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Abstract—RemoteDirectMemory Access (RDMA) iswidely used in High-PerformanceComputing (HPC)whilemaking inroads in

datacenters and accelerators. State-of-the-art RDMAengines typically do not endure page faults, therefore users are forced to pin their

buffers, which complicates the programmingmodel, limits thememory utilization, andmoves the pressure to theNetwork InterfaceCards

(NICs). In this article we introduce amechanism for handling dynamic page faults duringRDMA, namedPART, suitable for emerging

processors that also integrate theNetwork Interface. PART leverages the IOMMUalready present inmodern processors for translations.

PARTavoids the pinning overheads, allows any buffer to be used for communication, and enables overlapping page fault handlingwith serving

subsequent RDMA transfers.We implement and optimize PART for a cluster of ARMv8 coreswith tightly-coupled network interfaces.

Handling aminor page-fault of a small transfer at the destination takes approximately 38msecs, while there is no performance degradation

when running three full MPI applications in 16 nodes and 64 cores. Detailed breakdown uncovers the hardware and system software

components of this overhead andwas used to further optimize the system. A 4MBRDMA transfer performs 1.46x better over pinning.

Index Terms—Page fault, RDMA, IOMMU, MPI, low-power ARM processors, pinning avoidance
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1 INTRODUCTION

MODERN computing systems strive to eliminate the use
of the kernel path in processor communication [1], [2],

[3], [4], [5]. Kernel involvement induces high overheads due
to costly system calls and unwanted memory copies during
a transfer. As an alternative, user-level initiation of Remote
Direct Memory Access (RDMA) completely eliminates these
overheads, by implementing a transport in hardware, and
allowing users to bypass the operating system. Originally a
High-Performance Computing (HPC) technology, the
RDMA is widely used today in datacenters by a variety of
applications ranging from web-search [6], key-value stores
[7], neural networks [8] and accelerators.

User-level RDMA mandates the use of virtual addresses
when specifying the source and destination memory loca-
tions. These virtual addresses must be safely translated to
physical addresses by the RDMA subsystem in order to
access the memory of the communicating processes. Com-
mon state-of-the-art RDMA technologies register the address

mappings of pages that participate in communication in spe-
cial Memory Translation Tables (MTTs) in host memory and
copy the mappings into Network Interface Cards (NICs),
which become responsible for address translation (see Fig. 1).
To keep the mappings of registered pages consistent with
changes happening in the page table maintained by the OS,
pages are pinned so that their physical locations (frames) do not
change while the network accesses them [9], as shown in Fig. 1. Pin-
ning is undesirable for the following reasons:

1) Extensive use of pinning can hinder the memory uti-
lization [10] and is not compatible with some optimi-
zations of the OS (e.g., Transparent Huge Pages).

2) The applications are responsible to pin and unpin
their working set of communication buffers, render-
ing programming more difficult.

3) Pinning and unpinning pages requires system calls
that introduce overheads.

Earlier studies have measured the cost of pinning and
registering pages. Their results show that the overhead for
a single page can range from a few up to several tens of
microseconds, depending on the platform, when, today, an
RDMA transfer itself may complete in less than a microsec-
ond [11]. Applications that use RDMA for improved perfor-
mance wish to hide this start latency as much as possible. In
addition, modern NICs deploy large MTT caches in order
to serve many concurrent communication buffers. This
increases their cost and area footprint, while not necessarily
making them capable to capture the working set of the most
demanding workloads [3], [12]. The aforementioned state-
of-the-art approach hinders the resourcemanagement, scal-
ability and latency benefits of “Demand Paging”, because
communication pages have to always be resident in mem-
ory prior to actual access. Furthermore, these solutions typ-
ically maintain a secondary memory translation subsystem
(inMTTs andNIC cache) for communication buffers, which
increases cost and complexity.
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Several works use pre-pinned communication buffers [13],
[14]. In this approach data are copied to these communication
buffers prior to RDMA. Copying large amounts of data into
dedicated buffers incurs overhead for the CPU, may pollute
the cache, and also requires additional programming effort.

Our goal in this paper is to enable scalable RDMA with-
out the overheads incurred by memory page pinning, which
is achieved by supporting dynamic page faults. The main
observation is that in modern well-designed systems, page
swapping, and thus page faults, will be rare, regardless of pin-
ning the communication buffers or not. This holds especially
true for optimized HPC applications that keep their work-
ing set in main memory.

Following these insights, we propose and evaluate PART,
a system that does not pin the communication buffers. PART
leverages the RDMA transport layer, treating occasional
page faults similarly with other transmission errors that may
occur in a transfer. In a nutshell, PART first resolves the page
fault locally at the node that it occurs and subsequently re-
transmits the failing pages of the RDMA transfer. PART tar-
gets applications that their working set does not fit in mem-
ory, legacy applications that would require prohibitive
complexity to support RDMA by adding pin/unpin code
before/after the buffers are RDMAed, and mainly programs
with infrequent page faults (for performance).

PART does not pin pages before using them for RDMA;
effectively, users can use any virtual address of their processes
for communication. However, because buffers are not pinned,
a network access may generate a page fault; when this hap-
pens, a kernel module in PART is invoked, which resolves
the page fault, and re-uses the RDMA transport to replay
the failing segment of the transfer, as shown in Fig. 2.

PART re-uses the IOMMU that exists in modern servers
for network address translation purposes, instead of
deploying a separate memory-management system that
spans the Network Interface (NI) and the Operating System
(OS), as is the case for current NICs shown in Fig. 1. This
makes PART an attractive technology for next-generation
computing systems featuring a network interface that is
tightly-coupled with host and memory [15], [16].

Overall, the memory management proposed in PART is
simpler, as user programs do not have to explicitly manage
a scarce set of communication buffers; instead, any region
in the program’s virtual memory can be used for remote
memory operations. In addition, the hardware of the net-
work interface is much more efficient, as we re-purpose the
IOMMU, which already exists in modern systems, instead
of spending resources on an extra memory management
subsystem, as is the case with modern NICs.

Our contributions in this paper are the following:

� We propose PART, a system that handles the page
faults during RDMA thus removing the need to pin
buffers in memory.

� PART re-uses the IOMMU for address translation,
instead of relying on specialized NICs, and leverages
the RDMA resiliency capabilities to re-transmit
failed pages.

� We provide a detailed breakdown of PART ’s latency
in resolving network-induced page faults. In our
ARMv8 testbed, the latency of a small (single-page)
transfer incurring a network page fault is approxi-
mately 38 msecs, as detailed in Section 6. This
includes (and is dominated by) the time needed at
the host to wake up from an asynchronous page fault
and to resolve it.

� We propose two optimizations, 1) proactive paging
and 2) overlapping paging with replaying transfers.
This overlap provides up to 1.93x speedup com-
pared to no overlap (Section 6.1.2).

� We implement both the system software and hard-
ware components of PART for ARMv8 processor,
utilizing ARM’s SMMU for address translation.

� We evaluate the performance of the system and its
bottlenecks running three HPC applications in a
cluster of interconnected ARM processors, as well as
microbenchmarks, in which we vary the frequency
of page faults and discuss trade-offs and possible
optimizations. Our results show that PART performs
virtually as well as a system that avoids network
page faults.

The remainder of this paper is organized as follows. First,
in Section 2, we overview the related work. In Section 3 we
describe PART, our page fault handling mechanism. Sec-
tion 4 presents the implementation of PART in an ARM-
based platform, which exploits and re-uses ARM’s IOMMU
(SMMU). Then, in Section 5 we present a thorough latency
breakdown of PART, and introduce a number of optimiza-
tions. In Section 6, we use extensive microbenchmarks and
three real-HPC applications to evaluate PART and to come
up with a number of insightful take-aways. Finally, we con-
clude this work in Section 7.

