IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

4425

Enabling Large Scale Simulations
for Particle Accelerators

Konstantinos lliakis

, Helga Timko, Sotirios Xydis, Member, IEEE,

Panagiotis Tsapatsaris, and Dimitrios Soudris

Abstract—International high-energy particle physics research centers, like CERN and Fermilab, require excessive studies and
simulations to plan for the upcoming upgrades of the world’s largest particle accelerators, and the design of future machines given the
technological challenges and tight budgetary constraints. The Beam Longitudinal Dynamics (BLonD) simulator suite incorporates the
most detailed and complex physics phenomena in the field of longitudinal beam dynamics, required for providing extremely accurate
predictions. Modern challenges in beam dynamics dictate for longer, larger and numerous simulation studies to draw meaningful
conclusions that will drive the baseline choices for the daily operation of current machines and the design choices of future projects.
These studies are extremely time consuming, and would be impractical to perform without a High-Performance Computing oriented
simulator framework. In this article, at first, we design and evaluate a highly-optimized distributed version of BLonD. We combine
approximate computing techniques, and leverage a dynamic load-balancing scheme to relax synchronization and improve scalability. In
addition, we employ GPUs to accelerate the distributed implementation. We evaluate the highly optimized distributed beam longitudinal
dynamics simulator in a supercomputing system and demonstrate speedups of more than two orders of magnitude when run on 32
GPU platforms, w.rt. the previous state-of-art. By driving a wide range of new studies, the proposed high performance beam
longitudinal dynamics simulator forms an invaluable tool for accelerator physicists.

Index Terms—Distributed systems, GPU acceleration, approximate computing, network traffic optimisation, accelerator physics

1 INTRODUCTION

T CERN, the European Organization for Nuclear

Research, physicists probe the fundamental structure
of the universe, using instruments of unparalleled magni-
tude and complexity. Particle accelerators are used to accel-
erate and then collide charged particles at close to the speed
of light, to gather traces of particle interactions, and insights
into the principal laws of nature. The Large Hadron Collider
(LHC) is currently the world’s largest and most powerful
particle accelerator. The discovery of the Higgs boson [1] in
2011 in the LHC is one of the Nobel-prize winning discover-
ies at CERN. Presently, the biggest challenge is to obtain

o Konstantinos Iliakis is with the Microprocessors and Digital Systems Labora-
tory, Electrical and Computer Engineering Department, National Technical
University of Athens, 15780 Athens, Greece, and also with the Accelerator Sys-
tems Department, European Organization for Nuclear Research (CERN),
1211 Geneva, Switzerland. E-mail: kiliakis@microlab.ntua.gr.

e Helga Timko is with the Accelerator Systems Department, European
Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland.
E-mail: helga.timko@cern.ch.

o Sotirios Xydis is with the Digital Technology Department, Harokopio Uni-
versity of Athens, 17671 Athens, Greece. E-mail: sxydis@hua.gr.

o Panagiotis Tsapatsaris and Dimitrios Soudris are with the Microproces-
sors and Digital Systems Laboratory, Electrical and Computer Engineer-
ing Department, National Technical University of Athens, 15780 Athens,
Greece. E-mail: panagiotistsap97@gmail.com, dsoudris@microlab.ntua.gr.

Manuscript received 18 February 2022; revised 20 June 2022; accepted 15 July
2022. Date of publication 20 July 2022; date of current version 23 August
2022.

This work was supported by the European Organization for Nuclear Research
(CERN) through a full-time doctoral Studentship in Geneva, Switzerland.
(Corresponding author: Konstantinos Iliakis.)

Recommended for acceptance by D. Tiwari.

Digital Object Identifier no. 10.1109/TPDS.2022.3192707

hints for physics beyond the Standard Model, such as theo-
ries including gravitons, extra dimensions [2], and the mat-
ter-antimatter asymmetry [3].

The LHC Injector Upgrade (LIU) [4], the upcoming High-
Luminosity LHC project [5], and the studies of future machines
such as the Future Circular Collider (FCC) [6] are CERN’s most
important R&D projects at present. Despite of vast experience
with the present infrastructure, future machines cannot simply
be scaled in size and energy to achieve the desired beam quality
and intensity. Studies are required to overcome known limita-
tions, and potentially discover new ones. The studies are often
complex and require precision modelling in the domain of
accelerator physics and beam dynamics simulations to model
the relevant physics phenomena and machine-specific features.

The simulator software has to be flexible enough to
include a wide range of synchrotrons, energy regimes and
particle types. To fulfill these critical requirements, the
Beam Longitudinal Dynamics simulation suite (BLonD) [7],
[8] was developed. As its name suggests, BLonD focuses on
the longitudinal motion and tracks the energy and time
coordinates of beam particles in synchrotrons. It features a
modular structure that allows the user to combine a variety
of physics phenomena according to the study requirements.
BLonD is an open-source project' that is increasingly gain-
ing popularity among the world’s largest accelerator labora-
tories, including CERN, Fermilab, BNL, and KEK.

The outcome of BLonD simulation studies continuously
guides the baseline choices for machine upgrades and future

1. The source code is hosted at: https://github.com/blond-admin/
BLonD

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1403-6851
https://orcid.org/0000-0002-1403-6851
https://orcid.org/0000-0002-1403-6851
https://orcid.org/0000-0002-1403-6851
https://orcid.org/0000-0002-1403-6851
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-6930-6847
mailto:kiliakis@microlab.ntua.gr
mailto:helga.timko@cern.ch
mailto:sxydis@hua.gr
mailto:panagiotistsap97@gmail.com
mailto:dsoudris@microlab.ntua.gr
https://github.com/blond-admin/BLonD
https://github.com/blond-admin/BLonD

4426

machines. Modelling the motion of charged particles in syn-
chrotrons is a computationally challenging task [9], [10]. A
very large number of simulated particles is needed, and a vast
variety of physics phenomena — e.g., beam feedbacks, machine
impedance induced voltage, synchrotron radiation — and their
interactions need to be taken into account to precisely simulate
the beam motion in synchrotrons. In addition, future chal-
lenges in the field of accelerator physics contribute to an ever-
growing need for greater simulation sizes. In particular, the
High-Luminosity LHC [5] upgrade project, and the FCC [6], a
100 km long collider currently under study, will push the input
requirements of BLonD simulations by one to two orders of
magnitude. This, combined with the extended simulation peri-
ods that are required to model the physics phenomena related
to these two new projects, will skyrocket the execution time
and complexity of beam dynamics simulations.

Due to the inherently parallel nature of the equations of
motion (see Section 2.1), these workloads fit naturally in a dis-
tributed-memory environment, where MPI can be used for the
necessary inter-process communication. To undertake this
agenda, in this paper we extend and further optimize
HBLonD [10], a hybrid, MPI-over-OpenMP library for running
large scale longitudinal beam dynamics simulations. To over-
come the main limiting factor of distributed, scientific applica-
tions [11], that is the inter-node communication time, two
physics-inspired approximate computing techniques are pro-
posed. The approximation methods are thoroughly verified in
terms of prediction accuracy, with the aid of domain experts in
the field of beam dynamics, confirming satisfactory agreement
with exact, non-approximate simulations. Next, a highly cus-
tomizable, dynamic load-balancing scheme is introduced to
mitigate multiple sources of performance variability among
remote computing nodes that lead to imbalanced execution.
The refined HBLonD, demonstrates up to 43-57x speedup
when deployed on 32 computing nodes, compared to the prior
state-of-art. Finally, to satisfy the ever-growing need for larger
workloads and longer simulations, we further extend HBLonD
by combining CUDA and MPI to build a GPU-accelerated, dis-
tributed version of BLonD, called CuBLonD. CuBLonD,
designed with high performance and usability in mind, taking
advantage of modern GPU features. CuBLonD is evaluated in
a GPU-enabled supercomputing facility, demonstrating
greater than two orders of magnitude speedups when using
16 or 32 GPU platforms. The suggested implementations are
the key to satisfying the needs of near-future large and ultra-
large scale beam dynamics simulation studies. HBLonD and
CuBLonD are openly available”.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of the BLonD code structure and
the physics phenomena simulated with it. Section 3 reviews
prior work on beam dynamics simulators. In Section 4, a
detailed description of the distributed implementation and
dynamic load-balancing is provided. Section 5 presents the
physics-motivated approximate computing techniques used
for inter-node synchronization relaxation. CuBLonD, the GPU-
accelerated version of BLonD, is detailed in Section 6. The
multi-node scalability is evaluated experimentally in Section 7,
and finally, Section 8 concludes this paper.

2. Hosted at: github.com/kiliakis/BLonD-1/tree/TPDS

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Fig. 1. Periodic potential well in a synchrotron for several RF systems.
Without intensity effects, the synchronous point (¢,, E;) is periodic with
T+ along the ring.

2 BACKGROUND

2.1 Longitudinal Beam Dynamics in Synchrotrons
Longitudinal beam dynamics is the field of physics that mod-
els the beam motion in particle accelerators and focuses on
the longitudinal plane, i.e., alongside the beam pipe, in con-
trast to transverse beam dynamics that focuses on the trans-
verse plane. Synchrotrons are circular particle accelerators,
in which Radio-Frequency (RF) cavities accelerate the beam,
and magnets curve the beam. The particles circulate at a rela-
tively fixed ‘reference’ orbit. A particle circulating on the
synchronous orbit and arriving to the RF cavity at the syn-
chronous RF phase is referred to as ‘synchronous particle’.

‘Beam’ refers to all the charged particles of a given spe-
cies in the accelerator. In the presence of RF voltage, the
beam is condensed around the centres of the RF potential
wells, forming a train of ‘bunches,” as in Fig. 1. Particles are
described in a 2-D phase space, by the longitudinal coordi-
nate and its conjugate variable. A widely-used phase-space
coordinate pair is (¢, AE/w)), where ¢ is the phase w.r.t. RF
voltage wave and AL is the relativistic energy of the particle
w.r.t. the energy E of the synchronous particle. The longi-
tudinal equations of motion can be derived, for a single-RF
system, to be [12]

dg ha)grl AE

T (o), v
AE 1

%(w_o> — S eV(sing - sing,),)

where e is the unit charge, V' is the RF voltage amplitude
and B = v/c is the relativistic beta of the particle, with v the
velocity and ¢ the speed of light. The slippage factor 7 is a
property of the synchrotron, which describes how much RF
phase slippage a particle will undergo after one turn. In
BLonD, the n used in Eq. (1) is replaced by the momentum
compaction factor « of at least zero-th, and up to second
order. When multiple RF systems exist, several voltage
terms appear on the right-hand-side of Eq. (2).

