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Abstract—Federated Learning (FL) is an emerging approach in edge computing for collaboratively training machine learning models

among multiple devices, which aims to address limited bandwidth, system heterogeneity, and privacy issues in traditional centralized

training. However, the existing federated learning methods focus on learning a shared global model for all devices, which may not

always be ideal for different devices. Such situations become even worse when each edge device has its own data distribution or task.

In this paper, we study personalized federated learning in which our goal is to train models to perform well for individual clients. We

observe that the initialization in each communication round causes the forgetting of historical personalized knowledge. Based on this

observation, we propose a novel Personalized Federated Learning (PFL) framework via self-knowledge distillation, named pFedSD. By

allowing clients to distill the knowledge of previous personalized models to current local models, pFedSD accelerates the process of

recalling the personalized knowledge for the latest initialized clients. Moreover, self-knowledge distillation provides different views of

data in feature space to realize an implicit ensemble of local models. Extensive experiments on various datasets and settings

demonstrate the effectiveness and robustness of pFedSD.

Index Terms—Edge computing, personalized federated learning, knowledge distillation

Ç

1 INTRODUCTION

FEDERATED Learning (FL) [1] is an efficient distributed
learning paradigm over heterogeneous edge computing

environment. It is very promising when local data cannot
be uploaded to cloud due to privacy, storage, or communi-
cation constraints. For example, IoT devices may generate
massive amounts of data at the network edge, and medical
applications may be forbidden from sharing private data
for privacy concerns. Under FL setting, a number of edge
devices collaboratively train a global model without trans-
ferring local data. Serving as a communication-efficient and
privacy-preserving learning scheme, FL has shown its capa-
bility to facilitate real-world edge computing applica-
tions [2], [3], [4], such as healthcare [5], object detection [6],
and natural language processing [7].

Unfortunately, learning a single global model may fail
when the data distribution varies across devices or each
edge device has different tasks [8], [9], [10]. For example,

client data may originate from different devices or geo-
graphical locales, where the data is potentially non-Indepen-
dent and Identically Distributed (non-IID) [11], [12]. In such a
data-heterogeneous scenario, the single global model’s per-
formance for the individual client may be even worse than
the local models trained without collaboration. In addition,
for multitask applications, each edge device has different
optimal directions. Considering the next-word prediction
task on mobile devices[13]. Given the text “I love playing,”
the next word suggestion should be different from one to
another. A shared global model learned by the conventional
federated learning scheme has a consistent training target,
failing to give personalized suggestions. Personalization is
also important in many other areas, such as healthcare. Dif-
ferent individuals, hospitals or regions usually have differ-
ent lifestyles, activity patterns, and other health-related
characteristics[14]. Therefore it is necessary to obtain per-
sonalized models for each client to maintain their specific
knowledge while exploiting common information.

To handle the above heterogeneous challenges, personal-
ized federated learning (PFL)[8], [9], [10] is proposed to deal
with FL from a client-specific perspective. As shown in
Fig. 1, current FL can be categorized into two groups: con-
ventional federated learning and personalized federated
learning. Conventional federated learning, such as FedAvg [1]
and FedProx [12], aims to learn a strong and general shared
model to find the global optima. In contrast, personalized fed-
erated learning aims to allow each client to train a personal-
ized model that performs well on client-specific tasks.
Unlike local-only training without federation, which lacks
data, the personalized model in PFL can benefit from shared
knowledge through collaborative training. Personalized
FL not only needs personalization to fit the local data
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distribution but also requires generalization to exploit the
common knowledge from collaboration.

The key challenge in PFL is to strike a careful balance
between shared knowledge and local task-specific knowl-
edge. To examine the relationship between personalization
and generalization, we empirically compare performance
between the global model and the local model. As shown in
Fig. 2, the personalized performance of the global model is
fairly lower than the local model (a detailed description of
Fig. 2 is given in Section 2.2). In FL, the local model is initial-
izedwith the latest globalmodel at the beginning of each com-
munication round. Such initialization discards the historical
local knowledge and causes severe performance degradation
of the local model. The clients may have to train the local
model from scratch in a new communication round. This phe-
nomenon becomes more critical when the data distributions
are more heterogeneous or the participation ratio is lower. As
a result, we hypothesize that the initialization in FL upsets the
balance between personalization and generalization.

Based on our observation, we propose a novel personal-
ized Federated learning framework via local Self-knowl-
edge Distillation, named pFedSD 1. Specifically, pFedSD
lets clients preserve their local trained models and regards
them as personalized models at the end of each round. In
the next round, the local models are initialized with the
received global model and trained under the guidance of
previous personalized models. The previous personalized
model transfers historical personalized knowledge to the
current local model by Knowledge Distillation (KD). There-
fore, pFedSD avoids forgetting historical local knowledge
and obtains a balanced trade-off between personalization
and generalization. Moreover, the previous local model pro-
vides an additional view of local data in feature space. So
we can regard our self-knowledge distillation as performing
implicit ensemble together with KD[15]. Experiment results
on various datasets and settings show that our method sig-
nificantly improves personalized performance and conver-
gence. The main contributions of this paper are as follows.

� We are the first to explore the personalized knowl-
edge forgetting phenomena in PFL. In each training
round, the clients forget the historical personalized
knowledge after initializing with the aggregated
model (Section 2.2).

� We propose an effective personalized FL framework
via self-knowledge distillation to transfer the histori-
cal personalized knowledge and strike a better bal-
ance between personalization and generalization
(Section 3). We further analyze the trade-off between
personalization and generalization, and the benefits
of self-distillation to personalized federated learning
(Section 3.3).

� We conduct extensive experiments over various real-
world datasets and setups. Compared with the cur-
rent state-of-the-art FL methods, our method demon-
strates superior efficiency and robustness in
personalized local model training (Section 4).

2 PRELIMINARIES

In this section, we first formalize the personalized FL prob-
lem. Then we present our empirical observation about the
phenomena of forgetting in personalized FL, which moti-
vates us to provide pFedSD.

2.1 Problem Statement

Our target is to collaboratively train personalized models
for a set of clients in FL. In this paper, we focus on a super-
vised C-class classification task as the universal task setting.
Consider there are K clients connected to a central server,
and each client k 2 ½K� maintains its local private dataset
Dk. Each data sample is a pair ðx; yÞ, where x is the input
and y 2 ½1; C� is the label. The entire dataset is denoted as
D ¼ S K

k¼1fDkg. The goal of the conventional FL system is
to find a global model w that minimizes the total empirical
loss over the entire datasetD

min
w

F ðwÞ ¼
XK

k¼1

jDkj
jDj FkðwÞ; (1)

where FkðwÞ is the loss function of client k, defined as
FkðwÞ :¼ Exk�Dk

½fkðw;xkÞ� with fkðw;xkÞ being the cross
entropy loss. The global objective function F ðwÞ is the
weighted average of the local objectives FkðwÞ over K cli-
ents. The classic FedAvg iterates between local training wk ¼
argminw FkðwÞ and global aggregation w ¼PK

k¼1 pkwk for
multiple rounds of communication. In each communication
round, a set of clients is selected to perform local training in
parallel. The local model wk of each participating client k is
initialized by the global model w received from the server at
the beginning of the local training phase. Then clients opti-
mize wk for several epochs and send back the local model to

Fig. 1. The difference between conventional FL and personalized FL

Fig. 2. The performance gap between the received global model and the
last round local trained model. FedAvg is applied on CIFAR-10 and
CIFAR-100 with 100 non-IID clients, and evaluated the local accuracy.