2 RELATED WORK

RDMA promises to evade software processing overheads
during communication. However, because they cannot han-
dle page faults on demand, in hardware, common RDMA

Fig. 1. Pinning in traditional network interface cards (NICs). Pages are
pinned prior to the transfer, and the mappings are copied in separate
memory subsystem that spans the NIC and main memory.

Fig. 2. PART ’s general architecture. In PART, we do not pin pages, and
memory translations go through the IOMMU, and the page tables (PT) of
the user processes. Page faults are handled by re-transmitting failed
pages after a timeout, or explicit retransmit messages.
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technologies mandate that communication buffers are regis-
tered and pinned in memory [9], [17], [18].

An early study measured the pin-down overhead for
Myrinet networks as ð40þ 7 � nÞ msecs, where n is the num-
ber of pages [19]. The startup cost of 40 msecs is paid for the
system call and context switch, and 7msecs is the incremen-
tal cost per page. Later, in [20], the total cost of registering a
page was found to be approximately 30 msecs. This cost
stays constant for buffers up to 128KB, and is increased pro-
portionally with the buffer size afterwards. For comparison,
in our newer ARM-based platform, we measured the
latency of pinning a page at approximately 6 msecs. Out of
these 6 msecs, we found the startup cost of pinning a buffer
that is not in memory to be approx. 3 msecs.

In the past, special memory management techniques for
communication buffers have been proposed in order to hide
the latency of page registration and pinning. There is con-
siderable work to hide the corresponding overheads using a
shared pool of pre-pinned pages [9] [10]. Using pre-pinned
communication buffers (data are copied when needed) [13],
[14] increases the latency, the CPU overhead, the cache
thrashing overheads as well as the programming effort.
Lazy de-registration in [19] defers releasing pages anticipat-
ing future re-use. In [9], the authors propose to copy small
messages in pre-pinned buffers, whereas other studies pro-
pose to register the entire physical address space [21]. Com-
pared to these approaches, PART takes a completely
different approach, as it does not require the communica-
tion buffers to be pinned, thus PART (i) does not limit the
size of communication buffers, (ii) does not require special
runtimes to manage or share communication buffers, and
(iii) performs equally well or even better than previous
approaches.

Modern NICs try to help developers to hide the registra-
tion latency by offering larger translation caches. The
authors in [22] report that the MTT cache in the NIC of their
study has at most 2K entries. For 4KB pages, this cache can
keep translations for 8MB communication buffers. Cache
misses are served by the host MTT that maintains the trans-
lations of all pages. This operation takes time, since it goes
through the PCIe (approx. 500 nsecs one-way latency in
unloaded systems [23]). In high-speed networks, this drag-
ging path can induce a “slow receiver syndrome”, which
can cause and spread congestion throughout the network.
Large page sizes and modern NIC optimizations for contig-
uous physical memory may help even further in these direc-
tions [24]. Note that congestion spreading due to SMMU
TLB misses can also incur in PART , possibly not that exten-
sive because the path to memory is faster (no PCIe). A page
table walk involves accessing all the levels of the page table,
and in our system this overhead is approximately 600 ns.

A previous work, independent of ours, resolves network
page faults dynamically [25]. In a similar approach with us,
buffers are paged-in when the Host Channel Adapter
(HCA) needs them and pages them out when the OS
requests them. Therefore, there is no need to pin pages. As
noted in the paper, modern Mellanox InfiniBand NICs sup-
port many of these technologies, such as on-demand paging
(ODP) [26], [27]; recent advances in current InfiniBand verbs
allow registering the entire address space for ODP [28].
Next, we compare this scheme against ours.

� PART re-uses the IOMMU in order to have direct
access to processes’ page tables. In contrast, [25]
needs to explicitly bring-in and -out mappings, as
mandated by either the application or the OS.

� PART introduces and leverages the overlap of serv-
ing a page fault with transferring data in order to
achieve better performance.

� In this paper we implement proactive paging and
demonstrate its performance benefits, while [25]
only mentions it as a possible optimization.

� PART is implemented on a different platform than
[25] (ARM with FPGA-based NIC, versus x86 with
Mellanox-based NIC).

� The overhead of the mechanism in [25] for 4KB mes-
sages is approximately 220 msecs, due to the slow
NIC firmware. For comparison, albeit measurements
are on different platforms, PART resolves same-
sized page faults in approximately 38 msecs.

Reading the related literature, it seems there is no one-
solution-fits-all when it comes to when pinning should take
place: it depends on the application and the implementation
as well. However, pinning per transfer is a non-viable solu-
tion due to system call overheads. On the other hand, one-
time pinning, e.g., pinning a potentially large address space,
poses several performance challenges, such as hurting the
memory utilization. All these problems are completely
avoided when using PART. In [29], the authors find that
handling page faults dynamically, as we do in this paper,
but using ODP [28], is very expensive. However, our mech-
anism is one order of magnitude faster than the one in [29].

Although in our work we have enabled seamless page
table sharing between the CPU and the RDMA Engine
through ARM’s SMMU, there are several similar technolo-
gies which achieve the same goal. SVA (Share Virtual
Address) allows devices to have access to memory using
the same virtual address with the CPU. Intel-SVM (Share
Virtual Memory) allows CPU’s MMU and a device’s
IOMMU to share the page table [30]. Nvidia-UVA (Unify
Virtual Address) uses different page tables for GPU and
CPU. GPU-MMU mirrors CPU page table and allows
accessing the same data by having a copy of CPU’s DDR to
GPU’s HBM. ARM’s SVA (Share Virtual Address Space)
uses a SMMU instead of an IOMMU [31] –with the help of
the cache coherent interconnect (CCIX), coherence among
different devices and CPU can be achieved. Our scheme
complemented the ARM SMMU we used, because by itself
it did not support SVA.

3 PART : HANDLING RDMA PAGE FAULTS

When issuing RDMA operations, the users specify the
source and the destination node IDs as well as the source
and the destination virtual addresses. Virtual addresses are
used in RDMA for virtualization and protection purposes.
Effectively, when the communication buffers are not
pinned, a page fault might occur in:

� the source buffer
� the destination buffer
� both buffers
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In this section, we present how PART treats minor page
faults, either at source or destination. Minor page faults
occur when the page table does not contain a mapping to a
physical page, but can be resolved without involving I/O
(e.g., disk), in contrast to major page faults. They typically
occur when accessing a newly allocated buffer (due to ker-
nel’s Demand Paging [32]), or shared data that belong to a
different process.

The most common case for a page fault to occur during an
RDMA is at the destination buffer, because the source buffer
(containing the transfer data) will typically be written
(“touched”) prior to the transfer. On the other hand, a user
process may allocate a (receive) buffer which is uninitialized
when the RDMA starts writing data into it. Effectively, the
accesswill result in aminor page fault at the destination buffer.
Major page faults are outside of the scope of this work; none-
theless, PART is expected to handle major page faults during
RDMA in a similarmannerwithminor page faults.

Page faults at source can occur, among other reasons, due
to internal memory optimizations such as Transparent
Huge Pages (THP), which is enabled by default in some
Linux kernel distributions [33]. THP works quietly in the
background, substituting physically contiguous pages for
huge pages into a process’ address space [34], enabling all
benefits of huge pages such as less TLB misses.

Fig. 3 depicts the general flow of PART resolving a net-
work page fault. An RDMA memory access to the destina-
tion computing node reaches first the RDMA Engine, then
passes through the IOMMU (SMMU), and finally, if allowed
permission-wise, accesses the memory. A page fault will
occur when the targeted page is not resident in memory. In
this case, the IOMMUwill invoke a fault handler.

The first task of handling page faults is tomake sure that the
failed page is brought into the main memory, as long as it is
valid. In PART , we accomplish that in kernel-space, utilizing
the get_user_pages() and put_page() methods of the
kernel.1 The former essentially pins-in a range of pages, thus
bringing them also inmemory, and the latter unpins them.

