
Addressing the Read-Performance Impact of
Reconfigurations in Replicated Key-Value Stores

Antonis Papaioannou and Kostas Magoutis

Abstract—Raw data are often orders of magnitude larger than main memory for many applications. As the performance of storage

devices is still significantly slower than main memory, systems still rely on memory caching to improve performance. Data replication

schemes are prevalent in data stores for high availability and reliability. In such schemes, while data updates are propagated to all

replicas (either synchronously or in the background), reads are usually served by only a subset of replica group members (e.g., as in

primary-backup and quorum systems). As a result, non-serving replicas cannot keep their memory cache state updated; thus, during a

reconfiguration or a fail-over action, the system suffers from a high read-performance impact for a significant amount of time due to

cold-cache misses. In our study we observed up to 70% hit after a reconfiguration due to cold cache misses, taking almost 18 minutes

in some cases to fully restore to the pre-reconfiguration level of performance. In this article we propose a mechanism to maintain up-to-

date read caches across replicas by sending read hints to the non-serving replicas to keep their caches warm. Thus the system is able

to seamlessly achieve the same performance level even in the face of a replica group reorganization. This is especially important under

the read-intensive workloads that are common today. Our evaluation shows that our mechanism has significant benefits during

reconfigurations, with low performance impact under periods of resource strain. Given its advisory nature, the maintenance of

read hints can be reduced or held off if needed during such periods.

Index Terms—Data replication, caching, performance

Ç

1 INTRODUCTION

THE demands of Internet-scale applications for reliable,
highly available data services have been growing expo-

nentially. To meet these needs, distributed data stores con-
solidate large numbers of commodity servers into a single
storage pool, using different forms of data replication [1] for
reliability and high availability. Raw data is often several
times larger than available memory, and performance of
storage devices is still orders of magnitude lower than that
of main memory. In combination with today’s read-domi-
nated production workloads and strong temporal locality
among requested keys [2], application performance still
depends on the efficiency of data caching. Not surprisingly,
data replication systems maintain in-memory data caches to
improve performance, especially for read-dominated work-
loads. The efficiency of a read cache impacts the overall per-
formance of data intensive systems.

In replicated data stores, data is replicated across a set of
nodes comprising a replica group. A range of existing replica-
tion techniques in distributed storage systems dictate how
data are propagated to replicas. Based on the consistency

model used, replica groups ensure that replicas within
them apply updates in some specific order (strongly consis-
tent systems require that replicas totally agree on this
order). Data replication techniques focus on ensuring con-
sistency of the persisted data set, while each node of the rep-
lica group also maintain a memory cache of that set to
improve performance.

There are multiple replication models in use today.
Primary-backup (PB) replication [3] is a traditional replica-
tion technique in widespread use [4], [5], [6], [7]. Systems
implementing PB replication feature a strong leader (or
primary) that coordinates read and write operations tow-
ards secondary replicas (or backups). Reads are typically
served by a single replica, most commonly the primary
itself. Many such systems allow clients to read from any
single replica to better distribute read-intensive workloads.
Active replication systems, such as those based on the Paxos
algorithm [8], have also been in use in storage systems [9],
[10]. Formally such systems involve several replicas to
carry out operations, typically a majority. Efficiency con-
siderations in today’s read-dominated workloads [2] have
led to active-replication systems that permit reads from a
single replica, similar to PB systems, through lease-based
mechanisms [11], [12], [13]. Quorum-based systems is
another class of replication systems where reads involve a
set of nodes [14], [15], [16]. Efficiency considerations in
quorum-based systems have also led to configurations fea-
turing a small read set (often a single replica [17]). We can
thus identify a trend in practical systems to restrict reads
to as few replicas as possible, to optimize for read-domi-
nated workloads.

Involving as few replicas as possible in read operations
means that the caches of the remaining replicas receive

� Antonis Papaioannou and Kostas Magoutis are with the Institute of Com-
puter Science (ICS), Foundation for Research and Technology – Hellas
(FORTH), 70013 Heraklion, Greece, and also with Computer Science
Department, University of Crete, 70013 Heraklion, Greece.
E-mail: {papaioan, magoutis}@ics.forth.gr.