1. Source code https://github.com/CGCL-codes/pFedSD
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the server. The server averages the trained local models of
all participating clients to obtain global model w.

Due to the non-IID data distribution across clients, i.e.,
Dk has highly different distributions, the optimal global
model w� may not generalize well to the client whose local
objective FkðwÞ significantly deviates from F ðwÞ. The per-
sonalized performance of the global model may be even
worse than the local training model without federation.
Such clients would not have the will to join in FL and
instead train their own models to minimize the local objec-
tives. Personalized FL on client k learns a personalized
model vk to align with its own local objective

min
fv1;v2;...;vKg

XK

k¼1
FkðvkÞ: (2)

2.2 Observation on Personalized Knowledge
Forgetting

Forgetting Personalized Knowledge After Initialization. In com-
munication round t, part of the clients with a participation
ratio of r 2 ð0; 1� are activated to perform E local epochs.
Activated client k receives the latest global model from the
server and regards it as the initial local model. The latest
global model is aggregated from a set of selected clients,
where these clients have different data distributions. Obvi-
ously, the latest downloaded model tends to perform well
on the global distribution rather than the biased local distri-
bution [1], [12]. Fig. 2 shows the personalized test accuracy
gap between the global model and the previous local model.
The personalized performance of the latest downloaded
global model is much worse than the local model in the last
round. At the beginning of each round, participating clients
directly replace their local model with the global model,
which causes a huge performance drop. The performance
degradation becomes more severe in the more realistic

setting (i.e., a smaller r, larger E, higher data heterogeneity).
For instance, the server samples a subset St at round t, pro-
duces the global model wtþ1, and then the server samples
another subset Stþ1 at round tþ 1. If client k 2 Stþ1, but
k =2 St, the latest global model wtþ1 is most likely unsuitable
for client k due to the different data distributions. As a
result, the client k needs to personalize the latest initialized
local model wtþ1

k from scratch, leading to a slower
convergence.

Similar observations are also examined in[16], [17], [18].
Suppose a client has not been selected to participate in local
training for multiple rounds. This client needs more local
updates to recall the previous personalized knowledge
from the global starting point when it is selected next time.
This phenomenon also reminds us of ‘catastrophic forgetting’
[19] in continual learning. Although the vanilla FedAvg
algorithm provides a strong generalization power to share
common knowledge across clients, it hurts the personaliza-
tion for a specific client to some extent, especially in a high
data heterogeneity scenario. The core of personalized FL is
to pursue a trade-off between generalization and personali-
zation. Simply initializing the local model with the global
model in FedAvg enhances the generalization power but
discards previous personalized information. Based on the
empirical observation, we hypothesize that preventing for-
getting personalized knowledge could improve the perfor-
mance and convergence in personalized FL.

3 PERSONALIZED FEDERATED SELF-KNOWLEDGE

DISTILLATION

In this section, we first introduce our core idea of pFedSD
and analyze the compatibility of our proposed method with
existing algorithms. Then, we explain the system design of
our framework in detail. An overview of pFedSD workflow
in the edge computing environment is illustrated in Fig. 3.

Fig. 3. Illustration of pFedSD workflow. Training is performed in rounds until a termination condition is met. The workflow includes 5 steps: �1 The
server selects a subset St of clients and broadcasts the global model wt; �2 The activated client k 2 St initializes the local model wt

k with received
global model, and then performs local training with self-knowledge distillation; �3 clients store the trained local model wtþ1

k as the teacher vk for the
next round;�4 clients send back the updated local model wtþ1

k to the server;�5 the server aggregates all received local models to obtain a new global
model wtþ1.
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The FL process is based on the client-server framework.
Note that we regard edge devices as the clients.

3.1 The Proposed pFedSD

Motivated by the analysis in Section 2.2, we propose Person-
alized Federated Self-knowledge Distillation (pFedSD). To pre-
serve the historical personalized knowledge, we keep the
personalized model vk for supervising the local training in
the next rounds at client k. Specifically, we update the per-
sonalized model vk with the local model wk in the current
round to store personalized knowledge. To transfer the
knowledge from the past model to the current local model,
there are many schemes, such as knowledge distillation,
parameter regularization. Here, we employ knowledge dis-
tillation from the most recently updated personalized
model vk during the client updates phase. The benefits of
self-knowledge distillation are theoretically and experimen-
tally discussed in Sections 3.3.2 and 4.4, respectively. To this
end, the loss function FkðwkÞ of client k combines its own
empirical risk FkðwkÞ and the distillation loss

Fkðwt
kÞ ¼ Fkðwt

kÞ|fflfflffl{zfflfflffl}
CE Loss

þ�LKLðqðvkÞjjqðwt
kÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KD Loss

: (3)

Here the hyperparameter � controls the contributions of
knowledge distillation. Fkð�Þ denotes the cross entropy (CE)
loss of client k. LKL denotes the Kullback-Leibler (KL) diver-
gence function between past personalized prediction qðvkÞ
and current local prediction qðwt

kÞ. The soft prediction q is
calculated with softmax function sð�Þ of logits z, i.e.,
q ¼ expðzc=tÞP

c
expðzc=tÞ(assume a C-class classification task), logits z

is the output of the last fully connected layer, t is the tem-
perature hyperparameter of the softmax function.

The client k updates the local weights following the local
objective FkðwkÞ (instead of FkðwkÞ) in pFedSD. So the local
weights wk is updated by running Stochastic Gradient Descent
(SGD) as the following

wt
k ¼ wt

k � hrFkðwt
k; vkÞ; (4)

where h is the learning rate.

Algorithm 1. pFedSD Algorithm: Server Side

Input: participation ratio r, communication rounds T
Output: local personalized models fvkgk2½K�
1: procedure ServerExecute
2: Initialize model w0

3: for t ¼ 1; . . . ; T communication rounds do
4: Sample a subset St of clients of size rK (via Device

Sampler)
5: Send global model wt to all clients in St (via Commu-

nication Manager)
6: for each client k 2 St in parallel do
7: wtþ1

k  ClientLocalUpdateðk; wtÞ
8: end for
9: wtþ1  P

k2St
wtþ1
k
jSj (via Aggregator)

10: end for
11: end procedure

From a high level view, the backbone of pFedSD is actu-
ally a map-reduce process. The details of our method are
summarized in Algorithm 1 andAlgorithm 2. The procedure
on the server side is outlined in Algorithm 1. The procedure
on the client side is outlined in Algorithm 1. At the beginning
of the whole procedure, the server randomly initializes the
global model (Line 2). pFedSD iteratively runs T rounds of
communication (Line 3). At each round, the server samples a
subset St of clients with the fraction r to participate in the
process of the current round (Line 4). Then the cloud server
sends the global model to these active clients (Line 5). These
clients perform local training in parallel and send the
updated local model back to the server (Lines 6-8). At the
end of the round, the server aggregates all received models
to obtain a new global model (Line 9). The procedure on the
client side is outlined in Algorithm 2. The clients first receive
the global model sent by the server (Line 2). During the local
training phase, the active client k overwrites the local model
with the newly received global model (Line 3). The client
updates the local model on the private dataset via Eq. (4) for
E epochs (Lines 5-9). After local training, the client stores the
personalized model with the updated local model (Line 10)
and then returns the local model (Line 11).