3.1 Proactive Page-In

Once we encounter a page fault on an RDMA transfer, PART
can proactively page-in more than one page of the transfer. In

Section 6, we evaluate the performance of Page-in 1-Pg,
which pages in only the failed page,Page-in 4-Pgs, which pro-
actively pages-in four pages (i.e., 16 KB) and, finally, Page-in
All-Pgswhich pages-in all pages of an RDMA transfer, start-
ing from the failed one. If the size of the transfer is unknown,
the get_user_pages() kernel method can bring in unneces-
sary pages belonging to the process, outside of the transfer
scope. This may induce side effects, such as cache trashing,
but does not affect correctness.

3.2 Timely Page Retransmission

PART relies on the RDMA transport in order to replay
faulty pages. When a page fault occurs, the source RDMA
Engine will not receive a positive acknowledgment (ACK),
and will retransmit (in hardware) the failed block after a
time-out. The timeout of an RDMA Engine cannot be set to
be a meager value, because this can induce early timeouts
and duplicates. Thus, in a network with a few microseconds
end-to-end latency, the timeout may be set at 100 msecs or
more.

Retransmissions caused by failing packet Cyclic Redun-
dancy Check (CRC) do not have to wait for a long timeout,
but can be expedited using negative acknowledgments
(NACKs). PART does not rely on such NACKs generated
when a page fault occurs, because the re-transmission may
then arrive before we have paged-in the missing page(s). In
order to expedite the re-transmission, without relying on the
timeout value, PART sends an explicit re-transmission request
(ERR), after the pages are in memory, as shown in Fig. 2.

Note that if proactive page-in is enabled, the source may
resume a transfer (sending the failed and new segments)
after its timeout expires, while subsequent pages are still
paged-in. We discuss this overlap between transfer and
page-in in the following subsection.

3.3 Overlapping Paging-In With Data Transfer

Network page faults induce overheads to RDMA, both in
terms of host intervention and retransmissions. Page faults
are tolerable as long as they occur rarely. However, in
PART these overheads do not add up, since they can
overlap.

PART can service subsequent transactions (such as the
first replayed data), in parallel with handling additional
page faults from the same or different transfers. To enable
this, we use a Hit Under Previous Context Fault (HUPCF)
configuration of ARM’s SMMU, discussed in Section 4.3.

While the page faults are resolved, PART does not send
an ERR message. However, the source may timeout and
resume the transfer independently, starting from the miss-
ing pages, and continuing with new ones, which have also
been brought into memory by PART. Effectively, by the
time the source node sends the data of a page, the corre-
sponding pages will be in-memory even though they were
not initially there at the beginning of the transfer. In this
case, the transfer time can overlap with page-in time.

Let T ðnÞ denote the transfer latency of n number of
pages, GðnÞ the time of the PART to page-in n pages, and
TO the retransmission timeout period. Then the speedup
gained by the overlap, sðnÞ, can be approximated by the
following formula:

Fig. 3. PARTmechanism general flow.

1. Another way to accomplish that is to have a user-space thread,
linked with the user-process executable, be informed about the fault, so
that it touches (i.e., reading and then writing the first byte of) the failed
page; we preferred the kernel-based solution, because it avoids utmost
context switches, and also because it enables some optimizations, that
will be described later in the paper.
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sðnÞ ¼ GðnÞ þ T ðnÞ
max GðnÞ; TOþ T ðnÞð Þ : (1)

We schematically demonstrate the overlap between
transfer and page fault handling in Fig. 4. The figure depicts
an ideal case, wherein the retransmit overlaps completely
with the page-in task. In reality, the timing may not be exact:
either the retransmit or the process of paging can lag
behind; however, this does not compromise correctness.

For small transfers, ERR allows PART to timely retransmit
the failed page after the page fault has been resolved,without
having to wait for a typically longer timeout –see Section 5.2.
For larger transfers, however, the ERR alone, i.e., sending it
after resolving all page faults, does not permit the overlap.
Thus, for larger transfer, the no-time-out solution (i.e., ERR
alone) performsworse, as we discuss in Section 6.1.2.

We note that one could send the ERR before resolving all
page faults (or even before starting handling them in some
cases, e.g., for small transfers) in order to achieve a better
overlap without relying on the timeout. Profiling of when to
send the ERR based on the number of pages of a transfer or
the workload could be part of future work.

4 PART FOR ARM-BASED PLATFORMS

In this section, we present our implementation of PART in
an ARM-based platform. In our evaluation sections (Sec-
tions 5 and 6), we collect results using this implementation.

4.1 Testbed

The basic block of our testbed is the Quad-FPGA Daughter
Board (QFDB) [35], [36], providing 4 Zynq MPSoCs (F0-F3)
[37], interconnected through point-to-point 17 Gb/s links,
as shown in Fig. 5. Each QFDB additionally provides 10
10Gb/s links that are available through F0 for connections
with the outside world. Every MPSoC provides four
ARMv8 cores (A53), running at 1.2 GHz, additional Xilinx
IPs –IOMMU, L2 caches, Cache Coherent Interconnect
(CCI)– as well as a programmable logic (FPGA) part. Every
MPSoC also has access to 16GByte of private DDR4 mem-
ory. The cores are fully coherent with each other, whereas
the programmable logic can access memory through IO-
coherent ports. Our testbed consists of several QFDBs con-
nected in a Torus topology[35], [36]. The latency of each hop
in our prototype is approximately 150 nsecs, and the base
(min) latency of RDMA operations is around 4 msecs.

4.2 Reliable RDMA Transport Utilizing ARM’s SMMU

A custom network interface (NI) inside the FPGA part of the
MPSoC implements a packet-based network protocol for
inter-chip communication. Processes initiate RDMA (write
and read) transfers using virtual addresses, bypassing
completely the OS. The NI is highly virtualized, offering
multiple channels that can be allocated to concurrent user-
level processes or threads. The NI is connected with the CCI
and the main memory via an Advanced eXtensible Interface
(AXI) interconnect. In our measurements, the round-trip
time between an ARM processor and the NI is between 120
and 150 nsecs, which corresponds to the latency of a proces-
sor load command that reads a register inside the Program-
mable Logic.

Address Translation Using SMMU. Instead of using a spe-
cial subsystem, i.e., Memory Translation Table (MTT) buf-
fers at the host and translation buffers at the NIC, PART
makes use of the System Memory Management Unit
(SMMU) [37]. The SMMU is defined by ARM, but, opera-
tion-wise, is similar to other IOMMUs. Traditionally, the
SMMU is responsible to manage the memory requests from
I/O devices to the local memory of the system, but here we
re-purpose it for accesses coming from the network. Note
that a page fault requires invoking the kernel in order to be
handled, while a SMMU TLB miss can be handled by the
hardware Page Table Walker without any software (or OS)
intervention if the page is in memory.

When issuing RDMA operations, the users specify the
source and the destination node IDs (22-bits each) as well as
the source and the destination VAs, 42-bits each. In order to
identify the targeted process at end-points, and provide
protection, we deploy a special 16-bit protection domain iden-
tifier (PDID) on the RDMA channels and carried by network
packets, which are allocated to the processes by the OS.

The NI uses these {PDID, VA} tuples to access the mem-
ory of user-level processes. The PDID is used to uniquely
match incoming memory transactions to a particular struc-
ture of the SMMU, called context bank. Each context bank is
associated with the page table of a process.

Accesses to host memory coming from the NI pass
through the ARM’s SMMU, which translates virtual to
physical addresses, as described in more detail in the next
subsection. Next, the physical addresses are forwarded to
ARM’s Cache Coherent Interconnect (CCI) to fetch (on
read) or invalidate (on write) cached data inside the Level-1
and Level-2 caches. Effectively, we do not need to flush the
caches before triggering RDMA operations.

Fig. 4. Time flow of (a) sequential execution of page-in and (b) ideal exe-
cution, in which (proactive) page-in, and transfer, including the retrans-
mission of faulty page, overlap.

