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NTEREST in dynamical recurrent neural networks is not I new. The earliest work seems to be that of 161. In Section 
I1 of their paper (The Theory: Nets without Circles) they 
developed models for feed-forward networks which had time 
dependences and time delays. However, these networks were 
constructed from the threshold logic variety of neuron. In 
Section 111 (The Theory: Nets with Circles) McCulloch and 
Pitts extend their networks to those with “circulating” or 
“dynamic memory.” These networks had feedback. 

Kleene 141 was motivated by this work. In his own words: 
“Finally, we repeat that we are investigating McCulloch-Pitts 
nerve nets only partly for their own sake as providing a 
simplified model of nervous activity, but also as an illustration 
of the general theory of automata, including robots, comput- 
ing machines and the like.” Kleene did not find section I11 
of MCulloch and Pitts easy to understand and was forced 
to proceed independently. He modeled the McCulloch-Pitts 
networks as finite automata and their language as a regular 
language and proved the equivalence of the two. His work 
is usually referenced as the first work on finite automata 
11 11. 

Minsky extended the McCulloch-Pitts model to include 
more conventional types of time dependencies, static memories 
and flip-flops [7], 181 and proved how networks of McCulloch- 
Pitts neurons are equivalent to finite-state machines in gen- 
eral. 

In a mathematical sense, the training of dynamical recurrent 
neural networks is also not new. One is reminded of the 
bourgeois gentilhomme of Molikre, who was surprised when 
he was told that he had been speaking prose all his life. 
Similarly, practitioners of training with feedforward nets may 
be surprised to be told that they have been doing a kind of 
recurrent training all along! 

If we take first-order feedforward networks as an example, 
the gradient-based weight change for weight iuJZ from unit z 
to unit , j  is usually shown as something like 

This weight change factors into 6; = and y; = 2, 
where E is a training error, : ~ ; j  is the weighted sum into node 
j of the network, and y = f(x) is often the logistic function 

Anyone who can count would say that there is only one 
term, namely y L ,  in the second factor of this chain rule. Would 
they be right? 

dxc, 

(1 + P - 1 .  

No. Since :rJ = CL wlzyt  it follows that 

is the derivative of a product and has mo terms. 
The point is that the first term on the right hand side of the 

equation 70;i&y;, has been there all along in the feedforward 
case. But because there was no recurrence (no loop from the 
output of a unit back to its input), a change in a weight on a 
connectionfrom unit i could not affect the output of unit %. So 
the practitioners of training with feedforward nets have in fact 
been doing a kind of recurrent training, namely a kind where 
the amount of recurrence is ... zero! 

This special issue illustrates both the scientific trends of the 
early work in recurrent neural networks, and the mathematics 
of training when at least some recurrent terms of the network 
derivatives can be non-zero. The following is a brief descrip- 
tion of each of the papers. We have organized this description 
into two parts. The first part contains the papers that are mainly 
theoretical, and the second part contains the papers that are 
mainly applications. The order of papers is alphabetical by 
first author. 

I. THEORETICAL PAPERS 

Bengio, Simard, and Frasconi set up three conditions for a 
parametric dynamical system to learn and store relevant state 
information: that the system be able to store information for 
an arbitrary duration of time: that the system be resistant to 
noise: and that the parameters of the system be trainable in 
reasonable amount of time. They show that gradient-based 
training methods fail to meet the first two criteria and as a 
consequence ineffective for learning long-term time dependen- 
cies. They then show the performance for both state retention 
and training time for the training algorithms of backpropaga- 
tion, pseudo-Newton, time-weighted pseudo-Newton, discrete 
error propagation, multi-grid random search and simulated 
annealing, on three state retention problems; latch memory, 
2-sequences, and parity. In general. the non-gradient methods 
produced better networks for memory retention, but took much 
longer to train. 

The paper by Bianchini, Gori, and Maggini analyses the 
problem of optimal learning in recurrent networks, by propos- 
ing some sufficient conditions which guarantee that error 
surfaces are free of local minima. Formal relations are es- 
tablished between feedforward and recurrent networks. so that 
examples of local minima for feedforward networks can be 
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associated with analogous ones in recurrent networks. Also, 
the constructive role of the analysis is shown, for the designing 
of networks suitable for a given task. 

Nerrand et al. show the importance of choosing the appro- 
priate training algorithm for the training of a dynamical system 
in the presence of noise. Through simulations of nonlinear 
processes with and without noise, they show that directed 
(teacher forcing) algorithms seem to be better for prediction 
when modeling a noiseless system or one that has white noise 
added to the system’s state variables. However, when the white 
noise is added to the output, undirected training algorithms 
appear to be better predictors. Thus, some knowledge of the 
locations of noise in a dynamical system can be very helpful 
in choosing a model for training and prediction. 

The article by Olurotimi first proves that any recurrent 
network is equivalent to a kind of layered network in which 
the hidden layer has no recurrent connections and the output 
layer units have self-recurrent connections as well as feedback 
connections to the hidden units. This result is then used 
to yield a method for leaming the weights in any fully 
recurrent network using only feedforward leaming, under 
the assumption that a reasonable state representation can be 
constructed from the input-output data, for example, by using 
71-fold derivatives of the output for suitable ‘n. 

