing expressiveness simulations,

we use a formalism for these structures that remains similar to

existing work, e.g., [10], [12], [13].

An access control system is formalized as a state machine

belonging to a particular access control model. An access

control model formalizes the way in which the access control

system will store and interpret information to make access

control decisions. Its data structures are formalized as a set of

access control states, and its methods for determining whether

to allow or deny inquiries as a set of authorization requests.

The value of all requests in a state (whether they are allowed

or denied) defines the access control policy, or theory, to be

enforced in that state.

Definition 1 An access control model is defined as M =
〈Γ,R〉, where Γ is the set of states and R is the set of
authorization requests, where each request r ∈ R is a function
Γ→ {TRUE, FALSE}. The entailment (�) of a request is defined
as γ � r � r(γ) = TRUE. ♦

For example, consider a simple role-based access control

model whose states are defined over sets U of users, P of

permissions, and R of roles, as well as the user assignment

UR ⊆ U ×R and permission assignment PA ⊆ R× P . The

requests in this model are of the form “Is u authorized for p?,”

which is TRUE if ∃r : 〈u, r〉 ∈ UR ∧ 〈r, p〉 ∈ PA.

2Not sets of T commands, as commands may appear multiple times; and
not bags of T commands, as order matters.
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When we refer to the size of a state, we are referring to the

size of its decomposition into primitive objects (e.g., users and

roles) and tuples (e.g., entries in a user assignment relation).

Definition 2 Given an access control model M = 〈Γ,R〉 and
a state γ ∈ Γ, the set decomposition of γ is denoted [γ], and
refers to the “set of sets” forming γ, in which γ is represented
as being comprised of primitive sets and relations. ♦
Thus, the size of an access control state γ is defined as

|γ| = ∑
S∈[γ] |S|. For example, if [γ] = {U = {u1}, R =

{r1, r2}, UR = {〈u1, r1〉, 〈u1, r2〉}}, then |γ| = |U | + |R| +
|UR| = 5.

An access control system expands on a model by providing

methods of transforming the current state and additional

methods of querying the states. These additional queries allow

the user to ask additional boolean queries of the system, but a

value of TRUE does not indicate an authorization was granted.

Definition 3 Given access control model M = 〈Γ,R〉, an
access control system within M is a state transition system,
S = 〈Γ,Ψ, Q〉, where Ψ is the set of commands, where each
command ψ ∈ Ψ is a function Γ → Γ, and Q ⊇ R is the
set of queries, where each query q ∈ Q is a function Γ →
{TRUE, FALSE}. ♦

We use the notation next(γ, ψ) to denote the state

resulting from executing ψ in γ (that is, ψ(γ)), and

terminal(γ, ψ1 ◦ ψn) to denote the final state produced by

repeatedly applying next to the commands ψ1, . . . , ψn starting

from state γ: next(. . . next(γ, ψ1), . . . , ψn).
A system based on the example role-based model must

define commands to transform the state: e.g., to assign roles

to users, and assign permissions to roles. Additional queries

beyond the model’s requests may include those of the form

“Is user u a member of role r?”

Next, we define an access control mapping, which maps

one system to another but does not enforce any simulation

properties. We define a mapping as motivated in Section III-A

so that it can represent any implementable expressiveness

simulation.

Definition 4 Given two access control systems, S =〈
ΓS ,ΨS , QS

〉
and T =

〈
ΓT ,ΨT , QT

〉
, a mapping from S to

T is a triple of functions σ = 〈σΓ, σΨ, σQ〉, where:
• σΓ : Γ

S → ΓT is the state mapping
• σΨ : ΨS × ΓT → (ΨT )

∗ is the command mapping
• σQ = QS × ΓT → {TRUE, FALSE} is the query decider

This definition is demonstrated in Fig. 1. Each function

takes its most general form that satisfies the requirements

from Section III-A. Thus, the definition remains general (it

does not enforce any specific security requirements yet), while

ensuring that any such mappings can generate implementable

procedures for using the simulating system in place of the

simulated system.

To demonstrate Definition 4, consider mapping a simple

access control list system to the role-based system described

throughout this section. The state mapping can map each ACL

ψT1

ψS

ψT2

q

{t, f}

γS1

γT1a γT1b γT2

γS2

σΓ
σq

σΨ

σΓ

Fig. 1: The general form of an implementable expressiveness

mapping.

R

SC

SS

CD

CC

CS

CT

CA

QD

QC

QP

σ = 〈σΓ , σΨ , σQ〉

Symbol Description
SC State correspondence
SS State storage

CD Command mapping dependence
CC Command mapping complexity
CS Command mapping stuttering
CT Trace structure
CA Actor preservation

QD Query decider dependence
QC Query decider complexity
QP Query preservation

R Reachability

Fig. 2: An overview of the dimensions of expressiveness

simulation properties

state to a role-based state in which each user u has a unique

role ru, and each user’s role is assigned the permissions from

the ACL state. The command mapping can map, e.g., “grant

u access to o” to “assign o to role ru.” The query mapping

would then map “Can u access o?” to “Is u authorized for o?”

IV. EXPRESSIVENESS SIMULATION PROPERTIES

In this section, we describe the lattice of properties that we

use to taxonomize access control expressiveness simulations.

A. Overview of dimensions of properties

In order for a mapping to be considered a simulation,

it must enforce additional properties over Definition 4. We

restrict this definition in a variety of ways. Although no set

of restrictions can be shown to be the full, correct set for all

conceivable simulations, there are naturally three categories of

restrictions to consider for simulations, given their structure

(a set of three functions): i.e., refinements to each of the state

correspondence, command mapping, and query decider. We also

consider restrictions to the reachability constraints required (a

cross-cutting dimension describing how these functions must

relate to one another). A summary of these dimensions is

depicted in Fig. 2.

Our state correspondence σΓ can be based on any of a

handful of structural definitions, defined by SC (i.e., what

elements do we inspect to determine whether two states

correspond?). Further, SS can limit the amount of storage

the state correspondence uses (e.g., T must simulate S using

only a linear amount of additional storage).
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The command mapping σΨ can be restricted by CD in what

state elements it can use to map commands (e.g., whether it can

inspect arbitrary state elements or only those that are exposed

via queries). CC considers limiting the time-complexity of

the command mapping routine. Since the command mapping

returns a sequence of commands, CS can limit the number of

commands it can return (e.g., only one, or constant in the size

of the state). We identify CT, a dimension of concurrency-

related trace structure restrictions, as well as CA, requiring the

simulation to map S commands executed by certain types of

users only to T commands executed by that category of users.