Manuscript received 27 July 2020; revised 3 Oct. 2021; accepted 28 Nov. 2021.
Date of publication 14 Dec. 2021; date of current version 31 Jan. 2022.
This workwas supported in part by theHellenic Foundation for Research and Inno-
vation through the STREAMSTORE project under GrantHFRI-FM17-1998.
(Corresponding author: Antonis Papaioannou.)
Recommended for acceptance by S. Pallickara.
Digital Object Identifier no. 10.1109/TPDS.2021.3135137

2106 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5658-6096
https://orcid.org/0000-0001-5658-6096
https://orcid.org/0000-0001-5658-6096
https://orcid.org/0000-0001-5658-6096
https://orcid.org/0000-0001-5658-6096
https://orcid.org/0000-0002-7288-5923
https://orcid.org/0000-0002-7288-5923
https://orcid.org/0000-0002-7288-5923
https://orcid.org/0000-0002-7288-5923
https://orcid.org/0000-0002-7288-5923
mailto:papaioan@ics.forth.gr
mailto:magoutis@ics.forth.gr

delayed or no information about application reads, and thus
do not fetch up-to-date content in memory, in contrast to
replicas serving reads. This often does not pose a problem,
when reads are satisfied consistently by a single or the same
set of replicas. However, when the replica(s) satisfying
reads shift to replicas that have not actively maintained
their read cache, a performance impact is incurred for read
operations.

A switch of the read-serving replicamay occur as a result of
different types of reconfiguration operations. One such case tra-
ditionally occurs when a serving replica fails and a backup
must take over (failover) or due to load balancing actions or
workload migration where parts of an application are moved
across the infrastructure. In a similar case, geo-replicated sys-
tems reconfigure the set of serving replicas (e.g., leader) while
the client’s location shift across time zones as they serve Inter-
net users [18], [19], [20], [21]. Another reason for frequent
(e.g., every 20 minutes) replica group reconfiguration include
lightweight adaptation actions as a performance enhancement
mechanism to mask performance bottlenecks on the serving
nodes [22] [23].While such reconfiguration actions have a pos-
itive long term impact, a negative side effect at the time of
switching the read-serving node, is that a burst of cold-cache
misses at the new read-serving replica may lead to latency
spikes and throughput drops that result in service-level objec-
tive (SLO) violations for significant amounts of time (several
minutes).

In this paper we address this problem by maintaining
up-to-date read caches across all replicas without increas-
ing the number of replicas actually serving reads or modi-
fying the replication semantics of the system. We achieve
this through a low-overhead mechanism by which all rep-
lica nodes eventually see a tunable subset of read opera-
tions (loading the respective data into their in-memory
data cache) in the order seen by replicas serving reads and
primarily responsible for serving client requests. This
method eliminates the cold-cache effect observed after a
reconfiguration on the new node that serves reads, which
impacts the overall system performance seen by clients.
Our proposed solution is a lightweight, best-effort syn-
chronization method that tries to minimize the overall
cache divergence between the primary and replica nodes,
by disseminating read requests across replicas in the back-
ground (not tied to the execution of client requests). To
achieve this, read serving nodes keep a volatile buffer con-
taining information about the reads executed by the rep-
lica group. The buffer is periodically disseminated to
replicas not involved in serving reads and is used as hints
to update their caches. The design of this mechanism is
based on basic principles and can be easily integrated to
production replicated key-value stores such as the widely
used MongoDB. Our evaluation demonstrates that the
overhead is minimal and that the prototype maintains sta-
ble performance eliminating SLO violations during recon-
figuration actions.

The rest of this paper is organized as follows. Section 2
describes background and related work and Section 3
describes our design choices and implementation details. In
Section 4 we present evaluation results, and in Section 5 we
conclude.

2 BACKGROUND AND RELATED WORK

Twomajor points relating to our work are (i) replication sys-
tems today read from a subset of replicas (typically one),
leading to situations where backup (non-reader) replicas
have an out-of-date memory cache; and (ii) under certain
situations (such as after a failure of the primary or other
reconfiguration action) reads are directed to such replicas,
leading to a surge in cache misses. In what follows we will
describe how different replication systems relate to points
(i) and (ii). There is currently no system that directly
addresses this problem (short of issuing reads to all replicas,
which penalizes the common path of read operations and
thus avoided in practice).