The article by Piche provides both a tutorial overview of 
the two basic strategies used for computing error gradients in 
recurrent neural networks (or, more generally, in any discrete- 
time dynamical system) and an analysis of the computational 
requirements of the various forms such algorithms may take. 
Also presented are examples illustrating the application of 
these techniques to nonlinear controller design and adaptive 
noise cancellation. 

The paper by Principe, Kuo, and Celebi is a vector space 
study of short-term memory structures in dynamic recurrent 
networks. For the special case of gamma memory structures, 
which are another example of what Back and Tsoi call “LRGF 
architectures” [ 11, the study shows the following advantage of 
recurrence: the recurrent system is able to control the angle be- 
tween the signal vector and its projection in the memory space. 
In a feedforward system that angle would always be fixed. 

The article by Srinivasan, Prasad, and Rao provides several 
interesting and novel results, including: 1) a convergence 
proof for both backpropagation through time and the algorithm 
known variously as dynamic backpropagation [ 101 forward 
propagation [ 5 ] ,  or real-time recurrent leaming [ 151; 2) a proof 
that truncated backpropagation through time is sufficient for 
convergence; and 3 )  a description of the explicit form that 
backpropagation through time takes for ARMA models. 

The paper by Tsoi and Back provides an overview of the ar- 
chitectures of locally-recurrent locally-feedback networks. The 
architectures reviewed: Back, Tsoi [ 11; Frasconi, Gori, Soda 
[2]; de Vries and Principe [ 141; and Poddar and Unnikrishnan 
[ 121; are compared as to whether the synaptic type is simple or 
dynamic and whether the feedback location is in any or all of 
the synapses, activations and outputs. From this comparison, 
it is evident that other architectural models are possible. In 
addition, a collection of issues are raised regarding universal 
approximated properties, location and placement of feedback, 

differences between locally and globally recurrent networks, 
state-dependent models, structural robustness, etc. 

11. APPLICATIONS PAPERS 

The paper by Connor, Martin, and Atlas applies a robust 
leaming algorithm to the training of a dynamic recurrent neural 
network. The robust algorithm is reminiscent of the proba- 
bilistic weighting of data for hidden Markov model or EM 
training, in that outliers are probabilistically filtered while the 
parameters for the network are estimated. In the chosen appli- 
cation, the robust algorithm yields considerable improvement 
on prediction of the Puget Power Electric Demand time series. 

The paper by Parlos, Chong, and Atjya describes work 
on the training and validation of a dynamic recurrent neural 
network for control of a heat exchanger. Batch training was 
successfully supplemented by on-line training, to achieve 
further reduction in mean square error. This paper is an 
example of the kind of close-to-real system identification that 
is often under-reported in the literature. 

The article by Kechriotis, Zervas, and Manolakos presents 
results on the use of recurrent neural networks as adaptive 
communication channel equalizers. This is a potentially im- 
portant application area, and their simulations show that small 
recurrent nets can outperform both traditional linear filter 
equalizers and multilayer feedforward net equalizers of larger 
size. Because very small recurrent networks are used, on-line 
gradient algorithms that scale poorly with network size can 
still be effective in this application. 

Neurocontrol of nonlinear dynamical systems with Kalman- 
filter trained recurrent networks is discussed in the paper by 
Puskorius and Feldkamp. They show how dynamic recurrent 
neural networks can be trained with parameter-based extended 
Kalman filters (EKF). They illustrate this training by the ap- 
plication of Kalman-trained neural networks for a wide range 
of control problems: the cart-pole problem, the bioreactor 
benchmark and engine idle speed control. 

The paper by Robinson shows that a dynamic recurrent 
neural network can make a good probability estimator for use 
in phonetically based speech recognition. Some details of the 
training algorithm are quite unexpected. The probability values 
output by the network can be used by a hidden Markov model 
in the place of values traditionally calculated by Gaussian 
Mixtures. 

The article by Sastry, Santharam, and Unnikrishnan studies 
a form of recurrent network that is essentially a feedforward 
net in which each node is followed by a single-pole adaptive 
filter. Such a net thus has recurrent connections of a limited 
form and is an example of what Back and Tsoi [ 11 call a locally 
recurrent, globally feedforward architecture. Also presented 
are a gradient-based algorithm for determining the weights 
that ignores dependencies on past time and weak convergence 
results for this algorithm. A significant portion of this article 
is devoted to the study of the behavior of the architecture 
and learning algorithm when applied to the identification and 
control of dynamical systems. This study yields favorable 
results on several problems first considered by Narendra and 
Parthasarathy [IO]. 
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Discrete recurrent networks for grammatical inference are 
described by Zeng, Goodman, and Smyth. This neural network 
is an extension of a previously discussed hybrid neural network 
structure of Giles and Sun [3], [13] that connects a recurrent 
neural network to a discrete stack. A common error function 
enables the network and stack to be trained concurrently. 
When trained this neural system emulates a neural network 
pushdown automaton. What is different from previous work 
is that a new pseudo-gradient training algorithm trains the 
network to use the stack and to form the intemal networks 
states that are extremely stable and can classify long unseen 
strings. These stable intemal states enable the networks leamed 
intemal representation of its pushdown automaton to be readily 
extracted. 
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