Fig. 5. PART’s building blocks: (left) Quad-FPGA Daughter Board
(QFDB) with 4 Zynq MPSoCs; (right) Each MPSoC provides 4 ARMv8
cores, 16GB DDR4 (connected with a parallel bus at 160 Gb/s), an
IOMMU, and a custom RDMA transport (NI) implemented in the FPGA.
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Reliable Transport. The NI offers a reliable transport,
based on end-to-end, block-level positive or negative
acknowledgments and retransmissions, allowing transfers
to complete in the presence of errors without any kernel or
software overhead. Unless otherwise noted, the block-level
retransmission timeout value is 1ms, but, in our evaluations,
we experiment with other values as well.

Part of the RDMA Engine is the R5 Real-Time co-proces-
sor available in the Zynq MPSoC. Its main task is to segment
messages into 16KB blocks (or transactions) and to issue
block transfers to the hardware engines. The hardware
engine further splits 16 KB transactions into 256 Byte pack-
ets. At the source, it reads packets’ payload from host mem-
ory starting from the source virtual address (VA). At the
destination, the RDMA Engine writes the packets’ payload
to host memory, through the SMMU, starting from the des-
tination VA.

For each correctly completed block, a positive ACK is
generated, which is routed to the R5 processor at the source.
The engine can also send a NACK, with special qualifiers
indicating whether a received packet was corrupted or if
the memory subsystem (e.g., the SMMU) returned a NACK
when accessing memory (e.g., because the page is not in
memory). Missing ACKs trigger timeouts and block-level
retransmissions. NACKs can also trigger retransmission,
depending on their qualifier. PART does not retransmit a
block upon receiving a page fault NACK generated by the
SMMU; instead, the source waits for the ERR, which is sent
after the faulty pages (with proactive paging) are in mem-
ory, or for the timeout in order to retransmit.

The hardware end-to-end latency (the latency of the net-
work including the RDMA engines that fetch data from
memory at the source and write data to destination mem-
ory) is below 1 msec; the R5 co-processor adds approxi-
mately 3 msecs for the initiation of the transfer.

End-to-End Flow Control. The source limits the number of
outstanding transactions for each transfer (2 blocks in our
implementation). Therefore, if an ACK is missing or a NACK
is received, the transfer can be suspended, until the ACK is
received (possibly after the block has been re transmitted).

4.3 ARM’s System Memory Management Unit

In this section, we present the internal operation of the
SMMU used, outlining its translation cache capabilities and
the page-walker. The SMMU includes Translation Looka-
side Buffers (TLBs) that keep the most recent address trans-
lations, without needing to perform a page table walk
(PTW). The SMMU embeds two levels of TLBs. The Level-1

TLB of the SMMU used in this work is a fully associative
cache and can support up to 128 entries, while the Level-2
TLB is a 4-way associative cache and can support up to 2K
entries, thus offering translation capabilities comparable
with that of modern NICs. The SMMU in our platform sup-
ports 256 outstanding transactions and up to 16 parallel
PTWs for every Level-2 TLB.

One difficulty in using a particular SMMU version for
network addresses is that the TLBs of the SMMU are not
coherent with the page table of the OS. For this reason, we
invalidate the SMMU’s TLB entries when the OS modifies
existing entries in the page table. The invalidation of the
SMMU TLB with an integrated SoC is likely to be compara-
ble to invalidating a CPU core TLB. For applications that fit
in memory and reuse buffers, changes in the page table are
expected to be infrequent.

Due to this, in an adversarial scenario, the SMMU may
not find mappings in its caches because of unrelated mem-
ory management activities. However, these misses will be
resolved in hardware by the Page Table Walker, with up to
4 accesses to memory, without needing the help from the
application or from the operating system. Note that this is a
limitation of the current SMMU implementation in our
testbed and not an issue related to PART itself. A more fine-
grained approach is described in the specification of the
SMMU [38], which can be used for TLB invalidations.

In Fig. 6 we see the translation of an incoming transaction
({PDID, VA} tuple) passing through the SMMU. When a
mapping is not found in the TLBs, a PTW is triggered on the
process page table, which is maintained in DRAM. A PTW
performs a number of memory accesses that can degrade
the performance of a system.

In Fig. 7, we see an example of a PTW for a 48-bit virtual
address. As can be seen, the PTW completes after four mem-
ory accesses to the main memory. However, the PTW of the
SMMU incorporates extra caches that can speedup the
translation process by taking advantage of spatial and tem-
poral locality in memory accesses. For instance, the SMMU
maintains a cache of the contents of the Level-3 Page Table
(PT) as well as a pre-fetch buffer, reducing the number of
memory accesses. Note that our CPU effectively utilizes 39-
bit virtual addresses, and thus only three levels of transla-
tion are involved.

Hit Under Miss. ARM’s SMMU has a mode called Hit
Under Previous Context Fault (HUPCF), which enables the
device to process all upcoming transactions regardless of
other possible outstanding context faults (e.g., a page fault).

Fig. 6. Memory translations through ARM’s SMMU subsystem.
Fig. 7. A page table walk for a 48-bit address involves four different
memory accesses before reaching the Physical Page Number (PPN).
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4.4 Resolving a Page Fault in ARM-Based Platform

Fig. 8 depicts in more detail how PART handles a page fault.
The RDMA Engine tries to read or write data to local mem-
ory using ARM’s AXI memory interconnect. The corre-
sponding AXI write request has an Input/Output (IO)
virtual address which is translated by the SMMU before
accessing the local memory. As can be seen in Fig. 8, the
request generates a page fault, which triggers an interrupt
that is captured by the SMMU fault handler. In parallel, an
AXI NACK arrives at the local RDMA Engine, which logs in
a Network Interface FIFO Queue (NI FIFO) all the necessary
information needed in order to resolve the page fault and to
request from the sender later to replay the failed block.

In parallel, the page fault handler schedules a tasklet that
will resolve the page fault. In general, tasklets are preempt-
able and allow the interrupt handlers to be released sooner,
reducing the response time for other interrupts. The tasklet
starts by reading all entries in the NI FIFO, and identifies
unique pages that experienced page faults—a single page
may correspond to multiple failed AXI-write requests, and
thus to multiple AXI-NACKs registered in the NI FIFO. For
each unique failed page, the tasklet resolves the page fault
(s), using get_user_pages() and put_page(), as dis-
cussed previously in Section 3, and then triggers an ERR to
the sender.

In order to send the ERR to the initiator node, in our
implementation we utilize Netlink sockets [39] to communi-
cate the corresponding information from kernel space to a
userspace library. The userspace program then issues an
ERR message to the R5 co-processor of the source node, in
order to resume the transfer, by replaying first the faulty
pages.

In our implementation of PART, we selectively retransmit
only the block of the failed page. For networks that do not fea-
ture selective retransmissions, it may be beneficial to proac-
tively page-in all-pages upon the first page fault (or even
pre-touch the buffers, as discussed in Sections 3.1 and 6), in
order to avoidmultiple retransmissions of the entire transfer,
which can occur when multiple pages fail. We should note
that our FPGA-based RDMA supports selective retransmis-
sion of failed blocks, because of its rich capabilities in book-
keeping outstanding blocks of 16KB and their ordering.
More specifically, it utilizes a transaction identifier (id),
which uniquely identifies each transmitted 16KB block of a
transfer, and a sequence number, that upon a retransmission

is incremented; therefore, older packets (i.e., with smaller
ids) that arrive later in timewill be dropped.

5 PART : BREAKDOWN & OPTIMIZATIONS

In this section we evaluate PART using custom-made syn-
thetic microbenchmarks. Unless noted otherwise, every
experiment is repeated at least 5 times; some experiments,
with large variance in the measurements were repeated
many more times. We report the average of the individual
measurements.

5.1 Ideal Execution of an RDMA Transfer

In Fig. 9, we depict the latency of RDMA writes for different
message sizes. In this experiment, no page fault occurs when
we access memory from the network. With Transfer-Only, we
measure the user-perceived latency of PART, when all
pages are in memory.

