
Automated Scheduling Algorithm Selection and
Chunk Parameter Calculation in OpenMP
Ali Mohammed , Jonas H. M€uller Kornd€orfer , Ahmed Eleliemy , and Florina M. Ciorba

Abstract—Increasing node and cores-per-node counts in supercomputers render scheduling and load balancing critical for exploiting

parallelism. OpenMPapplications can achieve high performance via careful selection of scheduling kind and chunk parameters on a

per-loop, per-application, and per-system basis from a portfolio of advanced scheduling algorithms (Kornd€orfer et al., 2022). This

selection approach is time-consuming, challenging, andmay need to change during execution. We proposeAuto4OMP, a novel

approach for automated load balancing of OpenMPapplications. With Auto4OMP, we introduce three scheduling algorithm selection

methods and an expert-defined chunk parameter for OpenMP’s schedule clause’s kind and chunk, respectively. Auto4OMPextends

theOpenMP schedule(auto) and chunk parameter implementation in LLVM’sOpenMP runtime library to automatically select a

scheduling algorithm and calculate a chunk parameter during execution. Loop characteristics are inferred in Auto4OMP from the loop

execution over the application’s time-steps. The experiments performed in thiswork show that Auto4OMP improves applications

performance by up to 11% compared to LLVM’s schedule(auto) implementation and outperformsmanual selection. Auto4OMP

improvesMPI+OpenMPapplications performance by explicitlyminimizing thread- and implicitly reducing process-load imbalance.

Index Terms—Automatic selection, algorithm selection problem, dynamic load balancing, self-scheduling, runtime library, OpenMP,

multithreaded programming, shared-memory systems

Ç

1 INTRODUCTION

SCIENTIFIC computing is the cornerstone of computational
science. The ever-increasing computational needs of scien-

tific applications drive the advancements inmodern high per-
formance computing (HPC) systems, which exhibit increased
parallelism atmultiple levels. According to Top500 list [2], the
number of processing elements has increased from a few
cores-per-node to tens or hundreds of cores-per-node in the
last decade. In addition to increasing parallelism, non-uni-
form memory access (NUMA) effects and dynamic power
management ofmodernHPC systems introduce performance
variability among the (homogeneous) computing cores of a
node.

The complex characteristics of modern HPC systems chal-
lenge scientific applications in terms of harnessing their full
computational power. Code branches, conditional statements,
and data access patterns also cause application performance
variability. These software and hardware sources of

variability typically lead to uneven computing nodes and
cores finishing times, which is known as load imbalance and
which may severely degrade applications performance on
massively parallel HPC systems.

Scheduling and load balancing were identified as major
challenges on the road to Exascale and beyond [3]. Schedul-
ing algorithms typically balance the execution of work
across parallel computing elements, i.e., in space. Neverthe-
less, load imbalance may still arise among cores of a node
and among computing nodes due to performance variabil-
ity in either application or system during execution, i.e.,
over time. Node-level load imbalance may significantly
influence cross-node load imbalance [4], [5]. In this work,
we concentrate on node-level scheduling and load balanc-
ing of OpenMP parallel loops.

OpenMP is the most widely- and successfully-used par-
allel programming paradigm for shared-memory architec-
tures [6]. Parallel loop scheduling in OpenMP is governed
by the schedule(kind,chunk) clause. The OpenMP
standard specifies five options for schedule(kind), three
of which denote scheduling algorithms: static, dynamic,
and guided, and two refer to convenience options: run-
time and auto.

It has been shown that these three scheduling algorithms
in OpenMP are insufficient for efficient scheduling of
OpenMP parallel loops and that other scheduling algorithms
deliver higher performance gains [1], [7], [8], [9]. However,
those performance gains are achievable only via a careful
(and expert) selection of scheduling algorithm and chunk

parameter, on a per-loop, per-time-step, per-application, and per-
system basis.

Choosing a loop scheduling algorithm among those avail-
able in a particular OpenMP runtime library is an instance of
the algorithm selection problem [10]. Users must select one

� Ali Mohammed is with the HPE’s HPC/AI EMEA Research Lab (ERL),
4051 Basel, Switzerland. E-mail: ali.mohammed@hpe.com.

� Jonas H. M€uller Kornd€orfer, Ahmed Eleliemy, and Florina M. Ciorba are
with the Department of Mathematics and Computer Science, University of
Basel, 4051 Basel, Switzerland. E-mail: {jonas.korndorfer, ahmed.eleliemy,
florina.ciorba}@unibas.ch.

Manuscript received 10 September 2021; revised 21 June 2022; accepted 29 June
2022. Date of publication 11 July 2022; date of current version 23 August 2022.
This work was supported in part by the Swiss National Science Foundation in the
context of the “Multi-level Scheduling in Large Scale High Performance Com-
puters” (MLS) under Grant 169123, in part by the Swiss Platform for Advanced
Scientific Computing (PASC) project “SPH-EXA2: Smoothed Particle Hydrody-
namics at Exascale”, by DAPHNE, and in part by European Union’s Horizon
2020 research and innovation programme under Grant 957407.
(Corresponding author: Florina M. Ciorba.)
Recommended for acceptance by S. Chandrasekaran.
Digital Object Identifier no. 10.1109/TPDS.2022.3189270

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022 4383

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8465-0398
https://orcid.org/0000-0002-8465-0398
https://orcid.org/0000-0002-8465-0398
https://orcid.org/0000-0002-8465-0398
https://orcid.org/0000-0002-8465-0398
https://orcid.org/0000-0003-3014-3275
https://orcid.org/0000-0003-3014-3275
https://orcid.org/0000-0003-3014-3275
https://orcid.org/0000-0003-3014-3275
https://orcid.org/0000-0003-3014-3275
https://orcid.org/0000-0003-3258-1738
https://orcid.org/0000-0003-3258-1738
https://orcid.org/0000-0003-3258-1738
https://orcid.org/0000-0003-3258-1738
https://orcid.org/0000-0003-3258-1738
https://orcid.org/0000-0002-2773-4499
https://orcid.org/0000-0002-2773-4499
https://orcid.org/0000-0002-2773-4499
https://orcid.org/0000-0002-2773-4499
https://orcid.org/0000-0002-2773-4499
mailto:ali.mohammed@hpe.com
mailto:jonas.korndorfer@unibas.ch
mailto:ahmed.eleliemy@unibas.ch
mailto:florina.ciorba@unibas.ch

scheduling algorithm among dozens of algorithms, each
with various characteristics; they must also select a suit-
able chunk parameter among prohibitively numerous
options, for each loop, for each application, and for each
system on which an application executes. Increasing the
number of scheduling choices may impede the usability of
the library and may lead to sub-optimal choices or even
decision paralysis [11].

The OpenMP standard offers, since version 3.0 [12],
auto as a kind parameter for the schedule() clause to
avoid the scheduling algorithm choice paralysis. With
auto, the scheduling decision is delegated to the compiler/
runtime implementation [13]. The idea behind auto is to
give the implementation the freedom of choosing any possi-
ble space-time assignment of iterations in a loop construct
to the team of threads of the parallel region encapsulating
the loop, while remaining standard-compliant. In this sense,
OpenMP auto is a descriptive rather than prescriptive
scheduling option. Currently, most OpenMP implementa-
tions do not fully leverage OpenMP auto to improve appli-
cation performance. The implementation of auto in the
GNU OpenMP runtime library [14] maps to static sched-
uling. The auto implementation into LLVM’s OpenMP
runtime library, compatible with Clang and Intel compilers,
maps to an optimized implementation of guided self-sched-
uling. By introducing the auto scheduling option, OpenMP
was ahead of its time in addressing the algorithm selection
problem, given that only few scheduling algorithm choices
were available in any OpenMP standard-compliant com-
piler/runtime library.