The query decider σQ can also be restricted in a number

of ways. Like the command mapping, we may limit what

elements of the state the decider can inspect when deciding

how to answer queries within a specific state (QD), or the time-

complexity of the routine (QC). In some cases a simulation of

S in T may be required to map certain S queries to specific

related queries in T , most notably authorization requests (e.g.,

to answer whether user u should have permission p in S, T
should simply check whether user u has permission p in its

current T state); this type of restriction is handled in QP.

Finally, our reachability restrictions R define how these three

functions relate, by allowing us to parameterize whether we

require one-way reachability (T must be able to transition to

states corresponding to all reachable S states) or bidirectional

reachability (T also cannot transition to states that do not

correspond to reachable S states).

The bare minimum set of these simulation properties that

must be enforced for a mapping to be considered a simulation

is a notion of state correspondence and a reachability relation.

We present the definition of implementable expressiveness

simulation, which refines the mapping by enforcing these

properties.

Definition 5 Given two access control systems, S =〈
ΓS ,ΨS , QS

〉
and T =

〈
ΓT ,ΨT , QT

〉
and a mapping

σ = 〈σΓ, σΨ, σQ〉 from S to T , an implementable expres-

siveness simulation of S in T based on σ is defined as
σ′ = 〈σΓ, σΨ, σQ,∼, R〉, where:

• ∼ ⊆ ΓS × ΓT is the state correspondence, and ∀γ ∈
ΓS , γ ∼ σΓ(γ)

• R is a reachability restriction

We define all properties over the expressiveness simulation

σ = 〈σΓ, σΨ, σQ,∼, R〉. Unless otherwise noted, properties

within a dimension are totally ordered from most to least strict.

B. State correspondence properties

As discussed in Section III-B, the state correspondence of

an implementable simulation of S in T is a function, σΓ :
ΓS → ΓT mapping each state in S to a state in T . There are

several ways in which we can restrict this mapping.

Dimension SC: State correspondence structure

This dimension of properties restricts the way in which

corresponding states are structurally similar. All properties

within this dimension were inspired by state correspondence re-

lations from prior expressiveness simulations; other application-

specific state correspondence relations are conceivable.

SCs: Structure-correspondent
γS

s∼ γT � ∀Si ∈
[
γS

]
.(Si ∈

[
γT

]
)

SCq: Query-correspondent
γS

q∼ γT � ∀q ∈ QS .(γS � q ⇐⇒ σQ(q, γ
T ) = TRUE)

SCa: Authorization-correspondent
γS

a∼ γT � ∀r ∈ RS .(γS � r ⇐⇒ σQ(r, γ
T ) = TRUE)

Authorization-correspondent simulations enforce that every

γS maps to a γT that agrees on all authorization requests: any

permission granted/denied in γS must also be granted/denied

in γT . Requests that exist in T but not in S are not restricted.

This type of correspondence is used in [2], [3], [7]–[10]. Query-
correspondence requires that γS and γT agree on all queries,

not just authorization requests. This type of correspondence is

used in the expressiveness simulations of [13], [14].

Finally, structure-correspondent simulations require all cor-

responding state elements to be identical. If γS structure-

corresponds to γT , then every set in γS exists in γT , and

contains all the same elements (γT may contain additional sets

or relations). Thus, if γS contains sets of users and permissions,

and a relation between them (a subset of users × permissions)

specifying accesses, γT must contain identical sets of users and

permissions, and an identical set of 〈user, permission〉 pairs.

This notion of state correspondence is used in [6].

The type of state correspondence used is a central character-

istic of a type of simulation. Enforcing a state correspondence

that is too weak can allow the simulating system to diverge

from the simulated system in unexpected ways, while a state

correspondence that is too strong will cause the simulating

system to track the simulated system more closely than

necessary (e.g., by constraining the values of queries that the

deployment never needs to ask). Thus, choosing a particular

state correspondence is choosing how closely the simulating

system must stay to the simulated system.

Dimension SS: State storage

An orthogonal class of restrictions that can be placed on the

state correspondence relation involve its allowed storage. Here,

we restrict the size of γT = σΓ(γ
S) with respect to γS .

SSl: Linear storage
∃c ∈ R

+, s ∈ Z
+ : ∀γ ∈ ΓS : |γ| ≥ s⇒ |σΓ(γ)| ≤ c|γ|

SSp: Polynomial storage
∃k ∈ R

+, s ∈ Z
+ : ∀γ ∈ ΓS : |γ| ≥ s⇒ |σΓ(γ)| ≤ |γ|k

SS∞: Unbounded storage No restriction.

A linear storage simulation says that γT can grow at most

linearly with γS , while in a polynomial storage simulation, the

size of γT is bounded by a polynomial in the size of γS . The

most obvious result of enforcing properties within SS is limited

trusted storage, but it can also limit iteration over the resulting

state (e.g., if an action must be taken for each document in the
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simulating system, SSl ensures that this sequence of actions is

linear in the size of the simulated state).

C. Command mapping properties

Recall that the command mapping for an implementable

simulation (Definition 5) is a function σΨ : ΨS×ΓT → (ΨT )
∗

that returns the sequence of T commands needed to simulate

an S command starting from a particular T state. Thus, it

allows us to simulate S commands in an active simulation

using T . We now discuss the ways in which we can restrict

this mapping.

Dimension CD: Command mapping dependence

While Definition 5 maps each S command and T state to

a sequence of T commands, some previous works use more

strict command mappings, mapping each S command to a

sequence of T commands without considering the state [10].

In between these options, we may map each S command and T
theory, calculating the sequence of T commands by observing

only the queriable portions of the T state. Command mapping
dependence thus restricts the information that the command

mapping can consider about a T state when calculating the

trace of T commands to execute.

CDi: Independent command mapping
∃σ′ : ΨS → (ΨT )

∗
.(σΨ(ψ, γ) ≡ σ′(ψ))

CDt: Theory-dependent command mapping
∃σ′ : ΨS × Th(T )→ (ΨT )

∗
.(σΨ(ψ, γ) ≡ σ′(ψ, Th(γ)))

CDs: State-dependent command mapping No restriction.

With independent command simulations, S commands must

be precompiled to T commands which will work in any

reachable T state. This is a restriction placed by [10]. Theory
dependent command mappings allow limited inspection of the

T state; this restriction allows the sequence of T commands

to be determined based only on the theory of the T state: the

values of all T queries in the state. If two T states answer all

queries the same way, the same T commands would be used

in both to simulate an S command. With this restriction, the

monitor that transforms S inputs into T procedures need not

be more privileged than users of the access control system,

since queries are the user’s only API to observe the state.

Finally, state-dependent command mappings can arbitrarily

observe the state. This requires a monitor that is privileged

enough to observe elements of the state that are not queriable,

and two states that answer all queries identically may simulate

commands differently depending on unobservable state.