Since the accelerator is composed of conducting devices,
the beam particles interact with their surroundings electro-
magnetically. This leads to trailing particles being affected
by leading particles, which is called collective effects. A
given particle experiences thus an induced voltage by itself
and the particles in front. If the overall impedance of the
machine is Z(w), the corresponding wake field W (t) can be
defined as the Fourier transform of the impedance,

1 +00 .
W(t) = —/ dwe™ Z(w) . (3)

2 J_ o

github.com/kiliakis/BLonD-1/tree/TPDS

ILIAKIS ET AL.: ENABLING LARGE SCALE SIMULATIONS FOR PARTICLE ACCELERATORS

Observer
i=n+1

Tpt+l = § Tr
i=0

ev 1]

Rotational
direction

Reference
Orbit

Fig. 2. Simple synchrotron model. The ring, the beam and the RF sec-
tions are the main components modelled in BLonD. Their interactions
are simulated on a turn-by-turn basis.

Denoting the longitudinal profile of the beam particles with
A(t), a particle at the coordinate At will experience the
induced voltage

+00
Viq(Af) = —qN, / A©) W(AL— 1) dr,)

where N, is the number of particles in the beam. The
induced voltage is applied to the particles as an energy kick
Einq(At) = q Vi q(At) added to Eq. (2), where g is the parti-
cle charge.

2.2 The BLonD Simulator Suite

The three main components modeled in BLonD can be seen
in Fig. 2: the synchrotron or ‘ring,” the Radio-Frequency
(RF) cavities, and the beam that circulates inside the beam
pipe. The modelling of these components in BLonD is
described below.

In reality, a bunch contains trillions of particles; in simu-
lations however, macro-particles are used which represent
many real particles to reduce the memory footprint. In this
paper the terms particles and macro-particles are used inter-
changeably. The user is responsible for determining the
number of macro-particles required for sufficient resolution
of a certain physical phenomenon. The computational com-
plexity of most operations in BLonD scales linearly with the
number of macro-particles, which typically ranges from a
few millions to 100 s of millions.

Particles are described using the coordinates (At,), AE(,)),
which are the particle’s arrival time and energy at the RF sec-
tion with respect to the reference time and design energy,
respectively. RF sections are placed in fixed locations along
the ring. The number of RF stations depends on the case and
ranges from one to a dozen. The so-called kick equation of
motion is used to update the AE coordinate of a given particle
from time step n to n + 1, based on the particle’s Aty coordi-
nate and the RF voltage energy kicks & received in the corre-
sponding RF station,

Tt
AE(1) = AEq,) + Z Qi (n) ST (Ot 1 () Al () + Prt o ()
=0

— (Es ns1) — s, () + Eotner,(n)» 5)

4427

where ¢ is the particle’s charge, V), the voltage amplitude,
oy the revolution frequency, and ¢, the phase of the RF
system k, and FEy(,41) — Fs () the change in synchronous
energy from one turn to another. The last term Egyer,) is
used to model energy changes due to effects such as inten-
sity effects or synchrotron radiation.

The beam motion from one RF station to another is mod-
eled by the drift equation of motion, that updates the time
coordinate, using the updated energy of the particle,

At(nJrl) = At(n) =+ Trev,(n+1> (1 =+ aO,(n+l)8(n+1) =+ al,(n+1)5?n+1)

AB(, 1

5 E(‘ n
+ a2‘(n+1)8?n+1>) dintl) _ 1:| , (6)

1+ 011

where 4, is the relative momentum offset, Ty, is the revo-
lution period, and «; are the i-th order momentum compac-
tion factors. One revolution of the beam in the ring
corresponds to one simulation iteration. The number of iter-
ations required for a given testcase can range from a few
thousands to a few millions.

In frequency domain, the induced voltage (Eq. (4)) is then
the product of the impedance and the beam spectrum
Vind(0) = S(w)Z(w), where the beam spectrum is given by
the equation S(w) = [*> A\(t)e ™7dr, and A(7) is the beam
line density. As discussed in Section 2.1, the ring’s imped-
ance produces collective effects, that couple the motion of
one particle to another, and limit the exploitable parallelism
degree of the code.

Since the number of macro-particles in simulations is
typically large (>109), BLonD uses a histogram of the beam
time coordinates to optimize the computation of the
induced voltage. Particles are grouped in bins and the
amplitude corresponding to the bin is given by the number
of particles inside. A linear interpolation is applied between
bins, similarly to particle-in-cell codes [13]. The minimum
amount of bins required is fixed by the Nyqvist sampling
theorem but depending on the phenomena modelled, a
larger amount of bins might be necessary.

BLonD is a modular and flexible library. Other physics
phenomena, such as space-charge effects, synchrotron radi-
ation, or impedance-reducing control circuits can be
included in a given simulation. A BLonD simulation sce-
nario is an assembly of multiple machine, physics and beam
dynamics components. Their effects and interactions are
modelled on a turn-by-turn basis. Some optional features of
BLonD include a complete tool-set for data analysis, storage
and plotting.

2.3 Real-World Testcases

Three real-world testcases, representative of typical BLonD
workloads are used for the experimental evaluation of
HBLonD, and its GPU accelerated version CuBLonD. Each
testcase targets a different synchrotron of CERN'’s accelera-
tor complex, and has its own distinct characteristics.
Together, they cover a wide range of beam dynamics fea-
tures. Starting from the smallest machine to the largest, a
short description of the three testcases follows.

4428 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022
TABLE 1

Qualitative Comparison of the Four BLonD Versions
Version Language Multi-threaded Distributed Accelerator Load-Balancing Approximate
BLonD Python — — — — —
BLonD++ [9] Python/C++ OpenMP — — — —
HBLonD [10] Python/C++ OpenMP MPI — Empirical SRP, RDS
CuBLonD Python/C++/CUDA OpenMP MPI GPU /Multi-GPU Rigorous SRP, RDS, F32, Verifiable

1. Proton Synchrotron (PS): The PS is the second syn-
chrotron of the LHC injector chain and CERN'’s oldest
synchrotron in use. It has a circumference of 628 m,
and can accelerate protons up to an energy of 26 GeV,
before injecting them into the SPS. Due to its relatively
small size and closely spaced bunches, the PS is domi-
nated by collective effects, meaning that leading par-
ticles of the beam affect the dynamics of trailing
particles. The PS can accelerate up to 18 bunches
simultaneously. The aim of the PS testcase is to study
and control the beam instabilities that can manifest
due to collective effects. The characteristic timescale of
the beam motion in the PS is longer than in the other
two testcases, resulting in slower moving particles.
Super Proton Synchrotron (SPS): The SPS receives
bunches of charged particles from the PS, accelerates
them to 450 GeV and delivers them to the LHC. With
a circumference of 7 km, it is one of the largest
machines worldwide. For the LHC-type beam, the
SPS can receive up to four batches of 72 bunches, or
288 bunches in total. In the testcase used for the eval-
uation [14], due to the very high number of particles
and bunches in the machine, collective effects were
an important limitation. Furthermore, the detailed
impedance model requires very fine frequency sam-
pling rate, calling for time-consuming FFT opera-
tions on large inputs. Finally, the beam phase loop, a
dynamic feedback system required to correct the
bunch phase with respect to the RF system, adds to
the overall simulation complexity.

Large Hadron Collider (LHC): With a circumference
of 27 km and a collision energy of 13 TeV or more, the
LHC is the world’s largest and most powerful particle
collider. The LHC can fit up to 2808 bunches. The test-
case used in the evaluation [15], [16] describes one of
the critical elements of machine operation, which is
the controlled emittance blow-up during the accelera-
tion ramp, required for beam stability. An RF noise is
generated and applied turn-by-turn for the so-called
controlled emittance blow-up, which is a stochastic
process that increases the bunch size and largely
affects the simulation results. As the LHC uses super-
conducting magnets, the acceleration ramp to 6.5 TeV
takes about 13 million simulation steps, making the
simulation extremely time consuming, even for the
smallest sizes using a single bunch.

3 RELATED WORK

ESME [17] is a longitudinal beam dynamics code developed
at Fermilab in 1984. The code was written in Fortran and was

compatible with Unix-based operating systems like Solaris.
The lack of new features, active support and maintenance
led the ESME project to disappear from the scientific commu-
nity. Py-Orbit [18] is another beam dynamics simulator. Py-
Orbit is a Particle-In-Cell, 6-D tracker code, modelling both
transverse and longitudinal beam dynamics. For longitudi-
nal purposes, the computational complexity of a Py-Orbit
simulation is significantly heavier than that of a BLonD simu-
lation. Good agreement between Py-Orbit and BLonD has
been reported in the literature [16], [19]. Similarly to Py-orbit,
Elegant [20] is a 6-D tracking code, too. Elegant has been par-
allelized with MPI [20], [21] and features a GPU accelerated
version [22]. However, being more general-purpose oriented
code, both Py-Orbit and Elegant lack many of the specific
longitudinal and RF features available in BLonD.

BLonD differs from the aforementioned frameworks in
numerous ways. BLonD emerged in 2014 to respond to the
need for a highly customizable tool required by scientists at
particle accelerator complexes to drive a large amount of
longitudinal beam dynamics studies. BLonD introduces sev-
eral unique features not found in any other prior simulator.
Featuring a Python front-end, BLonD is easy-to-use and
attractive to new users. The modular structure allows rapid
prototyping of new features that extend its capabilities.
Contrary to Py-Orbit and Elegant, BLonD specializes in the
longitudinal plane and as a consequence, it contains more
detailed physics models and is less computationally heavy.
In terms of flexibility and precision, BLonD has been tested
successfully on a plethora of real-world simulation scenar-
ios [14], [19], [23], [24], [25], [26], [27], [28] and it is generic
enough to cover a wide spectrum of beam dynamics simula-
tion scenarios ranging from existing to future machines and
from relatively small to very large synchrotrons accelerating
protons, electrons or ions.