In this work, we leverage the existence of auto as a
scheduling option in OpenMP and extend its implementa-
tion in the LLVM OpenMP runtime library with an expert

chunk parameter (see Section 3.1) and algorithm selection
methods (see Section 3.3). The automatic selection methods
select a scheduling algorithm from the Auto4OMP portfolio
(see Section 3.2), a subset of the portfolio of loop scheduling
algorithms presented in prior work [1]. We refer to these
extensions collectively as Auto4OMP.

Auto4OMP, introduces three novel algorithm selection
methods: RandomSel , ExhaustiveSel , and ExpertSel

to address the scheduling algorithm selection problem in
time-stepping OpenMP loops. The three selection methods
leverage application and system information obtained dur-
ing execution for the automated and dynamic selection of
scheduling algorithm during execution. Auto4OMP also
introduces the expert chunk parameter calculated based
on the number of loop iterations and number of threads.
The expert chunk can be used with all scheduling algo-
rithms either on their own or with those selected by the
algorithm selection methods in Auto4OMP .

We conducted an extensive performance analysis cam-
paign with Auto4OMP on five scientific applications
(ALYA [15], GROMACS [16], Mandelbrot [17], SPEC OMP
2012 352.nab [18], and SPHYNX [19]) executed on three
shared-memory systems with variable core architectures
and counts. The results show that Auto4OMP improves per-
formance by up to 11% compared to LLVM’s schedule

(auto) implementation and outperforms manual selection.
Auto4OMP also improves performance of large scale MPI
+OpenMP applications executing on multiple nodes, by

explicitly minimizing thread- and implicitly minimizing
process-load imbalance [5].

Significance. Auto4OMP is a unique opportunity to fulfil
the true potential of the schedule(auto) option, in gen-
eral, and of its implementation in LLVM’s OpenMP runtime
library, in particular. Auto4OMP unburdens the user of the
scheduling algorithm and chunk parameter selection prob-
lem at application-, loop-, time-step-, and system-level, and
enables automated selection of scheduling algorithms based on
performance information available exclusively during
execution. By design, Auto4OMP does not require any user
input or intervention in pre- or post-processing nor any
changes to the application. By consequence, Auto4OMP is a
significant step towards adaptive execution of OpenMP
loops, supporting performance portability of OpenMP
applications.

Contributions. This work is the first to leverage the poten-
tial of OpenMP’s schedule(auto) and makes the follow-
ing contributions, collectively called Auto4OMP:

1) Introduces the expert chunk parameter, designed
as a practical solution that works without requiring
detailed knowledge of the target loops characteristics.

2) Introduces three new methods for automated sched-
uling algorithm selection in OpenMP.

3) Implements the selection methods and expert

chunk parameter in the LLVM OpenMP runtime
library as extensions1 to schedule(auto).

The remainder of this work is organized as follows. The
work related to Auto4OMP is discussed in Section 2. Sec-
tion 3 presents the design, implementation, and usage of
Auto4OMP, including details of the algorithm selection
methods and the expert chunk parameter. The results of
a comprehensive performance evaluation and their analysis
are presented and discussed in Section 4. The work is con-
cluded in Section 5, outlining limitations and directions for
future work.

2 RELATED WORK

Numerous loop scheduling algorithms were implemented in
various OpenMP runtime libraries and made publicly avail-
able for OpenMP users. For instance, LB4OMP [1], an
extended version of the LLVM OpenMP runtime library2

(RTL), supports various dynamic loop scheduling (DLS) algo-
rithms, including fixed size chunking (FSC) [20], factoring
(FAC) [21], the practical variant of factoring (FAC2), tapering
(TAP) [22], the practical variant of weighted factoring (WF2)
[23], BOLD [24], adaptive weighted factoring (AWF), its var-
iants (AWF-B,C,D,E) [25], adaptive factoring (AF) [26], mFAC
and mAF (versions of FAC and AFwith less overhead). Such a
variety of many scheduling algorithms may bring users to
face decision paralysis [11]. In addition, it may even be
impractical to manually select the highest performing sched-
uling algorithm and a suitable chunk parameter for a given
application (in each time-step, for each loop within a time-
step) and system. Therefore, the scheduling algorithm selec-
tion problem has been recognized and addressed in the

1. Auto4OMP https://zenodo.org/record/583414
2. https://github.com/unibas-dmi-hpc/LB4OMP

4384 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

https://zenodo.org/record/583414

literature via decision trees [27], exhaustive offline search [28],
simulation-assisted selection [29], [30], andmachine learning-
based selection [31], [32].

Banicescu et al. [31] and Boulmier et al. [32] proposed and
evaluated the use of reinforcement learning (RL) algo-
rithms. Both approaches were tested for scheduling various
MPI applications [31], [32], in direct experiments with a sin-
gle application and a single system [31] or in simulation [32],
using the SimGrid-SMPI [33] simulator.

The main methodological difference between the present
and prior work [31], [32], [34] is the usage of an expert-based
scheduling algorithm selection in OpenMP. The advantage
of an expert-based selection approach is considering previ-
ous knowledge and expertise about the load balancing
capabilities of the scheduling algorithms in solving the algo-
rithm selection problem.

The above approaches [31], [32], [34] tested the selection
methods only with simulation, synthetic applications, or
single application-system configurations. In contrast, in this
work, we evaluate the proposed selection methods via
native experiments considering five scientific applications
and three shared-memory systems.

Zhang et al. [27] targeted OpenMP applications executing
on SMPs and organize the threads on two levels: physical
cores and hyperthreads within a physical core. They pro-
posed three empirical methods for the selection of the ideal
number of threads and scheduling algorithms from a set
that includes five scheduling algorithms. With each empiri-
cal method, once a scheduling algorithm is selected during
execution, it will persist until execution completes. In the
present work, the selection of scheduling algorithms
dynamically adapts to performance variation during the
execution of an application. Our approach does not require
any pre-computed information, and the information col-
lected during execution only consists of thread execution
times, with negligible overhead.

Thoman et al. [35] proposed a selection method using
polyhedral model [36] which takes into account compiler
analysis and a load-aware runtime system to select the high-
est performing scheduling algorithm only among the
OpenMP standard-compliant algorithms. Their approach
requires certain information (compiler analysis) to be col-
lected prior to the execution. Auto4OMP selection methods
do not require any information to be collected prior to the
execution.

Sreenivasan et al. [28] proposed a framework for identify-
ing the highest performing scheduling algorithm inOpenMP
loops considering static or dynamic, and chunk parame-
ter values: 1, 8, or 16 iterations for a given application-loop-
system combination. Their framework automatically gener-
ates multiple instances of the same applications with differ-
ent schedule(kind,chunk) clauses and number of
threads configuration. The selection is then conducted offline
through exhaustive experimentation of the automatically
generated instances of the application. Our approach does
not need offline experimentation as the algorithm selection
process is dynamic and adaptive during the execution.

Mohammed et al. [30] proposed a simulation-assisted
selection of scheduling algorithms for MPI applications dur-
ing execution. They used simulation, with SimGrid [33], to
predict a loop’ performance with different scheduling

algorithms before it was executed, and selected the schedul-
ing algorithm that the simulation predicted would achieve
the highest performance. In their approach, the simulator
required significant amounts of information, such as the
number of floating-point operations of each loop iteration,
to be available before the execution. Our approach employs
direct execution and requires no prior information as input.

All these approaches [27], [28], [30], [31], [32], [34], [35]
either require user intervention for (semi-automated) pre-
processing, information from hardware counters, or are not
fully adaptive during execution to react to performance var-
iability during execution. In contrast, Auto4OMP is fully
dynamic and adaptive, offered as a lightweight solution for
automated scheduling algorithm selection for OpenMP
applications with parallel loops.

3 AUTO4OMP DESIGN AND IMPLEMENTATION

Auto4OMP is designed to address the scheduling algorithm
selection problem for OpenMP applications. It leverages the
existence of auto as a scheduling option in OpenMP and
extends its implementation in LB4OMP [1], an extended
LLVM OpenMP runtime library.

