
Level-Based Blocking for Sparse Matrices:
Sparse Matrix-Power-Vector Multiplication

Christie Alappat , Georg Hager , Olaf Schenk , Senior Member, IEEE, and Gerhard Wellein

Abstract—Themultiplication of a sparsematrix with a dense vector (SpMV) is a key component in many numerical schemes and its

performance is known to be severely limited bymainmemory access. Several numerical schemes require themultiplication of a sparse

matrix polynomial with a dense vector which is typically implemented as a sequence of SpMVs. This results in low performance and

ignores the potential to increase the arithmetic intensity by reusing thematrix data from cache. In thiswork we use the recursive algebraic

coloring engine (RACE) to enable blocking of sparsematrix data across the polynomial computations. In the graph representing the

sparsematrix we form levels using a breadth-first search. Locality relations of these levels are then used to improve spatial and temporal

locality when accessing thematrix data and to implement an efficient multithreaded parallelization. Our approach is independent of the

matrix structure and avoids shortcomings of existing “blocking” strategies in terms of hardware efficiency and parallelization overhead.

We quantify the quality of our implementation using performancemodelling and demonstrate speedups of up to 3� and 5� compared to

an optimal SpMV-based baseline on a singlemulticore chip of recent Intel and AMD architectures. Various numerical schemes like s-step

Krylov solvers, polynomial preconditioners and power clustering algorithmswill benefit from our development.

Index Terms—Algorithm design and analysis, computer architecture, graph algorithms, kernel optimization, memory hierarchies,

performance evaluation, sparse matrices

Ç

1 INTRODUCTION AND RELATED WORK

SPARSE matrix-vector multiplication (SpMV) is a critical
building block for a wide variety of computational algo-

rithms used in science, engineering, and data analytics. The
SpMV kernel is known to perform poorly on modern com-
pute devices due to its low arithmetic intensity and often
irregular memory access pattern. Most performance optimi-
zation efforts target a single SpMV invocation. To minimize
the data access costs to the matrix entries, a plethora of data
layout choices have been proposed for GPGPUs [1] and
CPUs [2], [3], [4], including hardware-agnostic formats [5].
These formats typically ensure linear access to matrix data,
but the input vector is always accessed indirectly and there-
fore potentially in an irregular way. Optimization strategies
like matrix reordering or partitioning techniques [6] aim to
reduce the reuse distances in the vector accesses and thus

improve the performance. Finally, at the kernel implementa-
tion level, automatic performance optimization for SpMV
has been a subject of research for decades. These approaches
mainly account for the complexity of cache-basedmicroproc-
essors, where SpMVperformancemaybe extremely sensitive
to the spatial/temporal data access locality, out-of-order
instruction capability, register scheduling, and SIMD vecto-
rization. Choosing parameters for these code optimizations
and choosing among alternative implementations is critical
for efficient hardware utilization. It has been demonstrated
[3], [7], [8], [9] that it is possible to build an automatic tuning
system capable of generating implementations that are on
par with or even outperform the best manually tuned code.

In this work, we extend SpMV performance tuning resea-
rch towards automatic data reuse optimization across several
SpMV invocations in the sparse matrix power kernel (MPK),
which computesAx,A2x;A3x; � � � ; Akx for matrixA, vector x,
and a small constant k. Our focus is on thread-level parallel
and efficient CPU implementation of MPK using the popular
compressed row storage (CRS) sparse matrix format. To this
end we extend the recursive algebraic coloring engine
(RACE) framework [10] to tackle the dependencies between
several SpMV invocations in theMPK. The algebraic formula-
tion used in RACE is general in the sense that it does not
assume any special structure in the underlyingmatrix.

The need for software implementations and structures for
MPK is exemplified by communication-avoiding algorithms
[11], [12], [13], [14], which have been proposed to improve
performance by reducing the memory and network traffic.
In these algorithms, independent SpMV invocations are
replaced by theMPK to computeAkx. Once the computation
has been performed, the next k steps of the solver can pro-
ceed without further memory accesses to A by combining
vectors from this set.

� Christie Alappat and Georg Hager are with the Erlangen National High
Performance Computing Center, Friedrich-Alexander-Universit€at Erlan-
gen-N€urnberg, 91058 Erlangen, Germany. E-mail: {christie.alappat,
georg.hager}@fau.de.

� Olaf Schenk is with the Institute of Computing at Faculty of Informatics,
Universit�a della Svizzera italiana, 6962 Lugano, Switzerland. E-mail: olaf.
schenk@usi.ch.

� Gerhard Wellein is with the Erlangen National High Performance Comput-
ing Center, Friedrich-Alexander-Universit€at Erlangen-N€urnberg, 91058
Erlangen, Germany, and also with the Department of Computer Science, Frie-
drich-Alexander-Universit€at Erlangen-N€urnberg, 91058 Erlangen, Germany.
E-mail: gerhard.wellein@fau.de.

Manuscript received 3 May 2022; revised 12 September 2022; accepted 8
November 2022. Date of publication 21 November 2022; date of current ver-
sion 19 December 2022.
This work was supported by in part by NHR@FAU, in part by the State of
Bavaria, and in part by the German FederalMinistry of Education and Research.
(Corresponding author: Christie Alappat.)
Recommended for acceptance by P. D’Ambra.
Digital Object Identifier no. 10.1109/TPDS.2022.3223512

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023 581

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4548-8727
https://orcid.org/0000-0003-4548-8727
https://orcid.org/0000-0003-4548-8727
https://orcid.org/0000-0003-4548-8727
https://orcid.org/0000-0003-4548-8727
https://orcid.org/0000-0002-8723-2781
https://orcid.org/0000-0002-8723-2781
https://orcid.org/0000-0002-8723-2781
https://orcid.org/0000-0002-8723-2781
https://orcid.org/0000-0002-8723-2781
https://orcid.org/0000-0001-8636-1023
https://orcid.org/0000-0001-8636-1023
https://orcid.org/0000-0001-8636-1023
https://orcid.org/0000-0001-8636-1023
https://orcid.org/0000-0001-8636-1023
https://orcid.org/0000-0001-7371-3026
https://orcid.org/0000-0001-7371-3026
https://orcid.org/0000-0001-7371-3026
https://orcid.org/0000-0001-7371-3026
https://orcid.org/0000-0001-7371-3026
mailto:christie.alappat@fau.de
mailto:georg.hager@fau.de
mailto:olaf.schenk@usi.ch
mailto:olaf.schenk@usi.ch
mailto:gerhard.wellein@fau.de

There has been some research in exploiting data locality in
MPK, mostly motivated by classic blocking strategies well
established in stencil computations. In particular, in [15]
blocking schemes for MPK have been developed that first
partition the graph of a matrixA into p blocks of almost equal
size, where p is the number of cores. For cache reuse, the
blocks assigned to each core are further partitioned. Within
each block, an orthotrope-style [16] temporal blocking is
used to perform MPK computation locally for the block. This
requires to find neighbors of each block that are involved in
an MPK computation with power k. However, these neigh-
bors end up in nonconsecutive spots. Therefore, those
schemes require either redundant computations (explicit
schemes) and/or irregular accesses to the matrix entries with
bookkeeping (implicit schemes), resulting in performance
bottlenecks. In [17] a runtime auto-tuning was introduced for
the MPK scheme described above to choose the appropriate
parameters (e.g., explicit versus implicit schemes) for a given
matrix. This was generalized to various kernels like Jacobi
and serial Gauss-Seidel iterative solvers and automated
using a sparse tiling algorithm via the power of loop chain
abstraction [18], [19]. In [20], MPK kernels were studied on
modern multicore architectures for banded sparse matrices
that arise from stencil discretization. Following classic stencil
blocking approaches, a geometrical blocking method was
proposed. For matrices arising from two-dimensional discre-
tization the method achieved decent speedup. However, for
matrices from three-dimensional discretization it yielded
very limited performance gains due to high matrix band-
width. Most of the other works [11], [21], [22], [23] on MPK
schemes focused on reducing the MPI communication over-
head. A recent work [24] in this direction presents a theoreti-
cal study on the benefit of diamond tiling for reducing
communication.

Contribution and Outline

Our work bridges the gap between temporal blocking of
stencil algorithms [25], [26], [27], which can be considered
as an MPK on structured grids, and recursive spatial block-
ing strategies for SpMV [28]. In addition we reduce the
need to manually set up the blocks. We cover full thread-
level parallelization and focus on a single multicore proces-
sor. Our contributions are as follows:

� We generalize temporal tiling strategies known from
stencil computations on structured grids to MPK
computations on structured and unstructured sparse
matrices using the levels of the graph of the matrix.

� We present an efficient, multi-threaded implementa-
tion of our level-based blocking method for sparse
MPK on modern multicore processors. Our solution
aims to reduce the main memory traffic and to avoid
scalability bottlenecks such as synchronization over-
head or load imbalance.

� We conduct a detailed performance analysis of our
approach as implemented in RACE on various CPU
architectures.

� For a broad set of sparse matrices we demonstrate
full threading functionality and excellent multicore
performance achieving speedups of 3� to 5� com-
pared to a standard baseline implementation.

� We validate the performance improvements using
the roofline model and the phenomenological Execu-
tion-Cache-Memory (ECM) model. These models
corroborate the optimality of both our level-blocking
approach and the baseline implementation to which
we compare.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews our experimental setup, in particular hard-
ware and software characteristics of the next generation of
scalable processor, namely the Intel Cascade Lake and Intel
Ice Lake, and the AMD EPYC architectures, and, addition-
ally, the set of benchmark matrices. In Section 3 we review
the computational workload of matrix-vector multiplica-
tions for sparse matrices. Section 4 is dedicated to the main
contribution of the paper and describes in detail the algo-
rithmic components of level-based blocking of MPK. Sec-
tion 5 includes an assessment of performance parameters
within our recursive level-based blocking engine (RACE
MPK) method. In Section 6 we conduct a detailed perfor-
mance analysis of our cache-aware implementation for
matrix-power kernels and compare it to a state-of-the-art
implementation. Finally, in Section 7 we conclude the
paper and give an outlook on future directions.

2 HARDWARE AND SOFTWARE ENVIRONMENT

2.1 Hardware

The measurements in this paper were conducted on a sin-
gle socket of Intel Cascade Lake (CLX), Intel Ice Lake
(ICL), and AMD Epyc Zen2 (ROME), respectively. Key
specifications of the three systems are summarized in
Table 1.

These state-of-the-art processors power more than 50% of
the top 100 ranking supercomputers [29]. The Intel CPUs
support the AVX-512 instruction set, while the AMD CPU
supports only AVX-2. Turbomodewas active for all the runs,
and the systems were configured with one ccNUMA domain
per socket, i.e., on Intel systems the Sub-NUMA Clustering
(SNC)was disabled and onAMD theNPS1modewas used.