Dimension CC: Command mapping complexity

Having considered the inputs available to the command

mapping, we now consider the time complexity of this mapping.

Note that this is measured as the increase in time as the state
grows and thus is meaningless for independent command.

CCc: Constant command mapping ∀ψ ∈ ΨS , the algo-
rithm for σψ(γ) = σΨ(ψ, γ) has time complexity T (n) ∈ O(1)

CCl: Linear command mapping ∀ψ ∈ ΨS , the algorithm
for σψ(γ) = σΨ(ψ, γ) has time complexity T (n) ∈ O(n)
CC∞: Unbounded command mapping No restriction.

Constant command simulations do not allow more processing

time for bigger states. Thus, the command mapping cannot

loop over sets within the state. With linear command, the

command mapping can take time linear in the size of the state,

e.g., looping over sets in the state, but cannot contain double

loops over sets, sort sets, etc. Finally, unbounded command
simulations put no limit on the complexity of the command

mapping (though we may expect it to have to be tractable, e.g.,

poly-time).

Dimension CS: Command mapping stuttering

Since the command mapping maps an S state to a sequence

of T states, we may restrict the number of commands that can

be used to simulate a single S command.

CS1: Lock-step ∀ψ ∈ ΨS , γ ∈ ΓT : |σΨ(ψ, γ)| ≤ 1

CSc: Constant step ∃c : ∀ψ ∈ ΨS , γ ∈ ΓT : |σΨ(ψ, γ)| ≤ c

CS∞: Unbounded step No restriction.

A lock-step simulation allows at most one T command for

each simulated S command. This mitigates concurrency issues

for multiuser systems, since the system does not pass through

potentially inconsistent states between command executions.

Constant step simulations allow multiple commands to be

used, but only a number constant in the size of the state. Thus,

multiple actions can be taken, but not, e.g., a command for each

user in the system. Finally, unbounded step does not restrict

how many T commands can be executed per S command.

Dimension CT: Trace structure

This class of properties enforces structural constraints on the

traces of commands returned by the command mapping. This

can address the potentially inconsistent states between start and

end states in traces generated by the command mapping. Here,

we present several examples of trace restrictions, using the

notation terminal(γ, ψ1, · · · , ψj) to denote the end state re-

sulting from executing the sequence of commands ψ1, · · · , ψj ,
starting from the state γ. Note that this dimension of properties

is not totally ordered.

CT1: Semantic lock-step
∀ψ ∈ ΨS , γS ∈ ΓS , γT ∈ ΓT .(
∃ψ = 〈ψ1, ψ2, . . . , ψm〉 ∈ (ΨT )

∗
, i ∈ (1,m].(

σΨ(ψ, γ
T
) = ψ ∧

∀j ∈ [1, i).(γS ∼ γ
T ⇒

γ
S ∼ terminal(γ

T
, ψ1 · · ·ψj)) ∧

∀j ∈ [i,m].(γS ∼ γ
T ⇒

next(γS , ψ) ∼ terminal(γ
T
, ψ1 · · ·ψj))))

First, a semantic lock-step simulation can appear to be lock-

step (i.e., it does not enter any inconsistent states), because

even though it is allowed to execute multiple T commands to

simulate a single S command, only one of those commands
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Fig. 3: A graphical representation of semantic lock-step

is allowed to make correspondence-related changes. That is,

consider the sequence of T states constructed by executing

the sequence of commands σΨ(ψ
S , γT ). In semantic lock-step,

all of these states must correspond to the either the start state

in S or the end state in S, and once the transition from start

state to end state is made, the remaining states must all be

equivalent to the end state. Thus, from the point of view of a

user who can ask any combination of queries, the simulation

appears to be lock-step. This restriction is depicted in Fig. 3.

CTq: Query monotonic
∀ψ ∈ ΨS , γ ∈ ΓT , q ∈ QT .monotonic(ψ, γ, q), where:

monotonic(ψ, γ, q) � ∃ψ = 〈ψ1, ψ2, . . . , ψm〉 ∈ (ΨT )
∗
.(

σΨ(ψ, γ) = ψ ∧
∀i ∈ (1,m).(
terminal(γ, ψ1 · · ·ψi) � q ⇒

(terminal(γ, ψ1 · · ·ψi−1) � q ∨ terminal(γ, ψ1 · · ·ψm) � q) ∧
terminal(γ, ψ1 · · ·ψi) � q ⇒

(terminal(γ, ψ1 · · ·ψi−1) � q ∨ terminal(γ, ψ1 · · ·ψm) � q)))

Consider the start and end states of a trace in T , γ and γ′,
respectively. Let Q+ be the set of queries that become true

in γ′ that were false in γ, and Q− be the set of queries that

become false in γ′ that were true in γ. During the trace from

γ to γ′, query monotonicity enforces that no queries are made

true except Q+, and no queries are made false except Q−.

Thus, from the point of view of a user who can ask only single

queries, the simulation appears to be lock-step.

CTa: Access monotonic
∀ψ ∈ ΨS , γ ∈ ΓT , r ∈ RT .monotonic(ψ, γ, r)

Access monotonicity is similar to query monotonicity but

considering only authorization requests. Let R+ be the set

of requests that become allowed in γ′ that were denied in

γ, and R− be the set of requests that become denied in γ′

that were allowed in γ. During the trace from γ to γ′, access

monotonicity enforces that no requests are granted except R+,

and no requests are revoked except R−.

CTs: Non-contaminating

∀ψ ∈ ΨS , γT ∈ ΓT .(
∃ψ = 〈ψ1, ψ2, . . . , ψm〉 ∈ (ΨT )

∗
.(

σΨ(ψ, γ
T
) = ψ ∧

∀γTi ∈
{
γ
T
i | ∃ψi ∈ ψ : γ

T
i = terminal(γ

T
, ψ1 · · ·ψi)

}
.(

Allowed(γ
T
i ) ⊆ Allowed(γ

T
) ∨

Allowed(γ
T
i ) ⊆ Allowed(terminal(γ

T
, ψ)))))

The non-contaminating trace property ensures that no two

accesses are allowed in the same state that are not both

allowed in either the start or end state. This prevents, e.g.,

an intermediate state where a file can be accessed by two

users simultaneously when simulating a command intended to

switch which user can access the file. This definition uses the

Allowed(γ) notation, indicating the set of all permissions p
allowed in state γ (i.e., such that γ � p).

Dimension CA: Actor preservation

Actor preservation properties restrict which users can be

invoked in T to handle S commands. Here, we assume that

α(ψ) denotes the actor executing the command ψ. Note that

this requires system support (e.g., the executing actor being

an implicit argument passed to a command) in order for a

simulation to be executable.