3.1 Expert Chunk Parameter

The chunk parameter was introduced in the OpenMP stan-
dard to minimize the scheduling overhead and to improve
data locality. Nevertheless, the use of the chunk parameter
bears different meanings among scheduling algorithms. For
schedule(static,chunk) and schedule (dynamic,

chunk), the chunk parameter denotes the amount of iter-
ations that the threads receive per work request. For the
other algorithms, the chunk parameter works as a thresh-
old, such that when the chunk sizes calculated by a sched-
uling algorithm fall below this threshold, they are simply
given the value of the chunk parameter. The rationale is
to reduce the overhead of assigning very small chunk sizes
to threads. Therefore, declaring a proper chunk parameter
is expected to improve performance as threads require
fewer scheduling rounds to complete a loop than without
this threshold.

The chunk parameter leading to the highest perfor-
mance for a given loop is a choice between an empirical
observation based on extensive experimentation and an
expert choice. To illustrate the impact of the chunk parame-
ter choice, Fig. 1 shows the execution time of loop L1 from
SPHYNX (a hydrodynamics simulation code) [37] on a min-
iHPC-Broadwell node (see Section 4 for more details) sched-
uled with the standard OpenMP scheduling algorithms,
STATIC, SS=dynamic, and GSS=guided, with decreasing
chunk parameter values in the interval ½N=ð2P Þ; ::; 1� loop
iterations, where N ¼ 1; 000; 000 denotes the number of
loop iterations and P ¼ 20 the number of OpenMP threads.
We see that the performance follows a bathtub curve, with
the chunk parameter value leading to highest performance,
regardless of scheduling kind, around the middle of the
interval, namely at 48 loop iterations in this example.

We examined the performance of several applications by
varying the chunk parameter value, the scheduling algo-
rithms, loops, and computing systems. Similar performance
was observed in experiments with other applications [1],

MOHAMMED ETAL.: AUTOMATED SCHEDULING ALGORITHM SELECTION AND CHUNK PARAMETER CALCULATION IN OPENMP 4385

the results of which can be found online.3 These experi-
ments led to identifying the expert chunk, derived as
Eq. (1), as a practical value that improves performance in a
large majority cases. The expert chunk parameter is a
practical method that uses the golden ratio f ¼ 1:618 [38] in
the interval ½N=ð2P Þ; :::; 1� (see Eq. (1) and Fig. 1) to arrive at
a chunk parameter value that leads to high performance,
using onlyN , P , and f.

chunk expert ¼
j

N
2f�2P

k
; where f ¼

j
log2

N
P

� �� 1
f

k
(1)

3.2 Auto4OMP Portfolio

We define three inclusion characteristics for scheduling
algorithms to build a portfolio of scheduling algorithms for
Auto4OMP. Selection methods in Auto4OMP use this port-
folio (a subset of scheduling algorithms in LB4OMP) to help
reduce the search space and selection cost.

C1. A scheduling algorithm should not require user input or
profiling information prior to loop execution. The rationale is
that Auto4OMP should work seamlessly and should not
require any effort from the user or additional input, similar
to OpenMP standard’s schedule(auto).

C2. A scheduling algorithm should use lightweight synchroni-
zationmechanisms to reduce the scheduling overhead.The rationale
is to avoid experimentation with inefficient synchronization
implementations, which degrade overall performance.

C3. A scheduling algorithm can adapt its decisions during any
time-step but should not require further time-steps to adapt an
application’s performance.The rationale is that Auto4OMP exam-
ines each loop’s performance at the end of every time-step to
update the algorithm selection. Therefore, a scheduling algo-
rithm that requires more than a single time-step to adapt the
scheduling of that loop is not be suitable for a portfolio targeted
for automatic selection of scheduling algorithms.

To build the Auto4OMP portfolio, we apply the three
inclusion characteristics to the 21 scheduling algorithms
from LB4OMP [1], which comprises 15 dynamic and adap-
tive scheduling algorithms: FSC, FAC, mFAC, FAC2, mFAC2,
WF2, TAP, BOLD, AWF, AWF-B, AWF-C, AWF-D, AWF-E, AF,
mAF, the 3 scheduling algorithms in the OpenMP standard:
STATIC or static, self-scheduling (SS) or dynamic, and

guided self-scheduling (GSS) or guided, as well as 2 algo-
rithms that are not specified in the OpenMP standard: trape-
zoidal self-scheduling (TSS) and Static Steal. We also
consider schedule(auto) from LLVM’s OpenMP run-
time library, which defaults to guided_analytical_-

chunked (GAC), which is a variation of GSS.
From these 21 scheduling algorithms, we include 12 in

Auto4OMP’s portfolio, according to the three inclusion cri-
teria. The 12 scheduling algorithms are ordered in increasing
order of their scheduling overhead and load balancing
capacity: 4

STATIC, SS, GSS, GAC, TSS, Static Steal,
mFAC2, AWF-B, AWF-C, AWF-D, AWF-E, and mAF.
Auto4OMP employs by default the expert chunk parame-
ter for each algorithm selected from its portfolio, unless the
user overrides this option (clarification in Section 3.4.1).

3.3 Automated Selection Methods

3.3.1 RandomSel

This method selects a scheduling algorithm in a random
fashion, without searching for the highest performing
option. RandomSel , illustrated in Fig. 2, defines the jump
probability Pj, indicating the probability to change the
selected scheduling algorithm in the interval DLS0 =
STATIC and DLSn = mAF. Upon each loop execution
instance (time-step), RandomSel randomly generates a
number RND, between 0 and 1. If Pj is higher than RND, a
scheduling algorithm will randomly be selected from the
Auto4OMP portfolio. Otherwise, the currently selected
scheduling algorithm will be kept. Pj is calculated as
LIB/10, where LIB denotes the percent load imbalance
metric [39] calculated as in Eq. (2), and 10 is an arbitrary
constant. Therefore, if the current LIB is greater than 10%,
RandomSel is guaranteed to select a new scheduling algo-
rithm. LIB ¼ 10 was empirically found to be a suitable
threshold to represent high load imbalance as observed in
loop executions, where possible load balancing perfor-
mance gains surpass the cost of changing the scheduling
algorithm.

LIB ¼ 1� mean of thread finishing times

max of thread finishing times

� �
� 100:

(2)

RandomSel has the advantage of directly selecting a
scheduling algorithm without the need for trying several

Fig. 1. Performance of SPHYNX ’s L1 loop on a miniHPC-Broadwell
node without hyperthreading (see Table 2). Using the golden ratio
(Eq. (1)), the expert chunk parameter is 48 iterations.

Fig. 2. RandomSel scheduling algorithm selection method. RandomSel
randomly selects a new scheduling algorithm if Pj is greater than RND.

3. https://doi.org/10.5281/zenodo.6309015

4. Scheduling overhead and scheduling capacity of scheduling algo-
rithms can be inferred from their derivation, implementation, and per-
formance benchmarking. STATIC has the lowest overhead and load
balancing capacity while mAF represents the other extreme.

4386 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

https://doi.org/10.5281/zenodo.6309015

algorithms before making a selection. The disadvantage is
that the random selection may result in poor performance
and high LIB. Thanks to Pj, a poorly performing schedul-
ing algorithm will be changed in the next loop execution
instance.