TABLE 1
Key Specification of Test Bed Machines

Architecture CLX ICL ROME

Chip Model Xeon Gold
6248

Xeon Platinum
8368

AMD EPYC
7662

Microarchitecture Cascade Lake Sunny Cove Zen-2
Release year 2019 2021 2020
Cores per socket 20 38 64
Max. SIMD width 512 bits 512 bits 256 bits
L1D cache capacity 20�32 KiB 38�48 KiB 64�32 KiB
L2 cache capacity 20�1 MiB 38�1.25 MiB 64�512 KiB
L3 cache capacity 27.5 MiB 57 MiB 16�16 MiB
Memory
Configuration

6 ch. DDR4-
2933

8 ch. DDR4-
3200

8 ch. DDR4-
3200

Mem. Bandwidth
(bMem)

116 GB/s 170 GB/s 146 GB/s

Operating system Ubuntu
20.04.4

RHEL 8.4 Ubuntu 20.04.4

Compiler Intel 19.1
update 2

Intel 2021.5
update 0

Intel 19.0
update 5

582 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

All CPUs have three levels of cache: private, inclusive L1
and L2, and a victim-type L3. The L3 cache on the Intel sys-
tems is shared by all cores of a socket, while on ROME it is
shared only within a core complex (CCX), which comprises
four cores. The aggregate L3 cache on ROME is 2.5� larger
than on ICL and 5� larger than on CLX. This can be
observed in the full-socket load-only bandwidth measure-
ments in Fig. 1, where the combined L2 and L3 cache sizes
are marked with dashed lines. This data also shows the L3
and main memory bandwidths of the three CPUs. CLX and
ICL have a moderate L3 bandwidth of 300 Gbyte/s and
400 Gbyte/s, respectively, while ROME has a very high L3
bandwidth of more than 2500 Gbyte/s. It is worth noting
that the transition from L3 to main memory is very sharp on
ROME and occurs exactly where the data-set size exceeds
the total cache size, while on the Intel systems the drop is
gradual and there is a noticeable cache effect even when the
working set exceeds the cache size by 2� or more, due to its
dynamic cache replacement policy [30]. The main memory
bandwidth (bMem) of CLX, ICL and ROME is about
116 Gbyte/s, 170 Gbyte/s, and 146 Gbyte/s, respectively.

2.2 Software

For compilation, Intel compilers (see Table 1 for version info)
were used on Ubuntu 20.04.4 (CLX and ROME) and Red Hat
Enterprise Linux 8.4 (ICL), respectively, with compiler flags
-O3 -xHOST. All floating-point computations were done in
double precision,while integerswere 32 bitswide. The kernels
were SIMDvectorized using pragmas to exploit themaximum
SIMD width of the hardware, i.e., 256 bits on ROME and 512
bits on ICL and CLX. Threads were bound to cores in a closed
(fill-type pinning)manner. To reduce fluctuations, each kernel
was executed multiple times such that the overall runtime is
greater than one second. The average performance of these
runs was then reported. As the variation among multiple
measurementswas less than 5%,we do not show error bars.

For pinning, bandwidth benchmarks (see Fig. 1), and for
counting hardware events we use the likwid-pin, lik-
wid-bench, and likwid-perfctr tools from the LIKWID
tool suite version 5.1.

2.3 Benchmark Matrices

Table 2 shows the sparse matrices used for the benchmarks
and some of their properties: Nr is the total number of rows,
Nnz is the total number of nonzero entries, and Nnzr is the
average number of nonzero entries per row (i.e., Nnz/Nr).

The matrices are ordered (top to bottom) according to
increasing Nnz, and all are square since this is a requirement
for the matrix power kernel (MPK). Most of the matrices
were taken from the SuiteSparse Matrix Collection [31].
HPCG-128-128-128 is the matrix found in the HPCG
benchmark [32], with a problem size of 1283. Further, large
matrices from current research in the fields of quantum
physics and cardiac electrophysiology have been included.
The matrices from quantum physics were generated using
the Scalable Matrix Collection (ScaMaC) library [33], while
the ones from electrophysiology were taken from [34].

3 MATRIX POWER KERNEL

The basic algorithmic workload addressed in this article is
the computation of powers of a sparse matrix applied to a
dense vector. The matrix power kernel (MPK) is defined as
follows: For a given square, sparse matrix A and a dense
vector x calculate all matrix powers Apx up to a maximum
pm (p ¼ 1; . . . ; pm) and store all pm resulting vectors
(yp ¼ Apx) for subsequent calculations. We further define
y0 :¼ x.

3.1 Baseline MPK Implementation

The standard approach to implement the MPK is to perform
a sequence of pm SpMV operations, i.e., yi ¼ Ayi�1 with i ¼
1; . . . ; pm, using standard SpMV implementations or library
calls. We refer to this strategy as baselineMPK.

Fig. 2 shows a high-level representation of our baseline
MPK together with an SpMV implementation that is known
to provide good performance on CPUs for a wide variety of
sparse matrix structures. The sparse matrix A is stored in
the well-known CRS format, using the three arrays rowPtr,
val, and col, which hold the row pointer information, values,
and column indices of nonzero entries, respectively (see [35]
for details). This information is passed (as global data) to the
SpMV function along with the function parameters (line 9)
representing the right-hand side (RHS) vector and the range
of row indices for which the SpMV is to be computed.1 The
function then performs the SpMV operation (lines 12–20)
and returns the resulting left-hand side (LHS) vector. Note
that most SpMV implementations in libraries are unsuitable
for the optimized MPK discussed later as they do not sup-
port SpMV on a subset of rows. Therefore we use our own

Fig. 1. Single socket L3 and memory bandwidth (load-only) of the three architectures under consideration. The dashed line represents the total avail-
able cache size (CS). Note the different scaling on the y-axis.

1. For the baseline implementation, the entire row range is specified.

ALAPPAT ETAL.: LEVEL-BASED BLOCKING FOR SPARSE MATRICES: SPARSE MATRIX-POWER-VECTOR MULTIPLICATION 583

version of SpMV, which serves as the main kernel for both
the baseline and the optimized version. We have ensured
that our SpMV performs at least as good as Intel MKL with
the standard CRS format.

The baseline MPK stores the pm þ 1 vectors fypg in the
matrix y½:; 0 : pm� (column-major order) and performs pm
back-to-back calls to the SpMV function (see lines 5–7 of
Fig. 2). If the caches are too small to hold the entire matrix,
it must be read pm times from main memory. Consequently,
the optimum (minimum) main memory balance for the
CRS-based baseline MPK is BC ¼ 6 byte=flop [10], [36],
which is equivalent to 12 bytes of memory traffic per non-
zero matrix entry. The baseline MPK thus reflects the
strongly memory-bound performance characteristic of the
underlying SpMV operation.

In order to evaluate the quality of optimized MPK imple-
mentations, we will measure the actual code balance BC;m

and compare it with the theoretical baseline minimum
(6 byte=flop) discussed above. The BC;m is obtained by mea-
suring the actual data traffic (using likwid-perfctr) and
dividing it by the minimum amount of floating-point opera-
tions to be performed, i.e., 2�Nnz � pmax. Where appropri-
ate, measured code balance from within the cache hierarchy
will also be reported.

3.2 Blocking Strategy for the MPK Implementation

As the same sparse matrix is repeatedly applied, there is
substantial performance optimization potential via data
transfer reduction by reusing matrix entries from the cache
for the successive computation of multiple powers. The
basic idea is to compute the SpMV partially for a block of A
that fits into cache and reuse these matrix entries for the
next SpMV, i.e., calculate another power on a smaller subset
of the data. This approach is equivalent to temporal block-
ing for iterative stencil update schemes, where multiple
updates on the same stencil data are computed in cache.
Here the spatial stencil structure determines the dependen-
cies between successive updates and geometric schemes for
handling the spatial-temporal dependencies such as trape-
zoidal [37] or diamond blocking [38] are well established.
To demonstrate the equivalent challenge in MPK, we show
in Fig. 3a simple banded sparse matrix, which arises from a
discretization of a toy stencil in one spatial dimension. In
the first step (Fig. 3a), an SpMV operation is performed
applying a block of the matrix (yellow rows), which fits into
cache, to the input (RHS) vector x to calculate a part of Ax
(yellow elements of LHS vector). In the next step (Fig. 3b),
the updated vector elements serve as input and are used to
calculate A2x (blue elements of the LHS vector) by applying
SpMV with a subset of the matrix block (blue rows). To ful-
fill the dependencies between these successive SpMV steps,
the column indices of the subset of the matrix block (blue
rows in Fig. 3b) must be in the range (indicated with red

TABLE 2
Details of the Benchmark Matrices

Index Matrix name Nr Nnz Nnzr

1 cfd2 123440 3087898 25.02

2 parabolic_fem 525825 3674625 6.99

3 xenon2 157464 3866688 24.56

4 cant 62451 4007383 64.17

5 offshore 259789 4242673 16.33

6 Hamrle3 1447360 5514242 3.81

7 bmw7st_1 141347 7339667 51.93

8 G3_circuit 1585478 7660826 4.83

9 shipsec1 140874 7813404 55.46

10 ship_003 121728 8086034 66.43

11 thermal2 1228045 8580313 6.99

12 gearbox 153746 9080404 59.06

13 crankseg_1 52804 10614210 201.01

14 pwtk 217918 11634424 53.39

15 rajat31 4690002 20316253 4.33

16 gsm_106857 589446 21758924 36.91

17 F1 343791 26837113 78.06

18 cage14 1505785 27130349 18.02

19 Fault_639 638802 28614564 44.79

20 inline_1 503712 36816342 73.09

21 RM07R 381689 37464962 98.16

22 Emilia_923 923136 41005206 44.42

23 ldoor 952203 46522475 48.86

24 af_shell10 1508065 52672325 34.93

25 HPCG-128-128-128 2097152 55742968 26.58

26 Hook_1498 1498023 60917445 40.67

27 Geo_1438 1437960 63156690 43.92

28 Serena 1391349 64531701 46.38

29 bone010 986703 71666325 72.63

30 audikw_1 943695 77651847 82.28

31 channel-500x100x100-b050 4802000 85362744 17.78

32 dielFilterV3real 1102824 89306020 80.98

33 nlpkkt120 3542400 96845792 27.34

34 ML_Geer 1504002 110879972 73.72

35 Flan_1565 1564794 117406044 75.03

36 stokes 11449533 349321980 30.51

37 nlpkkt240 27993600 774472352 27.67

38 Topi-real-256 (Q) 67108864 802160640 11.95

39 Graphene-8192 (Q) 67108864 872235016 13.00

40 Lynx649 (E) 64950632 978866282 15.07

41 Anderson-600 (Q) 216000000 1293840000 5.99

42 Lynx1151 (E) 115187228 1934489424 16.79

Nr is the number of rows, Nnz is the number of nonzeros, and Nnzr is the
average number of nonzeros per row. The letters “Q” and “E” in parentheses
mark the matrices from quantum physics and cardiac electrophysiology,
respectively.

Fig. 2. CRS-based MPK computing Apmx. The arrays val, col, and
rowPtr hold the CRS data structure of A. The input and output vectors
are stored in the ymatrix.

584 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

line) of the row indices of the original matrix block (yellow
rows). It is obvious that the overhead of this approach,
which is quantified by the ratio of yellow to blue rows in
Fig. 3b, increases with the bandwidth of the matrix (i.e.,
with longer-range stencils).