Algorithm 2. pFedSD Algorithm: Client Side

Input: learning rate h, local batch size B, local epochs E
Output: local personalized models fvkgk2½K�
1: procedure ClientLocalUpdatek; wt

2: Receive the global model (via Communication
Manager)

3: Initialize the local model (via Model Manager) wt
k  wt

4: Compute # of local iterations Ik ¼ djDk j
B e

5: for i ¼ 1; . . . ; E local epochs do
6: for j ¼ 1; . . . ; Ik local iterations do
7: wt

k  wt
k � hrFkðwt

k; vkÞ " Optimize Eq.(4) (via
Training Optimizer)

8: end for
9: end for
10: Store personalized model vk with wt

k (via Model Store)
11: returnlocal model wt

k (via Communication Manager)
12: end procedure

Compatibility With Other Algorithms. As pFedSD focuses
on the local side, it is orthogonal to recent personalized FL
methods. Here, we store the local models wt

k as personalized
models vk to guide the local training process in the next
communication round. vk could also be replaced by other
personalized models suggested in other algorithms. More-
over, the global model could be produced with momentum
or in a cluster manner to get a more accurate or fine-grained
generalization. Anyway, the nature of pFedSD makes it eas-
ily incorporated into advanced FL algorithms to evolve a
more effective and robust personalized FL system. We will
take a closer look at why it works in the next section. With-
out loss of generality, we analyze the basic version built
upon FedAvg in this paper.

3.2 System Design

System Architecture. We give a high-level illustration of the
system design and architecture in Fig. 4. It consists of a
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cloud server and a mass of edge devices. The FL system
adopts a modular design and decouples the training, com-
munication, and storage. It is flexible for the users to extend
to new datasets, models, and algorithms. Another benefit is
that the system enables module reuse and fair comparison
for different FL algorithms. The cloud server has the follow-
ing components.

� Coordinator is the top-level operator of the cloud
server, which manages the whole FL process. It
instructs other components in the server, manages a
set of edge devices and orchestrates FL tasks across
the edge devices. All the devices, modules, and
events must be registered in the coordinator.

� Device Sampler selects a subset of edge devices to
participate in each communication round. It pro-
vides support for the partially-participated FL. The
naive client selection strategy allows a uniform sam-
pling. This module could be extended with more
fancy selection strategies to improve FL’s quality.

� Aggregator is responsible for aggregating all
received models to produce the global model. The
input of the aggregator is clients’ models or model
updates. The output of the aggregator is the global
model. It is triggered when the server either receives
all the models of participating clients or meets a pre-
defined time limit. The naive aggregate method is
simply averaging the model parameters. Many
papers propose various aggregation strategies to
enhance the global model.

� Communication Manager is responsible for interact-
ing between the server and clients. The interaction
includes sending work request messages to clients,
exchanging the model parameters and other auxil-
iary information for different FL algorithms. We
implement this module based on MPI and Gloo2.

The modules on the edge device are as follows:

� Controller is the core component on the client side
which controls the local process and instructs other
modules of the edge side.

� System monitor obtains the system statistics of the
current device, such as battery and load information.
The system information is reported to the controller
and used to decide whether to accept the work
request from the server.

� Model Manager prepares the local model. It initial-
izes the local model with the global model at the
beginning of local training and stores the local model
as the personalized model at the end.

� Data Manager loads local training and testing
datasets.

� Training Optimizer is responsible for performing
local training for the clients. It could be designed
specifically for different FL algorithms, such as add-
ing a proximal term in the local objective. The major
changes of pFedSD are implemented in this module.

SystemOverhead. Unlike other personalized FL approaches,
pFedSD works well without introducing significant system
overhead compared to vanilla FL. The soft predictions of vk
on local data could be obtained in two ways. One is to store
the past predictions of vk. The other is to hold the past model
vk on the local side. The former does not need to do duplicate
forward propagation. It saves computational costs but
requires more disk space to store previous predictions. Fur-
thermore, it may not be suitable for the situation where local
data updates all the time (such as streaming data). The latter
may needmore GPUmemory to compute soft predictions but
shows more flexibility. We can make choices from these two
ways according to our tasks and local hardware resources.
Moreover, some high availability systems may require
the edge devices to be stateless for easy migration. Our
method is convenient to fit such systems to meet the
demands of fault tolerance and load balancing. We just
need to maintain the personalized models on the server
and deliver them along with the global model during
the model download phase.

3.3 pFedSD Analysis

To offer more insight into the efficiency of our proposed
pFedSD, we discuss the following two questions. First, we
explain the trade-off between personalization and generali-
zation of the personalized FL algorithm. Second, we explain
why self-knowledge distillation works in our method.

3.3.1 Generalization-Personalization Trade-off

As we analyze above, the initialization at the beginning of
each round causes the forgetting of past personalized
knowledge and upsets the balance between generalization
and personalization. The extreme of personalization is the
local-only algorithm without collaboration. On the other
hand, the extreme of generalization is the conventional FL
algorithm, including FedAvg. Personalized FL can be con-
sidered an intermediate state between local-only and con-
ventional FL, with better personalized performance than
both.

Current personalized FL algorithms are all trying to pur-
sue a better trade-off between personalization and

Fig. 4. An overview of pFedSD. The system includes two parts: a central
cloud server and a set of edge devices. The modularized system design
provides much flexibility and extensibility.

2. MPI is a high performance Message Passing Interface implemen-
tation for distributed computing. For the ease of reproducing the
experiments, we also build a Gloo-backend version which is supported
for PyTorch by default.
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generalization. Initialization plays an important role in per-
sonalized FL, which influences personalized optimization
in limited local steps. [9], [20], [21] initialize the local model
wt

k with the previous local model wt�1
k . The initialized local

model has strong personalization but a weak generalization.
So these approaches train the local models with the regulari-
zation between the global model and the local models. The
regularization transfers the common knowledge to local
models and relieves over-fitting to scarce local data. Such
methods reduce to the local-only algorithm when the
weight of the regularization term is set to 0 and conven-
tional FL when set to1. [18], [22], [23] decouple the model
into personal and global parameters. These methods initial-
ize the local models with a mixture of these two parts and
train the local models without additional regularization.
Our method initializes the local models with the global
model as FedAvg, and trains the local models with the regu-
larization between the current local model and the previous
personalized model. Existing methods are a bit more local-
only-based and give priority to personalization. Our
method is a bit more FedAvg-based and gives priority to
generalization.

3.3.2 Why Does Self-Knowledge Distillation Work ?

To help the clients recall the historical personalized knowl-
edge, we employ self-knowledge distillation to transfer
knowledge from the previous personalized model to the lat-
est initialized local models. There are also some other
choices to transfer the knowledge, such as using L2-norm to
guide the local model in parameter space. To gain more
insights into our proposed algorithm, we analyze why self-
knowledge distillation works in personalized FL at a high
level. Ablation studies in Section 4 also show the superiority
of self-knowledge distillation over other regularizers.