3.3.2 ExhaustiveSel

This method conducts an exhaustive search, i.e., trying all
algorithms in the Auto4OMP portfolio, one algorithm per
time-step, before selecting the algorithm that achieves the
shortest loop execution time (see Fig. 3, where DLS0=
STATIC andDLSn = mAF). This comes at the cost of a number
of trials (over time-steps) proportional to the length of the
Auto4OMP portfolio. ExhaustiveSel does not repeat the
same loop time-step with all scheduling algorithms in the
Auto4OMP portfolio. Instead, it changes the selected sched-
uling algorithm each time the loop is executed and keeps a
record of the shortest execution time and the corresponding
selected algorithm. This way, trials of various scheduling
algorithms progress application execution. After testing all
algorithms in Auto4OMPportfolio, ExhaustiveSel selects
the one that achieved the shortest execution time. Exhaus-
tiveSel has the advantage of finding the highest perform-
ing scheduling algorithm for a loop. The caveat is comparing
the loop execution times of different scheduling algorithms
over different time-steps, i.e., comparing a loop’s execution
time with STATIC at time-step 0 with the loop’s execution
time with SS at time-step 1. If the loop execution time varies
greatly across time-steps, this may lead to sub-optimal
selection.

Once selected, the scheduling algorithm that achieved the
shortest loop execution time is employed for scheduling the
loop iterations over the remaining time-steps. The LIB (see
Eq. (2)) keeps being calculated after every loop execution
instance. If the loop execution becomes highly imbalanced
with the selected scheduling algorithm, the exhaustive
search is re-triggered to select amore suitable algorithm.

3.3.3 ExpertSel

This method directly selects a suitable scheduling algorithm
per loop execution instance, like RandomSel . In contrast to
RandomSel , ExpertSel uses fuzzy logic [40] and expert
rules to make this selection. ExpertSel benefits from per-
formance information collected during execution to make
an expert-based selection of scheduling algorithms.

In ExpertSel , the first instance of the loop is executed
with STATIC to collect initial information, i.e., loop execu-
tion time (Tpar) and load imbalance (LIB). Two fuzzy sys-
tems are designed and illustrated in Fig. 4. The first one is

used on the second execution instance to select, based on the
initial Tpar and LIB, an initial scheduling algorithm. The sec-
ond one is used in later execution instances when the change
of loop execution time (DTpar) and load imbalance (DLIB)
can be calculated, using the difference between Tpar and LIB
values on the current and previous time-step, respectively.

Fuzzy logic has the advantage of reducing the complex-
ity of problems that deal with uncertainties. It provides a
simple approach to formulate expert knowledge as a set of
rules, that help decide on actions based on uncertain (non-
crisp) inputs. The selection process using fuzzy logic [41]
includes three steps: 1. Fuzzification; 2. Evaluation of expert
rules; and 3. Defuzzification.

Fuzzification: It is the process of classifying the input or
output according to its value. Fuzzification encapsulates the
uncertainty of the absolute “crisp” values and gives them a
meaning that can be later used to reason about in the expert
rules. The inputs are classified according to membership
functions (see Fig. 5). Based on its value, the input is assigned
a membership value for each membership function of that
input. For example, an LIB value of 1:5% would be consid-
ered 0.5 Low and 0.5 Moderate load imbalance. The trape-
zoidal shapes are commonly used for the membership
functions as they simplify calculations of fuzzification/
defuzzification and represent the overlap (uncertainty) of
crisp to fuzzy conversion. Values used to define themember-
ship functions were defined based on our expertise andwere
tuned during the design of the fuzzy system together with
the fuzzy rules such that ExpertSel reacts to load imbal-
ance and loop execution time changes adequately. As such,
ExpertSel encodes our scheduling expertise to enable
OpenMP of automated scheduling algorithm selection.

Expert Rules: These are rules that represent how an expert
would select an output given certain inputs. These rules use
the fuzzy inputs and outputs, i.e., the membership values.
The evaluation of each rule gives a truth value per rule.
Expert rules use the fuzzy operators (and and or) to com-
bine inputs and calculate the output truth value. The fuzzy
operators, and and or, are equivalent to MIN and MAX,
respectively. We evaluate the rules using MIN-MAX, i.e., we
combine the membership values of the inputs using the MIN
operator to calculate the truth value of each rule (inference
step). Then, all truth values of a single fuzzy output are
combined using MAX operator (composition step).

Table 1 shows the expert rules to select a scheduling
algorithm for a loop at the beginning of the execution. The
rule at the top leftmost green cell of the table is translated to
“If Tpar is Shortand LIB is Low, thenDLS is Simple”.

Fig. 3. ExhaustiveSel scheduling algorithm selection method.
ExhaustiveSel visits all the scheduling algorithms in the Auto4OMP
portfolio, one algorithm per time-step. Then, it selects the scheduling
algorithms that resulted in the shortest loop execution time.

Fig. 4. ExpertSel scheduling algorithm selection method. The top
fuzzy system selects a suitable initial scheduling algorithm, while the bot-
tom fuzzy system decides how to change the selected scheduling algo-
rithm based on Tpar and LIB and their variations DTpar and DLIB.

MOHAMMED ETAL.: AUTOMATED SCHEDULING ALGORITHM SELECTION AND CHUNK PARAMETER CALCULATION IN OPENMP 4387

The rules for intelligent subsequent changes of the sched-
uling algorithm selection are shown in Algorithm 1. These
rules depend on four inputs, compared to just two as those
in Table 1.

Defuzzification: It is the process of converting the output
membership values to a “crisp” output again to select a
scheduling algorithm [42]. We use Centroid [43], the most
common defuzzification method, to calculate the center of

gravity of the membership functions for the output fuzzy
membership values. After combining the rules and deter-
mining the output membership value in each fuzzy set, the
membership functions are cut at their membership values.
Then, the areas under the trapezoids (membership func-
tions) are calculated by integration. These areas are normal-
ized to identify the contribution of each fuzzy set in the
output. The normalized areas are thenmultiplied by the cen-
ter of their respective membership functions and are
summed together to obtain a crisp output.

3.4 Implementation

The three main functions: init, next, finish, are responsi-
ble for scheduling loop iterations, in the file kmp_dis-

patch.cpp, as illustrated in Fig. 6.
Upon OpenMP parallel loop initialization, each thread

calls the __kmp_dispatch_init_algorithm function
(init in Fig. 6) inside the kmp_dispatch.cpp file. This
function initializes the structures needed for the selected
scheduling algorithm and calls __kmp_dispatch_nex-

t_algorithm (next in Fig. 6). Most code changes related
to Auto4OMP are in the init function to change the chunk
parameter or the selected scheduling algorithm.

The logic of the chunk calculation of all DLS algorithms
is in the __kmp_dispatch_next_algorithm function,
which is called every time a thread attempts to obtain work.
Finally, the threads call __kmp_dispatch_finish (finish
in Fig. 6) to reset variables or free allocated memory.

3.4.1 Expert chunk parameter

The expert chunk parameter is controlled by the newly
introduced environment variable KMP_Expert_Chunk. A
newly implemented function, expertChunk, calculates the
expert chunk parameter (using Eq. (1)) and sets it for this
loop if the variable is set to 1. The expertChunk is called
from the init function before initializing the selected sched-
uling algorithm. If automated scheduling algorithm selection

Fig. 5. Fuzzy membership functions for inputs and outputs used for the
fuzzification process of ExpertSel .

TABLE 1
Expert Rules for Algorithm Selection for a Loop

Fig. 6. Loop scheduling workflow of the standard LLVM OpenMP RTL
augmented with Auto4OMP.

4388 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

is active, then the expert chunk parameter is also set by
default. The user can override this behavior by explicitly
exporting KMP_Expert_Chunk=0 when using automated
scheduling algorithm selection. However, disabling the
expert chunk will influence the selection methods, in ways
that deserve further study and are planned as futurework.

3.4.2 Loop Information

It is crucial to save certain information about the loop across
its execution instances, since an application usually contains
many loops that are executed many times (mostly as time-
steps). Therefore, we use a hash-map data structure to hold
loop information, such as current selected scheduling algo-
rithm, previous scheduling algorithm, number of search tri-
als, chunk parameter value, current loop execution time,
and previous loop execution time. Whenever a loop is
encountered for the first time, the data structure is created
and initialized by the init function, if the automated
scheduling selection is activated.