The outlined MPK blocking approach can be generalized
for sparse matrices with irregular structures. We define I to
be a set of row indices of the matrix A. The corresponding
set CðIÞ contains the column indices of all nonzero entries
in the rows of I , i.e., if i 2 I then j 2 CðiÞ,Ai;j 6¼ 0. Based
on this notation, the SpMV operation (y ¼ Ax) for a given
row index i 2 I can be written as:

yi ¼
X
j2CðiÞ

Ai;jxj (1)

If we apply the SpMV for all rows in I to a RHS yp�1, then
all corresponding row entries of the LHS vector are updated
to power p. We can then apply to this vector another SpMV
on a set of rows K for which CðKÞ � I .

The choice of the set of row indices I for a given sparse
matrix A is decisive to the performance of such a method: (i)
The matrix elements associated with I and CðIÞ have to fit
into cache and (ii) should be stored to enable high spatial
and temporal locality without indirect access. Furthermore,
(iii) the bandwidth of thematrix involved in theMPK should
be as small as possible, i.e., the indices of CðIÞ have to be
close to the set I . A potential approach to address these chal-
lenges is to consider the SpMV operation as a graph traversal
problem as done in the RACE coloring scheme [10]. Here,
breadth-first search (BFS) [39] is applied to the graph under-
lying A; the BFS levels of A are stored consecutively. These
levels allow us to identify appropriate parts of the matrix (I
and K) for blocking and how to traverse the full matrix
(graph) systematically to update vector elements corre-
sponding to all matrix powers while maintaining locality in
accessing matrix and vector data. As an added benefit, the
BFS reordering of thematrix reduces its bandwidth.

4 LEVEL-BLOCKED MPK

The RACE coloring scheme has been developed to generate
hardware-efficient distance-k colorings of graphs [10] using
their BFS levels. It has been successfully applied to the
shared-memory parallelization of symmetric SpMV provid-
ing unprecedented performance levels. Further it has been

shown that the level-based approach allows to control
dependencies in a parallel, symmetric SpMV operation and
at the same time provides flexibility to ensure data locality
and to adjust to the degree of parallelism required by mod-
ern multicore processors.

In the context of the MPK, the BFS levels are used to split
the sparse matrix into smaller blocks which may fit into
cache. Furthermore, the locality features of the levels are
used to reduce the cache reuse distance for matrix entries
and track the dependencies between levels of successive
SpMVs. As the relevant features of the BFS levels are impor-
tant for the MPK blocking, we first recapitulate the basic ter-
minology and then the level-based approach of RACE in
Section 4.1. From Section 4.2 onward we demonstrate how
it is basically applied to the MPK problem and then show
how data locality and efficient shared-memory paralleliza-
tion can be achieved.

In this section, we restrict ourselves to symmetric matri-
ces, i.e., undirected graphs. However, the proposed MPK
blocking method is also applicable to non-symmetric square
matrices. The following definitions from graph theory are
used throughout the paper:

Graph: G ¼ ðV; EÞ represents a graph, with VðGÞ denoting
a set of vertices and EðGÞ denoting its edges. For sparse
matrices, VðGÞ consists of all row indices of the matrix and
EðGÞ consists of edges between two vertices corresponding
to the row (u) and the column indices (v) of the nonzero
entries, i.e., fu; vg 2 EðGÞ,Au;v 6¼ 0.

Neighborhood. The neighborhood of a vertex u is the set of
verticesNðuÞ ¼ fv 2 VðGÞ : fu; vg 2 EðGÞg.

Subgraph. A subgraph H of G specifically refers to the
subgraph induced by vertices V0 � VðGÞ and is defined as
the graphH ¼ ðV0; ffu; vg 2 EðGÞ ^ u; v 2 V0gÞ.

In the graph terminology, an SpMV operation (y ¼ Ax)
can be formulated as follows: If G ¼ ðV; EÞ is the graph
representation of the sparse matrix A then for every vertex
u 2 VðGÞ calculate

yu ¼
X

v2NðuÞ
Au;vxv : (2)

Comparing (2) with (1), we can observe the equivalence
between index-based (row index i and its related column
indices CðiÞ) and graph-based (vertex u and its neighbor-
hoodNðuÞ) notations.

Fig. 3. Blocking successive matrix applications for a simple banded sparse matrix: (a) The RHS vector is the input vector x. Yellow elements of the
LHS vector are updated to Ax. (b) The next update is performed on the blue block of A to computeA2x on the blue elements of the LHS vector. Yellow
matrix elements can be reused when computing A2x on blue blocks.

ALAPPAT ETAL.: LEVEL-BASED BLOCKING FOR SPARSE MATRICES: SPARSE MATRIX-POWER-VECTOR MULTIPLICATION 585

To illustrate our method, a simple graph generated by
applying a two-dimensional seven-point (2d-7pt) stencil to
a square grid of size 8�8 will serve as an example. Fig. 4a
shows the graph with each vertex numbered in lexico-
graphic ordering. The associated stencil at a single grid
point (vertex 54 and its neighborhood) is highlighted. The
sparsity pattern of the corresponding matrix is shown in
Fig. 4b.

4.1 Levels

The level formation in RACE is based on a BFS which
assigns each vertex (row) of the graph (matrix) to a level.
First, a root vertex vroot is chosen and assigned to the first
level, Lð0Þ.2 The rest of the levels, LðiÞ 8 i > 0, are defined
to contain vertices that are in the combined neighborhood
of the vertices in the previous level Lði� 1Þ but have no
level numbers assigned yet, i.e.,

LðiÞ ¼
vroot if i ¼ 0;

u : u 2 NðLði� 1ÞÞ ^f
u : u 62 fLð0Þ; . . .; Lði� 1Þgf g else: (3)

8><
>:

Fig. 4c shows the 15 levels (indicated by different colors)
generated by this procedure for the stencil graph if vroot ¼
0 is chosen. After level formation, the vertices are renum-
bered (compare vertex indices in Figs. 4a and 4c) such that
those in the same level are numbered consecutively and the
vertices in level Lði� 1Þ appear before those in LðiÞ. This
permutation3 increases data locality between neighboring
vertices and results in a lens-shaped matrix with typically
reduced bandwidth (see Fig. 4d). Since this improves the
data locality of sparse matrix computations, such permuta-
tions are widely employed as preprocessing steps for
SpMV-based algorithms [40].

As a consequence of the definition of levels, the neigh-
borhood of all vertices in a given level LðiÞ is clearly con-
fined to the vertices within the previous, current, and next
levels, i.e.:
NðLðiÞÞ 2 fLði� 1Þ [LðiÞ [Lðiþ 1Þg; for i > 0 : (4)

This property is crucial for the design of our level-based
MPK blocking scheme as it defines the dependency between
the computation of SpMVs for different levels at different
matrix powers: To advance all vertices of LðiÞ to Apx, the
calculation of Ap�1x has to be completed on the levels Lði�
1Þ, LðiÞ, and Lðiþ 1Þ.

4.2 Level-Based Blocking of MPK

In Section 3, we discussed the baseline MPK and the poten-
tial matrix data reuse by blocking across the SpMV opera-
tions involved in the MPK. Further it has been shown that
the graph formulation of the SpMV(2) together with the
neighborhood relation (4) of the levels (3) provide a natural
framework for the structured computation of the MPK. This
includes the dependency between a level and its neighbor-
hood; e.g., in Fig. 4c one can calculate the next matrix power
for level Lð6Þ (with vertices 21; . . . ; 27) only after the compu-
tation of the previous matrix power is complete on levels
Lð5Þ, Lð6Þ, and Lð7Þ (containing vertices 15; . . . ; 35).

We next introduce the Lp diagram to visualize the depen-
dencies between levels in MPK calculations. In the Lp dia-
gram, the indices of the levels LðiÞ are on the x-axis and the
matrix power stages (1 � p � pmax) are on the y-axis. Hence,
each node ði; pÞ in the diagram represents an SpMV on the
vertices in level i to compute part of the power p. Fig. 5
shows the Lp diagram for 15 levels and pmax ¼ 5. To satisfy
the dependencies in the level-based MPK blocking scheme,
the nodes ði� 1; p� 1Þ, ði; p� 1Þ, and ðiþ 1; p� 1Þ need to
be computed before SpMV can be applied to compute the
node ði; pÞ. The red arrows in Fig. 5 denote the dependency
for the computation of Lð6Þ at p ¼ 4, i.e., for the node (6, 4).
The order of traversal in the Lp diagram is as follows:

� Each diagonal, defined by iþ p ¼ const, is traversed
from bottom to top (starting at p ¼ 1).

� Diagonals are traversed from left to right, i.e., start-
ing with p ¼ 1 for Lð0Þ.

This execution order, which is independent of the actual
graph structure, ensures that the levels Lði� 1Þ, LðiÞ, and
Lðiþ 1Þ are updated to power stage p� 1 before level LðiÞ
is advanced to power stage p. In Fig. 5, the order of all exe-
cution steps of this scheme is shown via the node numbers
in the Lp diagram with pm ¼ 5.

Visualizations similar to Fig. 5 are often shown for one-
dimensional (1D) radius-one stencils, where the x-axis

Fig. 4. Graph (a) and sparsity pattern (b) of the matrix associated with a 2d-7pt stencil on an 8�8 grid. In (a), the associated stencil is highlighted in
red for an arbitrary vertex (54). (c) shows the permuted graph and (d) the sparsity pattern of the matrix after applying BFS reordering. The vertices
(rows) of the graph (matrix) that belong to a level are represented with the same color. The level_ptr associated with the permuted graph/matrix
is shown in (e).

2. In this article, we always choose the first vertex (default setting in
RACE) as the root node.

3. Note that a symmetric permutation is employed on the matrix,
i.e., both rows and columns are permuted.

586 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

represents the grid points and the y-axis shows iterations
or time steps [16], [37], [38]. As we have shown above,
our level-based MPK algorithm shows the same depen-
dencies, with levels substituting grid points on the x-axis.
This opens up a host of options, since we could draw
from the large variety of temporal blocking optimizations
developed for 1D stencils. Our approach is analogous
to parallelogram-style temporal blocking; see [16] for a
classification.

The reuse distance of a given level is a central quantity to
characterize the cache locality of the level-blocked (LB)
MPK. Within the Lp diagram, this quantity can be deter-
mined by the number of execution steps between two com-
putations on the same level, i.e., one step in vertical
direction. As the scheme traverses the Lp space in consecu-
tive diagonals, a level computed at power p will be reused
after ~dþ 1 execution stages for the computation of the next
power pþ 1, where ~d is the number of execution steps in the
current diagonal. After the wind-up and before the wind-
down phases at the left and right ends of the Lp diagram, we
have ~d ¼ pm; hence, levels are reused after pm þ 1 execution
steps. This can be observed from Fig. 5 if we concentrate on a
single level, e.g., the vertices of Lð10Þ used in the 40th execu-
tion step to compute p ¼ 1 are reused in the 46th step to com-
pute p ¼ 2. As the number of levels is typically much larger
than the maximum power stage, we can assume a maximum
reuse distance of pm þ 1 execution stages. This means if all
the matrix entries associated with the pm þ 1 successive lev-
els touched between two computations of a given LðiÞ can be
held in a cache, all accesses to this LðiÞ can be served from
the cache with the exception of the first one (p ¼ 1), which
requires main memory access. Assuming that cache accesses
are much faster than memory accesses, the performance of
the LB MPK implementation can improve by a factor of at
most pm as compared to the baselineMPK.