3.1 BLonD Evolution Over Time

The BLonD suite has undergone several re-iterations since
first developed in 2014. The main HPC features included in
the four BLonD variants are summarized in Table 1 and dis-
cussed bellow.

The original BLonD version was written in python, with its
main goal to incorporate a detailed beam dynamics model in
a language that allows for easy prototyping and rapid devel-
opment. BLonD++ [9] integrated an optimised C++ computa-
tional back-end, keeping the python front-end. The back-end
of BLonD++ uses extensively the SIMD vector units, and sup-
ports multi-threading with OpenMP. BLonD++ demon-
strated a speedup of 18x compared to the python-only
BLonD. BLonD++ was shown to be memory bound when
increasing the thread count and could only exploit vertical
scaling. This motivated the development of HBLonD [10], a

ILIAKIS ET AL.: ENABLING LARGE SCALE SIMULATIONS FOR PARTICLE ACCELERATORS

Scatter Histogram All-Reduce Igtra-wor_ker Tracking Gather
rocessing

il B Pl | el B S il 1

Wiy, : 'y 'y '

i RF Noi sy H

Initial 63 :""I A :": i -'): R Final

Distribution Ll =2 = D mmmm Distribution
Fooee Fr===1lp===1 9 g ''p==- TTTT T
1 li 1 :—II :_»I :I : (T :
: o 1 'ﬂl U : Y | A
: ° Loood |[zEo=e = =, 0l Scoao0 ; 1
_____ B el N el U il Tt

1 ' 0 g ' .

PO > Feedbacks P M 1

Wy (0 L' " !

coood = o= cooal! Sooo

4 step = step + 1 T

Fig. 3. The HBLonD workflow. A data-parallel model is used among the
workers to parallelize the histogram and tracking phases. Task-parallel-
ism is used in the intra-worker processing stage.

distributed code that combines MPI with OpenMP, to allow
remote processes to communicate, and to profit from the fast
shared-memory. HBLonD introduced two approximate com-
puting techniques, SRP and RDS (see Section 5), to reduce
inter-node communication and relax synchronization. A
dynamic load-balancing (DLB) scheme was implemented to
mitigate execution imbalances among the MPI workers. In
this paper, the DLB scheme is further extended by adopting a
more rigorous, experimentally verified, run-time estimation
model, and exposing several configurable parameters for
fine tuning. Furthermore, the two approximate computing
techniques, SRP and RDS, are combined with reduced float-
ing point datatype length, and are validated for the first time
in terms of prediction accuracy in Section 5.1. The quantita-
tive evaluation of the improved DLB scheme and approxima-
tion methods with respect to prior-art [10] is demonstrated in
Table 4. Finally, CuBLonD, presented in Section 6, combines
HBLonD's distributed architecture with an optimized CUDA
core to enable GPU accelerated beam dynamic simulations.
CuBLonD performance and scalability is evaluated in a super-
computing cluster, demonstrating greater than two orders of
magnitude speedup w.r.t. a non-approximate, single-node,
20-core, HBLonD instance.

4 ScALE-OUT LONGITUDINAL BEAM DYNAMICS

HBLonD [10], integrates MPI on top of the single-node opti-
mized code BLonD++ [9], to allow for multi-node, large
beam dynamics simulation scenarios. These large scale sim-
ulations are needed for studies that involve upgrades of
existing synchrotrons [5], research for future machines [29],
and in general high resolution simulations. This section dis-
cusses the base implementation of HBLonD, and the newly
added features that improve its scalability.

4.1 Baseline Distributed Implementation

In Fig. 3, the baseline HBLonD execution flow is displayed,
showing three MPI workers for simplicity. Each box corre-
sponds to a separate stage of the simulation, and the cross-
worker arrows indicate communication. The Histogram and
Tracking stages are then ones that perform the useful com-
putations that are distributed in a data-parallel way, while
the operations shown in the intra-worker processing stage
are parallelised in a task-parallel manner. In the beginning,
the 2-D particle distribution is generated using one of the
many distribution generation methods included in the

4429

BLonD library. This initialization distribution step is not
parallelized with MPI since it takes place only once. The
particle distribution is scattered equally among the MPI
worker processes.

In the histogram stage, each worker runs a histogram
operation to calculate the so-called beam profile of its
assigned particles. The beam profile is essentially a 1-D his-
togram of the particles” time coordinate. The amount of his-
togram bins is a configurable size that affects the
simulation’s precision and execution time. The local profiles
of all workers must be summed to generate the global beam
profile, which is needed for the subsequent stages. The
global profile is used as input to the intra-worker processing
stage. This stage is composed of operations that are only
effectively parallelizable among the threads of a worker but
not across workers. In this step, task-level parallelism is
exploited. Typically three or more tasks are performed in
this phase, depending on the use case. These tasks are dis-
tributed among the workers that share the same computing
node. When all neighboring workers complete their calcula-
tions, they broadcast the calculated results, profiting from
fast shared-memory communication.

Then, the workers perform the particle tracking, which
essentially updates the particle coordinates according to the
equations of motion, for all particles. The kick and drift are the
two routines that always need to be applied during the track-
ing stage, as discussed in Section 2. Their computational com-
plexity is linear w.r.t. the number of simulated macro-
particles. This succession of operations, also referred to as the
‘main loop,” from histogram to tracking is repeated hundreds
of thousands or millions of times, before the final gather oper-
ation that assembles the resulting particle distribution that is
one of the main outcomes of a BLonD simulation.

The steps discussed above are the backbone of a BLonD
simulation. In addition to these steps, other operations
related to data-analysis, statistics collection or data visuali-
zation might take place inside the main computational loop.

4.2 Dynamic Load-Balancing
Despite the fact that HBLonD was originally developed and
deployed onto an homogeneous cluster, performance deg-
radation due to load imbalance was observed, i.e., nodes
that require more time than others to execute the same
amount of workload. This increased latency appeared to be
spontaneous and temporal, and in most of the cases per-
sisted for small or medium periods of time. Since in every
iteration all the workers need to synchronize (upper half of
Fig. 4), the latency of the slowest worker is experienced by
all workers in each simulation step. This spontaneous load
imbalance was an artifact of the cluster, and not a feature of
the workload, due to the uniform nature of the computa-
tions involved and the randomized workload distribution.
While slow workers experience near-zero waiting times
at the synchronization barriers, faster workers experience a
larger waiting time. By measuring the time the workers
spent synchronizing, we calculate the spread of the work-
ers’ execution time and how imbalanced the workload is.
Fig. 5a shows the time spread, calculated as the difference
in run time among the MPI workers, normalized to the total
execution time for three HBLonD testcases (described in

4430

turp O turp 1

.
W0 1Pre-track Track Sync All-reduce B
1
W11 Pre-track Track Profile Sync AII-reduceD
{Pro-trac y

W2 i Pre-track Track Syn e All-reduce [:]
! 1 1 1 1
1) 21 24 30 -~
Oy Time' * Z’I:,;r * Iclaimedl_)
W0 iPre-track Track yn ¢ All-reduce D

W1 I Pre-track

w2 i Pre-track
turn 0

Track -AII-reduce[E
Track yn e All-reduce D

turn 1

Fig. 4. The per-turn latency is defined by the slowest worker. By control-
ling the number of particles assigned to each worker and re-balancing
the workload, the lost time is re-claimed.

Section 2.3) when running two-, four-, eight- or 16-node
simulations, with two MPI processes per node. The detailed
node and cluster configurations are provided in Section 7.
Multiple runs per testcase and number of nodes were exe-
cuted, and the red capped lines show the standard devia-
tion of these runs. As shown, the time spread ranges from
11.6% to 30.1%. In some of the lengthier LHC simulations,
this would translate to an additional 17 hours to 43 hours of
execution time. Moreover, from Fig. 5a we observe that
more nodes result to higher time spread because, statisti-
cally, the chances that one or more workers will undergo a
delayed phase increase. On the other hand, while in the
smaller node configurations the average time spread is low,
the standard deviation is much larger. This means that most
of the runs did not experience any increased latency phases,
but there were still few cases with severe load imbalance.

To mitigate this issue, the Dynamic Load-Balancing (DLB)
scheme originally presented in the early version of HBLonD [10],
has been extended. The proposed DLB scheme is generic
enough to alleviate imbalances that originate from various sour-
ces such as the cluster’s topology, the interconnection network,
and the involvement of heterogeneous hardware. The proposed
DLB scheme has been customized to the following HBLonD's
specific workload properties:

1. tComp; = p; x m;j +¢;: The computation time of
worker ¢ is linearly associated with the number of
particles (p;). The linear relation is defined by the
slope (m;) and y-intersect (¢;) coefficients. The com-
putation time is considered the time needed to

40

'
=

[LHC [spS 1M PS

[LHC [spS I PS

w
<

Time Spread(%)
2

Time Spread(%)
[N}
S

0
4 8 16 4 8 16
Nodes (x20 Cores) Nodes (x20 Cores)

(a) Time spread without DLB. (b) Time spread with DLB.
Fig. 5. The difference in run time among the workers, normalized to the
total execution time. Without DLB, the time spread ranges from 11.6%-
30.1%. With DLB; it is limited t0 2.7%-5.9%.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Intra-process
— NMSE: 2.44

Communication

— NMSE: 0.45

Computation
— NMSE: 0.01

0 i %
12345678 12345678 12345678
Macro-particles (10°)

Fig. 6. Experimental verification of the two first workload assumptions on
which the DLB scheme is based.

perform the particle tracking (kick and drift methods)
as well as to calculate the beam profile (histogram
operation). All these methods have a linear time
complexity with the number of input particles. The
first subplot of Fig. 6 validates experimentally this
assumption.