Combining Ensemble and Knowledge Distillation Implicitly.
We argue that the benefits of self-distillation in FL partially
come from an implicit ensemble and knowledge distillation.
Recent work[15] suggests that in many real-world datasets
exists a “multi-view” structure where each class of data has
multiple view features. However, not all of the data contain
full view features. For instance, a car picture could be prop-
erly classified by recognizing its windshields, wheels or
headlights. However, the car pictures taken from the side
only contain the wheels feature. The data where multiple
features exist are multi-view data, and the rest are single-view
data. The multi-view data could be classified correctly with
only part of the features and no longer provide gradients.
Then the neural network memorizes the remaining data
without learning any new features. For this reason, the indi-
vidual network only learns a subset of the view features
during the training process. Consider FL scenario, the local
model wk is initialized with the latest global model. wk

learns a subset of the features based on the generalized ini-
tialization during the local training phase. Moreover, the
local model also learns the subset of features already
learned by vk in a knowledge distillation manner. This pro-
cess can be viewed as “first ensemble learning wk and vk,
then distilling the ensemble knowledge to vk.” In other
words, the personalized models of pFedSD cover more
view features of local data compared to other FL methods.

Based on that, pFedSD improves the performance of per-
sonalized models and achieves faster convergence and bet-
ter training stability.

4 EXPERIMENTS

4.1 Experimental Setup

We assume two different FL scenarios: 1) K ¼ 20 clients
with r ¼ 100% participation ratio; 2) K ¼ 100 clients with
r ¼ 10% participation ratio. We run for T ¼ 50 communica-
tion rounds and T ¼ 100 communication rounds, respec-
tively. Participating clients execute E ¼ 5 epochs in every
round of local training. For all methods, we record the aver-
age test accuracy of all clients for evaluation. We report the
results with mean and standard deviation over three differ-
ent random seeds.

Datasets and Tasks. We evaluate our proposed FL frame-
work on different image classification tasks: Fashion-
MNIST (FMNIST)[24] and CIFAR-10/100[25]. We give
details of the datasets in Table 1. For each dataset, we
employ two different non-IID data settings. (1) Pathological
non-IID[1]: each client only holds at most s classes of sam-
ples. In other words, s is the number of shards per client
and represents the maximum number of classes each client
can have. As s decreases, the degree of data heterogeneity
increases. (2) Dirichlet non-IID[26]: we use Dirichlet distri-
bution DirðaÞ to create disjoint heterogeneous client data.
The value of a controls the extent of label skew. Smaller a
leads to more non-IID data partitions, as it makes the distri-
bution of pkðyÞ more biased for client k. We adopt a
balanced partition strategy with Dirichlet distribution fol-
lowing [27]. Fig. 5 presents how data samples are scattered
among 20 clients on the CIFAR-10 dataset. All datasets are
split randomly by an 80-20 ratio for training and testing,
respectively.

Model Structure. Following the previous evaluation set-
tings [9], [28], [29], we use a simple CNN for Fashion-
MNIST dataset following [28] and 5-layer CNNs for CIFAR
dataset similar to [1].

Baselines. We compare pFedSD against SOTA FL meth-
ods which can be conveniently divided into two categories:
(1) non-personalized FL methods (FedAvg[1], FedProx[12]),
(2) personalized FL methods (FedPer[22], LG-FedAvg[28],
pFedMe[9], FedFomo[29]). We give a brief introduction to
these baselines as follows.

� FedAvg[1] is proposed in the pioneering work of
federated learning. It simply averages the parame-
ters of local models to learn a global model.

� FedProx[12] adds a proximal term to the local objec-
tive, which prevents the client’s updates deviates too
much from the global model. It effectively mitigates
the issue of non-IID in conventional FL.

TABLE 1
Statistics of the Datasets

Dataset # Samples # Class Task

Fashion-MNIST 70,000 10 Image classification
CIFAR-10 60,000 10 Image classification
CIFAR-100 60,000 100 Image classification
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� FedPer[22] decouples the neural network into the
body and the head. It learns the entire network
jointly but only aggregates the body to share a global
representation, i.e., the body is shared but the head
is personalized.

� LG-FedAvg[28] also proposed a parameter decou-
pling method. But it learns compact local representa-
tions for the individual client and global head across
all clients, i.e., the body is personalized but the head
is shared.

� pFedMe[9] uses the Moreau envelopes as clients’
regularized loss function to control the distance
between the personalized model and the global
model.

� FedFomo[29] computes the first-order approxima-
tions of the optimal model weighted combination for
each client. The client must maintain an additional
validation set to determine how suitable other clients
are towards its local objectives.

Hyperparameters Setting. We follow the universal hyper-
parameter settings of related work. We set the learning rate
as 0.01 for all methods. We adopt the SGD optimizer with
weight decay 1e� 5 and momentum 0.9 all through the
experiments. The training batch size on all the tasks is
B ¼ 64.

We ran the baselines under the suggested settings in corre-
sponding papers or code. For FedProx, the proximal term m is
selected from f0:001; 0:01; 0:1; 1g. The best m of FedProx for
Fashion-MNIST, CIFAR-10, and CIFAR-100 are 0:001; 0:01;
0:001. For FedPer, we keep the last two layers as the personal-
ized head for Fashion-MNIST and the last linear layer for
CIFAR. For LG-FedAvg, we keep the last two layers as the
shared head for all datasets. For pFedSD, the regularization
parameter � is selected from [15,20,30]. For FedFomo, we set
the number ofmodels downloadedM ¼ 5, �-greedyparameter

� ¼ 0:3 with 0.05 decay each round. For our method, we select
� from f0:1; 0:5g and tune temperature t from f1; 3g.

Implementation. We implement all baselines mentioned
above in PyTorch. We simulate the server and a set of clients
in a multiprocessing manner and adopt MPI as the commu-
nication backend. All experiments are conducted on a deep
learning server equipped with four V100 GPUs.

4.2 Performance Overview

Accuracy Comparison. We compare the personalized top-1
test accuracy under the Dirichlet distribution a ¼ 0:1, as
reported in Table 2. pFedSD consistently outperforms alter-
native methods across datasets and client setups. It outper-
forms the best baseline by up to 4:46%. The non-
personalized FL algorithms (FedAvg and FedProx) perform
poorly in most cases. Note that FedProx does not perform
well compared to FedAvg in partial-participation scenarios
by reason of pulling the local optimization direction to the
global distribution. The recent personalized FL method Fed-
Fomo does not perform well in the common non-IID set-
tings. We think the strict aggregation strategy makes
FedFomo hard to benefit from other clients with different
data distribution. We notice that FedPer shows a sub-opti-
mal performance compared to our methods in most cases.
We think FedPer draws strength from a shared representa-
tion. The benefits of learning a good representation have
been discovered in many recent works [22], [23], [30].
pFedSD shows superior performance on more difficult tasks
such as CIFAR-100. The performance of pFedSD on large-
scale FL systems implies the scalability of our method,
which is important in real-world deployment for edge
scenarios.

We also show the personalized performance under the
pathological distribution s ¼ 2 for CIFAR-10 and Fashion-

Fig. 5. Illustration of statistical heterogeneity among 20 clients on CIFAR-10, where the x-axis indicates client IDs, the y-axis indicates class labels,
and the size of dots indicates # of samples per class allocated to each client.