Implementation

Two basic implementation decisions for our LB MPK are
guided by RACE. First, the complete algorithm operates on
the permuted graph. Second, only two lean data structures
are required to store the information on the permutation and
the levels: The permutation vector (Nr entries) is required to
recover the original ordering. The storage location of the first
vertex (row) of each level are stored in the level_ptr array
(one entry per level). Fig. 4e shows the level_ptr of our
stencil examplematrix (see Fig. 4d).

A straightforward implementation of our LB MPK is pre-
sented in Fig. 6. The algorithm first iterates over all diagonals
of theLp diagram in ascending order (line 2).Within a diago-
nal d ¼ iþ p ¼ const, the computations are processed in
increasing order of power p (line 6). Note that to account for
the wind-up and the wind-down phase of the parallelogram,
the starting and ending power stages are adjusted in lines 3
and 4 of the algorithm. Depending on the power p and the
diagonal counter d, the actual level index i to use in the cur-
rent iteration is calculated in line 7. Finally, in line 8 the vec-
tor (y½p� 1�) containing the required information at power
level p� 1 and the indices of the first and last row of LðiÞ are
passed to the SpMV function (shown in Fig. 2) to compute
Apx on level LðiÞ. Note that OpenMP parallelization is done
within the SpMV function using static scheduling (line 12 in
Fig. 2). As there is an implicit barrier after the parallel work-
share construct, all threads finish the computations on a
given execution stage before proceeding to the next one. In
order to reduce the start-up overhead at the parallel region
encountered in each SpMV call, the parallel region is opened
outside the SpMV routine in our implementation.

Note that the storage of each level is consecutive and
the levels are stored in ascending index order. Therefore,
the proposed method neither has irregular accesses to
matrix entries nor does it have to store extra copies of
matrix elements and perform redundant computations,
which were required in previous work [15]. Moreover,the
parallelization within the levels avoids load imbalance
and redundant thread-local copies, which may add signif-
icant overhead for irregular matrices and high thread (or
core) counts.

Performance analysis of naive version

The naive implementation of the LB MPK already results in
a decent performance improvement for some of the matrices
presented in Table 2. However, it often falls short of the pre-
dicted maximum pm-fold speedup. For example, with pm ¼
4 on one socket of CLX, 50% of the matrices in the table
showed speedup of less than 10% and almost 10 matrices
had a performance degradation compared to the baseline
MPK. We choose two representative matrices, pwtk and
Flan_1565, which are exemplary for the major perfor-
mance shortcomings of the basic LB MPK and we will iden-
tify those in the following.

Fig. 7 shows the multithreaded performance and main
memory code balance of the LB MPK (Fig. 6) with pm ¼ 1
and pm ¼ 4 along with the baseline MPK (Fig. 2) with pm ¼
4 on one socket of CLX (20 cores) for both matrices. One

Fig. 5. Lp diagram with 15 levels (Lð0Þ; . . . ; Lð14Þ) and a maximum
power stage of pmax ¼ 5. Level colors are the same as in Fig. 4c. Each
node in the Lp diagram is numbered according to the execution order.
For p ¼ 4 and level Lð6Þ, the explicit dependencies with levels at p ¼ 3
are indicated with red arrows. The nodes highlighted in orange fulfill iþ
p ¼ 13 (“diagonal”).

Fig. 6. Basic implementation of the level-blocked (LB) MPK algorithm.
Lm is the total number of levels and pm is the maximum matrix power.
The SpMV function implementation from Fig. 2 is used.

ALAPPAT ETAL.: LEVEL-BASED BLOCKING FOR SPARSE MATRICES: SPARSE MATRIX-POWER-VECTOR MULTIPLICATION 587

may expect that LB MPK with pm ¼ 1 and the baseline MPK
should deliver the same performance, independent of pm.
They both perform the memory-bound SpMV operations
successively but with different execution order within each
SpMV function, and their minimum code balance from
main memory is BC ¼ 6 byte=flop (see Section 3.1). For pm ¼
4 case, a data traffic (i.e., BC) reduction and performance
speedup of at most 4� may be achieved when using LB
MPK.

For pwtk, the typical memory bandwidth saturation pat-
tern is observed for LB MPK (pm ¼ 1, triangles) and baseline
MPK (circles) in Fig. 7a. The level-based implementation
saturates at a lower level, although both variants attain the
same minimum code balance of BC ¼ 6 byte=flop (Fig. 7b).
The characteristic behavior is the same for the LB MPK with
pm ¼ 4 (squares): In line with the expectation, our method
reduces the data traffic by a factor of approximately four
(BC;m 	 1:5 byte=flop) but it fails to improve performance at
the full socket level. It even falls behind the baseline MPK
for larger core counts. Further analysis reveals a 1.6�
increase in retired instructions4 for LB MPK (pm ¼ 4) com-
pared to the baseline approach. These instructions are exe-
cuted in the spin-waiting loop of OpenMP barriers [42],
indicating that the synchronization between threads (per-
formed after each computation of a level) is a potential bot-
tleneck. An analysis of the level structure of the pwtk

matrix confirms the relevance of synchronization cost as the
average level size is approximately 850 rows only. At an
average of 53 nonzeros per row, the workload of a level is
just too low to ignore the synchronization cost, which
increases with thread count and may reach a few thousand
cycles at a full socket.5

The Flan_1565matrix shows an opposite characteristic.
The performance of LB MPK with pm ¼ 1 is in line with the
baseline approach, and the level blocking with pm ¼ 4
achieves a performance improvement of 1.2� (see Fig. 7c).
The moderate speedup of LB MPK is reflected in Fig. 7d by

its rather high (measured) code balance of approximately
4 byte=flop, indicating that level-blocking is not very cache
efficient in this case. The matrix level structure plays a deci-
sive role here as there is a rather small number of levels,
some of them being large. Already one of these large levels,
which may contain up to 20,000 rows (with about 75 non-
zeros per row) has a size of roughly 18MB, which is more
than half of the L3 cache size of the CPU. Moreover, the
small number of levels in combination with imbalanced
level sizes may cause the irregular performance scaling of
LB MPK (pm ¼ 4) in Fig. 7c.

In the following three sections we describe three optimi-
zations of the LB MPK, which are motivated by the perfor-
mance shortcomings identified above. The first two are
targeted at reducing the synchronization cost by forming
larger levels (“level groups”) and substituting the expensive
barrier by point-to-point synchronization. The third optimi-
zation improves performance on matrices with dominant,
bulky levels by recursively splitting these up (“recursion”)
to improve cache efficiency.

4.3 Level Groups (LG)

The formation of larger levels follows the idea presented in
[10]: Successive levels are aggregated into so-called level
groups. This allows our LB MPK to operate on these level
groups instead of the original levels. Fig. 8a shows the fif-
teen levels of Fig. 4c being clustered into five level groups
T ð0Þ–T ð4Þ (T ðiÞ denotes ith level group). The Lp diagram
can easily be adapted by replacing the levels by the level
groups on the x-axis (see Fig. 8b).6 Still, the same parallelo-
gram-style blocking can be applied by traversing the level
groups using the same rules as for the levels. Parallel execu-
tion is performed within a level group, and all threads syn-
chronize after the computation of each group. This strategy
satisfies the neighborhood dependencies between levels as
required by the LB MPK.

The cache reuse requirements of the LB MPK impose
strict limits on the size of the level groups. As discussed in

Fig. 7. Scaling performance and main memory traffic of our LB MPK implementation for Ax (pm ¼ 1) and A4x (pm ¼ 4) in comparison to the baseline
MPK on one socket of CLX for the pwtk and Flan_1565matrices. The stars show the phenomenological ECM performance model [41] (in gray) for
the pm ¼ 4 case. The model assumes that the computation of first power of a level (p ¼ 1) does not overlap for subsequent powers (p > 1).

4. Using the event INSTR_RETIRED_ANY in likwid-perfctr.
5. For the full CLX socket (ignoring hyper-threading) and the soft-

ware environment used, a minimum barrier cost of 2,900 cycles was
measured by direct barrier benchmarking.

6. For the sake of uniformity we keep the name “Lp” for the diagram
instead of “Tp,” although here we plot level groups (T) instead of levels
(L) on the x-axis.

588 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Section 4.2, pm þ 1 neighboring level groups have to be kept
in cache. Therefore, if we assume neighboring level groups
to be of similar size, the following criterion has to be satis-
fied by the ith level group T ðiÞ:

ðpm þ 1Þ �Nnz ðT ðiÞÞ � 12 bytes < fC; (5)

where Nnz ðT ðiÞÞ is the number of nonzeros in T ðiÞ, C is a
parameter representing the available cache size (in bytes),
and f is a safety factor. The cache size parameter is typically
chosen to be less than or equal to the physical size of the
cache(s) targeted for level blocking. The safety factor
(f ¼ 0:5 in this work) accounts for extra traffic from other
data structures and inefficiencies of the cache replacement
policies. The left part of inequality (5) is the total memory
traffic generated by accessing pm+1 level groups (assuming
12 bytes per nonzero entry of the matrix, see Section 3.1),
and the right part is the effective cache size. If (5) is satisfied
then level group T ðiÞ can be reused from cache for pm > 1;
otherwise, at least parts of it must be loaded from main
memory.

Inequality (5) is crucial to the construction process of the
level groups. We form the first level group T ð0Þ by accumu-
lating levels Lð0Þ ... LðjÞ up to the largest j for which
Nnz ðLð0ÞÞ þ . . .þ Nnz ðLðjÞÞ ¼ Nnz ðT ð0ÞÞ satisfies (5).
The same procedure is repeated starting from level Lðjþ 1Þ
to find T ð1Þ, and successively forming the other level groups.
It can be seen from Fig. 8a that this procedure creates level
groups with almost equal numbers of nonzero elements. In
regions where levels contain fewer nonzeros per level, more
levels are aggregated (see T ð0Þ in Fig. 8a) while in regions
with bulkier levels, even a single level can form a level group
(see T ð2Þ in Fig. 8a). As a result, the number of level groups is
typicallymuch smaller than the number of levels.

In the level-group-based scheme, synchronization only
happens after the computation of each level group, which
greatly diminishes the impact of barriers in case of LB MPK
for the pwtk matrix: The performance of the LB MPK for
pm ¼ 4 (LB+LG; triangles in Fig. 9a) improves on a full
socket by 1:6� compared to the baseline MPK approach. At
the same time, we only encounter a minor increase in the
measured code balance (see Fig. 9b) since the condition (5)
limits the size of the level groups. Also the overhead from
extra instructions reduces from 60% for the naive LB MPK

version to only 7%. The cache size parameter C ¼ 35MB
has been set to target the aggregate physical size of L3 and
L2 caches of CLX.