3.4.3 Activation of Automated Selection

auto is already a valid scheduling option for OpenMP’s
schedule clause and can be exported using the OMP_-

SCHEDULE environment variable. To distinguish between
the three proposed automated selection methods: Random-
Sel , ExhaustiveSel , and ExpertSel , we also read an
additional parameter when setting OMP_SCHEDULE=auto,
method.

The method parameter is used to select one of the auto-
mated selection methods above, i.e., setting OMP_SCHEDULE

to auto,2 selects RandomSel , whereas auto,1 selects
GAC scheduling (the original LLVM OpenMP runtime
implementation). If the method parameter does not map to
a valid selection method, i.e., outside the range 2� 4,
Auto4OMP defaults to LLVM’s auto scheduling, GAC.

Upon the selection of a valid automated selection option,
the automated selection is activated, which: (1) Enables spe-
cial timers to measure loop execution time and load imbal-
ance (see below). (2) Initializes the loop information data
structure whenever encountering a new loop; (3) Begins the
search of the highest performing scheduling algorithm for
this loop; (4) Enables the expert chunk parameter and

sets it by default. Steps (2) and (3) are only performed by
the first thread to avoid data races.

3.4.4 Timing and Re-Trigger

Timers are placed around the loop region, which starts in
the init and ends in the finish functions in Fig. 6, to esti-
mate loop execution time Tpar. The timers use lightweight
timing calls to read the time stamp register (rdtscp) and
divide it by the CPU frequency read from system informa-
tion to estimate the execution time. Also, the finishing time
of each thread is measured to calculate the load imbalance
LIB of the loop execution (see Eq. (2)). Tpar and LIB are
recorded in the loop information structure in the finish

function of the loop.
If the LIB is higher than the previous execution instance,

by a certain threshold, i.e., 10% in the current implementa-
tion, the automated search for the highest performing
scheduling algorithm is re-triggered again for Exhausti-

veSel .

4 PERFORMANCE EVALUATION

We designed a set of performance evaluation experiments
(a total of 20700), described in Table 2, to test the following
hypotheses:

H.1 Auto4OMP achieves high performance and provides
the smallest variation of performance across application-
system pairs.
H.2 Auto4OMP adapts to the various scheduling needs of
applications when they execute on different systems.
H.3 The use of the expert chunk parameter improves
application performance at no additional cost.
H.4 Auto4OMP adapts to the various scheduling needs of
applications across time-steps for each loop to achieve high
performance.
H.5 Auto4OMP adapts to the various scheduling needs of
applications’ various loops within a single time-step (and
across time-steps).
H.6 Reducing OpenMP thread-level load imbalance
improves overall performance of hybrid process+thread
parallel applications (MPI+OpenMP).

TABLE 2
Design of Factorial Experiments for the Performance Evaluation of Auto4OMP

� Selects a scheduling algorithm among: {STATIC, SS, GSS, TSS, Static Steal, FAC2, mFAC2, AWF, AWF-B, AWF-C, AWF-D, AWF-E, AF, mAF, GAC.
�� Selects a scheduling algorithm from Auto4OMP’s portfolio: {STATIC, SS, GSS, GAC, TSS, Static Steal, mFAC2, AWF-B, AWF-C, AWF-D, AWF-E,
mAF}. Employs the expert chunk for the selected scheduling algorithm.

MOHAMMED ETAL.: AUTOMATED SCHEDULING ALGORITHM SELECTION AND CHUNK PARAMETER CALCULATION IN OPENMP 4389

The performance experiments are conducted on five parallel
applications selected to cover five different scientific
domains: ALYA [15] (computational mechanics, multiphy-
sics), GROMACS [16] (molecular dynamics), Mandelbrot
[17] (mathematics), SPEC OMP 2012 352.nab [18] (molecular
modeling), and SPHYNX [19] (astrophysics). These applica-
tions comprise numerous OpenMP parallel loops (see
Table 2). To decide which loops to modify, we used the pro-
filing functionality in LB4OMP [1] to identify the most
time-consuming and load imbalanced loops of the applica-
tions. GROMACS is an exception from this selection as we
intentionally chose a strongly memory-bound and well load
balanced loop to show the possible overhead of using the
selection methods proposed here. Dynamic scheduling natu-
rally raises locality issues for memory-bound loops similar to
the selected loop in GROMACS. This poses an extra challenge
to the selection methods proposed here. The applications
were executed on three multicore systems: miniHPC-Broad-
well, Piz Daint-Haswell, and miniHPC-Cascade-Lake. All
applications and Auto4OMP were compiled with the Intel
compiler version 19.0.1.144.

Each experiment was repeated 5 times. We collected the
execution time of every modified loop (latest finishing
thread), and the total execution of the applications. We
denote with T the number of time-steps, with L the number
of loops where we modified the schedule clause, and with
T ol the time spent by the application outside of loops.

4.1 Auto4OMP in OpenMP Applications

As comparison baseline, we use the ground truth (Oracle)
understood as the calculated highest achievable perfor-
mance by a perfect selection of the highest performing
scheduling algorithm (with or without expert chunk) for
each loop, time-step, application, and system. Oracle can
only be determined posthoc by assessing the performance
of the application, loops, and time-steps executing on each
system individually with all scheduling algorithms.

Another selection method, ManualBest (Table 2), i.e.,
the manual selection of the highest performing scheduling
algorithms for each loop for an application-system pair.
ManualBest is only recognizable after all experiments are
completed and does not consider different scheduling algo-
rithms per time-step. ManualBest represents a user’s best
effort to improve an application’s performance by examin-
ing the performance of all available scheduling algorithms.
An exhaustive search over suitable chunk parameter values

would be infeasible for every scheduling algorithm, loop,
time-step, application, and system. For simplicity, Man-

ualBest only uses the default chunk parameter.
Performance plots of the full set of results can be found

online.5 Table 3 presents an overview of the performance
achieved in prior work, i.e., LLVM schedule(auto) (GAC),
ManualBest, and Static Steal (to include a non self-
schedulingmethod), versus the proposed selection algorithm
methods in Auto4OMP and SS with expert chunk to
show the advantage of expert chunk without automatic
algorithm selection. In Table 3, the percentages (%) represent
the performance degradation relative to Oracle (ideal selec-
tion). The color gradient highlights (column-wise) the perfor-
mance variation across different applications and systems
that each scheduling algorithm or selectionmethod achieved.
Columns with a wide range of red shades indicate that the
respective scheduling algorithm or selection method does not offer
high performance across different applications and systems.

ExhaustiveSel and ExpertSel incur the least perfor-
mance variability across all applications and systems, caus-
ing in the worst case 1:99% and 2:42% of performance
degradation compared to Oracle, both for SPEC OMP
2012 352.nab-Piz Daint-Haswell and miniHPC-Broadwell,
respectively.

SS with the proposed expert chunk parameter and
ManualBest incur moderate performance variability across
all application-system pairs, causing worst performance
degradation of 5:26% to GROMACS executing on Piz Daint-
Haswell, and 5:43% to SPHYNX on miniHPC-Broadwell,
respectively. GAC and RandomSel, exhibit up to 12% to 15%
performance degradation across different application-sys-
tem pairs. Static Steal, which employs work stealing to
balance the load across threads, shows high performance
variability (up to 52%) across considered application-system
pairs. However Static Steal provides high load balance
via work stealing, it incurs poor performance for certain
applications due to the high cost of load balancing (stealing)
surpassing its performance gain.

In general, Table 3 shows thatExpertSel andExhausti-

veSel consistently achieved performance close to Oracle in
most cases. In certain cases, e.g. with ALYA and SPHYNX,
ExpertSel and ExhaustiveSel outperform ManualBest,
which requires extensive offline experimentation. Overall, the

TABLE 3
H1. Comparison Prior Work (no or Manual Selection) and Auto4OMP in Terms of Performance Degradation (%) Relative to Oracle

ALYA did not execute on miniHPC-Broadwell and miniHPC-Cascade-Lake nodes (with and without linking with Auto4OMP). GROMACS and SPEC OMP
2012 352.nab do not scale with the given problem size to the higher core count of the miniHPC-Cascade-Lake node.
The color gradient in the cells highlights (column-wise) the incurred performance variation of each scheduling algorithm or selection method across different
applications and systems. Lower performance degradation, hence, lighter and fewer gradient shades, is better (e.g., ExpertSel).

