Estimation of Aircraft Performance Parameters from ADS-C EPP Data

Róbert Šošovička, Petr Veselý, Jiří Svoboda

ICNS 2015 Washington D.C.

Introduction

ADS-C EPP is a data link service that provides aircraft 4D trajectory for ground ATSU (Automatic Dependent Surveillance – Contract Extended Predicted Profile)

Cooperation with ANSPs to support efficient ADS-C EPP implementation

Difference between ground and air predicted trajectories

Comparison of data sources for trajectory predictions:

Data for trajectory prediction	AIRBORNE (EPP)	GROUND TP tools
A/C performance model	Provided by OEM	Generic
Actual A/C weight	Known	Unknown
Cost index	Known	Unknown
Thrust reduction setting	Known	Unknown
Climb/descent speed profile	Known	Unknown
Weather forecast	Known	Known
ATC constraints / intention	Published in Nav DB	All

Method of the EPP usage, which allows to respect ATC intentions.

• FMS computes trajectory (shared in EPP) in accordance with all known parameters

(A/C weight, speed profile, cost index, thrust reduction, weather,...)

The full contents of an EPP report and data formats are specified by RTCA SC214/ EUROCAE WG78

Climb – Rate of Climb (ROC) Estimation Method

Honeywell

ROC is not affected by wind speed

Altitude

Example: Climb With Particular Altitude Clearance (1/3)

Previous technique allows combination of AIRBORNE and GROUND inputs

Scenario description

- Vaclav Havel Airport Prague (LKPR) to Charles de Gaulle Airport (LFPG)
- Airbus 320 aircraft
- Required cruise FL360
- Initial clearance to FL240 (handover FL between Czech and German airspace)
- ISA, no wind condition
- Computer simulation i4D FMS prototype in high fidelity simulation environment

Example: Climb With Particular Altitude Clearance (2/3)

- Climb computation based on one EPP report issued around FL60
- ROC vs. Alt \rightarrow linearly approximated in two intervals (below and above cross over altitude)
- Cross-over altitude and Ground Speed computed from climb CAS/Mach schedule

ROC vs. Altitude

Example: Climb With Particular Altitude Clearance (3/3)

Honeywell

Cruise and Descent

Cruise

- Updated FPL data during flight
- Each intervention (ATC or pilot) initiates new EPP

Descent

The method for climb can be used for ROD estimation as well

$$ROD_i = \frac{\Delta A l t_i}{\Delta E T A_i}$$

Descent is more complex than the climb due to recapture maneuvers

Honeywell

EPP can help to improve ground trajectory predictions even in case of ATC interventions

Thank you