4.4 Point-to-Point (P2P) Synchronization

The concept of level groups allows us to relax the lockstep-
like synchronization by eliminating the OpenMP barrier
(implicit barrier in line 12 of Fig. 2) after computation of a
level group. The parallel LB MPK must ensure that the com-
putations on the following levels and level groups are com-
pleted before the computation of power p for a given level
group T ðiÞ: (A) the same level group T ðiÞ with previous
power p� 1 (bottom neighbor in Lp diagram), (B) the high-
est-indexed (rightmost) level of T ði� 1Þ with power p� 1
(southwest neighbor in Lp diagram), and (C) the lowest-
indexed (leftmost) level of T ðiþ 1Þwith power p� 1 (south-
east neighbor in Lp diagram).

Note that the most stringent condition (A) can be
enforced without a global barrier synchronization since it is
only relevant when a level group T ðiÞ is visited again for
computing the next power on it, which happens after a full
diagonal traversal. We thus implemented a customized
locking mechanism (see below for details), which allows

Fig. 8. (a) Levels as in Fig. 4c being consolidated to five level groups (T ð0Þ – T ð4Þ). (b) Lp diagram corresponding to the level groups and the execu-
tion order of each level group at different power stages. The bold red arrow (vertical) corresponds to the dependency with all the levels of the same
level group T ðiÞ at the previous power stage p� 1, and the slanted red arrow corresponds to the dependency with the lowest-indexed level of next
level group T ðiþ 1Þ at the previous power stage. The blue arrow corresponds to a dependency that is automatically fulfilled by the execution order.
(c) Zoomed-in view of the T ð3Þ and T ð4Þ level groups in the Lp diagram. The levels within the level group are seen as square nodes and the depen-
dency between levels in T ðiÞ and T ðiþ 1Þ are clearly visible. The subgraph corresponding to the zoomed region is shown in (d). The vertices drawn
with red circles correspond to the two boundary levels between which synchronization in southeast direction has to be established. The numbers on
the vertices represent the id of the thread (tid) working on that vertex.

Fig. 9. (a) Performance improvement of LB MPK using level group (LG)
optimizations and point-to-point synchronization (p2p) for the pwtk

matrix with pm ¼ 4 on CLX. (b) Memory traffic of the four variants shown
in (a).

ALAPPAT ETAL.: LEVEL-BASED BLOCKING FOR SPARSE MATRICES: SPARSE MATRIX-POWER-VECTOR MULTIPLICATION 589

threads to spread out over a full diagonal of the Lp diagram.
Due to the diagonal traversal scheme of the Lp diagram,
condition (A) implies condition (B) as the southwest neigh-
bor of a level group is always visited before its bottom
neighbor (see numbering of execution order in 8b). Finally,
a similar locking mechanism is required to ensure condition
(C). Here, only the completion of the relevant boundary
level of the southeast neighbor has to be ensured (see
Fig. 8c).

The locking mechanism is implemented using vola-

tile int arrays, omp atomic directives, and spin-waiting
loops. For ease of tracking threads, we do not use OpenMP
worksharing schemes; instead we manually assign the verti-
ces in each level group to the Nt threads in a static manner.
The numbers in Fig. 8d illustrate such a thread assignment
in level groups T ð3Þ and T ð4Þ for a total of three threads,
i.e., Nt ¼ 3. To satisfy condition (A), a volatile int array
U of size equal to total number of level groups (Lm) is
defined and set to zero in the initialization phase. Each
thread after finishing work on xth level group, T ðxÞ, atom-
ically increments U[x] by one. Condition (A) implies that,
in order to start working on a level group T ðyÞ at power p,
each thread has to ensure all the threads have finished com-
puting the previous power p� 1 of T ðyÞ. This is ensured by
checking if U[y] ¼ ðp� 1Þ �Nt; if it is not, the thread waits
in a spin-waiting loop till the other threads finish their
computations. Similarly, condition (C) is ensured by a two-
dimensional volatile int array V having the same
dimension of the Lp graph, i.e., Lm � pm. Here only threads
working at the boundary levels of the two nearby level
groups need to interact. For example, in Fig. 8d to satisfy
condition (C), thread 0 working on the first level of T ð4Þ has
to finish the power p� 1 computation before thread 1 and 2
can start the power p computation on the last level of T ð3Þ.
To achieve this, the thread(s) working on the first level of
the level group T ðxÞ atomically increment V[x][p] by one
after performing the power p computation. The thread(s)
that compute power p on last level of a level group T ðyÞ
then checks if the first level of the southeast neighbor
has completed computation, i.e., if V[yþ 1][p� 1] ¼ H

[yþ 1], where H is a precomputed array which stores the
number of threads that work on the first level of each level
group. If the equality is not satisfied, the thread waits in a
spin-waiting loop until it is.

Fig. 9a shows the performance scaling of this implemen-
tation (LB+LG+p2p; diamonds) in comparison to the other
variants; it yields a performance boost of 1:2� over the ver-
sion with level groups and barrier synchronization (LB
+LG). A part of this speedup comes from the reduced syn-
chronization cost. The rest is due to the relaxation of lock
step synchronization that allows for overlap between mem-
ory and cache transfers, i.e., some threads can work on the
memory-bound phase (p ¼ 1) while the rest work on a
cache-bound phase (p > 1). The optimization thus brings
us close to our phenomenological ECM model (stars in
Fig. 9a) and results in a 2� speedup over the baseline
approach. Note that as the sizes of level groups change, traf-
fic within inner cache levels will also change. Since the ECM
model uses this data traffic as input, it results in slightly dif-
ferent models when sizes of level groups change. This can
be observed for example by comparing Figs. 7a and 9a.

4.5 Recursion

The negative impact of bulky levels (which do not satisfy
(5)) on main memory traffic for the LB MPK approach
(see Fig. 7d) has been identified and discussed for the
Flan_1565 matrix in Section 4.2. In the RACE coloring
scheme [10], a recursive approach has been presented to
generate higher levels of parallelism within bulky levels.
The same method can be used in our context to successively
generate new levels or level groups of reduced size until
they fit into cache. The idea is to apply the LB MPK pre-
sented so far to the subgraph defined by a single level or a
set of consecutive levels. As a result, a new set of smaller
levels is generated for this subgraph. If some of the new lev-
els still violate (5), the procedure is applied again to the new
subgraph defined by these levels. This procedure can be
continued until all levels fit into a cache.

We start by locating (consecutive) levels that do not fit in
a cache and isolate the subgraph formed by these levels.
BFS is applied first to this subgraph, and then a set of level
groups is formed from these BFS levels. The resulting level
groups are typically smaller than the previous ones as
neighboring vertices outside the subgraph do not need to be
considered. Fig. 10 illustrates this procedure for our stencil
example and a hypothetical cache which satisfies (5) for
level groups T ðiÞ containing no more than six vertices. We
find that the three bulkier level groups (containing one level
each) T ð4Þ – T ð6Þ do not satisfy the condition. The subgraph
induced by these three levels is formed (shaded with gray
background in Fig. 10a), and we identify the eight BFS levels
of this subgraph (Fig. 10b). Following the discussion in Sec-
tion 4.3, the level groups of the subgraph are constructed
(Fig. 10c). They are now small enough to satisfy (5) and the
process stops.

In general, the procedure can be applied recursively until
the level groups satisfy (5) or a user-specified maximum
recursion stage sm is reached, where sm ¼ 0 is the case with-
out any recursion. In the following, s (� sm) denotes the cur-
rent recursion stage. The maximum recursion stage should,
however, be limited as applying the recursion step leads to
loss of data locality at the boundaries of the subgraph. This
happens because the subgraphs are permuted (BFS) without
taking into account the neighbors outside the subgraph.
Fig. 11 demonstrates this effect by comparing the matrix
structure of our stencil example without recursion (sm ¼ 0)
and with one recursion step (sm ¼ 1) applied to the inner
levels. The matrix bandwidth increases for the boundary
elements of the subgraph because of the mismatch of the
vertex numberings outside and inside the subgraph. While

Fig. 10. (a) Level groups in the graph. The shaded subgraph shows the
level groups with more than six rows, where recursive treatment is
applied. (b) BFS levels within the subgraph. (c) Level groups formed
from the levels within the subgraph.

590 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

access to the matrix elements remains linear, the more irreg-
ular accesses to the right-hand side vector may impact the
overall MPK performance. Note that the graphical represen-
tation in Fig. 11b exaggerates this effect, since in our toy
problem the subgraph represents a substantial fraction of
the full problem. The performance influence of the maxi-
mum recursion stage sm is discussed later in Section 5.3.

As each subgraph (formed from consecutive levels) of a
recursion stage creates its own level groups, we construct
Lp diagrams for each subgraph, i.e., Lps represents the Lp
diagrams of recursion stage s. Fig. 12 shows the two Lp dia-
grams of the stencil example for pm ¼ 2: Lp0 representing
s ¼ 0 on the full graph (Fig. 10a), and Lp1 after the first
recursion stage of the subgraph corresponding to level
groups in Fig. 10b. Note that the numbering of the execution
order is local to each Lps diagram. All level groups of a sub-
graph of Lps to which recursion is applied have the same
execution order in Lps (e.g., the subgraph related to
T ð4Þ–T ð6Þ in Lp0 is executed in step 8 of Lp0 in Fig. 12). The
actual execution order of the vertices in this subgraph is
determined by Lpsþ1 (see Lp1 in Fig. 12). In general, the
actual execution of a given vertex is determined by the Lp
diagram associated with the highest recursion stage of the
vertex. Of course the execution order in the Lps diagrams
still needs to maintain the data dependencies of the LB
MPK. With pm ¼ 2 as used in Fig. 12 we can still maintain
our diagonal-type execution order within the diagrams:
T ð7Þ of Lp0 is updated to p ¼ 1 at step 7. Lp1 is calculated as
step 8 of Lp0. In step 9 of Lp0, T ð3Þ is updated to p ¼ 2.

For pm > 2, the dependency relations between execution
order of Lps and Lpsþ1 are more complicated. This is
depicted in Fig. 13, where Lp0 with pm ¼ 3; 5 is shown for 15
level groups and T ð6Þ–T ð8Þ form the subgraph on which
Lp1 is built. Actually, all nodes in the parallelogram formed
by the diagonals in Lps (Lp0 in our example) that cross the

subgraph to be refined have dependency relations to the
vertices in this subgraph. Within the parallelogram, there
are three different types of dependencies: (i) Nodes which
provide input only to Lpsþ1 and which need to be calculated
before Lpsþ1 (orange color in Fig. 13), (ii) nodes which have
only an output dependency on Lpsþ1 and need to be calcu-
lated after Lpsþ1 (blue color in Fig. 13), (iii) nodes within the
“diamond” embedded in the parallelogram, which have
input and output dependencies related to the computations
in Lpsþ1. The nodes within (i) and (ii) can be processed
using the execution order as given by the Lps diagram.
However, the nodes within the “diamond” (iii) have to
proceed in coordination, therefore they all follow the execu-
tion order of the Lpsþ1 diagram. This means that the recur-
sive treatment is applied not just to the subgraph (here
T ð6Þ–T ð8Þ) but also to the boundary levels within the dia-
mond. In case of pm ¼ 5 (illustrated in the lower panel of
Fig. 13), the boundary level groups at left (T ð4Þ and T ð5Þ) as
well as right (T ð9Þ and T ð10Þ) will also be considered for the
recursion. The vertices of these boundary level groups are
then permuted within each level group according to the
dependencies that arise from the subgraph. These refined
level groups within the boundary levels are thus used when
executing the recursive part using the Lpsþ1 diagram. For
example, in Fig. 13 (below), the calculation of p ¼ 2, p ¼ 3,
and p ¼ 4 at T ð5Þ is carried out using the refined levels.
Since the permutations are conducted only within each
boundary level group, the execution order of the parent Lp
diagrams (here Lp0) remain unchanged. This means that the
computation of p ¼ 1 and p ¼ 5 at T ð5Þ can proceed without
any change using the execution order of Lp0. This diamond-
type execution structure is well known from diamond tiling
[38] applied to stencils. Note that this recursive refinement
approach is not limited to a single subgraph of a given Lps.
However, if multiple subgraphs need to be refined, the par-
allelograms formed by these subgraphs must not overlap.