5. https://doi.org/10.5281/zenodo.6309015

4390 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

https://doi.org/10.5281/zenodo.6309015

highest performance improvement of using Auto4OMP is
achieved by ExpertSelwith 0:5% performance degradation,

compared to 12:38% incurred by GAC (LLVM’s schedule

(auto) implementation) for SPHYNX on Piz Daint-Haswell,

which yields 11:88% performance gain by using ExpertSel .

These observations confirmH.1 for ExpertSel and Exhaus-

tiveSel . However, RandomSel shows high performance

variability across different application-system pairs due to

suboptimal selections as discussed below (see Section 4.3).
Examining the performance of GROMACS in Table 3,

one observes its high performance variability with Static

Steal and SS, expert chunk across miniHPC-Broadwell

and Piz Daint-Haswell nodes. Even though GROMACS per-

formance with SS, expert chunk is among the best on

miniHPC-Broadwell node, it is among the worst on Piz

Daint-Haswell node. Automated algorithm selection meth-

ods do not exhibit such high performance variability across

different nodes for the same application. Performance

variability of GROMACS on miniHPC-Broadwell and Piz

Daint-Haswell shows a case where the improvement of

performance of the same application requires different

scheduling algorithm across different systems as hypothe-

sized inH.2.
We take a closer look at the results for SPHYNX executed

on Piz Daint-Haswell and miniHPC-Cascade-Lake, to inves-
tigate hypotheses H.3, H.4, and H.5. SPHYNX shows high
sensitivity to different scheduling algorithms and selection
methods (see Table 3). Fig. 7 shows the results for SPHYNX
executing on Piz Daint-Haswell (top) and miniHPC-Cas-
cade-Lake (bottom).

The left side of Fig. 7 compares the performance of all
scheduling algorithms without and with the proposed
expert chunk and automatic algorithm selection methods
proposed in Auto4OMP relative to Oracle. The variation
of loop execution time across various scheduling techniques
(from 8,000 to �1; 750 seconds) shows the significance and
impact of selecting a suitable scheduling algorithm and a
chunk parameter.

The right side of Fig. 7 shows loop execution time per
execution instance (time-step).6 The different colors identify

Fig. 7. On the left, median of parallel execution time (s) for each modified loop in SPHYNX executing on node Piz Daint-Haswell (top) and node min-
iHPC-Cascade-Lake (bottom). Percentages (%) denote performance degradation relative to Oracle. On the right, scheduling algorithms selected
by the selection methods in Auto4OMP or by Oracle, per loop instance for SPHYNX’s loops L0 and L1. The height of each bar represents the exe-
cution time (s) of the selected scheduling algorithm for the given loop instance shown on the x-axis. The pie charts show the percentage (%) among
all selections that a scheduling algorithm was selected for a given loop. The average coefficient of variation (c.o.v.) among experiment repetitions for
executions on Piz Daint-Haswell and miniHPC-Cascade-Lake nodes are 0:42% and 0:66%, respectively.

6. SPHYNX L0 executes twice per time-step, hence it appears in
double the instances than L1.

MOHAMMED ETAL.: AUTOMATED SCHEDULING ALGORITHM SELECTION AND CHUNK PARAMETER CALCULATION IN OPENMP 4391

the scheduling algorithm selected for the respective time-
step by each selection method. ManualBest and GAC are
not included since they do not change the selected algo-
rithm across time-steps (e.g. left side of Fig. 7, node min-
iHPC-Cascade-Lake, shows that ManualBest considers
TSS for L0 and mAF for L1 in all time-steps on miniHPC-
Cascade-Lake). Selection changes in blue denotes the num-
ber of times a selection methods changes the scheduling
algorithm all time steps. The pie charts present the fre-
quency of which a given scheduling algorithm was selected.
Legend on the top right with blue font color indicates that
the scheduling algorithm uses the proposed expert chunk

parameter.
From the results on the left side of Fig. 7, we observe that

most scheduling algorithms achieved higher performance
with the proposed expert chunk parameter than with the
default chunk parameter, which validates H.3.

SS with the proposed expert chunk parameter achieved
the highest performance on most time-steps of all loops, out-
performing the highest performing option available in
LB4OMP (mAF and AF), by 2:93% and 5:39%, on Piz Daint-
Haswell and miniHPC-Cascade-Lake nodes, respectively.
ExpertSel achieved the highest performance among the
proposed automated selection methods, on both Piz Daint-
Haswell and miniHPC-Cascade-Lake nodes, being only
0:50% and 1:13%worse than Oracle, respectively. Exhaus-
tiveSel and ExpertSel show the highest adaptability/
portability achieving high performance on both systems.

Inspecting Oracle for L0, one observes that the highest
performing scheduling algorithm varies from one loop exe-
cution instance to another, as hypothesised with H.4 and
H.5. However, such variation of the highest performing
scheduling algorithm is insignificant to the application exe-
cution time due to the short execution time of L0.

A change in the application, system, or any of their char-
acteristics may render the Oracle selection invalid. The
only realistic, adaptable, and portable approach to achiev-
ing performance close or equal to Oracle is through the
automated selection of scheduling algorithms during
execution.

4.2 Auto4OMP in MPI+OpenMP Applications

We investigate H.6 by showing the impact of Auto4OMP on
the performance of SPHYNX simulating an Evrard collapse
over 200 time-steps using hybrid MPI+OpenMP paralleliza-
tion. We use 4 nodes of miniHPC-Broadwell with 1 MPI
rank and 20 OpenMP threads per node. The process-level
scheduling is STATIC, i.e., each MPI rank executes 1=4-th of
the loops iterations, 250,000. The thread-level scheduling is
performed with Auto4OMP’s three selection methods and
the expert chunk. Fig. 8 shows SPHYNX’s total execution
time per time-step (including L0 and L1). Algorithm names
in blue font color indicate the use of the expert chunk

parameter (48 iterations in this case).
One can observe in Fig. 8 that SS,48, ExhaustiveSel

and ExpertSel outperform STATIC by approximately 1:4s,
in every time-step. Cumulated over the entire application exe-
cution (200 time-steps), GAC, SS,expert chunk parame-

ter, RandomSel , ExhaustiveSel , and ExpertSel ,
outperform STATIC by 17:39%, 22:08%, 21:17%, 21:65%, and
21:22% respectively.

This experiment shows that thread-level load balancing
plays a significant role in improving the overall performance
of hybrid MPI+OpenMP applications, which validates H.6.
This observation is in agreement with existing work which
showed that improvements in load imbalance at one level of
parallelism (OpenMP thread in our case) propagate to
reduce load imbalance at other levels (MPI processes in our
case) [4], [5], [44].

4.3 Discussion

The increasing number of scheduling algorithms, options
for chunk parameter, and the sensitivity of applications
performance to such choices motivate the need for auto-
mated scheduling in OpenMP. The left side of Fig. 7 shows
such sensitivity of the SPHYNX application to the choices of
scheduling algorithm and chunk parameter.

Auto4OMP presents three scheduling algorithm selec-
tion methods, ranging from simple (RandomSel) to com-
plex (ExpertSel), which requires expert knowledge for its
design choices. Through the three automated scheduling
selection methods, we explored the effects of various selec-
tion criteria on the choice of the scheduling algorithm and
the achieved performance. For instance, RandomSel does
not consider any characteristics about the application or
scheduling algorithm during selection. This is reflected by
its relatively poor choices and performance, in most cases.
Another example, ExhaustiveSel, aims to minimize loop
execution times and the results confirm the efficiency of
such strategy in most cases.