TABLE 2
Personalized Accuracy Overview With Dirichlet Distribution a ¼ 0:1

Datasets Scale FedAvg FedProx FedPer LG-FedAvg pFedMe FedFomo pFedSD

FMNIST
20 clients 90:15	 0:10 90:05	 0:13 96:30	 0:03 95:22	 0:22 93:24	 0:08 95:38	 0:04 96:57	 0:0896:57	 0:0896:57	 0:0896:57	 0:0896:57	 0:0896:57	 0:0896:57	 0:08
100 clients 86:82	 0:39 76:78	 0:30 94:99	 0:17 91:41	 0:08 92:05	 0:08 92:06	 0:14 95:97	 0:0695:97	 0:0695:97	 0:0695:97	 0:0695:97	 0:0695:97	 0:0695:97	 0:06

CIFAR-10
20 clients 50:44	 0:68 50:50	 0:78 80:74	 0:47 78:61	 0:31 79:51	 0:28 79:29	 0:34 82:08	 0:4682:08	 0:4682:08	 0:4682:08	 0:4682:08	 0:4682:08	 0:4682:08	 0:46
100 clients 49:04	 0:80 42:11	 0:95 78:89	 0:90 71:60	 1:52 74:62	 0:72 73:16	 0:65 80:22	 0:2480:22	 0:2480:22	 0:2480:22	 0:2480:22	 0:2480:22	 0:2480:22	 0:24

CIFAR-100
20 clients 32:24	 0:32 32:50	 0:55 52:12	 0:22 40:71	 0:05 38:42	 0:71 44:67	 0:37 55:27	 0:3055:27	 0:3055:27	 0:3055:27	 0:3055:27	 0:3055:27	 0:3055:27	 0:30
100 clients 29:13	 0:18 14:27	 0:35 44:45	 0:64 21:61	 0:21 27:07	 0:25 26:48	 0:27 48:91	 0:7748:91	 0:7748:91	 0:7748:91	 0:7748:91	 0:7748:91	 0:7748:91	 0:77
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MNIST, s ¼ 20 for CIFAR-100, as reported in Table 3.
pFedSD still outperforms other approaches in pathological
non-IID distribution. Some personalized methods perform
even worse than the non-personalized FL method (FedAvg)
on CIFAR-100. We attribute the performance degradation of
these methods to poor generalization. Both Dirichlet distri-
bution ðaÞ ¼ 0:1 and pathological distribution ðsÞ ¼ 20 pro-
vide more difficult tasks for the reason of more classes but
fewer data per class for each individual. So the client needs
more generalization power from FedAvg to exploit the com-
mon knowledge.

Communication Efficiency. Fig. 6 shows the personalized
accuracy in each round during training across different
datasets and settings. Compared to other baselines, pFedSD
shows faster and more smooth convergence and consis-
tently outperforms others. The growth speed of perfor-
mance in pFedSD is nearly the same as FedPer in the early
stages. But pFedSD can achieve a better result later, which
benefits from self-knowledge distillation. In the 20-clients
scenario on CIFAR-10 dataset, the learning curve of FedPer
first reaches its highest and then oscillates in a downtrend,
while pFedSD still keeps stable. We conjecture that the
unstable performance of FedPer is caused by overfitting.
Self distillation brings the regularization effect to relieve the
overfitting of local data.

From Fig. 6, we can also observe that pFedSD spends the
least communication rounds to reach the same accuracy.
Table 4 shows how many communication rounds it takes to
achieve the same accuracy as running FedPer for 100
rounds. Assume K ¼ 100 clients with r ¼ 10% participation
ratio and the Dirichlet parameter a ¼ 0:1. The speedup of
pFedSD is up to 5
 compared to FedPer. In general,
pFedSD is more communication efficient than other meth-
ods due to the faster convergence.

Fairness Among Clients. Due to the data heterogeneity, the
personalized performance of different clients may vary sig-
nificantly. To examine how fair the improvements of per-
sonalized performance are across clients, we study the
performance of the personalized model held by every client
in detail. Following the precedent works[21], [31], we com-
pute the Standard Deviation (SD) across all clients for the
100-clients scenario in Table 5. A lower SD implies that the
performance distribution of all clients is more uniform and
the algorithm is fairer. The common goal of PFL is to reduce
the variance while keeping a reasonable mean test accuracy.
The SD of our method is the least on Fashion-MNIST and
CIFAR-10. Although our method has a slightly higher SD
on CIFAR-100, our test accuracy significantly outperforms
others. We also show the overall distribution of the

performance of all clients in Fig. 7. pFedSD always has
more clients with higher testing accuracy on all datasets. In
general, pFedSD achieves better fairness and results in
more clients with higher accuracy.

4.3 Sensitivity Analysis

Impacts of Participation Ratio. As shown in Table 6, we
explore different participation ratios r among f20%; 60%;
100%g for each communication round on the CIFAR-100
dataset. Our method outperforms all baselines clearly
regardless of the setting of participation ratio. When r rises
from 20% to 60%, the accuracy of all methods increases as
there are more training rounds for each client overall. When
r rises from 60% to 100%, the performances of some
approaches, including pFedSD, drop for the reason that cli-
ents may overfit their local data. The performance of Fed-
Prox notably increases as r rises for the reason that the latest
global model in the proximal term is more suitable to the
global distribution.

Effects of Data Heterogeneity.We analyze different levels of
data heterogeneity on the CIFAR-100 dataset. We control
the degree of statistical heterogeneity by varying the con-
centration parameter a of Dirichlet distribution from
f0:01; 0:1; 1g. For a smaller a, the data distributions among
clients will be more unbalanced. As shown in Table 7, our
method always achieves the best accuracy among three het-
erogeneity levels, especially in highly non-IID settings.
When the data distribution becomes more balanced (a ¼ 1),
our method still maintains a clear advantage while some
other personalized FL methods perform even worse than
non-personalized methods. The experiments show the effec-
tiveness and robustness of pFedSD about the data heteroge-
neity levels.

Robustness of Model Architectures. We also conduct experi-
ments on more popular model architectures. We evaluate
our methods on ResNet-8[32] and MobileNetV2[33]. As
shown in Table 8, pFedSD still outperforms the baselines on
the modern models. Compared to simple CNN, FedProx
narrows the gap to the FedAvg as the model complexity
increases. LG-FedAvg shows poor performance on modern
neural networks. Since ResNet and MobileNet have only
one linear layer at the end of the model, and the head is
defined as this linear layer, LG-FedAvg almost degenerates
to the local-only training for only aggregating the head.
FedPer still maintains its competitiveness on modern mod-
els. FedPer is more related to representation learning and
LG-FedAvg is more related to linear decision boundary
learning. The significant gap in performance between LG-

TABLE 3
Personalized Accuracy Overview With Pathological Distribution

Datasets Scale FedAvg FedProx FedPer LG-FedAvg pFedMe FedFomo pFedSD

FMNIST
20 clients 75:71	 0:27 75:40	 1:06 99:42	 0:01 99:15	 0:04 98:76	 0:03 99:28	 0:01 99:45	 0:0199:45	 0:0199:45	 0:0199:45	 0:0199:45	 0:0199:45	 0:0199:45	 0:01
100 clients 84:13	 0:44 74:38	 0:90 97:28	 0:12 95:70	 0:08 94:87	 0:03 96:14	 0:41 97:42	 0:0497:42	 0:0497:42	 0:0497:42	 0:0497:42	 0:0497:42	 0:0497:42	 0:04

CIFAR-10
20 clients 45:37	 0:53 45:86	 1:12 91:69	 0:10 92:21	 0:36 89:69	 0:39 91:66	 0:17 92:52	 0:2492:52	 0:2492:52	 0:2492:52	 0:2492:52	 0:2492:52	 0:2492:52	 0:24
100 clients 43:52	 1:70 38:24	 1:39 86:66	 0:24 79:25	 1:63 80:47	 1:10 81:62	 0:54 86:81	 0:3286:81	 0:3286:81	 0:3286:81	 0:3286:81	 0:3286:81	 0:3286:81	 0:32

CIFAR-100
20 clients 31:92	 0:23 32:16	 0:32 55:57	 0:26 45:48	 0:63 38:66	 1:21 48:84	 0:11 59:54	 0:0159:54	 0:0159:54	 0:0159:54	 0:0159:54	 0:0159:54	 0:0159:54	 0:01
100 clients 27:88	 0:35 13:32	 0:37 47:01	 0:50 18:96	 0:30 26:96	 0:30 25:21	 0:63 50:99	 0:4350:99	 0:4350:99	 0:4350:99	 0:4350:99	 0:4350:99	 0:4350:99	 0:43
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FedAvg and FedPer shows the power of representation
learning in PFL.