The parallelization within each of the recursive stages
follows the same procedure as explained in Section 4.4,
with two modifications: First, each recursive stage needs to
define and work with a separate set of arrays U, V, and H

(see Section 4.4) to lock their corresponding part of the Lps

diagram. Second, the vertices having dependencies (i) and

Fig. 11. Sparsity pattern of the stencil example matrix without (a) and
with (b) recursion. The entries of submatrix where recursion is applied is
shown with orange color in (b).

Fig. 12. The Lp diagram for pm ¼ 2. Left: Lp diagram of the s ¼ 0 recur-
sion stage (Lp0), which contains level groups of the entire graph seen in
Fig. 10a. The level groups selected for recursion are highlighted. Right:
Lp diagram at s ¼ 1 (Lp1), which consists of the level groups shown in
Fig. 10b. The execution order of the Lp graph is shown with numbers.

Fig. 13. Lp0 diagrams with pm ¼ 3 (above) and pm ¼ 5 (below) corre-
sponding to an arbitrary graph where recursion has to be applied to level
groups T ð6Þ–T ð8Þ forming Lp1 (not shown). The red arrows show the
longest input (output) dependency from (to) the boundary points of the
recursive region.

ALAPPAT ETAL.: LEVEL-BASED BLOCKING FOR SPARSE MATRICES: SPARSE MATRIX-POWER-VECTOR MULTIPLICATION 591

(ii) in Lps have to be computed before and after the compu-
tation of Lpsþ1, respectively. This can be ensured by check-
ing the corresponding values of elements in array U as
shown in Section 4.4.

The impact of the presented recursion scheme on the per-
formance of the LB MPK method for the Flan_1565 matrix
with pm ¼ 4 is shown in Fig. 14a. We used a cache size
parameter C ¼ 45MB for LB MPK methods and set sm ¼ 4
for the case with recursion (squares). In this setting, the Lp0

diagram has three subgraphs to which recursive treatment is
applied. Via improved cache reuse, the recursion improves
the full-socket performance by a factor of almost 1:4� com-
pared to the version without recursion. This comes with a
corresponding reduction of almost 2� in main memory data
traffic (Fig. 14b). Compared to the baseline MPK approach,
we achieve an overall reduction of main memory traffic by
3:2� and an increase in performance by 1:8� on a full socket
of CLX. These numbers and the (close to) linear scaling of
our method indicate that main memory access is no longer
the performance bottleneck.

4.6 RACE

The LB MPK algorithm including all optimizations dis-
cussed above has been implemented in the RACE library

(code available at [43]). In the following we therefore refer
to our LB MPK implementation as “RACE MPK.” The
library supports both preprocessing and execution phases
of the LB MPK. For preprocessing, RACE requires the
matrix, highest power pm, cache size C, and maximum
recursion stage sm as input and returns the permutation
vector as output. The user then has to pass the permuted
matrix and a call-back function to RACE for execution.
RACE will execute the call-back function in parallel (using
OpenMP threading) according to the internally created
level_ptr and Lp diagrams.

5 PARAMETER STUDY

Our RACE MPK as introduced in the previous section has
three input parameters: the maximum power pm, the cache
size C, and the maximum recursion stage sm. In this section
we discuss the qualitative impact of these parameters on
the performance of RACEMPK.

5.1 Influence of pm
Ideally, RACE MPK requires to access main memory for
each level group exactly once at p ¼ 1. The remaining pm �
1 accesses can potentially be served from the cache(s) (see
Figs. 9b and 14b). As a consequence, cache utilization and
performance should increase with pm. However, as pm gets
larger, the number of level groups grows and their size
must reduce as condition (5) has to be fulfilled, which
results in higher synchronization cost. These opposing
effects result in a typical performance pattern as shown in
Fig. 15a for the pwtk matrix on CLX. Initially the perfor-
mance increases almost linearly with pm but starts to drop
gradually at larger pm (6–8 in our example). For matrices
that require recursion, the performance drop is more promi-
nent and occurs at a lower pm as shown in Fig. 15b for the
Flan_1565 matrix on CLX. The additional overhead at the
boundaries of the recursively refined level groups (see dis-
cussion in Section 4.5) add another performance penalty. Of
course, the pm value at which performance starts to decrease
depends on the matrix and the cache size. This can be
observed by comparing the performance of Flan_1565 on
the three architectures (Figs. 15b, 15c, and 15d). On ROME
(Fig. 15d) with its large last-level cache, the matrix does not
require recursion at all and the performance increases up to
pm ¼ 10, where the RACE MPK achieves a speedup of 4�

Fig. 14. (a) Performance improvement of LB MPK using recursion
(squares) compared to the one without recursion (diamonds) for the
Flan_1565matrix with pm ¼ 4 on one socket of CLX. Both versions use
level groups and p2p optimizations. The performance of the baseline
approach as well as the ECM model is also shown for reference. (b)
Measured memory traffic of the three variants on the left.

Fig. 15. Performance as a function of maximum power pm for RACE and the baseline implementation of MPK. For cases where recursion yields a
speedup, we also plot the performance of RACE without recursion (in green) for comparison.

592 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

compared to the baseline MPK. The ICL (Fig. 15c) and CLX
(Fig. 15b) CPUs need recursion to achieve best performance.
The maximum performance is attained at pm values of 5
and 4, resulting in speedups of 2.3� and 1.8� with respect
to the MPK baseline on these two architectures. Note that
performance improvements decrease with decreasing cache
sizes.

For applications computing Akx using RACE MPK, the
best strategy is to identify the optimal pm value poptm and per-
form the Ap

opt
m x computations multiple times (if k > poptm)

until the power k is reached. If k is not a multiple of poptm , the
remainder computations can be done using MPK kernels
with pm < poptm .

5.2 Influence of C

The interaction of cache size C and highest power pm is
shown as a heatmap in Fig. 16 for the pwtk and Flan_1565

matrices on CLX. The optimal C value is between 25 and
45 MB irrespective of pm and the matrix. This is in good qual-
itative agreement with the aggregate size of the L3 (27.5 MiB,
victim) and L2 cache (20 MiB) of CLX. Of course, the RACE
MPKmethod works best when blocking for the biggest avail-
able cache. Smaller C values lead to smaller level groups (see
(5)) and therefore higher synchronization and recursion over-
heads. On the other hand, C values bigger than the total
cache size will obviously provoke cache misses.

5.3 Influence of sm
For matrices that require recursion to fulfill (5), the maximum
recursion depth sm may stop the recursion procedure even if
the condition is still violated for some level groups. Fig. 17a
depicts the performance behavior of the Flan_1565 matrix
with pm ¼ 4 on CLX as a function of sm. Initially, the perfor-
mance increases with sm as the level groups become smaller.
When (5) is fulfilled at sm ¼ 4 for all level groups, perfor-
mance saturates. Note that increasing sm does not always
have the positive performance effect as observed for
Flan_1565. The overhead at the boundaries of the refined
subgraphs may overcompensate the gains of increased cache
efficiency. For example, in case of the RM07R matrix on ICL
(not shown in plots) with pm ¼ 3 (¼poptm) it was found that
sm ¼ 0 (no recursion) achieves 1.2� better performance than
sm ¼ 13, where all the level groups fit in cache. Of course, the
optimal value of sm is determined by an intricate interplay of
cache properties and matrix properties and thus cannot be

found analytically. Typically, recursion should only be
applied if condition (5) cannot be fulfilled with sm ¼ 0. In
this scenario, the larger the matrix, the deeper the required
recursion since bigger matrices tend to have bulky levels. For
moderately large matrices (Nnz 92� 106), recursion of up
to sm ¼ 15; . . . ; 20 should be scanned for best performance,
while for large matrices it is advisable to test larger recursion
depths (sm ¼ 40; . . . ; 80).

The preprocessing cost increases with sm as levels have
to be found for recursive subgraphs. This can be seen in
Fig. 17b for the Flan_1565 matrix, where the preprocess-
ing cost (shown in equivalent SpMVs) increases with sm up
to sm ¼ 4. The construction of levels (BFS) dominates the
preprocessing time. The other parameters pm and C do not
have a considerable impact on preprocessing time as chang-
ing them does not require to generate new levels.

6 PERFORMANCE EVALUATION

In this section we investigate the performance of RACE
MPK and compare it against the baseline MPK for 42 differ-
ent sparse matrices commonly seen in literature. The details
of these matrices can be found in Table 2.

6.1 Experimental Setup

All matrices were stored in the CRS data storage format (see
Section 3.1). We used all the cores on one CPU socket and
one thread per core. To ensure vectorization of the kernels
we used #pragma simd vectorlength(VECLEN) reduc-

tion(+:tmp) on the innermost loop of the SpMV (see
Fig. 2). The vector length (VECLEN) was specified explicitly
and was chosen to be the maximum SIMD width of the
hardware.

For both baseline and RACE, the matrices were pre-
processed with RCM reordering using the Intel SpMP
[44] library if it improved the performance. The baseline
method was parallelized using the #pragma omp par-

allel for schedule(static) workshare construct
along the outermost loop (over matrix rows).7 RACE is
parallelized using OpenMP pragmas by manually
assigning the vertices in each level group to the threads
and implementing the point-to-point synchronization

Fig. 16. Influence of cache size C and power pm on performance (in
Gflop/s) of the RACE MPK using all cores of a socket on CLX.

Fig. 17. (a) Performance influence of maximum recursive stage sm on
the performance of the Flan_1565 matrix with pm ¼ 4 and C ¼ 45 MB
on one socket of CLX. (b) Corresponding preprocessing cost of RACE in
equivalent number of SpMVs.

7. Note that static scheduling was chosen as the benchmark matrices
(see Table 2) did not have highly imbalanced row lengths.