2. tComm,; = const,tIntra; = const: The nodes only
need to communicate the beam profile and not the
beam coordinates, thus the communication (¢Comm)
and intra-node (tIntra) processing time are indepen-
dent of the number of particles. The length of the
beam profile is equal to the number of histogram
bins, which is typically much smaller, of the order of
1%o, than the number of particles. The second and
third subplots of Fig. 6 shows that the communica-
tion and intra-node processing time are basically
independent of the particles’ size.

3. Perfect load balance <« tSync; _,0: In a perfectly
load-balanced scenario, all workers are in sync and
experience near-zero synchronization time (tSync;).

4. Once a worker enters a slower than usual execution
phase, it maintains this status for a noticeable period
of time.

According to the first property, the workers by measur-
ing their computation time, they can apply a least-squares,
1st-degree polynomial fit method to calculate the slope (m;)
and y-intersect (c¢;) coefficients. A weighted polynomial
solver is used, that takes into account a fixed number of
past measurements. To allow for swift reaction to develop-
ing imbalances, greater weight is given to the more recent
data points. An exponential decay function is used to calcu-
late the weights W, given by the following equation:

WIk] = e H=P/PC | c (1., .HY, @

where H is the number of historic points considered and DC
is the decay coefficient.

Due to the synchronization barriers before the communi-
cation phase, all workers will experience the same per-turn
latency 1™

property 1
tComp; + tintra; +tSync, =T,—— "~ 8)

p; X m; + ¢; + tIntra; + tSync; = T. ©9)

The tIntra; can be also measured by each worker, and since
it is a constant independent of the particles, let us incorpo-
rate it in ¢;:

pi X m; + ¢ +tSync; =T. (10)

Faster workers will experience longer synchronization time
so that the turn latency of all workers is equal to 7.

ILIAKIS ET AL.: ENABLING LARGE SCALE SIMULATIONS FOR PARTICLE ACCELERATORS

4431

TABLE 2

DLB Scheme Configurable Parameters
Name Default Description
Rebalance Period 1000 Num. of turns between two re-balancing operations.
TXmin 3% Min. percentage of particles in a transaction.
Ppin 10% Min. percentage of particles assigned to a worker.
History length 20 Number of points to consider in polynomial fitting.
Decay Coefficient 5 Used in the exponential weight function.

According to the 3 rd property, we want to find a new set of
(p, T') that makes tSync, = 0:

pyxmite =T withP=3" 11)

i=0
where P is the total number of particles that remains con-
stant, and NV is the number of workers. This is a set of N + 1
equations with IV + 1 variables. By solving this set of equa-
tions we get:

, P+ sump —c¢; x sumsy

P = (12)

, where
m; X sums

N ¢ N 1
sumy = E ; O—,and sumeo = E A
=0m; =0m;

Knowing the number of particles each worker should be
assigned in order to simultaneously arrive at the synchroni-
zation barrier (bottom half of Fig. 4), slower-than-average
workers have to offload a portion of their workload to
faster-than-average workers. This set of transactions is cal-
culated by minimizing data traffic [30] and prioritizing
transactions within the same node. The workers calculate
the particles they need to send or receive from other work-
ers. After completing these transactions, the workers con-
tinue with the next iteration of the simulation. This process
is repeated periodically. The DLB scheme is highly custom-
izable, and able to cover a wide range of load-imbalance sce-
narios. The key configurable parameters and their default
values, that were identified by exhaustive exploration, are
summarized in Table 2. For optimal and portable perfor-
mance, these DLB parameters must be fine-tuned under a
specific workload, load imbalance scenario, and cluster
configuration.

The rebalance period is the interval in turns the DLB
takes place. A long interval will make the DLB unable to
respond swiftly to imbalanced execution, but a too short
one will increase the DLB overhead. The Tx,,;, defines the
minimum transaction size in terms of particles. The intui-
tion is that the system should not be hyper-sensitive to mar-
ginal imbalances, which have insignificant effect on the
execution time. P, is used for overall system stability.
Without it, a very slow worker would be assigned no par-
ticles, which can have negative effects in the system’s stabil-
ity and lead to crashes. Finally, the history length A and
decay coefficient DC' are used in the exponential decay
function in Eq. (7), that define the sensitivity of the system
to developing imbalances.

Fig. 5b shows the normalized spread in time among the
MPI workers when the DLB mechanism is enabled. It is evi-
dent that the imbalance among the workers has been mini-
mized both in smaller and larger node configurations. The

(13)

time spread is limited to 2.7%-5.9%, i.e., 5x lower than with-
out the DLB mechanism. Furthermore, the more balanced
workload brings 17% gain in execution time on average
across three real-world simulation cases. The overhead of
the DLB scheme is limited to 0.4% for the polynomial solver
and p; calculation, and 1.1% for the particle transactions, so
in total 1.5% of the total execution time.

5 APPROXIMATE COMPUTING METHODS

Minimizing the communication and synchronization time is
essential to enable higher scalability in distributed
codes [11]. HBLonD, specifically, spends about 50% of the
total execution time for inter-node communication when
using 16 computing nodes. For this purpose, HBLonD uti-
lizes two approximate computing techniques, namely Rep-
resentative Distribution Subset (RDS) and Smoothly
Revolving Profile (SRP) [10]. The approximation techniques
are physics-motivated and trade off accuracy, which is
strongly case dependent, for latency gain through reduced
inter-node traffic. In this paper, the approximations have
been extended with more aggressive numerical approxima-
tions, thoroughly evaluated and verified by domain experts
in beam dynamics that deeply comprehend the simulated
phenomena and can decide which measure of error should
be calculated and whether a loss in prediction accuracy is
affordable.

Representative Distribution Subset (RDS). In the beam dis-
tribution scatter phase, a large number of particles, in the
order of 100 s of millions, is distributed randomly among a
small number of MPI workers. Consequently, every worker
is assigned 10 s or 100 s of million particles. RDS is based on
the assumption that each worker is assigned a representa-
tive subset of the particles that describes the overall distri-
bution adequately. As expressed in Eq. (14) to approximate
the global beam profile, worker i can simply scale up the
local beam profile by the ratio of all particles to the assigned
particles:

N N)
Zz’,:O pi (14)
Di

global Pro file = Zprofilei ~ profilej X
i=0 ¢

where N is the total number of workers, p; are the particles
assigned to worker 4, and profile; is the local beam profile
of worker . As a consequence, the costly all-to-all beam pro-
file reduction is avoided, the workers” execution is disen-
gaged, and the time needed for communication and
synchronization is reduced.

Smoothly Revolving Profile (SRP). In the 2-D time and
energy phase space, the particles are slowly revolving
around the synchronous point with every simulation step.

4432

[3-Turn AVG
I 3-Turn STD

Bin Count

Histogram Bins

Fig. 7. SRP: Three-turn average and standard deviation of slowly-chang-
ing beam profile.

This approximation is based on the assumption that the
beam profile is not changing rapidly between consecutive
steps, which is generally true for the slow synchrotron
motion of particles, in the absence of for instance fast beam
instabilities, i.e., effects that develop rapidly and perturb
violently the beam motion. Indeed, as depicted in Fig. 7, in
real-world scenarios with sufficient number of simulated
particles per histogram bin, the per-turn variation of the
beam profile is limited to 1.3% on average. This condition
needs to be verified by the user before enabling the approxi-
mation. SRP updates the beam profile every K iterations as
shown in Eq. (15), which is generally tolerable in terms of
precision for small K values, e.g., two or three.

profile! = profile™ = . = profile™ ! t mod K = 0,
(15)

where profile' is the beam profile of turn ¢. By doing so, the
need to perform the histogram calculation and the costly,
communication-heavy global reduction in every turn is
eliminated, reducing the simulation latency significantly.

Floating Point Datatype. In addition, we also evaluate one
of the most typical performance-accuracy trade-offs in scien-
tific codes, the floating point datatype size. BLonD tradition-
ally uses 64-bit floating point numbers to ensure maximum
accuracy in the calculations involved. However, using 32-bit
floating point numbers can provide significant latency gains,
without major accuracy loss. In the 32-bit HBLonD version,
the datatype length of all floating point variables is reduced
from 64-bit to 32-bit. Additionally, all the routines that were
previously operating on 64-bit floats have been adjusted to
operate on shorter, 32-bit wide floats. The two previous
approximate computing techniques, i.e., RDS and SRP, can
be combined with 32-bit floating point numbers for addi-
tional gains in latency, as we will see in Section 5.2.

5.1 Accuracy Evaluation Process

In this section, we evaluate the approximate computing
techniques described above in terms of accuracy loss. RDS
and SRP can be combined with 32-bit floating point size
(£32), therefore in total five different approximate variations
are considered: SRP, SRP-f32, RDS, RDS-f32 and f32. Natu-
rally, these five methods produce different simulation
results, which are compared to the results of the baseline,
approximate-free version. To be able to evaluate the magni-
tude of this difference, we put it in perspective with the sta-
tistical fluctuations induced by altering the input seed of the
pseudo-random number generator (PRNG) used in the par-
ticle distribution generation. This statistical fluctuation is
considered acceptable, when using a large enough number

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

LHC-1/t,e, SPS-1/t,ev PS-1/t,ey
SRP-f32 X = N :
SRP{ % 1 oo :
RDS-£321 X 1 | 1! |
RDS% b bd I
£321 b 3 1 | Tt |
Ref2- X At i 1t i
Refl- X 1 } { 1t {
Base1 % | T E — 1l {
4.85 4.90 49150 4.9175 3.952 3.954
x1071 x1071 x1071

Fig. 8. Accuracy loss in the time coordinate. Base is the approximate-
free baseline. Ref1, Ref2 are used as reference points.

of simulated macro-particles. We note that the adopted
evaluation process was driven by beam dynamics domain
experts. Additionally, while in other applications, verifica-
tion of the accuracy in small scale experiments is a good
estimate for large scale experiments, this is not the case for
RDS and SRP since the assumptions these techniques are
based on (Section 5) only hold on large datasets, and are
severely hindered in small input sets.