Modern Systems Often Read From One Replica Per Group
(Shard). The design and implementation details of replication
mechanisms (for instance, how read andwrite operations are
performed) vary across systems, entailing consistency, ava-
ilability, and performance tradeoffs [24]. A trend in practical
replication systems is to restrict reads to often just one
(dynamically selected) replica per shard, to optimize for
read-dominatedworkloads.

In quorum-based [14], [15] or active-replication (Paxos) [9],
[10] systems, read and write operations are typically issued
towards sets of replicas (or quorums), which can generally dif-
fer for reads andwrites, andwhose sizes may range from one
to all nodes.1 Production systems using quorum replication
(Apache Cassandra, Voldemort, Riak) execute reads only on
amajority of nodes. Different approaches to selecting the spe-
cific majority include network proximity [25], performance
history [26] or load balancing [27]. In some cases even some
nodes that are part of themajoritymay not perform the actual
read of data and rather rely on metadata (e.g., digest reads
[28]). In primary-backup (PB) [3] replication implemented by
several popular open-source stores (MongoDB, CouchDB,
RavenDB), client read requests are served only by the pri-
mary or (relaxing consistency) by any single replica. These
choices are justified by the need to optimize performance in
read-dominated workloads. The system presented in this
paper is applicable to data stores serving reads from any sin-
gle replica at a time.

A write operation typically requires a number (k) of
acknowledgements that replicas have durably stored an
update, before informing the requesting client of a successful
operation. In several systems, a write request is sent to a
broader set of replicas (n, where n > k) than the number of
acknowledgments needed (k), eventually reaching the entire
replica group. Updates to the first k replicas to respond are
synchronous with the user update, whereas the remaining
updates can proceed asynchronously in the background.
Although one could argue that dissemination of updates
eventually reaching all replicas (as performed by most repli-
cation technologies) could be sufficient to keep memory
caches of all replicas fresh, in reality the data being written
may not overlap at all with the readworking set of application
(e.g., in the case of writing new data while performing read-
intensive analytics on past values). Thus update propagation
by itself cannot maintain up-to-datememory caches across all

1. A small read-quorum typically requires a large write-quorum,
overlapping in at least one replica, for ensuring strong consistency.

PAPAIOANNOU AND MAGOUTIS: ADDRESSING THE READ-PERFORMANCE IMPACT OF RECONFIGURATIONS IN REPLICATED KEY-VALUE STORES 2107

replicas. In addition, occasional restarting of replicas, such as
in the context of rejuvenation [29] and proactive recovery in
adaptive replicated services [30], completely wipes out their
memory caches.

Reads May Shift to Replicas With Outdated Caches. Non-
read-serving replicas are not aware of reads and thus cannot
keep their memory caches warm. We previously described
that systems may dynamically decide which replicas form
quorums that execute requests. Another reason that triggers
a shift in read-serving replicas is failures. If a serving replica
fails or is brought down for maintenance, a previously non-
serving replica must take over. Another reason is workload
migrations, where parts of an application are moved across
the infrastructure for load balancing or other maintenance
operations (in such cases reads are usually directed to the
nearest replica). Failover actions are frequent in large data
centers [31], and adaptation actions are increasingly used
for performance improvement. Geo-replicated stores auto-
matically reconfigure the set of serving replicas (e.g., leader
change) to satisfy application-defined constraints as loca-
tions and their access pattern shift across different time
zones [18], [19], [20], [21]. Production systems at Google
[20] trigger a reconfiguration as often as every 30 minutes
when the system re-evaluates the optimal placement of a
leader or its replicas based on workload characteristics, or
every 2 hours in the case of Microsoft’s store [18] that adapts
to the shift of traffic across different time zones. Frequent
reconfiguration actions may also be used as a lightweight
adaptation mechanism to hide internal performance bottle-
necks or in the case of colocated resource intensive back-
ground tasks on the serving replicas [22], [23]. In all these
adaptation mechanisms, the newly assigned read-serving
replicas (although consistent at the level of persisted data)
may have missed recent reads and thus have an outdated
memory cache leading to a performance impact (Section 4).
Empirical evidence of the challenge addressed in this paper
(and inspiration for this work) is provided by our own pre-
vious research [22], [23], [32]. Fig. 1 (from [22]) demonstrates
that the action of changing the primary replica can hide
the performance impact of a backup task, however the
improved system (Fig. 1b) still suffers from a smaller but
non-negligible performance hit (area in red circle) due to