ALAPPAT ETAL.: LEVEL-BASED BLOCKING FOR SPARSE MATRICES: SPARSE MATRIX-POWER-VECTOR MULTIPLICATION 593

Fig. 18. (a), (d), (g): Performance comparison between baseline and RACE MPK on CLX, ICL, and ROME, respectively. The dashed line represents
the total available cache size and the numbers show the tuned pm values corresponding to the RACE performance. (b),(e), (h): L2, L3, and memory
code balance of RACE MPK and baseline approach on the three architectures. The memory and cache data traffic shown is the average across all
the in-memory matrices (i.e., to right of dashed line in the respective performance plot). (c), (f), (i): Statistics of the preprocessing cost of RACE MPK
for all in-memory matrices. The cost is shown as the number of SpMVs that can be executed in the given time.

594 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

mechanisms discussed in Section 4.4. The parameter
space of RACE (see Section 5) was tuned in the follow-
ing range: pm 2 f½1:1:3� [½4:2:16�g,8 C in the range of total
cache (L3+L2) size of the hardware, and sm 2
f0; 1; 2; 4; 6; 20; 80g. More specifically, the parameter space
of C (in MB) is ½25:10:45� for CLX, ½65:10:105� for ICL,
and ½100:50:250� for ROME.

6.2 Results

Figs. 18a, 18b, and 18c show the performance of baseline
and RACE MPK on CLX, ICL, and ROME, respectively. The
matrices are ordered (left to right) according to increasing
data-set size (number of nonzeros). The vertical lines repre-
sent the total cache size of the respective hardware and thus
categorize matrices into memory-resident (right of line) and
cache-resident (left of line) scenarios.

For the smallest matrices, RACE does not usually show
significant speedup over the baseline method as these
matrices comfortably fit in cache. However, as the working
set approaches the cache size, RACE starts to develop clear
performance advantages. On CLX and ICL, this effect is pro-
nounced already for larger “in-cache” matrices, while for
ROME the benefit of RACE MPK starts exactly at the
boundary between cache- and memory-resident matrices.
There are two main reasons for this: (i) The transition
between L3 and main memory bandwidth on Intel architec-
tures is gradual compared to AMD ROME (see Fig. 1), and
(ii) the L3 and L2 caches have almost similar sizes on both
Intel architectures, and the blocking in RACE targets the
combined L3 and L2 caches. Therefore, for smaller matrices
that fit into the L3 cache, RACE can reduce the L2 traffic
compared to the baseline method. On the other hand, for
ROME the L3 cache is considerably bigger than the L2 and
hence the blocking is performed only in the L3 cache,
thereby bearing no benefit for matrices fitting in the L3
cache.

For all memory-resident matrices RACE has a clear per-
formance advantage on all architectures, achieving typical
speedups of 2� to 5� compared to the baseline MPK. This
is correlated with the measurements of the average L2, L3,
and main memory traffic shown in Figs. 18b, 18e, and 18h.
Here the baseline MPK approach is close to the SpMV’s
minimum traffic limit of 6 byte=flop9, indicating the absence
of caching of matrix elements. In most cases the baseline
approach is also strongly memory bandwidth bound and
thus performs close to the optimistic (memory-bound) roof-
line limit (i.e., bMem=BC) of 19, 28, and 24 Gflop/s on CLX,
ICL, and ROME, respectively. For RACE we find a memory
traffic less than the minimum SpMV limit on all the three
architectures due to caching of the matrix elements. On
CLX and ICL, even the L3 traffic reduces substantially as
the large (aggregate) L2 cache contributes substantially to
the blocking. The reduced data traffic of RACE results in a
performance higher than the SpMV in-memory roofline
limit and the baseline approach. Correlated with the

reduction of main memory traffic, RACE achieves the high-
est speedups on ROME where we observe an average (max-
imum) performance gain of 3.2� (5�). On ICL and CLX, we
observe an average speedup of almost 1.9� and 1.6�,
respectively, and a maximum speedup of 3� and 2.3�.

The significantly higher performance (as well as speedup)
of RACE on ROME compared to the Intel systems can be
attributed to its larger L3 cache and higher L3 bandwidth
(see Fig. 1). A larger L3 allows to cache level groups for
higher pm values (see (5)). This can be observed in the tuned
pm values annotated with numbers on top of the RACE per-
formance bars. We see that for the same matrices the pm val-
ues on ROME are higher than that of ICL and CLX. This
allows for matrix elements to be cached longer on ROME
and results in an average memory traffic reduction of 4.1�
(see Fig. 18h) compared to the baseline, while on ICL and
CLX the reduction is 2.8� and 2.2�, respectively.

6.3 Preprocessing Cost

Now that the performance behavior of RACE is understood,
we need to investigate its preprocessing overhead. The box
plots in Figs. 18c, 18f, and 18i show statistics of RACE’s pre-
processing cost for memory-resident matrices. These cost is
shown in equivalent number of SpMVs that can be executed
during the time required for preprocessing. In general, the
cost reduces as the cache size of the architecture increases,
i.e., on ROME the preprocessing time is well under the time
of 40 SpMVs for most matrices while on Intel systems the
equivalent SpMV invocations is around 50 SpMVs. This is
due to larger cache sizes requiring fewer recursion stages
(sm), since the preprocessing cost increases with sm (see
Fig. 17b). For same reason, larger matrices tend to incur
higher preprocessing cost as more recursion stages are typi-
cally required to make parts of the matrix fit into the caches.

Most of the preprocessing time (> 95%) is spent on deter-
mining the levels using BFS. In RACE we use a parallel BFS
implementation similar to the top-down approach from [46],
where the parallelization is accomplished by distributing the
vertices in a level (frontier) to different threads. However,
this method lacks sufficient parallelism if the number of ver-
tices in a level is too small. This is the case with the RM07R

matrix, which is an outlier in the preprocessing cost on all
three architectures. Here, a lot of levels contain only one ver-
tex and preprocessing is largely sequential.

7 CONCLUSION AND OUTLOOK

In this article we have developed a level-based blocking
algorithm (RACE MPK) to increase the performance of
sparse matrix power kernels (MPK). The RACE algorithm
uses levels, generated by breadth-first search, to increase
temporal access locality for the matrix entries by reusing
them for successive power computations. Various hard-
ware-oriented algorithmic optimization strategies such as
level grouping, point-to-point synchronization, and recur-
sive application of the level-blocking scheme are introduced
to further improve the performance of RACE MPK. A thor-
ough performance analysis on a representative set of 42
matrices shows that RACE MPK outperforms a standard
MPK implementation by an average factor of 2� and 3.5�
on modern Intel and AMD CPUs.

8. In the format [start value : increment : end value].
9. The L3 traffic measurements using likwid-perfctr is double

on CLX and ICL as the current version of likwid-perfctr cannot
distinguish traffic between main memory and L2 cache with L3 and L2
caches; see [45] for details.

ALAPPAT ETAL.: LEVEL-BASED BLOCKING FOR SPARSE MATRICES: SPARSE MATRIX-POWER-VECTOR MULTIPLICATION 595

The MPK finds its use in a large variety of applications,
especially in the field of communication-avoiding algorithms
[12], s-step Krylov solvers [47], polynomial preconditioners
[48], Chebyshev time-propagation [49] and exponential time
integration [50]. The time-consuming part in most of these
applications is the MPK computation, which can be acceler-
atedwith RACE’s blocking scheme. Future work in this direc-
tion includes integrating RACE MPK into communication-
avoiding s-step Krylov solvers and polynomial precondi-
tioners from the Trilinos [51] framework. For multi-node
MPK computations, our level-based cache blocking scheme
can be integrated with existing ideas (e.g, [11], [24]) to enable
a highly efficient distributed MPK scheme with low inter-
node communication overhead. Another interesting research
direction that we are currently pursuing is the development
of a GPU implementation for the cache-blockedMPKmethod.
Here, the two main challenges are the rather small cache size
and high synchronization cost onGPUs.

ACKNOWLEDGMENTS

The authors thank Johannes Langguth for providing the
Lynx matrices from the cardiac electrophysiology field. The
authors also thank Kengo Nakajima for helpful discussions
within the JHPCN project “Innovative Multigrid Methods
II.” The authors would also like to thank NHR@KIT for pro-
viding access to the Horeka supercomputer (ICL system),
which is funded by the Ministry of Science, Research and
the Arts Baden-Württemberg and by the Federal Ministry of
Education and Research.

REFERENCES

[1] S. Filippone, V. Cardellini, D. Barbieri, and A. Fanfarillo, “Sparse
matrix-vector multiplication on GPGPUs,” ACM Trans. Math.
Softw., vol. 43, no. 4, Jan. 2017.

[2] R. Barrett et al., Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. Philadelphia: Society for Industrial and
Applied Mathematics, 1994.

[3] R. W. Vuduc, “Automatic performance tuning of sparse matrix
kernels,” Ph.D. dissertation, University of California, Berkeley,
Dec. 2003.

[4] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multi-
plication using compressed sparse blocks,” in Proc. 21st Annu.
Symp. Parallelism Algorithms Architectures, 2009, pp. 233–244.

[5] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A
unified sparse matrix data format for efficient general sparse matrix-
vector multiplication on modern processors with wide SIMD units,”
SIAM J. Sci. Comput., vol. 36, no. 5, pp. C401–C423, 2014.

[6] L. Oliker, X. Li, P. Husbands, and R. Biswas, “Effects of ordering strat-
egies and programming paradigms on sparse matrix computations,”
SIAMRev., vol. 44, no. 3, pp. 373–393, 2002.

[7] R.Nishtala, R.W.Vuduc, J.W.Demmel, andK. Yelick, “When cache
blocking sparse matrix vector multiply works and why,” Applicable
Algebra Eng. Commun. Comput., vol. 18, no. 3, pp. 297–311, 2007.

[8] P. Balaprakash et al., “Autotuning in high-performance computing
applications,” Proc. IEEE, vol. 106, no. 11, pp. 2068–2083,Nov. 2018.

[9] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayap-
pan, “Adaptive sparse tiling for sparse matrix multiplication,” in
Proc. 24th Symp. Princ. Pract. Parallel Program., 2019, pp. 300–314.

[10] C. Alappat et al., “A recursive algebraic coloring technique for hard-
ware-efficient symmetric sparse matrix-vector multiplication,” ACM
Trans. Parallel Comput., vol. 7, no. 3, Jun. 2020.

[11] J. Demmel, M. F. Hoemmen, M. Mohiyuddin, and K. A. Yelick,
“Avoiding communication in computing Krylov subspaces,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/
EECS-2007–123, Oct. 2007. [Online]. Available: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2007/EECS-2007–123.html

[12] M. Hoemmen, “Communication-avoiding Krylov subspace meth-
ods,” Ph.D. dissertation, USA, 2010, Art. no. aAI3413388.

[13] E. Carson, “Communication-avoiding Krylov subspace methods
in theory and practice,” Ph.D. dissertation, EECS Department,
University of California, Berkeley, Aug. 2015. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-
2015–179.html

[14] J. Dongarra et al., “With extreme computing, the rules have
changed,” Comput. Sci. Eng., vol. 19, no. 3, pp. 52–62, 2017.

[15] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick, “Mini-
mizing communication in sparse matrix solvers,” in Proc. Conf.
High Perform. Comput. Netw. Storage Anal., 2009, pp. 1–12.