For comparison, we also depict the user-perceived
latency when pages are pinned before the transfer, using
the mlock system call. We present two different scenarios
for pinning; one that includes the overhead of calling
mlock() for a buffer that pages are already in memory
(Pin-Pres-Pg(s)), and another that includes the overhead of
calling mlock() for a buffer that pages are not in memory
(Pin-NoPres-Pg(s)); in the latter case, pages are accessed for
the very first time when calling mlock(). Surprisingly, we
notice that when pages are already in memory the overhead
of pinning a buffer less than 16KB in size is higher com-
pared to when pages are not in memory. We suspect this
overhead is from the OS that may have to perform addi-
tional operations such as copying and moving data, but we
leave further investigation on this to future work. In the
case of Pin-NoPres-Pg(s), pinning adds 6 msecs for small
(< 4KB) transfers (10 versus 4 msecs), while in the case of
Pin-Pres-Pg(s), the corresponding overhead adds approxi-
mately 13 msecs to the total transfer time; this overhead
increases with the transfer size, i.e., with the number of
pages pinned, nearly doubling the latency of the operation.

Fig. 9 also depicts the overhead of touching pages instead
of pinning them. To account for this, we include in our
measurements the latency of the user process or the runtime
reading and writing the first byte from each page prior to
transfer. As with the case of pinning, pages can either be

Fig. 8. Handling an RDMA page fault at the destination when an RDMA
packet arrives.

Fig. 9. Latency of RDMA (no page fault); Two curves are on top of each
other: Transfer-Only and Transf. incl. Touch-Pres-Pg(s).
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not-present in memory, e.g., first access to a buffer (Touch-
NoPres), or they might already reside in memory (Touch-
Pres). The user/runtime cannot know the state of each page
without system calls. Thus, touching pre-faults the buffers
that are not resident in memory, without pinning them,
while invoking the kernel only on these (faulty) pages.

Touch-NoPres, similarly to Pin-NoPres-Pg(s), exhibits an
internal minor page fault on each page. As can be seen, for
small transfers the overhead of Touch-NoPres is less than
that of Pin-NoPres-Pg(s) (3 versus 6 msecs overhead), but the
latency of these methods converge for larger sizes. On the
other hand, the overhead of touching a page already in
memory is around 100 nsecs, thus Touch-Pres nearly over-
laps with Transfer-Only. However, for larger transfers, the
overhead is considerable, reaching approximately 20 msecs
and 152 msecs for 1MB and 4MB transfers, respectively, in
our measurements. Furthermore, we notice that Pin-Pres-Pg
(s) appears to be more expensive than almost all other cases
in all sizes (except 64KB) presented in Fig. 9.

The added latency of touching pages before RDMA
transfers becomes increasingly important in asynchronous
transfers, such as MPI_Isend. As discussed further in Sec-
tion 6.2.1, the touch operation can delay such asynchronous
calls and keep a CPU core busy for many 10s of msecs (in
large transfers), which is clearly undesired.

Take-Aways. 1. Pinning and touching pages not present in
memory become identical cost-wise when the buffer size
increases, because they are dominated by the cost of the
MMU page fault. 2. For small transfers up to 64KB, the cost
of touching pages already in memory (green line/triangles)
prior to each transfer is negligible, and thus could be used
together with PART ’s dynamic page fault support, in order
to avoid (but not necessarily eliminate) page faults during
RDMA transfers. 3. Pinning buffers repetitively (and unrea-
sonably) prior to RDMA is not efficient because of the sys-
tem call overhead. This cost will mostly be pronounced if
the buffer is in memory (Pin-Pres-Pg(s)). Compared to this, a
repetitive-touch strategy is better in terms of performance,
because there is no system call involved.

5.2 Overhead of Network-Induced Page Faults

Inevitably, a page fault during an RDMA transfer leads to
an overhead because it is handled by the operating system
that needs to update the page table. In Fig. 10, we present
the breakdown of latency of a 4KB RDMA write transfer
that experiences a minor page fault at the destination.

� The first 4 msecs is the latency that spans from the
time that the user issues the RDMA operation until
the first packet reaches the destination. The TLBs of
the SMMU will then experience a miss, and the PTW

will also fail, since the translation may not find a
valid entry in the page table.2

� The page fault then invokes the interrupt handler of the
SMMU (1msec in ourmeasurements), which schedules
the page-in tasklet that will resolve the page fault.

� The tasklet is the most time-consuming component
of our breakdown (19 msecs to resolve one transla-
tion fault): it reads the page fault information of all
entries from the NI FIFO (up to 16 read commands
in our setup) and pages-in the faulty pages.

The work of the tasklet mainly involves:
– Calling the method get_user_pages(), which

consumes approximately 8 msecs.
– Sending an explicit retransmission request (ERR)

from userspace in our design requires the use of
Netlink sockets, which transmits information from
kernelspace to userspace. The cost of the Netlink
socket part from kernelspace is approximately
7msecs.

– The remaining 4 msecs out of 19 msecs corre-
sponding to the page-in tasklet are due to other
operations in the tasklet, such as packing the
transfer meta-data that are communicated to the
userspace process through the Netlink socket.

� After bringing the pages in memory, we send an
ERR to the initiator, which adds approximately
1 msec latency. This is the cost as evaluated in user-
space upon the arrival of the message from kernel-
space through a Netlink socket.3

� Finally, retransmitting the missing page adds 6 msecs,
for a total latency of 31 msecs.

In Fig. 11, we measure the latency of small transfers that
incur a page fault at the destination. We examine two different
methods to trigger the retransmission: first using ERRs, named
Fast Re-Xmit in the figure, and, second, waiting for the source
RDMA Engine to time-out, named TOut in the figure. For the
time-out periods, we chose 100 msecs and 1 msec. The latter is
the typical value we use in our cluster in order to avoid early
retransmissions, whereas the former, is a more aggressive set-
ting, which is nearly 25 times higher than the base latency of an
RDMA transfer (nearly 4 msecs). Nevertheless, the 100msec
time-out is approximately 3 times greater than the time needed
to resolve a page fault, hence it puts a safeguard against early
retransmissions while PART is resolving a page fault. In any
case, our retransmission time-out settings are on par with those
examined in the literature for RDMAnetworks, e.g., in [40].

As can be seen in Fig. 11, using ERRs (Fast Re-Xmit) the
total latency of the 4KB RDMA transfer is approximately

Fig. 10. Breakdown of a 4KB RDMA transfer that exhibits a page fault (resolved by PART).

2. The breakdown does not include these operations, since they con-
tribute a few hundreds of nanoseconds to the overall latency.

3. This could also be done from kernelspace –subject to future work.
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38 msecs, i.e., 7 msecs higher than what we measured in our
breakdown. We believe that this discrepancy is mostly due
to OS costs such as context switches, the overhead of which
is not included in Fig. 10. In the cases of TOut, the latency is
dominated by the timeout period. In general, Fig. 11 shows
that the latency is similar for transfers up to 4KB, and that
ERR is much more efficient than waiting for the time-out.

Take-Aways. 1. For a 4KB page the most time-consuming
part of handling a page fault is to page-in the corresponding
page. 2. Systems that do not support ERR can rely on
RDMA timeouts, but with some overhead penalty when the
paging-in of pages is faster than the timeout period.

5.3 Proactively Paging Ahead Upon a Page Fault

In this section, we examine PART optimizations that pages-in
additional pages of a transfer upon a page fault in the first
page.

We examine three schemes:

1) Page-in One-Pg (PIO) stands for the default scheme,
when PART handles every page fault independently.

2) Page-in 4-Pgs (PI4) brings in all pages corresponding
to the block of a failed page. As mentioned in Sec-
tion 4, our RDMA Engine splits every transfer into
blocks of 16KB (4 pages of 4KB), and selectively re-
transmits the failing blocks. Therefore, PI4 strives to
avoid multiple retransmissions of the same block.

3) Page-in All-Pgs (PIA) proactively pages-in all forth-
coming pages of a transfer upon the first page fault.