ExpertSel employs fuzzy logic to encode existing
scheduling expertise to select suitable scheduling algorithm.
Distinct from other proposed automated selection methods,
ExpertSel considers both the loop execution time and load
imbalance for algorithm selection, together with their varia-
tion across execution instances. Many design choices for the
fuzzy systems of ExpertSel depend on our expert knowl-
edge and were also tuned during early experiments to reach
a suitable performance. ExpertSel also made the fewest
selection changes (in most cases) among the DLS algorithms
during execution as it directly selects the most appropriate
scheduling algorithm (compared to ExhaustiveSel) and
its balanced expert rules. ExpertSel consistently selects
high performance scheduling methods across all applica-
tions and systems considered herein, without further tuning
to various applications or systems characteristics.

Overall, the automated selection methods adapt to vari-
ous applications and systems at no cost from the user,
whilst ManualBest and Oracle require exhaustive offline

Fig. 8. SPHYNX execution time per time-step with 4 MPI ranks and 20
OpenMP threads/MPI rank on 4 miniHPC-Broadwell nodes.

4392 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

experimentation. Even if the Oracle combination of
scheduling algorithm choices would be possible to know
ahead of time, it would be impractical to pass the informa-
tion to the OpenMP runtime library during applications’
execution.

The execution of L0 of SPHYNX in Fig. 7 is of particular
interest due to loop L0 executing twice per time-step, one
very short instance of �20ms and another instance of �1s.
Automatically selecting the most suitable scheduling algo-
rithm for such short yet similar loops is challenging, and
ExhaustiveSel and ExpertSel outperformed other
selection methods and single scheduling algorithms. Due to
the particular selection criteria considered by the different
automated selection methods, the scheduling algorithm
selection and corresponding performance vary, and in cer-
tain cases greatly so.

The automatic choice of the expert chunk parameter
improved applications performance with no additional
cost. Certain scheduling algorithms dynamically (and some
adaptively) calculate a variable chunk size for each schedul-
ing round. Searching for the optimal chunk size per sched-
uling round as shown in other studies [45]) could be quite
costly. Auto4OMP does not need such fine grain search for
the optimal chunk size, since the selected scheduling algo-
rithm calculates a suitable chunk size per scheduling round.

This work makes a first step towards automated load bal-
ancing in OpenMP, opening many directions and motivat-
ing the need for further improvement of the automated
selection methods proposed herein.

5 CONCLUSION AND FUTURE WORK

This work introduced Auto4OMP designed to address the
scheduling algorithm selection problem in OpenMP applica-
tions. Auto4OMP employs a new expert chunk parameter
and three new scheduling algorithm selectionmethods: Ran-
domSel , ExhaustiveSel , and ExpertSel for OpenMP.
Auto4OMP’s performance was evaluated on five applica-
tions, executed on three multi-core architectures to test six
research hypotheses. Each hypothesis as well as Auto4OMP’s
impact on applications’ performance was analyzed and
discussed.

The experiments show that Auto4OMP improved perfor-
mance by up to 11% compared to LLVM’s schedule(auto)
implementation and outperformed manual selection.
The benefits of an automated selection of scheduling algo-
rithms go beyond OpenMP applications, as Auto4OMP also
improved the performance of a hybrid MPI+OpenMP appli-
cation, (SPHYNX running Evrard collapse) by up to 4% and
22% compared to using only GAC and STATIC as fixed
OpenMP schedules, respectively. By leveraging OpenMP’s
auto schedule kind Auto4OMP is a step towards automated
load balancing. Auto4OMP’s improvements can be in terms
of algorithm selection criteria and their relative priorities to
one another.

One of Auto4OMP’s limitation can be its applicability
only to time-stepping applications (and not single-sweep
problems). Another limitation is that the selection overhead
might slightly degrade performance for purely memory-
bound loops, where STATIC achieved the highest perfor-
mance as seen with GROMACS.

The extension of the automated selection approach
to process-level load balancing of MPI-only and MPI
+OpenMP hybrid applications is part of author’s ongoing
work. Expanding the automated load balancing features of
Auto4OMP to other OpenMP constructs and further experi-
mentation with Auto4OMP on other applications and sys-
tems is seen as an important part of futurework.

ACKNOWLEDGMENTS

The authors acknowledge access to Piz Daint at the Swiss
National Supercomputing Centre, Switzerland under the
PASC SPH-EXA’s share with the project ID c16.

REFERENCES

[1] J. H. M. Kornd€orfer, A. Eleliemy, A. Mohammed, and F. M.
Ciorba, “LB4OMP: A dynamic load balancing library for multi-
threaded applications,” IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 4, pp. 830–841, Apr. 2022.

[2] “Top500 list,” Accessed: Jun. 14, 2022. [Online]. Available:
https://top500.org/lists/top500/2022/06/

[3] K. Bergman et al., “Exascale computing study: Technology chal-
lenges in achieving exascale systems,” Defense Adv. Res. Projects
Agency Informat. Process. Techn. Office, vol. 15, 2008.

[4] D. B€ohme, M. Geimer, L. Arnold, F. Voigtlaender, and F. Wolf,
“Identifying the root causes of wait states in large-scale parallel
applications,” ACM Trans. Parallel Comput., vol. 3, no. 2, 2016,
Art. no. 11.

[5] A. Mohammed, A. Cavelan, F. M. Ciorba, R. M. Cabez�on, and I.
Banicescu, “Two-level dynamic load balancing for high perfor-
mance scientific applications,” in Proc. SIAM Conf. Parallel Process.
Sci. Comput., 2020, pp. 69–80.

[6] L. Dagum and R. Menon, “Openmp: An industry standard API
for shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5,
no. 1, pp. 46–55, Jan. 1998.

[7] F.M. Ciorba, C. Iwainsky, and P. Buder, “OpenMP loop scheduling
revisited: Making a case for more schedules,” in Proc. Int. Workshop
OpenMP, 2018, pp. 21–36.

[8] P. H. Penna et al., “A comprehensive performance evaluation of
the binLPT workload-aware loop scheduler,” Concurrency Compu-
tation: Pract. Experience, vol. 31, no. 18, 2019, Art. no. e5170.

[9] F. Kasielke, R. Tsc€uter, M. Velten, F. M. Ciorba, C. Iwainsky, and I.
Banicescu, “Exploring loop scheduling enhancements in OpenMP:
AnLLVMcase study,” inProc. 18th Int. Symp. Parallel Distrib. Comput.,
2019, pp. 131–138.

[10] J. R. Rice, “The algorithm selection problem,” in Advances in Com-
puters, Amsterdam, Netherlands: Elsevier, 1976, pp. 65–118.

[11] T. Harrison, K. Waite, and P. White, “Analysis by paralysis: The
pension purchase decision process,” Int. J. Bank Marketing, vol. 24,
pp. 5–23, 2006.

[12] O. A. R. Board, “OpenMP application programming interface
standard v.3.0,” Accessed: Apr. 7, 2021. [Online]. Available:
https://www.openmp.org/wp-content/uploads/spec30.pdf

[13] O. A. R. Board, “OpenMP application programming interface
standard v.5.0,” Accessed: Apr. 7, 2021. [Online]. Available:
https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf

[14] G. O. runtime library, Accessed: Apr. 7, 2021. [Online]. Available:
https://gcc.gnu.org/onlinedocs/libgomp/

[15] M. Vazquez et al., “Alya: Towards exascale for engineering simu-
lation codes,” 2014, arXiv:1404.4881.

[16] M. J. Abraham et al., “GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to
supercomputers,” Softw.X, vol. 1-2, pp. 19–25, 2015.

[17] B. B. Mandelbrot, “Fractal aspects of the iteration of z !L z (1-z)
for complex L and z,” J. Ann. New York Acad. Sci., vol. 357, no. 1,
pp. 249–259, 1980.