[16] T. Muranushi and J. Makino, “Optimal temporal blocking for
stencil computation,” Procedia Comput. Sci., vol. 51, pp. 1303–1312,
2015.

[17] J. Morlan, S. Kamil, and A. Fox, “Auto-tuning the matrix powers
kernel with sejits,” in Proc. High Perform. Comput. Comput. Sci.,
2013, pp. 391–403.

[18] M. M. Strout et al., “Generalizing run-time tiling with the loop
chain abstraction,” in Proc. IEEE 28th Int. Parallel Distrib. Process.
Symp., 2014, pp. 1136–1145.

[19] M. M. Strout, L. Carter, and J. Ferrante, “Rescheduling for locality
in sparse matrix computations,” in Proc. Comput. Sci., 2001,
pp. 137–146.

[20] D. Huber, M. Schreiber, and M. Schulz, “Graph-based multi-core
higher-order time integration of linear autonomous partial differ-
ential equations,” J. Comput. Sci., vol. 53, 2021, Art. no. 101349.

[21] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra,
“Improving the performance of CA-GMRES on multicores with
multiple GPUs,” in Proc. IEEE 28th Int. Parallel Distrib. Process.
Symp., 2014, pp. 382–391.

[22] I. Yamazaki, S. Rajamanickam, E. G. Boman, M. Hoemmen, M. A.
Heroux, and S. Tomov, “Domain decomposition preconditioners
for communication-avoiding Krylov methods on a hybrid CPU/
GPU cluster,” in Proc. Int. Conf. High Perform. Comput., Netw. Stor-
age Anal., 2014, pp. 933–944.

[23] Distributed GPU based matrix power kernel for geoscience applica-
tions, 2021. [Online]. Available: https://doi.org/10.2118/203947-MS

[24] E. Vatai, U. Singhal, and R. Suda, “Diamond matrix powers ker-
nels,” in Proc. Int. Conf. High Perform. Comput., 2020, pp. 102–113.

[25] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick,
“Optimization and performance modeling of stencil computa-
tions on modern microprocessors,” SIAM Rev., vol. 51, no. 1,
pp. 129–159, 2009.

[26] M. Christen, O. Schenk, and H. Burkhart, “PATUS: A code genera-
tion and autotuning framework for parallel iterative stencil com-
putations on modern microarchitectures,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp., 2011, pp. 676–687.

[27] H. Wang and A. Chandramowlishwaran, “Pencil: A pipelined
algorithm for distributed stencils,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2020, pp. 1–16.

[28] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayap-
pan, “Adaptive sparse tiling for sparse matrix multiplication,” in
Proc. 24th Symp. Princ. Pract. Parallel Program., 2019, pp. 300–314.

[29] “Top 500: June 2021 list,” [Online]. Available: https://www.
top500.org/lists/top500/2021/06/

[30] C. L. Alappat, J. Hofmann, G. Hager, H. Fehske, A. R. Bishop, and
G.Wellein, “UnderstandingHPC benchmark performance on Intel
Broadwell andCascade Lake processors,” inHigh Performance Com-
puting, P. Sadayappan, B. L. Chamberlain, G. Juckeland, and
H. Ltaief, Eds., Berlin, Germany: Springer, 2020, pp. 412–433.

[31] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25,
Dec. 2011.

[32] M. A. Heroux and J. Dongarra, “Toward a new metric for ranking
high performance computing systems,” 2013. [Online]. Available:
https://www.osti.gov/biblio/1089988

[33] Andreas Alvermann, “ScaMaC: The scalable matrix collection,” 2019.
[Online]. Available: https://bitbucket.org/essex/matrixcollection/

[34] J. Langguth, M. Sourouri, G. T. Lines, S. B. Baden, and X. Cai,
“Scalable heterogeneous CPU-GPU computations for unstructured
tetrahedral meshes,” IEEEMicro, vol. 35, no. 4, pp. 6–15, Apr. 2015.

[35] Y. Saad, “SPARSKIT: A basic tool kit for sparse matrix
computations,” Research Institute for Advanced Computer Sci-
ence, Tech. Rep., 1990.

[36] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, “Towards
realistic performance bounds for implicit CFD codes,” in Proceedings
of Parallel. New York, NY, USA: Elsevier, 1999, pp. 233–240.

596 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007--123.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007--123.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015--179.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015--179.html
https://doi.org/10.2118/203947-MS
https://www.top500.org/lists/top500/2021/06/
https://www.top500.org/lists/top500/2021/06/
https://www.osti.gov/biblio/1089988
https://bitbucket.org/essex/matrixcollection/

[37] M. Frigo and V. Strumpen, “The memory behavior of cache
oblivious stencil computations,” J. Supercomputing, vol. 39,
no. 2, pp. 93–112, 2007.

[38] T. Malas, G. Hager, H. Ltaief, H. Stengel, G. Wellein, and
D. Keyes, “Multicore-optimized wavefront diamond blocking for
optimizing stencil updates,” SIAM J. Sci. Comput., vol. 37, no. 4,
pp. C439–C464, 2015.

[39] C. Y. Lee, “An algorithm for path connections and its applications,”
IRE Trans. Electron. Comput., vol. EC-10, no. 3, pp. 346–365, Sep. 1961.

[40] K. I. Karantasis, A. Lenharth, D. Nguyen, M. J. Garzar�an, and
K. Pingali, “Parallelization of reordering algorithms for band-
width and wavefront reduction,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2014, pp. 921–932.

[41] T. M.Malas, G. Hager, H. Ltaief, and D. E. Keyes, “Multidimensional
intratile parallelization for memory-starved stencil computations,”
ACM Trans. Parallel Comput., vol. 4, no. 3, pp. 12:1–12:32, Dec. 2017.

[42] T. R€ohl, J. Eitzinger, G. Hager, and G. Wellein, “Validation of
hardware events for successful performance pattern identification
in high performance computing,” in Tools for High Performance
Computing, A. Kn€upfer, T. Hilbrich, C. Niethammer, J. Gracia, W.
E. Nagel, and M. M. Resch Eds., Berlin, Germany: Springer, 2016,
pp. 17–28.

[43] C. Alappat, “Recursive algebraic coloring engine library version
0.5.0,” 2019. Accessed: Nov. 16, 2022. [Online]. Available: https://
github.com/RRZE-HPC/RACE

[44] SpMP Development Team, “Sparse matrix pre-processing library.”
Accessed: Nov. 16, 2022. [Online]. Available: https://github.com/
IntelLabs/SpMP

[45] “L2 L3 MEM traffic on Intel Skylake SP CascadeLake SP.”
Accessed: Nov. 16, 2022. [Online]. Available: https://github.
com/RRZE-HPC/likwid/wiki/L2-L3-MEM-traffic-on-Intel-
Skylake-SP-CascadeLake-SP

[46] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
breadth-first search,” in Proc. Int. Conf. High Perform. Comput.,
Netw. Storage Anal., 2012, pp. 1–10.

[47] A. Chronopoulos and C. Gear, “S-step iterative methods for sym-
metric linear systems,” J. Comput. Appl. Math., vol. 25, no. 2,
pp. 153–168, 1989.

[48] J. A. Loe, H. K. Thornquist, and E. G. Boman, “Polynomial precon-
ditioned GMRES in trilinos: Practical considerations for high-per-
formance computing,” 2020. [Online]. Available: https://epubs.
siam.org/doi/abs/10.1137/1.9781611976137.4

[49] H. Fehske, J. Schleede, G. Schubert, G. Wellein, V. S. Filinov, and
A. R. Bishop, “Numerical approaches to time evolution of com-
plex quantum systems,” Phys. Lett. A, vol. 373, no. 25, pp. 2182–
2188, 2009. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0375960109004927

[50] A. Y. Suhov, “An accurate polynomial approximation of exponen-
tial integrators,” J. Sci. Comput., vol. 60, no. 3, pp. 684–698, 2014.

[51] The Trilinos project team, “The Trilinos project website,” 2021.
Accessed: Aug. 06, 2021. [Online]. Available: https://trilinos.
github.io

Christie Alappat received the master’s degree in
honors from the Bavarian Graduate School of
Computational Engineering, Friedrich-Alexander-
Universit€at Erlangen-N€urnberg. He is currently
working toward the PhD degree under the guid-
ance of professor Gerhard Wellein. His research
interests include performance engineering, sparse
matrix and graph algorithms, iterative linear solv-
ers, and eigenvalue computations.

Georg Hager received the doctorate (PhD) and the
Habilitation degrees in Computational Physics from
the University of Greifswald, Germany. He leads the
Training & Support Division with Erlangen National
High Performance Computing Center (NHR@FAU)
and is an associate lecturer at the Institute of
Physics with the University of Greifswald. Recent
research includes architecture-specific optimization
strategies for current microprocessors, performance
engineering of scientific codes on chip and system
levels, and the modeling of out-of-lockstep behavior
in large-scale parallel codes.

Olaf Schenk (Senior Member, IEEE) received the
Diploma (MSc) degree in mathematics from the Uni-
versity of Karlsruhe, Germany and the doctorate
(PhD) degree in electrical engineering and informa-
tion technology from the Swiss Federal Institute of
Technology (ETH), Zurich, Switzerland. He is a full
professor with the Institute of Computing within the
Faculty of Informatics, Universit�a della Svizzera ital-
iana, Lugano, Switzerland, where he heads the
Advanced Computing Laboratory. His research inter-
ests include extreme-scale simulations in computa-

tional algorithms, data science, application software, programming, and
software tools.

Gerhard Wellein received the Diploma (MSc)
degree and the doctorate (PhD) degree in physics
from the University of Bayreuth, Germany. He is
a professor with the Department of Computer Sci-
ence with Friedrich-Alexander-Universit€at Erlangen-
N€urnberg and heads the Erlangen National Center
for High-Performance Computing (NHR@FAU). His
research interests focus on performance modeling
and performance engineering, architecture-specific
code optimization, and hardware-efficient building
blocks for sparse linear algebra and stencil solvers.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ALAPPAT ETAL.: LEVEL-BASED BLOCKING FOR SPARSE MATRICES: SPARSE MATRIX-POWER-VECTOR MULTIPLICATION 597

https://github.com/RRZE-HPC/RACE
https://github.com/RRZE-HPC/RACE
https://github.com/IntelLabs/SpMP
https://github.com/IntelLabs/SpMP
https://github.com/RRZE-HPC/likwid/wiki/L2-L3-MEM-traffic-on-Intel-Skylake-SP-CascadeLake-SP
https://github.com/RRZE-HPC/likwid/wiki/L2-L3-MEM-traffic-on-Intel-Skylake-SP-CascadeLake-SP
https://github.com/RRZE-HPC/likwid/wiki/L2-L3-MEM-traffic-on-Intel-Skylake-SP-CascadeLake-SP
https://epubs.siam.org/doi/abs/10.1137/1.9781611976137.4
https://epubs.siam.org/doi/abs/10.1137/1.9781611976137.4
https://www.sciencedirect.com/science/article/pii/S0375960109004927
https://www.sciencedirect.com/science/article/pii/S0375960109004927
https://trilinos.github.io
https://trilinos.github.io

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