cold-cache misses at the new primary (a previously non-
read-serving replica). Other work on measuring the recov-
ery time of a replicated version of the HDFS metadata
server [32] (Section 4.4.3) showed that switching the pri-
mary to a new replica with a cold memory cache can lead to
significantly higher time to recover compared to a version
switching to a hot spare.

Our approach aims to keep the caches of future read-serv-
ing replicas warm by disseminating read hints to them from
current read-serving replicas. This approach is similar in
spirit to prefetching in storage systems, which rely on high-
level knowledge of future data accesses disclosed by an
application [33] or history-driven predictions [34] to warm a
cache ahead of time and thus increase hit rates. Our
approach differs in that instead of informed guesses, replicas
learn of read operations executed on a read-serving node
and execute them locally to maintain an up-to-date cache
view. Traditional prefetching mechanisms are complemen-
tary to our approach and can be applied in read-serving and
non-read-serving replicas. Challenges investigated in the
context of prefetching, especially in balancing prefetching
with caching [35], are also applicable in our work.

3 DESIGN AND IMPLEMENTATION

We next describe the major design choices and the imple-
mentation details of our mechanism.

Design. Our goal is to ensure that non-read-serving repli-
cas within a replica group keep track of the read working
set and are always prepared to serve read requests without
a performance impact due to cache misses, ensuring a
smoother transition during a reconfiguration or failover.
We aim to achieve this without modifying the replication
protocol or system properties such as data consistency or
availability. The mechanism should be transparent to users,
and not have an impact on common-case performance of
client read operations.

Our evaluation (Section 4) shows that in a typical appli-
cation scenario over a replicated key-value store (Mon-
goDB), a reconfiguration that changes the primary node in a
replica group leads to higher latency for client requests,
because of a low cache hit rate at the primary node, for the
period of time (several minutes) it takes to load the working
set into memory. This time depends on the amount of state
that needs to be brought into memory (Section 4.3) and the
speed at which the underlying storage device operates (Sec-
tion 4.1). We aim to mitigate this problem by allowing the
memory caches of non-read-serving replicas to keep track
of the read working set using principles that can be easily
implemented and integrated into existing replicated key-
value stores.

A replication module is typically responsible for replicat-
ing requests across replicas in any distributed store, how-
ever the caching mechanism in each node is independent of
the other replicas. A standard cache management policy
over persisted data in each node is to apply every incoming
read or write operation through the memory cache (imple-
menting the necessary miss handling and write-through
actions).

In order to disseminate read requests even to non-read-
serving replicas and thus help them keep their caches

Fig. 1. Performance impact of backup activity (a) on replica group
(shard) can be hidden via reconfiguration (b), however new primary suf-
fers from cold-cache misses [22]

2108 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

warm, we propose recording the read operations executed
on the serving replicas as hints, and send them over to non-
read-serving replicas in the background. To achieve this, we
introduce a read-hints module (RHM) and integrate it into
all replicas. Fig. 2 presents the RHM integrated into the
primary and secondary replicas. Read-serving nodes use
RHM to passively monitor the executed read requests and
maintain a read-hints buffer (RHB), which keeps a minimal
description of each read operation applied on the serving
replica. RHM periodically disseminates the contents of the
buffer (in batches) to the non-read-serving replicas which
store the received hint into their local RHB. Based on the
hints a replica is able to replay read-operations (note that
we are shipping read operations, not the data), leveraging
the data store’s existing read path and cache management
mechanism.