CA�: Self-execution ∀ψS ∈ ΨS , γ ∈ ΓT , ∀ψT ∈
σΨ(ψ

S , γ), α(ψS) = α(ψT )

CAa: Administration-preservation Let A be the administra-
tive subset of executing entities in the system. ∀ψS ∈ ΨS , γ ∈
ΓT , ∀ψT ∈ σΨ(ψ

S , γ), α(ψT ) ∈ A⇒ α(ψS) ∈ A

Self-execution says that any command in S executed by any

user u must be mapped to a sequence of commands in T , all of

which are executed by u. Administration-preservation prevents

the invocation of administrators in T where they were not

needed in S. In an administration-preserving simulation, any

command in S executed by a non-administrative user is mapped

to a sequence of commands in T , none of which is executed

by an administrator. Other forms of actor preservation, as well

as defining the set of administrators, are application-specific.

D. Query decider properties

We defer the bulk of the technical discussion of the query

decider restrictions to the technical report accompanying this

paper [27], as they are largely similar to the command mapping

restrictions. Query decider dependence (QD), like command

mapping dependence (CD), restricts the information that the

query decider can consider about a T state when deciding

the truth value of an S query in that state. Query decider

complexity (QC) restricts the runtime of the routine.

Query preservation (QP) indicates which queries need to

stay the same as they are mapped from system S to system T .

A particular application may require any given set of queries

to be preserved; the most common property in this dimension

is authorization preservation, which enforces that the query

decider maps each S request to the value of the identical

request in the T state. This can be seen as ensuring that T
is using its model “as intended” (i.e., forcing it to answer

simulated requests as it would its own native requests).

E. Reachability

Dimension R: Reachability

The last dimension of properties we consider ties the

mappings together to ensure the simulation is indeed what

one could consider a simulation in the classic sense. A state

correspondence, query decider, and command mapping do not
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automatically define a simulation without reachability con-

straints. Here, we define forward and bidirectional reachability,

two variants of this type of constraint (note that these properties

are presented in increasing strictness since the latter builds

upon the former).

R→: Forward reachability
∀γS0 , γ

S
1 ∈ Γ

S
, γ
T
0 ∈ ΓT .(

γ
S
0 ∼ γ

T
0 ∧ γ

S
0 �→ γ

S
1 ⇒ ∃γT1 ∈ ΓT .(

γ
T
0

∗�→ γ
T
1 ∧ γ

S
1 ∼ γ

T
1 ))

R↔: Bidirectional reachability Forward reachability, and:

∀γS0 ∈ Γ
S
, γ
T
0 , γ

T
1 ∈ ΓT .(

γ
S
0 ∼ γ

T
0 ∧ γ

T
0 �→ γ

T
1 ⇒ ∃γS1 ∈ Γ

S
.(

γ
S
0
∗�→ γ

S
1 ∧ γ

S
1 ∼ γ

T
1 ))

In forward reachability, any transition made in S must be

possible in T . If γS0 corresponds to γT0 , and γS1 can be reached

from γS0 via the commands of S, then γS1 must correspond

to a state γT1 in T that is reachable from γT0 . The notion of

state correspondence is determined by the property chosen in

dimension SC.

Bidirectional reachability (or bi-reachability), also requries

that T cannot enter a state that does not correspond to a

reachable state in S. If γS0 corresponds to γT0 , and γT1 is

reachable from γT0 by executing a command, then there must

exist an S state γS1 that corresponds to γT1 and that is reachable

from γS0 by executing one or more commands. This process

may make use of multiple steps, since the procedure for finding

the corresponding S states does not need to be constructed,

these states must simply exist. The operational advantage of

enforcing R↔ is that, even if the simulating system’s native

operations are exposed to users, the system can never enter a

state that does not have an equivalent in the simulated system.

V. POSITIONING EXISTING SIMULATIONS

As mentioned in Section IV-A, no set of properties can

be proven to describe all conceivable simulations. In this

section, we support the set of properties defined in this work

by showing that it can precisely describe the wide range of

existing expressiveness simulations.

A. Expressiveness using Simulation Properties

We will now draw the formal distinction between a simu-

lation and expressiveness. Here, we use T sim
X

S to denote,

“T can admit a simulation of type X of S,” and S ≤X T
to denote, “T is at least as expressive as S with respect to

simulations of type X .”

While previous work considers the expressiveness result to

be equivalent to a simulation (i.e., T sim
X

S ≡ S ≤X T ),

expressiveness in a practical sense is subject to a subtle distinc-

tion. Since we mean for expressiveness to be implementable
(i.e., if T is as expressive as S , then T can be used in place of

S), expressiveness within the domain of simulation properties

should mean the following: if T is as expressive as S , then T
can simulate any system that S can simulate. Thus, we define

expressiveness in the context of a set of simulation properties.

Definition 6 (Expressiveness) Given access control systems
S and T and a set of simulation properties P , we say that
T is at least as expressive as S with respect to P (denoted
S ≤P T ) to mean that, for every system U , if S can simulate
U while enforcing P , then T can simulate U while enforcing
P (∀U : S sim

P
U ⇒ T sim

P
U ). ♦

We first point out that this definition of expressiveness is

strictly more general than the more traditional (often implied)

notion. Since S can trivially simulate itself, S ≤X T implies

T sim
X

S. The additional generalization can be viewed from

a formal standpoint as dropping the (incorrect) assumption

that all types of simulation are transitive (i.e., that T sim S
and S sim U imply T sim U). For instance, assume that T
can simulate S and S can simulate U , each with a quadratic

increase in state storage. While T may be able to simulate U ,

this simulation may require greater than quadratic storage.

From a more intuitive standpoint, we point out that, except

in the case of custom-built access control solutions, any

deployment is a simulation of a workload (i.e., ideal operation)

using an existing system. That is, unless S is custom-made

to exactly satisfy the desired workload, replacing it with T is

not a matter of whether T can simulate S , but whether T can

admit an equally good simulation of the (perhaps not formally

specified) workload that S is known to simulate. This concept

is discussed by Kane and Browne [28], who point out that an

access control implementation is often only an approximation

of the desired policy. In particular, as policy languages get

more complex, deployments often make use of approximations

that are easier to analyze and more efficient to enforce than

the overly-expressive policy language.

B. Decomposing Expressiveness Simulations to Properties

In order to use the set of expressiveness simulation properties

detailed in Section IV to systematically compare previously

proposed notions of simulation, we present our formal way

of stating that a notion of simulation and a set of simulation

properties are equivalent. We call this correspondence simu-
lation decomposition: when a notion of simulation X can be

decomposed to a set of simulation properties P , then analyses

using X and P yield equivalent expressiveness results.