In Table 1, we see all the schemes and their definition,
that are used in this section and in the rest of the paper. In
Fig. 12, we evaluate a scenario when all pages of a transfer
exhibit a page fault, with Transfer-Only (No PgFault) being the

only exception. In addition to the aforementioned schemes,
for comparison we also include some configurations from
Fig. 9, with no network page faults, but now the tests extend
for up to 4MB transfers –due to lack of space we report only
the Pin-NoPres-Pg(s) scenario for mlock(), depicted as Pin. As
can be seen, PI4 behaves similarly or even better than PIO.
With PIO, all pages in the same block will incur a page fault,
which the handler of PART can discover and resolve sepa-
rately, but in one invocation of the handler. Effectively, PIO
does not needmultiple retransmissions to page-in all pages in
a block. Furthermore, PIO finishes its page-in operation (task-
let) and triggers the retransmissions faster than PI4.

PIA, i.e., proactively touching all pages of a transfer, has
the same latency for transfers up to 16KB (1 block, 4 pages).
However, for larger transfers, the benefits of PIA are enor-
mous. PIA minimizes the number of retransmissions and
handler invocations, since, beside the first two outstanding
blocks of the transfer, all subsequent blocks will succeed on
the first try (pages will reside in memory).

In Fig. 12, the performance of PIA is worse than “Touch
NoPres-Pgs” for transfers up to 1MB.Moreprecisely, as canbe
seen in Fig. 12, for 1MB transfers, PIA is 2.6x worse than
“Transfer-Only”, whereas “Touch NoPres-Pgs” is 2x worse.
Comparing the two, PIA is approximately 1.2x worse than
“TouchNoPres-Pgs”for1MBtransfersand3.5xfor64KBtrans-
fers. Although bothmethods incur the latency of paging-in all
pages, through normal CPUMMUminor page faults, “Touch
NoPres-Pgs”performssimpleloadandstores, fromuser-space
prior to the transfer, whereas PIA calls the get_user_pages
() from inside the paging tasklet, which can be interrupted
multiple times due to the SMMU handler invocations.
Despite the possible slowdown, as mentioned earlier,
PART touches the pages dynamically only when needed,

Fig. 11. Latency of RDMA with page fault at destination (resolved by
PART) for different retransmission methods.

TABLE 1
Methods Used in the Evaluation of PART

Scheme Definition

Transfer-Only No page fault
Touch-NoPres-Pg(s) Pre-touch all pages (prior to transfer) for the first time (minor CPU page fault)
Touch-Pres-Pg(s) Pre-touch all pages that are already in memory (no page fault)
PIO (Page-In One-Page) Upon netw. page fault, page-in only one page
PI4 (Page-In 4-Pages) Upon netw. page fault, page-in up to block-size number of pages
PIA (Page-In All-Pages) Upon netw. page fault, page-in all remaining pages of the transfer

Fig. 12. Latency of an RDMA transfer with page faults in all destination
pages being resolved by PART.
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whereas “Touch NoPres-Pgs” introduces a static overhead
on all transfers, which is especially noticeable for large
asynchronous messages, as we discuss in Section 6.2.1.

The situation is reversed for 4MB transfers: PIA is 1.46x
better than “Touch NoPres-Pgs”. This happens thanks to the
overlap between PART’s paging-in and re-transmission,
which we discussed in more detail in Section 3.3.

As a continuation of Fig. 10, Fig. 13 depicts the break-
downs for transfer sizes ranging from 1 page (4KB) to 1024
pages (4MB) when page faults are handled on the fly. We
notice that the higher the transfer size, the more dominant
the time for the tasklet, which is responsible to page-in the
corresponding pages. The cost of get_user_pages() that
is part of the page-in tasklet, seems to follow a particular
pattern: every time it is called, there is a fixed (constant)
cost of approximately 6 msec and a dynamic (incremental)
cost based on the number of pages that are not in memory.
In our measurements, the dynamic cost is approximately
3 msec per page brought in memory (upon a minor MMU
page fault).

One inconsistency is noticeable in Fig. 13: the expected
breakdown for 4MB transfers sums up to 5.7 ms, while in
our measurements the total latency is approximately 3.6 ms,
i.e., 1.58� faster. This happens because of the overlap dis-
cussed in Section 3.3.

5.4 Pre-Touching Pages of Small Transfers

Our results depicted in Fig. 12 indicate that it may be benefi-
cial to touch the buffers of small transfers (e.g., less than 64 or
256KB), especially when the user can know that this is the first
use of the buffer.

With pre-touching off the critical path (Transfer-Only
(No-Pgf)), the latency is reduced by as much as 3.2x in case
page faults occur (Transfer-Only (No-Pgf) versus PIA for
256KB). The latency is marginally increased if pre-faulting
of buffers is part of the measurement (Touch-Pres-Pg(s)),
because touching a page already in memory occurs an over-
head of approximately 100-200 ns.

However, if we know in advance that the buffers will be
re-used many times, the cost of pre-touching every time can
induce higher overheads than the cost of handling the page
fault (only the first time). In the latter case, the unneeded
cost of touching the buffers, due to lack of knowledge
whether the pages are present in memory or not, can be

avoided. This case is also covered and evaluated in
Section 6.2.1.

Touching pages is orthogonal to PART , and in certain
cases, it can complement PART. When used alone, touching
cannot guarantee that no page fault will occur during the
transfer. Occasional page faults on accesses coming from
the network may still occur if the working set does not fit in
memory or when the OS re-allocates pages (e.g., using
Transparent Huge Pages).

Take-Aways 1. As shown in Fig. 10, the most time-con-
suming part of page fault handling is paging-in all the cor-
responding pages. In our platform, this cost can be
estimated by a fixed cost of about 6 msecs and a dynamic,
incremental cost of 3 msecs per page. 2. When all pages
experience a page fault, PIA outperforms both PIO and PI4,
as it will bring in memory all necessary pages before they
exhibit a page fault. 3. The cost of handling page faults
dynamically on network accesses can be higher than han-
dling them using page pinning or touching, prior to trans-
fer, from the host. However, PART can allow overlap of
paging-in and retransmissions, which leads to better latency
than both pinning and “Touch NoPres-Pgs”, even when all
pages exhibit a page fault.

6 PART EVALUATION

Having established themain components in PART ’s latency,
and introduced a number of optimizations, in this section we
continue with additional evaluations, including a sensitivity
analysis based on different page fault frequencies and time-
outs, as well as the evaluation of real HPC applications, such
as LAMMPS [41], HPL [42], andHPCG [43], [44].

6.1 Sensitivity Analysis

6.1.1 Impact of Page Fault Frequency

In the following experiment we evaluate the overhead of
handling page faults with PART if only a portion of pages
in a transfer exhibits a page fault. We use the following
notation: s is the number of pages in the transfer and f the
probability that a page exhibits a page fault. Every page of
the transfer has the same independent probability f to
exhibit a page fault, which we evaluate using POSIX rand().
We note that someone could investigate distributions to
generate the pages that exhibit a page fault because e.g.,
applications may have particular locality attributes. This is
something that could be investigated in future work.

Using our notation page faults occur only for configurations
with s� f � 1. For example, for 4KB transfers, i.e., s ¼ 1
number of pages, page faults occur only when f ¼ 100%;
effectively, when the page fault frequency is up to 80%, the
latency is virtually identical to the base latency, with no
page fault. For 16KB transfers, the corresponding threshold
value in our experiments is f ¼ 40%, for 64KB it is f ¼ 20%,
for 256KB f ¼ 5%, and for larger transfers f ¼ 1%.

In Fig. 14, we evaluate the performance of PART (PIO
and PIA) versus the page fault frequency for different trans-
fer sizes. With page fault frequency f ¼ 0%, we capture the
no page fault case. The left y-axis depicts the latency of the
RDMA transfer for various page fault frequency scenarios.
The right y-axis presents the slowdown of each configura-
tion compared to the case in which no page fault occurs

Fig. 13. Latency breakdown of transfers that exhibit page fault(s) at des-
tination (resolved by PART), for various transfer sizes.
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(f=0%). We perform every experiment 5 times, for different
random seeds, and report the average latency.