In Fig. 8, there are three data points in addition to the five
approximate variations. Base corresponds to the approxi-
mate-free, exact simulation. The Refl and Ref2 data-points
are also non-approximate, but have a slightly altered initial
particle distribution depending on the seed value passed to
the PRNG method. By using a large enough number of par-
ticles, the statistical deviation of two particle distributions
with a different seed is minimized. The only difference
between Refl, Ref2 and Base is the seed value used for the
generation of the input particle distribution. To limit the sta-
tistical fluctuation deriving from the exact initialisation of
the particle coordinates, large numbers of particles (four
million) were used in the experiments shown in Fig. 8.

The cross points in Fig. 8 correspond to the distribution’s
average after a relatively large period (approximately 40
thousand) of simulated turns. The error bars show the per-
turn fluctuation of the distribution’s average in the last few
turns. As described above, the Base, Refl, and Ref2 data
points are basically equivalent, and their difference reflects
the statistical fluctuation noise.

The best agreement can be observed in the PS testcase,
where both the average values and the error bars of the
base, reference and approximate data points are essentially
identical. This behavior results from the fact that in the PS
simulation scenario the particle distribution is slowly mov-
ing and more resilient to micro-approximations. As a conse-
quence, the PS testcase is a good candidate for more
aggressive approximations in order to save execution time.

On the other hand, in the LHC testcase, we observe the
greatest variation between the base, reference and approxi-
mate values. This is related to the RF noise diffusion phe-
nomenon present in this specific testcase. The RF noise is
also generated based on a random number generator, and
the final particle distribution strongly depends on the gen-
erated noise sequence. As a consequence, it overshadows
the final result variation coming from both the seed derived
statistical fluctuation, and the approximate techniques.
Moreover, by observing the error bars of all three approxi-
mate versions using 32-bit float (SRP-f32, RDS-f32, and f32),
we see that reducing the data-type precision introduces a
significant loss. This is due to the fact that 32-bit floats are

ILIAKIS ET AL.: ENABLING LARGE SCALE SIMULATIONS FOR PARTICLE ACCELERATORS

[Base [Z4 F32 B8 SRP A F32-SRP Il RDS Bl F32-RDS

4433

.

SPS PS

AN

LHC

Fig. 9. Time spend for inter-node communication with the various
approximate computing techniques.

used for the RF noise, which results in a different beam dis-
tribution than its 64-bit equivalent. Nevertheless, Fig. 8
shows that the base point is closer to the approximate points
than the two reference points for the LHC testcase. This
means that the deviations coming from the approximations
are less significant than the deviations coming from the sim-
ulated phenomenon itself, and thus it is safe to apply the
approximate methods.

Finally, the SPS testcase falls within the two extremes,
and shows mostly good agreement between the approxi-
mate and reference points, and the base simulation results.
In the SPS testcase, it can be seen that the RDS approxima-
tion method reduces the per-turn variation error bars. The
RDS method decouples the MPI workers and lets them
approximate the global beam profile based on their local
beam profile. This effectively reduces the per-worker distri-
bution size, which is possibly the reason why the pet-turn
variation error bars appear to be narrower.

In conclusion, all the five approximate computing techni-
ques presented above provide acceptable agreement with
the exact, non-approximate simulations. Their error magni-
tude is strongly testcase dependent. Approximate comput-
ing is therefore a valuable tool for BLonD users, and can be
used to reduce the run-time of lengthy simulations, as
shown in Section 5.2.

5.2 Latency Gain Evaluation
The RDS and SRP approximation techniques were designed
to reduce inter-worker communication time, and relax syn-
chronization. Reducing the floating point data-type length
is widely used to accelerate compute intensive code regions
and minimize the memory footprint. Fig. 9 demonstrates
the total time allocated for inter-node data exchange in each
of the three test-cases when applying the aforementioned
approximation techniques, as well as the combination of
SRP and F32 (F32-SRP) and RDS with F32 (F32-RDS). Eight
nodes with 160 cores in total were used for this experiment.
Using smaller datatype size is not affecting greatly the com-
munication time, since most of the traffic has to do with the
beam profile, which is an array of 32-bit integers. The SRP
and RDS approximations reduce the communication time
by a factor of 2.5 x -5x. As expected, the RDS affects more
the inter-node traffic since it eliminates the costly all-to-all
collective operation, while the SRP technique only applies
the all-to-all operation less frequently than in the non-
approximate baseline.

Fig. 10, summarizes the gain in run time resulting from
the approximation mechanisms. The y-axis shows the run
time, normalized to HBLonD without any approximation

[Base [Z4 F32 B SRP [F32-SRP Il RDS Bl F32-RDS

0 | | M. =
205 L ! HIES <
50& ? i E i i adg z
= ‘ 1| 1 1 ‘ S
g | IARENE |7

o
s
NN\

o
>

LHC SPS PS AVG

Fig. 10. Approximate computing latency gain evaluation in three test-
cases. Lower values correspond to greater gains in latency.

applied. Lower values correspond to greater gains in
latency. As expected, the combined approximate versions,
F32-SRP and F32-RDS demonstrate the greatest gains in
latency, 59% and 52% on average, respectively. SRP updates
the beam profile once every three turns, which is one of
the most time consuming calculations. Furthermore, the
induced voltage, another time consuming operation, and
the all-to-all beam profile reduction do not need to be re-cal-
culated unless the beam profile has been updated.

We observe that the characteristics of the simulated sce-
nario affects the latency gains of the various approximate
techniques. In the PS testcase, using 32-bit floats instead of
64-bit floats provides 33% reduced run time. This is due to
the fact that the particle tracking related operations, such as
kick and drift, allocate a large percentage of the total execu-
tion time, and these operations profit the most from the
reduced data-type length. In the SPS testcase, the run time
is reduced by 45% when updating the beam-profile periodi-
cally instead of in every turn. This is because the all-reduce
and the induced voltage operations are calculated periodi-
cally, which jointly account for 40% of the execution time in
the SPS testcase. Finally, in the LHC testcase the RDS
method offers 21% latency gain. The RDS method allows
the workers to operate independently by approximating the
global beam profile based on their local beam profile. This
completely eliminates the cost of the all-to-all reduction and
any time lost in synchronization among the workers. In the
LHC testcase, these two categories were allocating 39% of
the total execution time.

An alternative approximation method combining RDS
and SRP could be also considered. The idea is to do local
profile scaling like in RDS, but periodically run the global
reduction like in SRP. This combination of RDS and SRP is
potentially more accurate than RDS, but less fast than RDS
and SRP. However, as RDS was evaluated in terms of accu-
racy, demonstrating acceptable agreement with the non-
approximate simulations (see Section 5.1), we focused our
analysis on RDS, SRP and their 32-bit float variations. Since
the accuracy of the approximation methods is testcase
dependent, in the future, given new simulation scenarios, it
is not unlike to implement new hybrid approaches to
explore different trade-offs between accuracy and perfor-
mance. In summary, the approximation techniques provide
significant latency gains with minimal loss in accuracy.
They are an invaluable tool to the users of BLonD.

6 CuBLOND: MuLTI-GPU BLOND SIMULATIONS

Graphic Processing Units (GPUs) were originally designed
for efficient image and video processing in computer

4434

_______________ oK el
kernels.cu! CPU Memory .
: iCuBLonD _I_)
<= | :
T B—E
s
i l SyncArray ()
- SourceModule () Memow
| |EXE Pool

kernels.so GPU Memory

Fig. 11. Software architecture of the GPU-enabled CuBLonD code.

graphics applications. Over time, their massive computing
capacity as well as the emergence of intuitive programming
models, such as CUDA [31] and OpenCL [32], lead to the
widespread use of GPUs for general purpose applica-
tions [33], [34]. Nowadays, almost all TOP500 supercom-
puters use GPU cards for acceleration. In this section we
examine the details and performance of the GPU-accelerated
version of BLonD, called CuBLonD, which we developed.

Not every application is well-fitted for GPU acceleration.
GPUs are throughput oriented, meaning they are optimized
for processing large data sets at the expense of increased
latency in smaller-scale data sets. BLonD simulations can
reach up to 1 billion of simulated macro-particles, providing
enough work to the GPU hardware to sustain high levels of
parallelism. Furthermore, frequent CPU-GPU communica-
tion is often a performance limiting factor for GPU acceler-
ated applications. In CuBLonD, the largest structures, which
are the energy and time coordinate arrays, are transferred
once from the CPU to the GPU memory, where they reside
for the entire simulation. Only smaller arrays, such as the
beam profile, are transferred more often between the host
CPU and GPU memory. Finally, one of the challenges in a
code like BLonD, is the variety of kernels required to model
all the physics effects in typical simulation scenarios.
CuBLonD accelerates almost the entirety of operations that
take place during the main computational loop.

6.1 Seamless CUDA Integration
Native CUDA Kernels. The CUDA enabled variation of
HBLonD, CuBLonD was designed with performance as well
as ease-of-use in mind. The PyCUDA [35] and Scikit-CUDA
libraries were used to simplify the GPU memory allocation
and the integration of native CUDA code in Python. In
Fig. 11, we can see the high-level architecture of CuBLonD.
The CUDA kernels are merged in one source file (kernels.
cu) which is then compiled using the Nvidia C compiler to a
shared library (kernels. so). This library is exposed to the
Python front-end using the SourceModule () method of
PyCUDA, which allows for direct calls to native CUDA code
with seemingly zero performance overhead.
Auto-Synchronized, CPU-GPU Arrays. To simplify the
usability of the code, we developed the SyncArray ()
class. This class extends the Numpy [36] array interface,
and basically provides to the user a single array reference
that can be used as is by CPU and GPU code. Under the
hood, this requires the array to be allocated both in the CPU

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

I Without Caching HEBWith Caching
LHC | SPS

PS AVG

[
@ o

. Runtime

m
o
=

or

N
o
=~

12 24 36 12 24 36 12 24 36 12 24 36
Number of Macro-Particles (x109)

Fig. 12. Effect of caching common arrays in GPU main memory.

and GPU memory. When a modification to the CPU copy is
made, the GPU copy is invalidated, and vise-versa. The
invalidated copy is updated lazily, so that consecutive mod-
ifications will cause only a single data movement, when the
invalidated copy will be first accessed. Since the greatest
part of computing operations has been ported to the GPU,
this process rarely needs to happen, especially inside the
main computation loop. In a typical distributed, multi-GPU
simulation scenario, data need to be transferred only once
per iteration from the GPU to the CPU and back, during the
collective all_reduce () MPI operation. When using two
computing nodes, the percentage of the execution time
spent on CPU-GPU data exchange is less than 2% in all our
test-cases. However, there are scenarios, where a user of
BLonD would need to access data stored in GPU for report-
ing, plotting, storing in files. In this case, the SyncArray ()
mechanism hides the underlying complexity from the end-
user, while ensuring the correctness of the simulation.