Definition 7 (Simulation Decomposition) Given a notion of
access control simulation X and a set of simulation properties
P , X can be decomposed to P (denoted X =̈ P) if and only
if, for all systems S and T , T sim

X
S ⇐⇒ S ≤P T . That is,

T admits an X simulation of S if and only if T is at least as
expressive as S with respect to properties P . ♦

Recall from Definition 6 that S ≤P T says that any system

that can be simulated by S while preserving properties P can

can also simulated by T while preserving P . In light of this,

we will position an existing notion of simulation, X , within the

lattice formed by our simulation properties (i.e., prove X =̈ P)

by proving the following for the set of properties P:

1) (Only-if direction) T sim
X

S ∧ S sim
P

U ⇒ T sim
P

U
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2) (If direction) S ≤P T ⇒ T sim
X

S
We give an example of such a proof in the following section.

C. Example Decomposition

To demonstrate how simulation decomposition proofs are

written, we now consider the Ammann-Lipton-Sandhu simula-

tion [6]. The ALS simulation considers access control states

as graphs: sets of primitive objects are node types, and sets of

relations are edge types. The set of node types and edge types

in the states of system S are denoted NT (S) and ET (S),
respectively. The ALS state correspondence is then defined as

follows (reworded slightly from [6]).

Definition 8 A state in system S, a simulated system, and a
state in system T , a simulating system, correspond iff the graph
defining the state in S is identical to the subgraph obtained
by taking the state in T and discarding all nodes (edges) not
in NT (S) (ET (S)). ♦

The ALS simulation is defined with respect to this state

correspondence.

Definition 9 Under the definition of correspondence in Defini-
tion 8, system T simulates system S iff the following conditions
hold:

1) If system S can reach a given state, system T can reach
a corresponding state.

2) If system T can reach a given state, system S can reach
a corresponding state.

We will now demonstrate the two-step simulation decom-

position proof technique described in Section V-B for the

ALS simulation. For the purposes of this proof, let the set

of simulation properties P = {SCs,QPa,R↔}. Recall that

SCs is structure state correspondence, which says that the

simulating state must include all of the unaltered sets from the

simulated state; QPa is authorization preservation, which says

that each authorization request must be mapped identically from

simulated to simulating system (and thus the simulating system

must support the same set of requests as the simulated system);

and R↔ is bireachability, which says that the simulating system

can reach a state which corresponds to each reachable simulated

state, and cannot reach a state which does not correspond to a

reachable state in the simulated system.

We will demonstrate the two steps of the proof technique by

proving two requesite lemmas. First, step 1 (only-if direction):

Lemma 1 Given access control systems S, T , and U ,

T sim
ALS

S ∧ S sim
P

U ⇒ T sim
P

U

That is, if T admits an ALS simulation of S, and S admits
a simulation of U with properties {SCs,QPa,R↔}, then T
admits a simulation of U with properties {SCs,QPa,R↔}.

Proof To prove this lemma, we let S, T , and U be access
control systems such that T sim

ALS
S and S sim

P
U but are

otherwise arbitrary, and we show that T sim
P

U .

Choose an arbitrary state γU0 ∈ ΓU and command ψU ∈ ΨU ,
and let next(γU0 , ψ

U ) = γU1 . Let γS0 ∈ ΓS such that γU0
s∼ γS0 .

Since S sim
P

U ,

∃γS1 ∈ ΓS .(terminal(γS0 , σΨ(ψ
U , γS0 )) = γS1 ∧ γU1

s∼ γS1 )

Let γT0 ∈ ΓT such that γS0
s∼ γT0 . Since T sim

ALS
S,

∃γT1 ∈ ΓT .(γT0
∗�→ γT1 ∧ γS1

s∼ γT1 )

Thus, there exists a sequence of T commands ΨT0 such that
terminal(γT0 ,Ψ

T
0 ) = γT1 . Define σΨ : ΨU × ΓT → (ΨT )

∗

such that it returns ΨT0 for γT0 , ψ
U .

Then, given γU0 , γ
U
1 ∈ ΓU , γT0 ∈ ΓT , ψU ∈ ΨU such that

next(γU0 , ψ
U ) = γU1 , and γU0

s∼ γT0 ,

∃γT1 ∈ ΓT .(terminal(γT0 , σΨ(ψ, γ
T
0 )) = γT1 ∧ γS1

s∼ γT1 )

Hence, T sim
{SCs,R→}

U . Next, we show QPa.

Choose some arbitrary request rU0 ∈ RU and state γT0 ∈ ΓT .
Since S sim

P
U ,

∀rU ∈ RU , γS ∈ ΓS , σQ(r
U , γS) = γS � rU

Thus, we know that S supports all U requests, and corre-
sponding S and U states will answer U requests identically.
Therefore, rU0 ∈ RS . Since T sim

ALS
S,

∀rS ∈ RS , γT ∈ ΓT , σQ(r
S , γT ) = γT � rS

Thus, σQ(rU0 , γ
T ) = γT � rU0 .

Hence, T sim
{SCs,QPa,R→}

U . Next, we show R↔.

Choose some arbitrary states γT0 , γ
T
1 ∈ ΓT such that γT0 �→

γT1 . Let γS0 ∈ ΓS such that γS0
s∼ γT0 . Since T sim

ALS
S ,

∃γS1 .(γS0
∗�→ γS1 ∧ γS1

s∼ γT1 )

Let γU0 ∈ ΓU such that γU0
s∼ γS0 . Since S sim

P
U ,

∃γU1 .(γU0
∗�→ γU1 ∧ γU1

s∼ γS1 )

Thus, given γT0 , γ
T
1 ∈ ΓT , γU0 ∈ ΓU such that γT0 �→ γT1

and γU0
s∼ γT0 ,

∃γU1 ∈ ΓU .(γU0
∗�→ γU1 ∧ γU1

s∼ γT1 )

Hence, T sim
P

U . �

Next, we demonstrate step 2 (if direction):

Lemma 2 Given access control systems S and T and simula-
tion properties P = {SCs,QPa,R↔}, S ≤P T ⇒ T sim

ALS
S.

That is, if T is at least as expressive as S with respect to
properties P , then T admits an ALS simulation of S .

Proof To prove this lemma, we let S and T be arbitrary
access control systems such that S ≤P T , and we show that
T sim

ALS
S.

Since S ≤P T , for any access control system U , if S sim
P

U ,
then T sim

P
U .
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Simulation Decomposition
ALS SCs QPa R↔

CDMw SCa QPa CDi R→
CDMs SCa QPa CDi CS1 R→
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(a) Decompositions of surveyed simulations
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(b) Taxonomy of simulations
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Fig. 4

Since S can trivially simulate itself, S sim
P

S, and thus
T sim

P
S.