4.4 Ablation Studies

Effects of � and t. We introduce two hyperparameters in our
method, one is coefficient � and another is temperature t.
Fig. 8 shows the varying performance under different
hyperparameters. We tried a set of � selected from
f0:01; 0:1; 0:5; 1g and t from f1; 3g.

pFedSD is robust to the hyperparameters on easier tasks
such as Fashion-MNIST. When the task is easier, the local
model recalls the personalized knowledge from the latest
initialized point in fewer updates. In other words, the for-
getting phenomenon is easy to overcome in such tasks. The
performances when t ¼ 3 are higher than t ¼ 1 on all data-
sets. The higher temperature indicates more attention paid
to negative labels during self-distillation. An appropriate
temperature brings more informative supervisions. The �
controls the influence of self-distillation in local training,
and we fix the value of � in our experiments. Fig. 8 demon-
strates that a large value of � cannot always make better
performance. � ¼ 1 means that the contribution of regular
training and recalling historical knowledge becomes equal,
which may cause performance degradation. As a result, a
moderate � is necessary to achieve the best accuracy.

We also consider a dynamic strategy for tuning �.
Obviously, the personalized model vk becomes closer to
optimal with the communication rounds increasing. So
the intuitive idea is to ramp up the � during FL process
to avoid the large contribution of distillation in early
rounds. We leave the more fine-grained tuning strategy
in future work.

Different Regularizers. In addition to self knowledge distil-
lation, there are other forms of knowledge transfer. We
also conduct experiments to explore the effects of alter-
native methods. In particular, we consider the following
objectives:

� apply an L2 regularizer between the local model wt
k

and the previous personalized model vk.
� incorporate Elastic Weight Consolidation (EWC)[19] in

the local training to prevent ‘catastrophic forgetting.’
EWC leverages Fisher Information Matrix to restrict
the changes of the model parameters important for
previous tasks.

� replace KL divergence to Mean Squared Error (MSE)
in distillation loss.

As shown in Table 9, L2 and EWC perform worst on all
datasets, which demonstrates that self-distillation brings

Fig. 6. Average test accuracy of pFedSD compared to baselines in different number of communication rounds on various datasets. The non-IID
Dirichlet parameter a ¼ 0:1. Shaded regions show the standard deviation over 3 trials with different random seeds. TopK ¼ 20 clients with r ¼ 100%
participation ratio. BottomK ¼ 100 clients with r ¼ 10% participation ratio.

TABLE 4
Number of Communication Rounds of pFedSD to Reach the

Same Accuracy as FedPer

Method Fashion-MNIST CIFAR-10 CIFAR-100

FedPer 100 100 100
pFedSD 20ð5
Þ 57ð1:8
Þ 43ð2:3
Þ

TABLE 5
Average Accuracy and Standard Deviation across All Clients

Method Fashion-MNIST CIFAR-10 CIFAR-100

FedPer 94:69	 5:08 79:25	 10:20 44:45	 5:93
LG-FedAvg 91:31	 7:20 72:56	 12:26 21:78	 4:95
pFedMe 92:14	 6:82 75:43	 11:29 26:82	 5:07
FedFomo 91:96	 6:79 73:09	 11:91 26:43	 5:52
pFedSD 95:92	 3:88 80:17	 9:23 48:62	 6:00
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additional benefits from data perspectives compared to
parameter perspectives. The insights about why self-distil-
lation works have been given in Section 3.3.2. The accuracy
of MSE-based distillation is slightly higher than KL-based
distillation on Fashion-MNIST and CIFAR-10, but nearly
1%worse on CIFAR-100.

4.5 System Performance Metrics

Although the main benefits of pFedSD are the improvement
in accuracy and convergence speed, We evaluate the system
metrics to show the robustness of our method. System per-
formance metrics mainly focus on communication and
computational efficiency[10]. Communication efficiency
depends on the number of communication rounds and the
communication cost between the server and the clients per
round. Computational efficiency is evaluated by the num-
ber of floating point operations (FLOPs) and execution time.

We consider three kinds of overheads in FL system: exe-
cution time, network cost, and computational cost. We
assumeK ¼ 20 clients with r ¼ 60% participation ratio.

Execution Time. As shown in Table 10, we measure the
execution time per round along with the percentage of time
spent on communicating (downloading and uploading),
local training, and working on the server (model aggrega-
tion and distribution). LG-FedAvg takes the least time as
the clients only communicate the shared classifiers with the
server. FedFomo takes the longest time due to the activated
clients requiring additional downloads for other clients’
models. pFedMe takes a little longer time than other algo-
rithms for the reason that the clients need more computa-
tion to train the personalized models and local models at
the same time. pFedSD takes comparable time to FedAvg
and FedProx.

Under the premise of achieving the same accuracy, the
total execution time equals the execution time per round
times the communication rounds. Although pFedSD intro-
duces a little time overhead in each round, it substantially
accelerates the convergence and achieves the target accu-
racy with fewer rounds. As shown in Section 4.2, FedPer
takes up to 5X communication rounds compared to
pFedSD. Overall, our method reduces the total execution
time to achieve the same target accuracy. From Table 10, the
execution time of each round is mainly spent on local train-
ing rather than communication or the operations on the

TABLE 6
Accuracy With Different Participation Ratio on CIFAR-100

Method r ¼ 20% r ¼ 60% r ¼ 100%

FedAvg 28:09	 0:15 31:54	 0:35 32:24	 0:32
FedProx 16:52	 0:42 21:23	 0:46 32:50	 0:55
FedPer 53:25	 0:13 52:14	 0:65 52:12	 0:22
LG-FedAvg 29:53	 0:73 37:77	 0:08 40:71	 0:05
pFedMe 36:97	 0:52 38:64	 0:38 38:42	 0:71
FedFomo 42:42	 0:29 44:14	 0:21 44:67	 0:37
pFedSD 55:24	 0:5555:24	 0:5555:24	 0:5555:24	 0:5555:24	 0:5555:24	 0:5555:24	 0:55 56:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:34 55:27	 0:3055:27	 0:3055:27	 0:3055:27	 0:3055:27	 0:3055:27	 0:3055:27	 0:30