Efficient Main Memory Management. Another mechanism
we developed is the GPU memory pool. There are certain
operations in a BLonD simulation, such as the evaluation of
multiple FFTs, that require the allocation of temporary
memory regions. The size of these memory regions often
remains constant for long simulation periods. To avoid fre-
quent allocation/de-allocation of these memory regions, we
designed a software-managed memory pool, on top of the
SyncArray () class. This means that the end-user does not
need to be aware of the memory pooling mechanism. The
memory pool caches frequently used memory structures,
and returns them when requested. Since the memory pool
manages a fixed amount of memory, it uses a Least Recently
Used policy to replace old memory allocations with recent
ones. In Fig. 12, we can see the effect on the run time of the
GPU pooling mechanism with varying input sizes. The run
time is normalized to that of CuBLonD without pooling,
therefore lower values correspond to greater performance
gains. We observe that the performance gain decreases in
larger input sizes. This happens since the memory alloca-
tion/de-allocation time is amortized across lengthier calcu-
lations, due to the higher number of particles. Furthermore,
we see that the SPS testcase profits the most from memory
pooling. The SPS testcase runs the most FFTs among the
three testcases, and subsequently has the most allocation/
de-allocation requests among the three testcases. On aver-
age, we see a 23% to 35% performance gain from the mem-
ory pooling mechanism.

Thread-Block Caching. With the use of CUDA libraries like
CuRand and CuFFT, porting most of the computationally
heavy code regions from C++ to CUDA was a straightfor-
ward process. Apart from the functions found in the third-
party libraries, in total 104 CUDA kernels were developed, 32

ILIAKIS ET AL.: ENABLING LARGE SCALE SIMULATIONS FOR PARTICLE ACCELERATORS

4435

In Shared Mem

In Global Mem

Hot Bins In Global Mem

Bin Count

Bins

Fig. 13. Using the thread block shared memory to cache the most fre-
quently accessed histogram bins.

of which implemented physics-related operations and the
remaining 72 were mathematical and auxiliary functions.
Two benchmarks in particular, the histogram () that gener-
ates the beam profile and the linear_interpolation_-
kick() required adjustments to make proper use of the
shared memory. More specifically, to avoid costly atomic
operations on global memory structures, the histogram kernel
first allocates a thread-block private beam profile. Then the
thread-block private profiles are reduced to generate the
global beam profile (or worker-wide beam profile). However,
since the shared memory is a limited resource, in large simu-
lations only a portion of the beam profile fits in the shared
memory. In this case, we take advantage of the Gaussian-like
shape of the beam, to store in memory only the “hottest” bins,
those around the center of the Gaussian distribution, as can
be seen in Fig. 13. The remaining bins reside in global memory
and are updated using atomic operations. Since the bins
around the center of the distribution are accessed more fre-
quently than the others, the average memory access latency
approaches the latency of the fast shared memory.

The performance gain of this hybrid implementation is
shown in Fig. 14. The y-axis shows the run time normalized
to the global memory only implementation, therefore lower
values correspond to greater run time gains. The z-axis
shows different numbers of input particles. We observe that
the performance gain gradually increases from 27% with 1
million particles, to 51% with 64 million particles. Then, it
reaches a saturation point, where the portion of the beam
profile that fits in the shared memory is too small to capture
the hottest bins, therefore the performance gain is reduced
to 29%. We note that 100 million macro-particles is the larg-
est input size that we expect to use per GPU platform, since
for very large simulations we use multiple GPU platforms
and computing nodes.

6.2 CuBLonD Single-Node Performance Evaluation
This section evaluates the single-node performance of
CuBLonD in comparison with HBLonD. Later, in Section 7,

11me

U1

n

[CIWithout Shared Memory EEBWith Shared Memory

< 1.0
£ 0.8 0.71
= 0.6
g 0.4
Z 0.2

0.0

100

l\umber of Macro Partciles xlO"

Fig. 14. Latency gain by making use of the thread block shared memory
in the histogram operation.

the scalability of the code is examined. The specifications of
the CPU server used for HBLonD are shown in the last col-
umn of Table 3, while the specifications of the two GPU
platforms evaluated are shown on the second and third col-
umn of Table 3.

The y-axis of Fig. 15, shows the throughput of CuBLonD
using either one GPU K40 platform (CuBLonD-1xK40), or
two GPU K40 platforms (CuBLonD-2xK40) in one node, or
one GPU V100 platform (CuBLonD-1xV100), normalized to
the throughput of HBLonD on a single 20-core node. Higher
values correspond to greater speedups. CuBLonD with one
K40 provides approximately 5x higher throughput than the
CPU-only HBLonD. We observe varying speedup values for
the three testcases, since each testcase is a unique applica-
tion with specific characteristics. By utilizing both GPU plat-
forms, the average speedup is 9.3x compared to the CPU
baseline, or 1.82x higher than when using one platform.
The speedup is not doubled when going from one to two
GPU platforms, mainly because the code is not entirely
GPU-accelerated and parallelized. In fact, on average 96.2%
of the code runs on the GPU and is also parallelized with
MPI. In addition, using two GPU platforms instead of one
adds a communication and synchronization overhead to the
total execution time.

The K40 GPU, when first released in 2013, it was a high-
end, server class GPU. Nowadays it has been superseded
by newer generations. Fig. 15 shows the performance of
CuBLonD using a more recent GPU generation — the Nvidia
Tesla V100. The model’s specifications can be found in
Table 3. On average, V100 is 4x faster compared to the K40,
providing 20x faster execution compared to a 20-core CPU
node. These results demonstrate the potential of CuBLonD
to efficiently take advantage of both older and more recent
GPU platforms and provide great speedups w.r.t. the previ-
ous state-of-art CPU-only implementation.

TABLE 3
Benchmarking Platforms’ Specifications

Model Nvidia Tesla K40 Nvidia Tesla V100 Intel Xeon E5-2630v4
Cluster ARIS - ARIS/ CERN-HPC
Generation Kepler (2013) Volta (2018) Broadwell (2016)
Process size 28 nm 12 nm 14 nm

RAM 12 GB GDDR5 32 GB HBM2 2 x 64 GB DDR4
Bandwidth 288 GB/s 897 GB/s 2x 68 GB/s
Cores 15 80 2x10
Frequency 0.75 GHz 1.2GHz 2.2GHz

Cache 1.5 MB (L2) 6 MB (L2) 2 x 25 MB (L3)
Compiler NVCC (v10.1) NVCC (v10.1) GCC (v7.3)

4436
[HBLonD EEH CuBLonD-1xK40 BN 2xK40 EEA 1xV100
= 241 22.8
2 20 20.8 20.1
5% 187 %
S 16==
= 10. .
E
Z

LHC

SPS PS
1 Full Node (x20 Cores/ x1 or x2 GPUs)

AVG

Fig. 15. CuBLonD single-node normalized throughput with one K40
GPU, two K40 GPUs in one node, and one V100 GPU.

7 MULTI-NODE SCALABILITY STRESSING

This section evaluates the scalability of HBLonD and
CuBLonD on multiple computing nodes. HBLonD was eval-
uated on an HPC cluster hosted at CERN, while CuBLonD
was evaluated on the ARIS, Greek national supercomputing
infrastructure’. The nodes of both clusters contain two 10-
core Intel servers. The ARIS nodes contain in addition two
Nvidia K40 GPU cards. The specifications of all platforms
are shown in Table 3. Both clusters use Infiniband
FDR14 [37] interconnect. The largest CuBLonD experiments
used 32 GPU cards on 16 nodes, and the largest HBLonD
experiments contained 640 cores on 32 nodes. CUDA ver-
sion 10.1 was used in the GPU-enabled nodes and GCC ver-
sion 7.3.

Three MPI implementations were tested experimentally:
i) MVAPICH?2 [38], ii) OPENMPI3 [39] and iii) MPICH3 [40].
MVAPICH?2 performed on average 11% better than MPICH3
and 17% better than OPENMPI3, therefore MVAPICH?2 was
preferred for the remaining scalability experiments.

Apart from the MPI implementation, the number of MPI
workers-per-node (WPN) is another important configurable
value that greatly affects the performance. We experimen-
tally tested configurations with one, two, four or ten WPN.
Generally, a very large number of workers might increase
the communication time and affect the performance. On the
other hand, a very small number of workers might also per-
form poorly due to sub-optimal memory usage [41]. The
clusters used in the experimental evaluation are both com-
posed of dual-socket servers. We observed that using one
worker per socket performed the best (being on average
13% faster than using one WPN). The second best perform-
ing configuration was having four WPN, which was 8%
faster than the single WPN. In the following experiments
we use span two MPI processes per node, or equivalently
one per socket.

The scalability of HBLonD and CuBLonD was evaluated
under strong-scaling workload scenarios. In strong-scaling
experiments, the input size is held constant while the num-
ber of computing resources increases. The purpose of this
study is to determine whether the code can effectively scale
in multiple computing nodes and discover the saturation
point, i.e., the point after which the addition of more resour-
ces is not increasing the performance. As formulated by

3. This work was supported by computational time granted from
the National Infrastructures for Research and Technology S.A. (GRNET
S.A)) in the National HPC facility - ARIS - under project pa200702.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

60
JHBLonD TLHC
501 Hl F32-RDS I
%40 EAF32-SRP

T30

&20
10

SPS PS

[CuBLonD-1GPU
751 @A F32-RDS i
EAF32-SRP

[CuBLonD-2GPU 1228115
751 Bl F32-RDS -
ZAF32-SRP

6 32 2 4 8 16 32 2 4 8

Nodes

2 4 8 16 32

Fig. 16. From the top: The speedup of HBLonD, and CuBLonD with one
or two GPUs per node.