Thus, given γS0 , γ
S
1 ∈ ΓS , γT0 ∈ ΓT , by forward reachability,

if γS0
s∼ γT0 and γS0 �→ γS1 , then

∃γT1 .(γT0
∗�→ γT1 ∧ γS1

s∼ γT1 )

Since SCs and QPa satisfy the ALS definition of state
correspondence, this means we have satisfied the first property
of the ALS simulation.

1) If S can reach a given state, T can reach a corresponding
state.

And by bidirectional reachability, given γS0 ∈ ΓS , γT0 , γ
T
1 ∈

ΓT , if γS0
s∼ γT0 and γT0 �→ γT1 , then

∃γS1 .(γS0
∗�→ γS1 ∧ γS1

s∼ γT1 )

And therefore, we have satisfied the second property of the
ALS simulation:

2) If T can reach a given state, S can reach a corresponding
state.

These properties satisfy the definition for ALS simulation,
and hence T admits an ALS simulation of S (T sim

ALS
S). �

Therefore, we have proved the decomposition of the ALS

simulation:

Theorem 3 ALS =̈ {SCs,QPa,R↔}; that is, the ALS simu-
lation decomposes to structure correspondence, authorization
preservation, and bidirectional reachability.

Proof By Lemma 1, if T sim
ALS

S , then S ≤P T . By Lemma 2,

if S ≤P T , then T sim
ALS

S. Thus, S ≤P T if and only
if T sim

ALS
S, and thus the ALS simulation decomposes to

{SCs,QPa,R↔}. �
In the interest of space, all other decomposition proofs can

be found in the technical report accompanying this paper [27].

D. Results

Now, we present the results of decomposing the simulations

from the series of previous works discussed in Section II into

sets of simulation properties from Section IV. First, a chart of

our results is shown in Fig. 4a, which states the decomposition

of the SMG simulation [2]–[4], [7]–[9], the Ganta simula-

tion [5], the ALS simulation [1], [6], the CDM weak and strong

simulations [10], the TL state-matching reduction [12], [13],

and HMG+ parameterized expressiveness (along with several

parameterized expressiveness properties) [14]. Properties are

omitted if they are not explicitly required by the simulation’s

definition but are implied by other, explicit properties (e.g.,

CDMs decomposes to a set including CDi, which also implies

CCc). Section VI-A discusses which properties imply others.

In Fig. 4b, we arrange this data as a taxonomy, with each split

representing a dimension, with weaker properties positioned

to the left and stronger properties to the right. We split first

on the state correspondence, which is perhaps the biggest

difference among the surveyed simulations. This separates

simulations that preserve only the answers to authorization

requests (SCa) from those that preserve all queries (SCq) and

those that preserve full state structure (SCs). We note that

the ALS simulation is alone in its decomposition including

SCs; all other surveyed simulations allowed the simulating

system to store information in a different organization than the

simulated system, so long as the required queriable information

(requests or queries) can be recovered. We also note that the

predominant difference between the SMG simulation and the

CDM simulations is the command dependence: in SMG, a

command can be mapped completely differently if it is to be

executed in different states, while in CDM, each command

must be mapped without knowing the state in which it will

be executed. The Ganta simulation is unique in enforcing

the non-contamination trace restriction. HMG+ and TL-SMR

use the same state correspondence, but HMG+ enforces a

more lax query dependence and does not require bireachability.

Simulations that are positioned farther apart are the most

dissimilar. Most starkly different are SMG and ALS, positioned

far left and far right, which share no simulation properties

except in dimensions in which both enforce only minimum

properties, despite their similar publication times.

In Fig. 4c, we position the surveyed simulations within a

lattice. Higher simulations decompose to more strict properties,

and an arrow from simulation X to simulation X ′ indicates

that X ′ decomposes to strictly stronger properties than X .

Here we can see that the SMG simulation is strictly weakest,

which supports previous claims to this effect [5], [13]. Several

orthogonal directions were taken in defining other simulations

2828



SCq CDi QD1

SCs CDi QD1

SCs CDt QD1 SCs CDi QDi

SCa CDi QD1 SCq CDt QD1 SCq CDi QDiSCs CDs QD1 SCs CDt QDi SCs CDi QDt

SCa CDt QD1 SCa CDi QDiSCq CDs QD1
(TL-SMR) SCq CDt QDi SCq CDi QDtSCs CDs QDi SCs CDt QDt SCs CDi QDs

SCa CDs QD1 SCa CDt QDi SCa CDi QDtSCq CDs QDi SCq CDt QDt SCq CDi QDsSCs CDs QDt SCs CDt QDs

SCa CDs QDi SCa CDt QDt SCa CDi QDs
(CDM)

SCq CDs QDt
(HMG) SCq CDt QDs SCs CDs QDs

(ALS)

SCa CDs QDt SCa CDt QDs SCq CDs QDs

SCa CDs QDs
(SMG)

Fig. 5: Lattice of state correspondence, command dependence, and query dependence with positioned surveyed simulations

to enforce stronger properties. The CDM simulations, as noted

above, restrict the command dependence. The Ganta simulation

requires non-contamination and bireachability. The TL state-

matching reduction and HMG+ parameterized expressiveness

consider queries, and thus strengthen the state correspondence.

The ALS simulation enforces an even more strict state

correspondence, requiring the structure of a simulated system’s

state to be preserved in the simulating system. Interestingly,

we note that while all are stronger than SMG, most pairs are

incomparable due to being stronger in orthogonal ways. In

particular, while TL-SMR is considered to be a relatively strong

notion of simulation, this is not substantiated by the lattice,

which shows TL-SMR to be stronger than HMG+ and SMG,

but incomparable to the CDM, ALS, and Ganta simulations.

Figure 5 presents a lattice of state correspondence, command

dependence, and query dependence, with the surveyed simula-

tions positioned within it (in this space, the Ganta simulation

is at the same point as the SMG simulation). This figure makes

evident the wide range of points between existing simulations

that have not been explored. In this figure, we omit several

dimensions for readability, namely reachability (which further

separates Ganta, ALS, and TL-SMR from SMG, CDM and

HMG+) and stuttering (which would break CDM into its weak

and strong counterparts). Perhaps the most interesting points

to explore within this lattice are those that exist between two

surveyed simulations. For example, {SCq,CDs,QDs} adds to

SMG the preservation of queries beyond requests, but stops

short of HMG+ by not restricting the query decider to consider

only the theory of the state while mapping queries. Similarly,

{SCa,CDt,QDs} takes away some of SMG’s freedom to

inspect the state mapping commands, but rather than go all

the way to the independent command mapping of CDM, it

still allows it to inspect the state’s responses to queries. We

also point out {SCq,CDs,QDi}, which differs from HMG+ by

enforcing query decider independence (mapping queries cannot

consider the state or theory), but can map each simulated query

to a boolean expression over simulating queries.