[18] M. S. M€uller et al., “SPEC OMP2012â€”an application benchmark
suite for parallel systems using OpenMP,” in Proc. Int. Workshop
OpenMP, 2012, pp. 223–236.

[19] R. M. Cabez�on, D. Garcia-Senz, and J. Figueira, “SPHYNX: An accu-
rate density-based SPH method for astrophysical applications,”
Astron. Astrophys., vol. 606, 2017, Art. no. A78.

MOHAMMED ETAL.: AUTOMATED SCHEDULING ALGORITHM SELECTION AND CHUNK PARAMETER CALCULATION IN OPENMP 4393

https://top500.org/lists/top500/2022/06/
https://www.openmp.org/wp-content/uploads/spec30.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://gcc.gnu.org/onlinedocs/libgomp/

[20] C. P. Kruskal and A. Weiss, “Allocating independent subtasks on
parallel processors,” IEEE Trans. Softw. Eng., vol. SE-11, no. 10,
pp. 1001–1016, Oct. 1985.

[21] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: A
method for scheduling parallel loops,” ACM J. Commun., vol. 35,
pp. 90–101, 1992.

[22] S. Lucco, “A dynamic scheduling method for irregular parallel
programs,” in Proc. ACM Conf. Program. Lang. Des. Implementation,
1992, pp. 200–211.

[23] S. FlynnHummel, J. Schmidt, R.N.Uma, and J.Wein, “Load-sharing
in heterogeneous systems via weighted factoring,” in Proc. Annu.
ACMSymp. Parallel AlgorithmsArchitectures, 1996, pp. 318–328.

[24] T. Hagerup, “Allocating independent tasks to parallel processors:
An experimental study,” J. Parallel Distrib. Comput., vol. 47,
pp. 185–197, 1997.

[25] I. Banicescu, V. Velusamy, and J. Devaprasad, “On the scalability
of dynamic scheduling scientific applications with adaptive
weighted factoring,” J. Cluster Comput., vol. 6, pp. 215–226, 2003.

[26] I. Banicescu and Z. Liu, “Adaptive factoring: A dynamic schedul-
ing method tuned to the rate of weight changes,” in Proc. High Per-
form. Comput. Symp., 2000, pp. 122–129.

[27] Y. Zhang, M. Voss, and E. Rogers, “Runtime empirical selection of
loop schedulers on hyperthreaded SMPs,” in Proc. 19th Int. Parallel
Distrib. Process. Symp., 2005, Art. no. 10.

[28] V. Sreenivasan, R. Javali, M. Hall, P. Balaprakash, T. R. Scogland,
and B. R. de Supinski, “A framework for enabling openmp
autotuning,” in International Workshop on OpenMP, New York, NY,
USA: Springer, 2019, pp. 50–60.

[29] A. Mohammed and F. M. Ciorba, “SiL: An approach for adjusting
applications to heterogeneous systems under perturbations,” in
Proc. Int. Workshop Algorithms Models Tools Parallel Comput. Hetero-
geneous Platforms, 24th Int. Eur. Conf. Parallel Distrib. Comput., 2018,
pp. 456–468.

[30] A. Mohammed and F. M. Ciorba, “SimAS: A simulation-assisted
approach for the algorithm selection problem of scheduling under
perturbations,” Concurrency Computation: Pract. Experience, vol. 32,
2020, Art. no. 5648.

[31] I. Banicescu, F. M. Ciorba, and S. Srivastava, Scalable Computing:
Theory and Practice. Hoboken, NJ, USA: Wiley, 2013, pp. 437–466.

[32] A. Boulmier, I. Banicescu, F. M. Ciorba, and N. Abdennadher, “An
autonomic approach for the selection of robust dynamic loop
scheduling techniques,” in Proc. 16th Int. Symp. Parallel Distrib.
Comput., 2017, pp. 9–17.

[33] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed appli-
cations and platforms,” J. Parallel Distrib. Comput., vol. 74, no. 10,
pp. 2899–2917, 2014.

[34] N. Sukhija, B. Malone, S. Srivastava, I. Banicescu, and F. M.
Ciorba, “Portfolio-based selection of robust dynamic loop sched-
uling algorithms using machine learning,” in Proc. 28th IEEE Int.
Parallel Distrib. Process. Symp. Workshops, 2014, pp. 1638–1647.

[35] P. Thoman, H. Jordan, S. Pellegrini, and T. Fahringer, “Automatic
openmp loop scheduling: A combined compiler and runtime
approach,” in International Workshop on OpenMP, New York, NY,
USA: Springer, 2012, pp. 88–101.

[36] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bas-
toul, “The polyhedral model is more widely applicable than you
think,” in Proc. Int. Conf. Compiler Construction, 2010, pp. 283–303.

[37] R. M. Cabez�on, “SPHYNX website,” Accessed: Oct. 20, 2019.
[Online]. Available: https://astro.physik.unibas.ch/en/people/
ruben-cabezon/sphynx/

[38] M. Livio, The Golden Ratio: The Story of Phi, The World’s Most Aston-
ishing Number. New York, NY, USA: Broadway Books, 2008.

[39] L. DeRose, B. Homer, and D. Johnson, “Detecting application load
imbalance on high end massively parallel systems,” in Proc. Eur.
Conf. Parallel Process., 2007, pp. 150–159.

[40] L. A. Zadeh, “Fuzzy Sets,” in Fuzzy Sets, Fuzzy Logic, and Fuzzy Sys-
tems: Selected Papers by Lotfi A Zadeh. Singapore: World Scientific,
1996, pp. 394–432.

[41] L. A. Zadeh, “Outline of a new approach to the analysis of com-
plex systems and decision processes,” IEEE Trans. Syst., Man,
Cybern., vol. SMC-3, no. 1, pp. 28–44, Jan. 1973.

[42] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic sys-
tems,” IEEE Trans. Fuzzy Syst., vol. 7, no. 6, pp. 643–658, Dec. 1999.

[43] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic. Hoboken, NJ,
USA: Prentice Hall, 1995.

[44] A. Eleliemy, A. Mohammed, and F. M. Ciorba, “Exploring the
relation between two levels of scheduling using a novel simula-
tion approach,” in Proc. 16th Int. Symp. Parallel Distrib. Comput.,
2017, Art. no. 8.

[45] J. D. Booth and P. Lane, “An adaptive self-scheduling loop sched-
uler,” 2020, arXiv:2007.07977.

Ali Mohammed received the doctoral degree from
the University of Basel, in 2020. He is a research
engineer with HPE’s HPC/AI EMEA Research Lab
(ERL), Switzerland. FromMarch 2020 to April 2021,
he was a postdoctoral researcher with the High-Per-
formance Computing Group, University of Basel,
Switzerland. His interests include data orchestra-
tion, scheduling, and performance simulation.

Jonas H. M€uller Kornd€orfer is currently working
toward thePhDdegreewith theDepartment ofMath-
ematics and Computer Science, University of Basel,
Switzerland. His main research interests include
load balancing, scheduling, and mapping of compu-
tation, and communication intensive applications.

Ahmed Eleliemy received the doctoral degree in
multilevel scheduling of computations on large-
scale parallel systems from the University of
Basel, in 2021. He is a postdoctoral researcher
with the High Performance Computing Group,
Department of Mathematics and Computer Sci-
ence, University of Basel, Switzerland.

Florina M. Ciorba is currently an associate profes-
sor of High Performance Computing with the Univer-
sity of Basel, Switzerland. Her research interests
include exploiting multilevel/hierarchical parallelism,
dynamic and adaptive load balancing and schedul-
ing, robustness, resilience, scalability, reproducibility,
and benchmarking.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

4394 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

https://astro.physik.unibas.ch/en/people/ruben-cabezon/sphynx/
https://astro.physik.unibas.ch/en/people/ruben-cabezon/sphynx/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