Amdahl’s law, this happens when a portion of the workload
is not parallelized.

Each of the three columns of Fig. 16 corresponds to one of
the three real-world testcases described in Section 2.3. The
top row shows the performance of HBLonD with up-to 32
nodes or 640 CPU cores. The middle row shows the perfor-
mance of CuBLonD, when using one GPU card per node
and up to 16 nodes, while the bottom row shows the scal-
ability of CuBLonD with two GPU cards per node. Each sub-
figure of Fig. 16 demonstrates the scalability of the baseline
non-approximate version, the 32-bit RDS approximation
and the 32-bit SRP approximation. These approximate com-
puting techniques have been described in detail in Section 5.

The y-axis of all sub-figures shows the speedup w.r.t.
a non-approximate, single-worker, 20-core instance of
HBLonD, which is basically equivalent to BLonD++ [9]. The
DLB mechanism is not applicable to the single-worker
HBLonD, since the DLB is used to mitigate imbalances
among two or more MPI workers. We observe that without
enabling any approximate variations, the scalability of the
code saturates around eight nodes, due to the excessive
communication time. In HBLonD, with the aid of the

[C1Base EHF32-SRP Bl F32-RDS B comm Eserial
— e — i

comp

SPS PS

16
Nodes (x1 K40 GPU per Node)

Fig. 17. CuBLonD execution time breakdown. As the node count
increases, less time is spent on parallelized computations.

ILIAKIS ET AL.: ENABLING LARGE SCALE SIMULATIONS FOR PARTICLE ACCELERATORS 4437
TABLE 4
Real-World Simulation Cases Run-Times

Testcase Turns Particles BLonD++ [9] HBLonD-CF [10] HBLonD-TPDS CuBLonD

%100 %109 Time Time (Speedup) Time (Speedup) Time (Speedup)
LHC 14 0.8 110 days 4.3 days (25.6%) 2.5 days (43.4x) 1.5 days (71.8x)
SPS 0.43 1.7 8.8 days 9.8 hours (21.4x) 3.7 hours (56.4x) 1.7 hours (121.8 x)
PS 0.38 0.7 2.3 days 1.8 hours (30.2x) 1 hour (56.7 %) 0.5 hours (108.4x)
HLLHC 10 4 1.1 years 18 days 7 days 3.3 days
FCC 10 100 28 years 1.3 years 180 days 84 days

approximate computing techniques, a speedup of 43x to
58x is extracted in the three test-cases with 32 nodes. In the
SPS and PS testcases, the non-approximate HBLonD with
two computing nodes, achieves super-linear speedup of
2.13x and 2.03x compared to the baseline. This is a result of
the task-parallelism exploited by neighboring workers.
With task-parallelism, each worker calculates a subset of
the non-parallelisable with MPI operations, and then neigh-
boring workers exchange the calculated results profiting
from fast, shared memory communication. These tasks
demonstrate limited scalability, due to the nature of the
operations or the relatively small input size. It is therefore
most preferable to assign less cores in each task and calcu-
late them in parallel, as is done in HBLonD, than to use all
the available cores in every task and calculate the various
tasks sequentially, as in the baseline, single-worker
HBLonD.

The middle row of Fig. 16 corresponds to CuBLonD’s
speedup, using one GPU platform per node. Similarly to
HBLonD, the two approximate computing techniques allow
for far greater performance scalability compared to the non-
approximate baseline. The performance gain the SRP and
RDS techniques is comparable, with SRP being slightly bet-
ter, demonstrating speedups of 50x, 78x and 72x in the
LHC, SPS and PS testcase, respectively. Finally, in the bot-
tom row we can see the performance of CuBLonD when
using both GPU devices available in every computing node.
The largest configuration uses 32 GPUs in 16 nodes. In this
case, the speedup compared to a 20-core reaches or sur-
passes two-orders of magnitude in the SPS and PS testcase,
i.e., 122x and 108, respectively. In the LHC case, the larger
and more time consuming FFT operations during the
induced voltage calculation, that are not parallelized across
the MPI workers but only within every worker, the achieved
speedup is slightly lower, at 72x.

When examining the scalability of the F32-SRP-CuBLonD
in 16 nodes, w.r.t. a single-node, single-GPU instance of
F32-SRP-CuBLonD, we get a speedup that ranges from
10.6x to 13.1x. To better demonstrate the factors that limit
the code’s scalability, we examine the run-time breakdown
of CuBLonD in three categories: communication and syn-
chronization (comm), time spent in regions not globally par-
allelized with MPI, but only locally with CUDA (serial), and
the remaining fully parallelized computation time (comp).
Ideally, the MPI workers should spend their time mostly in
the parallelized regions.

Fig. 17 shows the time breakdown of the non-approxi-
mate Base CuBLonD, and CuBLonD with the F32-SRP and
F32-RDS approximations. In the single-node configuration,

no time is spent on communicating, since there is only a sin-
gle worker, and less than 5% of the execution time of each
testcase is spent for serial processing. When the number of
computing nodes increases to 16, approximately 15% to
20% of the Base version run time is used for communication
and synchronization among the remote MPI workers, while
the percentage of the run time spent for serial processing
ranges from 23% to 38%. The most time consuming, non-
globally parallelized computation is the FFTs that take place
during the induced voltage calculation. These are one-
dimensional FFTs that do not scale effectively on a distrib-
uted environment due to the nature of the algorithm. In all
three testcases, without applying approximate computing,
about half of the total run time is spent running useful par-
allel operation, and the other half is used for cooperation
and non-scalable operations. This is limiting the scalability
that can be exploited as the node count increases, as shown
previously in Fig. 16. The RDS approximation relaxes the
synchronization required among workers, therefore reduc-
ing the communication time to 5-7%. The serial processing
time is also reduced greatly with the approximate versions,
ranging from 10-18%. Since not more than a quarter of the
total run time is spent in non-parallelizable operation, we
expect the performance of the approximate variations to
scale with a further increase in the number of computing
nodes.

8 CONCLUSION

We presented an efficient and scalable parallel implementa-
tion of BLonD, combining MPI, OpenMP and CUDA. The
synchronization was relaxed and the network traffic was
reduced by applying two physics-motivated approximate
computing techniques. In addition, a dynamic load-balanc-
ing scheme was developed to automatically distribute the
load among workers and mitigate imbalances. The HBLonD
implementation demonstrated 43-56x speedup in three
real-world testcases when run on 32 nodes, compared to the
previous state-of-art code. Finally, a distributed, GPU-accel-
erated version, called CuBLonD was proposed, by integrat-
ing a user-friendly, Python front-end with an MPI-over-
CUDA back-end, optimized for efficiency and scalability.
CuBLonD reduced the execution time by up to two orders
magnitude when run on 16 GPU-enabled nodes, compared
to the previous state-of-art OpenMP-based BLonD simulator.

Table 4 summarizes the run-times, using the largest node
configurations evaluated in Section 7, of five real-world test-
cases coming from CERN'’s accelerator complex. The four
BLonD variations displayed correspond to: BLonD++ [9],

4438 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

prior-art HBLonD [10], HBLonD as presented in this paper,
and CuBLonD. Typical studies are composed of 1000 s such
simulations. The two last lines show optimistic projections
of the run-times of two ultra-large testcases corresponding
to future upgrades (HL-LHC [5]), and machines (FCC [29]).
The FCC case is expected to be particularly challenging due
to the very large number of particles required.

The dramatic reduction in execution time brought by
HBLonD and CuBLonD has enabled scientists to simulate
beam longitudinal dynamics scenarios that combine more
complex physics phenomena with finer resolution and larger
number of simulated particles, leading to discoveries [14],
[27] impossible to observe in the past, and design specifica-
tions that would not have been realised. These complex, accu-
rate and fast simulations are essential in the field of beam
dynamics to overcome current technological limitations, plan
the upcoming upgrades of particle accelerators, and design
future machines that will help science advance further.

REFERENCES

[1] F. Englert and R. Brout, “Broken symmetry and the mass of
gauge vector mesons,” Phys. Rev. Lett., vol. 13, no. 9, 1964,
Art. no. 321.

[2] Extra dimensions, gravitons, and tiny black holes, 2022.
[Online]. Available: https://home.cern/science/physics/extra-
dimensions-gravitons-and-tiny-black-holes

[3] The matter-antimatter asymmetry problem, 2022. [Online]. Avail-
able: https://home.cern/science/physics/matter-antimatter-
asymmetry-problem

[4] H. Damerau et al., “LHC injectors upgrade, technical design
report, vol. I: Protons,” CERN, Meyrin, Switzerland, Tech.
Rep. CERN-ACC-2014-0337, Dec. 2014.

[5] G. Apollinari et al., “High-luminosity large hadron collider (HL-
LHCQ): Technical design report V. 0.1,” Fermi Nat. Accelerator
Lab., Batavia, IL, U.S., 2017, doi: 10.23731/CYRM-2017-004.

[6] A. Ball et al., “The future circular collider study,” CERN Courier,
vol. 54, no. 3, pp. 16-18, Apr. 2014.

[71 S. Albright, K. Iliakis, A. Lasheen, D. Quartullo, J. Repond, and H.
Timko, “CERN beam longitudinal dynamics code BLonD,” 2014.
[Online]. Available: https://blond.web.cern.ch/

[8] H. Timko et al., “Beam longitudinal dynamics simulation suite
blond,” 2022, arXiv:2206.08148.

[9] K. Iliakis, H. Timko, S. Xydis, and D. Soudris, “BLonD: Perfor-
mance analysis and optimizations for enabling complex, accurate
and fast beam dynamics studies,” in Proc. 18th Int. Conf. Embedded
Comput. Syst. Archit. Model. Simul., 2018, pp. 123-130.

[10] K. Iliakis, H. Timko, S. Xydis, and D. Soudris, “Scale-out beam
longitudinal dynamics simulations,” in Proc. 17th ACM Int. Conf.
Comput. Front., 2020, pp. 29-38.