VI. SELECTING NEW SETS OF PROPERTIES

In Section V, we positioned the simulations used in previous

works within a comparative lattice, allowing them to be

formally compared for the first time. In this section, we

enable a second use of our lattice of expressiveness simulation

properties: crafting new notions of expressiveness by choosing

the properties that most closely correspond to the scenario

in which an access control system will be deployed. We first

discuss interactions between dimensions; this discussion should

act as a warning against choosing individual properties in

isolation. We then interpret the impact each identified dimension

has on the simulation, and identify properties of a deployment

scenario that may dictate particular choices in each dimension.

Finally, we discuss the potential impact these techniques could

have on future expressiveness analysis.

A. Interactions Between Dimensions

We noted in Section V that some simulations decompose to

sets of properties that include implied properties, or properties

that are redundant given the others in the set. For instance,

command independence (CDi) implies constant-time command

mapping (CCc); if the command mapping does not depend on

the state, then its procedure must be constant-time in the size

of the state. Further, CCc implies constant step (CSc), since a

constant-time procedure must have constant-size output.
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An additional type of interaction is between basic properties

and those properties whose definition relies on the basic

properties in the abstract. For example, the definition of forward

reachability (R→) refers to sequences of commands output by

σΨ, the length of which may be limited by command mapping

stuttering (CS). Further, the definitions of both reachability

properties (R) and trace structure properties (CT) refer to

corresponding states. Here, the details of what makes states

correspond is left to the state correspondence structure (SC).

These dependencies show that the proof of a property in

one dimension may rely on the properties chosen in another.

Thus, e.g., changing to a stronger state correspondence requires

re-proving a simulation’s results for reachability and trace

structure, since these are dependent on state correspondence.

Several property dimensions are defined over the size of the

simulated state: command mapping complexity (CC), command

mapping stuttering (CS), and query decider time-complexity

(QC). Thus, these dimensions can be altered with respect to

the original, simulated state by the state storage size (SS). For

example, enforcing polynomial storage (SSp) and linear-time

command mapping (CCl) will guarantee a command mapping

that is linear-time with respect to the simulating state, which

is a polynomial expansion over the original simulated state.

B. Interpreting the Dimensions

We now discuss the practical impacts each identified dimen-

sions, and what types of environments may cause one to prefer

a particular property in these dimensions over others.

SC: State correspondence structure allows one to change

what needs to be preserved about the state during a simulation.

If the deployment scenario in question assumes only that the

simulation allows the proper authorization requests, SCa should

suffice. For scenarios that require the access control system to

support (and provide correct answers to) additional queries such

as, “Is user u a member of role r?”, SCq is more appropriate.

Finally, in scenarios that make use of additional code that has

access to (and assumes a particular arrangement of) the access

control system’s internal data structures, SCs is the best choice.

SS: State storage limits the size of the simulated state with

respect to the original state (i.e., the state of the system being

simulated). This can be restricted for several reasons. The most

obvious is storage space: if trusted storage for representing

access control state is limited, we may restrict the simulation

from mapping states in a way that increases storage by more

than a linear factor (SSl) or a polynomial factor (SSp). However,

the more interesting reason comes from an interaction described

in Section VI-A. Since other dimensions place restrictions (e.g.,

on the number of commands executed) based on the size of the

simulating state, we may restrict the state expansion to linear

(SSl) in order, e.g., to restrict the command mapping procedure

to be linear-time in the size of the original, simulated state. If

state storage is polynomial (SSp), then even if we enforce a

command mapping that is linear in the simulating state (CCl),
this only restricts it to being polynomial-time with respect to

the simulated state. Thus, even when trusted storage space is

unbounded in the deployment scenario, one may desire to limit

state size to limit later iteration over this state.

CD: Command mapping dependence allows one to re-

quire that the command mapping be computable without full

knowledge and inspection of the state in which a command will

be executed in. Independent command (CDi) requires that each

command is mapped independent of the state, and is useful

in deployment scenarios in which the agent calculating the

simulating commands is completely unprivileged, and cannot

inspect the state. It is also useful when commands must be

precompiled, thus adding no computation at runtime beyond

that of the simulating commands themselves. Theory-dependent

command mapping (CDt) allows the command mapping to

inspect the theory of the state (i.e., the answers to all queries).

This property is useful in deployment scenarios in which the

simulation agent is no more privileged than normal users—

calculating the mapped commands requires only information

available by asking queries. Finally, state-dependent command

mapping (CDs) allows the command mapping to arbitrarily

inspect the state, requiring a powerful simulation agent.

CC: Command mapping complexity restricts the time-

complexity of the command mapping with respect to the size

of the simulating state. Constant command mapping (CCc)

can restrict the command mapping from taking any longer

for larger states, and is thus appropriate when states can be

large but mapping commands must always remain fast. Linear

command mapping (CCl) prevents expensive nested loops over

access control state as well as operations such as sorting, while

still allowing more processing for larger states.

CS: Command stuttering restricts the number of sim-

ulating commands executed for each simulated command.

Lock-step (CS1) simulations must execute no more than one

simulating command per simulated command, and thus ensure

there is no intermediate state exposed to users. In deployment

scenarios without the ability to force atomic execution of

a sequence of commands (or without built-in data structure

locking), this property is crucial to preventing the inspection

of intermediate (potentially inconsistent) states. Constant step

(CSc) simulations are allowed a constant number of commands

for each simulated command, and are thus appropriate when the

state can grow to be large but the deployment scenario requires

that the number of steps for any simulated action remain

bounded (e.g., to prevent starvation due to locked structures).

CT: Trace structure properties restrict the path that the

simulating system can take during the simulation of a single

command. Semantic lock-step (CT1, depicted in Fig. 3)

provides the benefits of a lock-step simulation in a slightly

relaxed way: a “setup” phase prepares for the transition by

changing only internal data (i.e., while remaining equivalent to

the start state), then the transition occurs to a state equivalent

to the end state, and then the “cleanup” phase cleans up any

unnecessary leftover data (again, while remaining equivalent to

the same end state). This is particularly useful when lock-step

is too strict, but the deployment scenario is sensitive to the

exposure of intermediate states (since, in CT1, no states are

exposed except those equivalent to the start and end states).
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Query monotonicity (CTq) ensures that no query changes its

truth value except those that are required to change between

the start and end state. This allows multiple steps, but ensures

that intermediate states, while not corresponding with the start

or end state, never answer any query in a way that neither the

start nor end state would. This is useful in scenarios where

intermediate states are undesirable, but users are not expected

to execute more than a single query between “valid” states (and

will thus never detect the inconsistency). Access monotonicity

(CTa) is similar, but applies only to authorization requests,

and is useful in scenarios where inconsistent states are not

a danger as long as they do not wrongly allow or forbid a

request. Finally, non-contamination (CTs) ensures that no two

accesses are allowed in an intermediate state that are not both
allowed in either the start or end state. Thus, the simulating

system is restricted not only from allowing accesses forbidden

in the simulated system, but also combinations of individually-

allowed accesses that are never combined in the simulated

system. This restriction is particularly useful in environments

with operations that “swap” accesses from one subject or object

to another, or where separation of privilege is utilized.