TABLE 7
Accuracy With Different Data Heterogeneity on CIFAR-100

Method a ¼ 0:01 a ¼ 0:1 a ¼ 1

FedAvg 29:02	 0:43 31:54	 0:35 33:78	 0:33
FedProx 18:19	 0:44 21:23	 0:46 31:42	 0:43
FedPer 64:47	 0:43 52:14	 0:65 34:12	 0:27
LG-FedAvg 54:27	 0:64 37:77	 0:08 21:36	 0:58
pFedMe 46:97	 0:67 38:64	 0:38 24:95	 0:35
FedFomo 58:52	 0:37 44:14	 0:21 29:41	 0:03
pFedSD 67:11	 0:5867:11	 0:5867:11	 0:5867:11	 0:5867:11	 0:5867:11	 0:5867:11	 0:58 56:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:34 37:81	 0:3337:81	 0:3337:81	 0:3337:81	 0:3337:81	 0:3337:81	 0:3337:81	 0:33

TABLE 8
Accuracy With Different Model Architectures on CIFAR-100

Method ResNet MobileNet

FedAvg 23:57	 1:72 31:92	 1:10
FedProx 20:81	 0:66 31:36	 0:75
FedPer 57:20	 0:68 59:74	 0:38
LG-FedAvg 16:02	 0:26 18:26	 1:33
pFedMe 32:96	 0:98 42:88	 0:77
FedFomo 45:62	 0:31 41:87	 0:34
pFedSD 59:74	 0:9059:74	 0:9059:74	 0:9059:74	 0:9059:74	 0:9059:74	 0:9059:74	 0:90 63:28	 0:2863:28	 0:2863:28	 0:2863:28	 0:2863:28	 0:2863:28	 0:2863:28	 0:28

TABLE 9
Accuracy With Different Regularizers

Method Fashion-MNIST CIFAR-10 CIFAR-100

L2 96:43	 0:03 81:56	 0:34 52:76	 0:54
EWC 96:44	 0:05 81:64	 0:46 52:86	 0:32
MSE 96:56	 0:1296:56	 0:1296:56	 0:1296:56	 0:1296:56	 0:1296:56	 0:1296:56	 0:12 82:41	 0:4082:41	 0:4082:41	 0:4082:41	 0:4082:41	 0:4082:41	 0:4082:41	 0:40 55:70	 0:41
KL 96:53	 0:08 82:36	 0:70 56:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:3456:61	 0:34

Fig. 7. The testing accuracy distribution across all clients.
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server. This indicates that the execution time is primarily
influenced by the computing power of the edge devices and
the computational complexity of local training.

Communication Cost. As shown in Table 11, we measure
the communication cost per client between the client and
the server during a single round. The communication cost
includes the total number of downloaded and uploaded
bytes. For the vanilla FL scheme like FedAvg and FedProx,
each activated client downloads the global model from the
server at the beginning of the round and uploads the local
model to the server at the end of the round. pFedSD and
pFedMe do not introduce extra communication overhead.
FedPer and LG-FedAvg transmit part of the model and thus
reduces the communication cost. FedPer exchanges the
body, and LG-FedAvg only exchanges the head. In our set-
tings, the head only contains the last two layers of the model
leading to a significant reduction of communication cost for
LG-FedAvg. In FedFomo, each participating client needs to
download M models of other clients to obtain the optimal
model combination. So FedFomo brings M times the addi-
tional communication cost compared to FedAvg (M ¼ 5 in
our settings).

Computational Cost. We also measure the computational
cost, in Table 11, of local training for each client at a single
round. The FLOPs are counted as the sum of amounts for
training via the FLOPs counting tool, pytorch-OpCounter3.
The computational cost of FedAvg is 906.15 GFLOPs. LG-
FedAvg and FedPer keep the same computational cost as
FedAvg. Besides the normal forward and backward FLOPs,
FedProx and pFedMe introduce the additional negligible
computational cost to compute the regularization term. Fed-
Fomo needs to compute the weight vector for aggregating
the clients’ models before local training.

Our method obtains the soft target for KD in two
schemes. One is to store the past predictions of the personal-
ized model vk. The other is to recompute the predictions
when local training. The detailed analysis is presented in
Section 3.2. For the former scheme, the client does not intro-
duce any computational overhead compared to the stan-
dard FL algorithms. For the latter scheme, the client k needs
to compute the forward pass of vk for one epoch. Under our
settings, the computational cost per round of pFedSD
increases by 6:7% compared to FedAvg. However, the
increase in computational cost per round is likely to be

offset by the far fewer rounds required to reach the target
accuracy (refer to Table 4).

5 RELATED WORK

5.1 Personalized FL

The essential incentive for clients to engage in personalized
FL process is to obtain a better model than the local-only
models on each client’s data distribution. Most of the recent
works preserve the traditional FL paradigm, which keeps a
single global model on the server. These works customize a
personalized model for each client from the global model
and can be categorized into four types: local fine-tuning[16],
[34], regularization[9], [20], [21], [35], model interpolation
[36], meta learning[37], [38], and model mixture/parameter
decoupling[6], [22], [23], [28], [30], [36], [39]. The methods
mentioned above leverage the single global model to trans-
fer group knowledge involving all clients. The sole global
model may lose generalization diversity in some data distri-
butions. Therefore, recent works keep multiple global mod-
els on the server or client side to achieve a fine-grained
generalization. Cluster-based FL methods aim to cluster
clients into several groups and develop global models corre-
sponding to each group. FedAMP[40] maintains personal-
ized cloud models for each client on the server to enforce
stronger pair-wise collaboration between similar clients. Fed-
Fomo[29] allows clients to download models of other clients
and use local validation data to calculate personalized
weighted combinations. These methods perform well only in
the scenario where the local data distributions among clients
show a strong characteristic of clustering. And the latter needs
additional validation data representing target distribution,
which is unrealistic. Unlike the aforementioned works, our

Fig. 8. Effects of � and t.

TABLE 10
Average Time Per Round on CIFAR-100, and Percentage of
Time on Communication (Comm), Local Training (Client), and

Model Aggregation/Distribution on the Server (Server)

Method Time (s) Comm (%) Client (%) Server (%)

FedAvg 5.69 12.70 83.00 4.30
FedProx 6.26 11.91 84.69 3.39
FedPer 5.42 11.66 85.41 2.93
LG-FedAvg 5.34 13.14 85.75 1.11
pFedMe 9.31 8.11 90.20 1.69
FedFomo 38.78 4.14 95.58 0.28
pFedSD 7.23 8.27 90.63 1.10

3. https://github.com/Lyken17/pytorch-OpCounter
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method is more adaptable and robust to universal settings
and does not need additional data.

5.2 Knowledge Distillation in FL

Knowledge Distillation for the neural network is first intro-
duced by [41] and has shown remarkable success in many
areas. By letting the student imitate the teacher’s output, the
knowledge can be transferred from teacher to student. Con-
ventional KD exploits knowledge from a large and powerful
teacher model to generate soft targets for a student network.
A few recent papers[42], [43] propose self-distillation that a
teacher model with the identical structure of the student
model could improve the student’s generalization ability
over the teacher. It is worth emphasizing that our method is
motivated by the idea of self-knowledge distillation but
does not strictly follow its paradigm.