[11] F. Betzel, K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, and U.
Karpuzcu, “Approximate communication: Techniques for reduc-
ing communication bottlenecks in large-scale parallel systems,”
ACM Comput. Surv., vol. 51, no. 1, Jan. 2019, Art. no. 1.

[12] S. Y. Lee, Accelerator Physics, 3rd ed. Singapore: World Scientific,
2012. [Online]. Available: https:/ /cds.cern.ch/record /1425444

[13] C.K. Birdsall and A. B. Langdon, Plasma Physics via Computer Sim-
ulation. New York, NY, USA: Taylor and Francis, 2005.

[14] M. Schwarz et al., “Flat-bottom instabilities in the CERN SPS,” in
Proc. 10th Int. Partile Accel. Conf., 2019, pp. 3224-3227.

[15] H. Timko, E. Shaposhnikova, P. Baudrenghien, and T. Mastoridis,
“Studies on controlled RF noise for the LHC,” in Proc. 54th ICFA
Adv. Beam Dyn. Workshop High-Intensity High Brightness High
Power Hadron Beams, 2015, Art. no. THO4LRO03.

[16] H. Timko, D. Quartullo, A. Lasheen, and]. E. Miiller,
“Benchmarking the beam longitudinal dynamics code BLonD,” in
Proc. 7th Int. Part. Accel. Conf., 2016, Art. no. WEPOY045.

[17] J. MacLachlan, “Particle tracking in E-¢ space for synchrotron
design and diagnosis,” Proc. Int. Conf. Appl. Accelerators Res. Ind.,
vol. 24, no. 11,1992.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

A. Shishlo, S. Cousineau,]J. Holmes, and T. Gorlov, “The particle
accelerator simulation code PyORBIT,” Procedia Comput. Sci.,
vol. 51, pp. 1272-1281, 2015.

V. Forte, E. Benedetto, A. Lombardi, and D. Quartullo,
“Longitudinal injection schemes for the CERN PS booster at
160 MeV including space charge effects,” in Proc. 6th Int. Part.
Accel. Conf., 2015, Art. no. MOPJE(042. [Online]. Available: http://
accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopje042.
pdf

M. Borland, “ELEGANT: A flexible SDDS-compliant code for
accelerator simulation,” Argonne Nat. Lab., IL, USA, 2000, doi:
10.2172/761286. [Online]. Available: https://www.osti.gov/
biblio /761286

Y. Wang and M. Borland, “Pelegant: A parallel accelerator simula-
tion code for electron generation and tracking,” in Proc. AIP Conf.,
2006, pp. 241-247.

J. King, I. Pogorelov, K. Amyx, M. Borland, and R. Soliday, “GPU
acceleration and performance of the particle-beam-dynamics code
elegant,” 2017, arXiv:1710.07350.

E. Shaposhnikova,]. Repond, H. Timko, T. Argyropoulos, T. Bohl,
and A. Lasheen, “Identification and reduction of the CERN SPS
impedance,” in Proc. 57th ICFA Adv. Beam Dyn. Workshop High-
Intensity High Brightness High Power Hadron Beams, 2016,
Art. no. TUAM3X01.

D. Quartullo ef al., “Studies of longitudinal beam stability in
CERN PS booster after upgrade,” in Proc. 8th Int. Part. Accel. Conf.,
2017, pp. 4469-4472.

D. Quartullo, E. Shaposhnikova, and H. Timko, “Controlled longi-
tudinal emittance blow-up using band-limited phase noise in
CERN PSB,” J. Phys.: Conf. Ser., vol. 874, 2017, Art. no. 012066.

A. Lasheen, E. Radvilas, E. Shaposhnikova, T. Roggen, T. Bohl,
and S. Hancock, “Single bunch longitudinal instability in the
CERN SPS,” in Proc. 7th Int. Part. Accel. Conf., 2016,
Art. no. TUPOR009.

J. Repond, K. Iliakis, M. Schwarz, and E. Shaposhnikova,
“Simulations of longitudinal beam stabilisation in the CERN SPS
with BLonD,” in Proc. 13th Int. Comput. Accel. Phys. Conf., 2018,
Art. no. TUPAFO06.

E. Métral et al., “Beam instabilities in hadron synchrotrons,” IEEE
Trans. Nucl. Sci., vol. 63, no. 2, pp. 1001-1050, Apr. 2016.

FCC Collaboration, “FCC physics opportunities: Future circular
collider conceptual design report,” Eur. Phys.]., vol. 79, 2019,
Art. no. 474.

Minimize cash flow among a given set, 2022. [Online]. Available:
https:/ /www.geeksforgeeks.org/minimize-cash-flow-among-
given-set-friends-borrowed-money/

D. B. Kirk and W. H. Wen-Mei, Programming Massively Parallel
Processors: A Hands-On Approach. San Mateo, CA, USA: Morgan
Kaufmann, 2016.

J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel program-
ming standard for heterogeneous computing systems,” Comput.
Sci. Eng., vol. 12, no. 3, 2010, Art. no. 66.

S. Chetlur ef al., “cuDNN: Efficient primitives for deep learning,”
2014, arXiv:1410.0759.

M. J. Abraham et al., “"GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to
supercomputers,” SoftwareX, vol. 1/2, pp. 19-25, 2015.

A. Klockner et al., “PyCUDA: GPU run-time code generation for
high-performance computing,” 2009, arXiv:0911.3456.

S. V. D. Walt, S. C. Colbert, and G. Varoquaux, “The NumPy
array: A structure for efficient numerical computation,” Comput.
Sci. Eng., vol. 13, no. 2, pp. 22-30, 2011.

G. F. Pfister, “An introduction to the InfiniBand architecture,”
High Perform. Mass Storage Parallel I/O, vol. 42, pp. 617-632,
2001.

W. Huang, G. Santhanaraman, H.-W. Jin, Q. Gao, and D. K.
Panda, “Design of high performance MVAPICH2: MPI2 over
InfiniBand,” in Proc. 6th IEEE Int. Symp. Cluster Comput. Grid,
2006, pp. 43-48.

E. Gabriel et al., “Open MPI: Goals, concept, and design of a next
generation MPI implementation,” in Proc. Eur. Parallel Virtual
Mach./Message Passing Interface Users’” Group Meeting, 2004,
pp- 97-104.

W. Gropp, “MPICH2: A new start for MPI implementations,” in
Proc. Eur. Parallel Virtual Mach./Message Passing Interface Users’
Group Meeting, 2002, pp. 7-7.

https://home.cern/science/physics/extra-dimensions-gravitons-and-tiny-black-holes
https://home.cern/science/physics/extra-dimensions-gravitons-and-tiny-black-holes
https://home.cern/science/physics/matter-antimatter-asymmetry-problem
https://home.cern/science/physics/matter-antimatter-asymmetry-problem
http://dx.doi.org/10.23731/CYRM-2017-004
https://blond.web.cern.ch/
https://cds.cern.ch/record/1425444
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopje042.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopje042.pdf
http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopje042.pdf
http://dx.doi.org/10.2172/761286
https://www.osti.gov/biblio/761286
https://www.osti.gov/biblio/761286
https://www.geeksforgeeks.org/minimize-cash-flow-among-given-set-friends-borrowed-money/
https://www.geeksforgeeks.org/minimize-cash-flow-among-given-set-friends-borrowed-money/

ILIAKIS ET AL.: ENABLING LARGE SCALE SIMULATIONS FOR PARTICLE ACCELERATORS

[41] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid MPI/OpenMP
parallel programming on clusters of multi-core SMP nodes,” in
Proc. 17th Euromicro Int. Conf. Parallel Distrib. Netw.-Based Process.,
2009, pp. 427-436.

Konstantinos lliakis received the diploma in elec-
trical and computer engineering (ECE) from the
National Technical University of Athens (NTUA),
Greece. He is currently working toward the PhD
degree in the area of HPC architectures and data
complex applications’ acceleration. In his diploma
thesis, he designed and implemented a novel Map-
Reduce runtime for shared-memory multi-’/many-
cores that managed to relax the synchronization
between the map and reduce phases. He received
the best paper award in the 17th ACM International
Conference on Computing Frontiers (CF’20).

Helga Timko received the PhD degree in theoreti-
cal physics from the University of Helsinki, Finland,
in 2012. Since then, she has been working with
CERN in the field of beam dynamics and is respon-
sible for the radio-frequency system operation in
the Large Hadron Collider as well as theoretical,
simulation, and measurement studies preparing for
future operation with higher beam intensities. She
started developing the Beam Longitudinal Dynam-
ics code BLonD in 2014 and has been leading the
developer team thereafter.

Sotirios Xydis (Member, IEEE) received the PhD
degree in electrical and computer engineering
from the National Technical University of Athens
(NTUA), Greece, in 2011. He is an assistant pro-
fessor with the Department of Informatics and Tel-
ematics, Harokopio University of Athens. He has
worked for two years as post-doctoral researcher
with the Dipartimento di Elettronica, Informazione
e Bioingegneria (DEIB), Politecnico di Milano, and
for several years as a senior research associate
with the Microprocessors and Digital Systems
Laboratory, NTUA. He has published more than 100 papers in interna-
tional journals and conferences, and he has received three best paper
awards.

4439

Panagiotis Tsapatsaris received the diploma in
electrical and computer engineering (ECE) from the
National Technical University of Athens (NTUA),
Greece. In his diploma thesis, he worked on the
development and evaluation of the GPU-accelerated
BLonD software used for beam dynamics simula-
tions. His research interests include high perfor-
mance computing. He is currently employed in
Capture One.

Dimitrios Soudris received the PhD degree
in electrical engineering from the University of
Patras, in 1992. He was a professor with the
Department of Electrical and Computer Engineer-
ing, Democritus University of Thrace for 13 years.
He is currently a professor in the ECE School,
Department of Computer Science, National Tech-
nical University of Athens, Greece. His research
interests include embedded systems design,
reconfigurable architectures, reliability, and low
power VLSI design. He has published more than

340 papers in international journals and conferences, and co-authored
seven books.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