CA: Actor preservation restricts which users can be

invoked to simulate commands. Self-execution (CA�) requires

each simulating command be executed by the same user as

the original, simulated command. This allows the simulating

agent to be completely unprivileged, mapping commands as

a service to the user, but without executing them with any

privilege beyond the user’s own. Administration-preservation

(CAa) requires any non-administrative simulated command

be mapped to a sequence of non-administrative commands

(i.e., a command that does not invoke administrative privileges

cannot be simulated by an administrative command). This

corresponds to scenarios in which users will be expected

to operate largely without administrative intervention. No

restriction in this dimension means that the command mapping

can return commands to be executed by any other user. This

is most appropriate when the simulating agent is trusted to

execute administrative actions on behalf of untrusted users, or

when the commands returned can then be delegated to other

users to be approved and executed.

Finally, R: reachability specifies whether the simulating

system should be restricted from entering a state that does

not correspond to a simulated state. If the simulation agent is

users’ only interface to the deployed access control system,

forward reachability (R→) is sufficient. However, if users can

access the simulating system’s native commands, bireachability

(R↔) ensures that the system cannot transition to a state that

is inconsistent with the simulated system.

C. Studying Canonical Usages

Next, we use the above interpretation of our expressiveness

simulation properties to guide a discussion about how each of

the notions of simulation that we studied in Section V is used

by its creators. In many cases, the definition for a particular

notion of simulation is underconstrained, and the simulations

written within the framework actually satisfy stronger properties

TL-SMR
SCq,QD1,

R↔

HMG+
SCq,QDt,

R→

SMG
SCa,R→

ALS
SCs,QPa,

R↔

CDMs
SCa,QPa,
CDi,CS1,

R→

CDMw
SCa,QPa,
CDi,R→

ALS
SCs,QD1,
QPf,R↔

TL-SMR
SCq, SSp,
QD1,R↔ HMG+

SCq, SSl,
QDi,R→

CDMw
SCa, SSl,
QD1,QPf,
CDi,R→

CDMs
SCa, SSl,QD1,
QPf,CDi,CS1,

R→

SM
SCa,QD1,
QPf,CSc,

R→

Ganta
SCa,QPa,
CTs,R↔

Ganta
SCa, SSl,QD1,
QPf,CTs,R↔

Fig. 6: Partial lattice of canonical usage

than the defined lower bound. We refer to the set of properties

that the authors seem to intend for a simulation to uphold as its

canonical usage. In the case of Sandhu’s simulation, the author

recognizes that the given constructions are stronger than the

definition, noting that formalizing the definition of the stronger

simulation is beyond the scope of the work [2]. Here, we make

conjectures regarding the decomposition of the canonical usage

of these simulations. A lattice view of these conjectures is

shown in Fig. 6, where X indicates the canonical usage of

simulation type X . For example, SM refers to the form of the

SMG simulation used in [7], [8].

It is interesting to note that the relationships between

notions of simulation are not necessarily preserved in the

canonical usage. While SMG by definition is the weakest

simulation, the canonical usage SM is incomparable to any

simulation’s definition and positioned strictly weaker than

the canonical usage of the CDM simulations. While, by

definition, the TL state-matching reduction is more strict than

HMG+ parameterized expressiveness, their canonical usages

are incomparable due to TL-SMR enforcing bireachability

(R↔) and using polynomial state size (SSp), compared to

HMG+ enforcing forward reachability (R→) and using linear

state size (SSl). Finally, we note that all of CDMs, CDMw,

SMG, and ALS simulations are canonically used in such a way

that enforces full query preservation (QPf); that is, all of the

constructed mappings of these types use the identity mapping

for all supported queries, despite the fact that none of them

specifically require this by definition. This trend of a notion

of simulation’s usage being consistently more strict than its

definition reveals the difficulty in fully specifying the set of

properties that a notion of expressiveness simulation is intended

to enforce. The discussion in this section, aimed at helping

analysts choose a reasonable set of properties for a deployment,

can also help ensure that newer notions of simulation are fully

specified, and best match their intended usages.

VII. CONCLUSION AND FUTURE WORK

In this paper, we organize the existing knowledge of

expressiveness simulations by formalizing a granular, property-

based representation, proposing a wide range of dimensions
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of simulation properties, and positioning influential notions of

expressiveness simulation from the literature within the lattice

of these properties. In doing so, we provide the first systematic

comparison of existing simulations that were not previously

known to be directly comparable, showing how these notions

of expressiveness simulation relate to one another.

Looking away from existing notions of simulation and rather

between them, this work allows us to explore an organized

space of simulations to identify areas to explore in future

research. For instance, knowing expressiveness results derived

using the SMG and ALS simulations, which of these hold true

for notions of simulation “between” the two existing notions?

What results can be shown for a simulation decomposing to

the union of the properties of two existing notions? How far

up the lattice do all systems become incomparable? These

questions can only be explored thanks to the systematic means

of simulation decomposition.

Finally, understanding the systems implications of various

simulation properties will enable analysts to select the notion

of access control expressiveness that corresponds most closely

to the scenario in which they plan to deploy the target access

control system(s). Thus, we make inroads toward bringing

expressiveness analysis techniques out of the strictly formal

realm, and repurpose these techniques to help select the most

suitable access control system for a given application.

A question to be explored in future work is the identification

of the set of analysis questions that a particular set of simulation

properties preserve. For example, Tripunitara and Li showed

that the state-matching reduction preserves compositional
security analysis instances: the set of questions containing

a single quantifier (∃ or ∀), a propositional formula over

queries ϕ, and a start state γ [13]. Semantically, the question

asks whether ϕ it is {ever, always} true in states reachable

from γ. If T admits a state-matching reduction of S, then

all compositional security analysis instances have the same

value in S and T . Identifying the types of analysis questions

preserved by other notions of simulation would allow us even

greater understanding of the practical and theoretical impacts

of simulation property choices.
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