Our mechanism does not require any modifications to
the pre-existing replication and dissemination of writes, it
uses separate data structures and dissemination channel for
the read hints as depicted in Fig. 2 and in no way affects the
data consistency or availability properties of the system
(Section 3.3). As a read operation can always be satisfied by
the underlying disk, our proposal is a best-effort mechanism
that allows replicas to keep their caches warm when they
become aware of the reads executed on the serving nodes.
The design supports dissemination of read operations from
more than one read-serving replicas and allows tuning of
the degree of dissemination (how many replicas to dissemi-
nate to) and intensity of communication (degree of batching
and frequency). In systems where reads are served by a dif-
ferent replica at a time for load balancing, RHM can be
configured so that each read-serving replica disseminates
read-hints to all replicas. However, we expect the biggest
benefit from RHM will be realized in strongly-consistent
systems that serve reads from a single primary replica.

A naive implementation that directly issues read requests
to all replica nodes and waits for the first response is
expected to maintain warm caches across all replicas. How-
ever, the consistency model of such approaches is weaker
compared to the strong semantics achievable by reading
and writing from/to the primary node. As such, naive
approaches are not an option for applications requiring
strong semantics from the underlying data store, whereas
RHM covers such cases as well. RHM is based on an asyn-
chronous best-effort background dissemination of read-hints

and does not require any modification to the read/write
protocol.

Section 3.1 describes in detail the implementation, tuning
parameters, and different tradeoffs involved extending
MongoDB v4.0.6. Section 3.2 supports our choice to design
our mechanism as a separate module of the data store and
discusses read-hints buffer properties. Section 3.3 explains
that the design does not affect the replication and consis-
tency model of the data store and that data consistency is
preserved between in-cache and on-disk data within a rep-
lica node that updates its cache based on the received read
hints buffer.

3.1 Capturing and Dissemination of Read Hints

Our implementation of read-hints module extends the Mon-
goDB v4.0.6 codebase. MongoDB implements a passive rep-
lication system following the primary-backup replication
model. The primary node serves client requests. In case of
writes it applies the operation to its local state and updates
its cache. Each update is also logged to its internal oplog
data structure (Fig. 2). The updates are propagated to all
replicas through the replication of the oplog. However the
RHM is by design a separate module. The rationale for this
decision, as opposed to integrating reads into the existing
oplog, is discussed in Section 3.2.

The RHM monitors reads served on a primary extending
the code path that handles the read request, cloning the
read operation and channeling it to the RHM code. It keeps
into RHB a minimal description of each read operation to
allow a replica to locate the data, avoiding unnecessary
information such as request type, session ID and hash signa-
tures used for sanity checking on the primary node only.
The RHB is periodically synced across replicas, with inter-
node communication within a replica group specifically
built for this purpose and implemented over TCP/IP sock-
ets. The replication is performed by default in batches over
90ms intervals or when the RHB reaches its maximum
capacity (by default 10,000 entries). We have empirically
determined that these settings allow replicas to be reason-
ably up-to-date with minimal overhead (Section 4.7), but
both parameters are configurable. We experiment with dif-
ferent settings in Section 4.

On a read-serving node, a background thread is respon-
sible for periodically sync’ing the RHB to the replicas. To
avoid contention between threads that update and dissemi-
nate RHB across replicas we apply double-buffering techni-
ques, i.e., when the buffer is marked as ready to be shipped
over the network, it is marked as read-only and swapped
with a new empty buffer to log the read-hints. We also pre-
allocate the memory buffers that support RHB to avoid
allocation overheads. After the RHB synchronization is
complete, the read-only buffer is marked as clear and ready
to be reused.

Batching multiple reads allows for summarization, an
optimization where multiple occurrences of the same
request in the RHB may be consolidated to the last read of
each key. Thus several requests for the same data are logged
just once in the buffer, enabling a compact view of the
requested data and reducing the total RHB size to be
shipped across replicas. Other techniques [36] that further

Fig. 2. The Read-Hints Module (RHM) is integrated as a plugin into the
replica-maintenance path; this particular figure is based on MongoDB
internals. The module passively monitors read requests and maintains a
Read-Hint Buffer (RHB) that is periodically disseminated across replicas

PAPAIOANNOU AND MAGOUTIS: ADDRESSING THE READ-PERFORMANCE IMPACT OF RECONFIGURATIONS IN REPLICATED KEY-VALUE STORES 2109

reduce the amount of transferred data over the network
could also be applied.