KD and its variants [44], [45] have been used as effective
techniques in FL. Most approaches[7], [27] adopt KD to
transfer knowledge from clients to the server, i.e., local
models are teachers and global model is the student. In this
way, the global model gains higher performance and more
stable convergence. These approaches are sensitive to proxy
data for performing KD on the server. Notably, it is not easy
to get or generate such data (whether labeled or not). [46],
[47], [48] apply co-distillation to FL by exchanging model
output instead of model parameters to reduce communica-
tion cost and handle model heterogeneity. [46] exposes pri-
vate data logits to other clients, whereas [47], [48] assume a
public dataset among clients. FedGen[49] makes KD feasible
for FL in a data-free manner where the server learns a gen-
erator to ensemble user information and passes it to clients
to supervise local training. Besides, FML[50] allows clients
to train local models mutually with the global model based
on DML. FedGKT[51] combines FL with Split Learning and
employs KD to facilitate dual knowledge transfer between
edge and server. A recent preprint FedLSD[52] also applies
the concept of self-distillation to obtain a better global
model in a non-IID environment. However, FedLSD distills
the knowledge from global model during local training,
which looks more like a soft version of FedProx[12].

In brief, most of the previous works assume public/
proxy data, which need delicate consideration and even
prior knowledge of clients’ private data. On the contrary,
our method does not relax the assumption in standard FL
system without introducing any additional data or local

information. Furthermore, our approach makes full use of
existing resources and could be easily integrated into popu-
lar personalized FL systems.

6 CONCLUSION

In this article, we propose a simple yet effective personal-
ized federated learning framework, coined pFedSD, which
aims to tackle the challenge of statistical heterogeneity in
edge scenarios. Through empirical observations, we investi-
gate the personalized knowledge forgetting phenomena
caused by the initialization in FL. Our method makes full
use of the historical personalized models via self-distilla-
tion, which relieves the forgetting and purses a better trade-
off between personalization and generalization. Experimen-
tal results on real-world datasets demonstrate the effective-
ness and robustness of pFedSD over the existing works.
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[38] Y. Jiang, J. Kone�cnỳ, K. Rush, and S. Kannan, “Improving feder-
ated learning personalization via model agnostic meta learning,”
2019, arXiv:1909.12488.

[39] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approaches
for personalization with applications to federated learning,”
2020, arXiv:2002.10619.

[40] Y. Huang et al., “Personalized cross-silo federated learning on non-
IID data,” in Proc. AAAI Conf. Artif. Intell., 2021, pp. 7865–7873.

[41] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” 2015, arXiv:1503.02531.

[42] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your
own teacher: Improve the performance of convolutional neural
networks via self distillation,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2019, pp. 3713–3722.

[43] K. Kim, B. Ji, D. Yoon, and S. Hwang, “Self-knowledge distillation
with progressive refinement of targets,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2021, pp. 6567–6576.

[44] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual
learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 4320–4328.

[45] R. Anil, G. Pereyra, A. Passos, R. Orm�andi, G. E. Dahl, and G. E.
Hinton, “Large scale distributed neural network training through
online distillation,” in Proc. Int. Conf. Learn. Representations, 2018.

[46] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: Federated
distillation and augmentation under non-iid private data,”
2018, arXiv:1811.11479.

[47] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via
model distillation,” 2019, arXiv:1910.03581.

[48] J. Zhang, S. Guo, X. Ma, H. Wang, W. Xu, and F. Wu,
“Parameterized knowledge transfer for personalized federated
learning,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2021,
pp. 10092–10104.

[49] Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for
heterogeneous federated learning,” in Proc. Int. Conf. Mach. Learn.,
2021, pp. 12878–12889.

[50] T. Shen et al., “Federated mutual learning,” 2020, arXiv:
2006.16765.

[51] C. He, M. Annavaram, and S. Avestimehr, “Group knowledge
transfer: Federated learning of large CNNs at the edge,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2020, pp. 14068–14080.

[52] G. Lee, Y. Shin, M. Jeong, and S.-Y. Yun, “Preservation of the
global knowledge by not-true self knowledge distillation in feder-
ated learning,” 2021, arXiv:2106.03097.

Hai Jin (Fellow, IEEE) received the PhD degree in
computer engineering from Huazhong University of
Science and Technology, in 1994. He is a chair pro-
fessor of computer science and engineering with
theHuazhongUniversity of Science andTechnology
(HUST) in China. In 1996, he was awarded a Ger-
man Academic Exchange Service fellowship to visit
the Technical University of Chemnitz in Germany.
He worked with The University of Hong Kong
between 1998 and 2000, and as a visiting scholar
with the University of Southern California between

1999 and 2000. He was awarded Excellent Youth Award from the National
Science Foundation of China, in 2001. He is a Fellowof CCF, and a lifemem-
ber of the ACM. He has co-authored more than 20 books and published
more than 900 research papers. His research interests include computer
architecture, parallel and distributed computing, big data processing, data
storage, and system security.

Dongshan Bai is currently working toward the MS
degree in computer science with the School of Com-
puter Science and Technology, Huazhong University
of ScienceandTechnology,China.Hismain research
interests include distributed machine learning and
federated learning.

Dezhong Yao (Member, IEEE) received the PhD
degree in computer science from the Huazhong
University of Science and Technology (HUST),
Wuhan, China, in 2016. He was a research fellow
with Nanyang Technological University, Singapore
between 2016 and 2019, and as a visiting scholar
with the Carnegie Mellon University, Pittsburgh USA
between 2010 to 2012. He is currently an associate
professor with the School of Computer Science and
Technology, HUST. His research interests include
large-scale machine learning, federated learning,
and distributed optimization.

Yutong Dai is working towards the PhD degree in
industrial and systems engineering with Lehigh Uni-
versity, USA. His main research interests is in
designing, analyzing and implementing algorithms
for large scale non-convex non-smooth optimization
problems arisen in machine learning and federated
learning.

JIN ETAL.: PERSONALIZED EDGE INTELLIGENCE VIA FEDERATED SELF-KNOWLEDGE DISTILLATION 579



Lin Gu received the MS and PhD degrees in com-
puter science from the University of Aizu, Fukush-
ima, Japan, in 2011 and 2015, respectively. She is
currently an associate professor with the School
of Computer Science and Technology, Huazhong
University of Science and Technology, China. Her
current research interests include serverless com-
puting, network function virtualization, cloud com-
puting, software-defined networking, and data
center networking. She has authored 2 books and
more than 40 papers in refereed journals and confer-
ences in these areas. She is a senior number of CCF.

Chen Yu received the BS degree in mathematics
from Wuhan University, Wuhan, China, in 1998, the
MS degree in computer science from Wuhan Uni-
versity, Wuhan, China, in 2002, and the PhD degree
in information science from Tohoku University, Sen-
dai, Japan, in 2005. Since 2008, he has been with
the School of Computer Science and Technology,
Huazhong University of Science and Technology,
Wuhan, where he is currently a full Professor and a
special research fellow, working in the areas of wire-
less sensor networks, ubiquitous computing, and
green communications.

Lichao Sun received the PhD degree from the Uni-
versity of Illinois at Chicago, Chicago, IL, USA, in
2020. He is currently an assistant professor with
Lehigh University, Bethlehem, PA, USA. His
research interests include federated learning, rein-
forcement learning and deep learning. He has stud-
ied on various computer vision, natural language
processing and graph applications. He has pub-
lished more than 40 papers in top-tier conferences
and journals, such as NeurIPS, KDD, AAAI, IJCAI,
ICLR, CCS, Usenix-Secuirty, IEEE Transactions on

Industrial Informatics, IEEE Transactions on Mobile Computing and IEEE
Transactions onNeural Networks and Learning Systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

580 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