The main findings from Fig. 14 can be summarized as
follows:

� Handling one page fault takes approximately
40 msecs, whereas, the unit cost of (re)transmitting a
4KB page on a network link takes 3.2 msecs (at 10
Gb/s). Effectively, the latency of PIO is approxi-
mately 40

3:2 or nearly 12.5� higher than Transfer-Only.
This is validated by our results especially for large
transfers.

� The latency of PIO increases proportionallywith page
fault frequency f across all transfer sizes. This is
expected, because in this scheme, the number of page
faults and the number of retransmissions increase
proportionally with the page fault frequency.

� With PIA, we resolve all imminent page faults imme-
diately when the first page fails. Handling more
pages using get_user_pages() takes time propor-
tional to the number of pages of the transfer that fails,
as seen for example in the 16KB case. According to
the breakdown in Fig. 13, the overhead of get_u-
ser_pages() per failed page is approximately
3 msec, but we drastically reduce the number of
retransmissions and the times the handler is invoked.
Effectively, for high page fault frequencies (e.g., 80
versus 100%), using PIA, we notice negligible differ-
ence in latency, especially for large transfers: the
incremental cost of handling more page faults in a
transfer is amortized by the transmission latency.

� PIA is considerably better than PIO especially for
large transfers and high page fault frequencies. On
the other hand, if we expect a few only random page
faults, or the transfer size is small, PIO performs
nearly on par with PIA.

Returning to the 4KB case, with frequency 100% (one
page fault) PIA has slightly higher latency (2 msecs)

compared to PIO due to different code paths. For 16KB
transfers, up to 4 pages can experience a page fault. PIA is
expected to reduce the number of page fault interrupts. This
benefit, however, is not evident for this transfer size, mainly
because the transmission unit is 16KB (the full transfer in
this case), and, also, because in this case PIO can resolve all
faults with one tasklet invocation and one retransmission.

At the other extreme, for 4MB transfers, we notice that
PIA performs considerably better compared to PIO, with a
7.1x improvement in latency. Also, compared to smaller
transfer sizes, the slowdown latency for f ¼ 100% is better,
e.g., 1.5x for 4MB compared to 2.5x for 1MB and 6.2x for
64KB.

Take-Aways 1. When the transfer size increases, the over-
head of handling page faults with PART , whether a few or
all pages exhibit a page fault, is small, especially using PIA.
2. The slowdown of PIA relative to the no-page-fault case
(0%) decreases as we increase the transfer size.

6.1.2 Impact of Time Out Period

PART supports fast retransmissions upon a page fault
(using ERR messages) and uses timeouts for resiliency. The
default timeout value is 1ms, but in this section we examine
different timeout values. As discussed in the previous sec-
tion, for large transfers, the RDMA engine can timeout
before the page-in tasklet, using PIA, proactively brings-in
all pages in memory. Thus, instead of waiting for all pages
to become present in memory and then launch the retrans-
mission by sending the the ERR message, using a shorter
timeout period, the source can start the retransmission after
the first failed pages have been brought in memory. In the
following experiment, we evaluate the performance of
PART using the PIA approach for different RDMA timeout
periods when all pages of the transfer exhibit a page fault.

The results are presented in Fig. 15. We examine three
different timeout periods (TO): 1ms, 500 ms, and 100 ms. We
also examine the performance if we disable the timeouts

Fig. 14. Latency of handling page faults by PARTand slowdown versus page fault frequency for various transfer sizes. Note: y-ranges differ.
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(NTO): when a first page experiences a page fault, a special
NACK is sent to the source, which instructs the RDMA to
cancel the timeout for this block, and wait for the ERR
request, thus, no timeout is involved and consequently no
overlap. We should note that Fig. 15 is very different from
Fig. 11; Fig. 11 discusses performance of handling page
faults using only timeout —no fast ERRs are involved. On
the other hand, Fig. 15 covers the case where we handle
page fault either in a combination of ERR + timeout, or
only-ERR (and no timeout).

For transfer sizes up to 16KB, there is no significant dif-
ference in performance mainly because the transfers finish
in time that is less than our smallest time-out period
(100 msecs). Starting from 256KB transfers, we notice that
the 100 msecs timeout period performs better than the other
two timeout periods. The benefits of overlapping using
100 msecs timeouts becomes even more visible for transfer
sizes of 1MB and 4MB. However, in 4MB transfers we notice
that the latency with TO equals to 100 msecs and 500 msecs is
similar (yet they both outperform the case of TO=1ms).

On the other hand, if we disable the timeouts (No Time-
Out, NTO), while increasing the transfer size by a factor of
4x, there is a 2-3x increase in latency. The NTO configura-
tion also verifies our measurements in the (serial) break-
down of Fig. 13. In that case, we noticed that for 4MB
transfers, the expected latency from the components of the
breakdown was worse compared to the actual latency with
1ms timeout (5.7 ms versus 3.6 ms). Our current results vali-
date that this was due to the overlap caused by the “early”
timeout: the NTO configuration behaves as anticipated in
the (serial) breakdown.

On the right y-axis of Fig. 15, we also depict the speedup
of the 100 msecs timeout versus NTO. As can be seen, the
speedup increases with the transfer size, as expected, but
saturates after 1MB transfer size, to a value of approxi-
mately 1.8�. Substituting GðnÞ an T ðnÞ in Eq. (1), using our
measurements from the previous section for the dynamic
(unit) cost of page-in and transfer, as GðnÞ ¼ 3 � n msecs,
T ðnÞ ¼ 3:2 � n msecs (10G link), and taking the limit as n !
1, we get the speedup for large transfers, s ¼ 1:93, indepen-
dent of the TO value. This is very close to what we observe
in the figure for the TO value of 100 msecs.

We conclude that TO=100 msecs provides the best latency
in our setup. One might be tempted to test smaller timeout

values, but 100msecs is already small for a network featur-
ing a few microseconds end-to-end latency. The problem is
that a too low timeout value can cause spurious retransmis-
sions when the network is loaded.

Take-Aways 1. Among all three different timeout periods
examined, the smaller timeout of 100 msec provides the best
performance. The benefit of such a small timeout becomes
evident especially for large transfers and large page fault
frequency. This happens because the RDMA source engine
starts sending data while the destination handlers continue
to bring-in pages, thus introducing a beneficial overlap
between page fault handling and transfer retransmission. 2.
Smaller timeout periods are beneficial for smaller transfer
sizes: when the transfer size increases (e.g., 4MB), the over-
lap and thus the performance is more or less similar inde-
pendently of the timeout value.

6.2 Real HPC Applications and Benchmarks

We also evaluated our mechanism by running MPI applica-
tions. We have ported MPI on top of our RDMA primi-
tives [36]. MPI uses RDMA Read operations. So far, we
described the path of an RDMA Write, because in our
RDMA Engine the RDMA Read path is similar. To be more
precise, whenever there is an RDMA Read, the RDMA
Engine of the initiator node notifies the RDMA Engine of
the target node, which now becomes responsible to execute
a corresponding RDMAWrite.

6.2.1 Asynchronous MPI Calls

Without pinning buffers, and without the capability of han-
dling dynamic page faults, the user has to touch all pages
prior to a transfer because the user typically does not know
if a page is already in memory or not. One may expect that
accessing buffers that are already in-memory may not
induce a significant overhead overall. In the next experi-
ment we use asynchronous MPI calls to evaluate the cost of
pre-touch when buffers are already in memory.

In Fig. 16, we present the duration of asynchronous
MPI_Isend calls both with pre-touch and without pre-touch
of the buffers used. Following the MPI_Isend semantics,
this duration includes all the overhead incurred by the
preparation of the transmission from the library, until the
flow returns to the user application, but not the transmis-
sion itself.

Fig. 15. Latency of page fault handling by PART for various transfer sizes
under different timeout periods (100/500/1000msec and NTO).

Fig. 16. MPI_Isend performance on a system that supports PART (no
need to pre-touch buffers) versus a system that pre-touches buffers prior
to each operation.
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With pre-touch, we touch buffers once before the measure-
ment starts. Then, during the measurement, we include the
cost of just touching the first byte of each page–which is
already in memory–, without including the overhead of the
communication. In the case of without pre-touch, we never
touch the buffers, and we again do not include the overhead
of the communication. The measurements were obtained
through a synthetic benchmark, which uses MPI_ISend for
messages of different sizes. The message size for each trans-
mission is chosen following a random uniform distribution
in the range from 100 Bytes to 512 MB, with several itera-
tions for each size.

In Fig. 16, we notice that with pre-touch all transfers pay a
fixed overhead that increases as the transfer (buffer) size
increases. This is explained because each touch requires a
load and a store back to the first byte of each page of the
buffer. On the other hand, without pre-touch, which would
be the case of environments where PART is used, a fixed,
insignificant cost is paid for all transfer sizes.

One may be tempted to optimize the pre-touch of buffers.
For example, InfiniBand’s ibv_advise_mr() allows pre-fault-
ing of a given address range in a single system call. Alterna-
tively, someone could use madvise withMADV_WILLNEED
flag enabled. Another possibility is examined in [26], where
the authors try to pre-touch buffers at the time ofMPI rendez-
vous protocol.

Take-Away. In general, pre-faulting (also known as pre-
touching) of buffers prior to an asynchronous send com-
mand in order to avoid page faults can lead to significant
performance overheads, especially for large transfers.
PART alleviates this problem by handling dynamically the
occasional page faults, thus there is no need to pre-touch
buffers.

6.2.2 LAMMPS

In the following experiments, we evaluate PART on real
HPC applications. PART dynamically handles all page
faults, versus a solution that touches all buffers prior to
transfer, thus leading to no page faults (assuming that
Transparent Huge Pages -THP- is disabled).

LAMMPS [41] is a Molecular Dynamics Simulator, which
was ported to run in our testbed consisting of 16 nodes and
64 cores employing PART . For this experiment we use from
1 up to 16 parallel processes. The results depicted in Table 2
use four threads per process –this allows our system to han-
dle multiple messages from different threads within a node,
and different processes across nodes. In our experiments,
we varied how many processes (thus FPGAs) participated
in the run, ranging from 1 up to 16 (16 FPGAs/4 QFDBs/1
blade).

One of the main principles of PART is that not pinning
pages and handling page faults at the network through
retransmissions should not introduce any measurable over-
head. In Table 2, we see that this is achieved when running
LAMMPS, since the performance remains the same with
page faults enabled (i.e., the case of without pre-touch) or not
(i.e., the case of with pre-touch). More specifically, PART
does not degrade performance by more than 1.1%. Also, we
see that the standard deviation (std) of the Loop time is
very small compared to the average reported.

We alsomeasured the number of SMMU fault handler invo-
cations. In these runswe found only a few SMMU fault handler
invocations, 1489 in total for 16 processes, and all occurred at
the beginning of the experiments. This happens because
LAMMPS reuses its buffers that participate in communication.
Note that due to interrupt coalescing in the OS we expect the
number of page faults to be somehow higher than the number
of the reported SMMU fault handler invocations, but we do not
havemeans tomeasure them explicitly.

We also measured the number of ERR messages sent.
This number depends on the number of processes as well,
and for 16 processes we saw 239 ERRs in total.

In our HPC experiments with pre-touching, we have
modified the MPI library so that pages are pre-touched
exactly before they are used in RDMA transfers. Therefore,
in these experiments, we expect marginal overhead on
memory utilization when compared to PART –although we
did not measure it explicitly–similar to the case where one
pins the buffer prior to the transfer and unpins it after the
transfer (pin-per-transfer strategy).4 On the other hand,
when a programmer resorts to an one-time pin strategy,
such as pinning large buffers ahead of time in order to
make sure that they are available for RDMA, the memory
utilization can be affected, as shown in [25].

6.2.3 HPL and HPCG Benchmarks

High Performance LINPACK (HPL) [42] benchmark is used
to solve a random dense linear system in double precision
(64 bits) arithmetic on distributed memory systems. High
Performance Conjugate Gradients (HPCG) Benchmark [43],
[44] complements HPL in a way, by reaching a different
and broad set of parallel applications. HPL is preferred for
evaluating a subset of comparatively computationally-
bound applications. HPCG is more memory- and node
interconnect- performance dependent, thus it can better
describe many non-computationally-bound workloads [45].

We evaluate PART running both HPL and HPCG bench-
marks. In these experiments we use from 1 to 16 parallel
processes. Tables 3 and 4 present the performance results for

TABLE 2
LAMMPS Performance (up to 1600 Steps) Using PART versus

When we Page-In All Buffers Prior to the Transfer (PART
Disabled)

Processes Loop
time (sec)

Timesteps/
s

Loop
time (std)

No Page Faults
(PART disabled)

1 76.47 1.31 0.29
2 79.37 2.52 0.39
4 84.74 4.72 0.75
8 90.21 8.87 1.64
16 98.88 16.20 3.45

With Page Faults
(PART enabled)

1 76.44 1.31 0.46
2 79.21 2.53 0.42
4 84.55 4.73 0.70
8 90.43 8.85 1.69
16 99.95 16.03 4.14

4. Compared with pinning, pre-touching pays a system call only if
the page is not in memory (i.e., a page fault).
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HPL and HPCG, respectively, with PART being disabled (no
page faults because of pre-faulting) and enabled (exhibiting and
handling page faults). PART, which is triggered when the
benchmark exhibits page faults during RDMA, does not
degrade performance by more than 2.9%. Furthermore, we see
that the standarddeviation (std) of the latency in the tables is rel-
atively small, in all scenarios, compared to the average reported.

We have collected additional statistics, regarding the
number of MPI_Send() calls, the average number of Bytes
per call, and the total Bytes sent using these calls per appli-
cation. We report these numbers in Table 5 for all three
HPC applications that were run using 16 nodes. As can be
seen, the number of Bytes exchanged between nodes per
run varies across the three applications. However, in all
three applications, we believe there is a sufficient number of
Bytes sent (and received) to stress our dynamic page fault
handling mechanism. We measured 1497 and 318 SMMU
fault handler invocations during RDMA faults for HPL and
HPCG, respectively, when using for 16 processes. The num-
ber of ERRs depends on the setup (i.e., the number of pro-
cesses); for 16 processes for HPL we noticed 220 ERRs per
run, whereas for HPCG the corresponding number was 48.

From these results PART proves to be a good solution for
HPC applications. It does not degrade the performance, it
improves programmability (no need to pre-touch/pin buf-
fers), and can also improve the memory utilization. When
running real HPC applications, the overheads of dynamic

page fault handling is very small (< 1% slowdown) mainly
because (a) the per-page fault overhead (38 msec for 4KB) is
tolerable and further reduced for larger buffers thanks to
our optimization, and (b) the re-usability of buffers in com-
mon HPC applications results in small page fault frequency.

7 CONCLUSION

In this paper, we proposed, optimized and evaluated PART, a
novel end-to-end mechanism that resolves occasional page
faults during RDMA. PART leverages the retransmission capa-
bilities of modern NICs. PART re-uses the IOMMU in order to
perform virtual-to-physical translations during user-level initi-
ated RDMA transfers; thus, no separate memory management
framework is required, in contrast tomodernNICs.

PART can handle RDMA page faults while servicing other
memory requests. Thanks to this overlap, resolving dynamic
page faults with PART performs better than pinning pages in
advance, especially for large transfers (1.46x better for 4MB). In
summary, PART unlocks the advantages of dynamic paging,
which includes enhanced memory utilization, simplifies the
programmingmodel, and canperformbetter than pinning.
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