On the receiving replica, a receiver thread, part of the
RHM, is responsible for handling incoming connections
from the serving node RHM and storing hints into its local
buffer. Threads off of a read-applier thread pool are in
charge of taking the read operations off the local RHB and
applying them to the local copy of the database. During
periods of resource strain, a secondary replica can apply a
subset of read hints received or even turn RHM off while
overload conditions last (Section 4.8). Threads from the
read-applier pool shepherd requests through the same code
path followed by a normal user read request (except this
code path was previously only executed by the primary rep-
lica). In this way, the replica cache tracks the read working
set along with the primary node’s cache.

RHM allows the configuration on the number of repli-
cas that will sync the RHB. It supports three options: all,
one, region-one. With option all (one), all (one) replica(s)
receive RHB updates from the primary node. Option one
is useful when CPU and network bandwidth are scarce;
on the downside, only one replica will be well prepared
to serve reads. Region-one is used in geo-replicated sys-
tems and allows syncing the read log with one replica in
each region. Furthermore in resource-constrained nodes
where secondary replicas are co-located with primaries,
the RHM can selectively apply or even turn off read
hints, similar to adaptation strategies followed in pre-
fetching systems [35].

When reconfiguration actions are known in advance, a
potential alternative is to delay the dissemination of read
hints to that time. However, such a delay is not expected to
be beneficial. Storing the history of read hints at the read-
serving node for a long time would require significant
amounts of memory. In addition, disseminating read-hints
in a burst just before a reconfiguration action could pose a
significant performance hit and also delay the reconfigura-
tion until the replica is prepared. Thus we believe that even
in the case of frequent reconfiguration actions (such as in
systems described in Section 2), there are practical benefits
to the continuous dissemination of read-hints.

3.2 Read-Hints Buffer Properties

Our mechanism is by design a self-contained module
(Fig. 2), ensuring that our implementation is generally
applicable (not too tied to the design principles of a specific
stores replication module) and can be easily integrated into
most distributed data stores. Using existing data structures
or mechanisms of the existing replication subsystem would
require tight coupling with a specific store. In addition, our
read hints buffers have different durability properties. Since
the cache is essentially soft state that need not be persisted as
a separate entity, we can treat the dissemination of the read
as a hint mechanism to the replicas; thus in case of node fail-
ure, a lost RHB has no impact on data availability or recov-
ery mechanism. This also allows to delay the replication of
the hint buffers and transfer read ops in batches to amortize
the transmission cost. Batching allows us to benefit from
summarization and to further reduce the amount of trans-
ferred data (Section 4.10).

The format of an RHB entry is simple: it carries only min-
imal description of the requested data (e.g., the key and
some filters) derived from a read request –there is no need
to include information about client, session or timestamps
as described in Section 3.3– further contributing to a reduc-
tion of the amount of information sent over the wire.

3.3 Consistency

Consistency Across Nodes. Our mechanism does not affect the
store’s consistency model leaving the replication mecha-
nism intact. Standard replication mechanisms dictate how
committed state updates are eventually applied to all repli-
cas. Updating replica caches by our read-operation dissemi-
nation mechanism ensures that a cache is refreshed with the
most recent state that has already been applied on the same
replica (stored on its disk). The shipping of read-operations
(rather than shipping the data) and their execution, reflects
the latest state known to replicas in their local cache. As
such, the cache remains consistent with the on-disk state,
which in turn follows whatever consistency guarantees are
implemented in the specific distributed store.

Consistency Between in-Cache and On-Disk State. As reads
are shipped independently of writes across replicas, there is
a probability that reads may be reordered relative to writes
(Fig. 3). This does not cause a problem as a read operation
applied in the local cache of another replica will always
reflect in memory the latest state written to disk at the time.
In this way, cache contents always remain valid. The order
of writes will remain as decided by the primary, and each
write will consistently update cache and disk.

We note that correctness relies on correct implementation
of atomic execution and serialization of read and write
(updating cache and disk) operations in each replica’s stor-
age backend.

Cached Objects View Across Nodes. Even with our mecha-
nism, caches in different nodes may have different contents
due to the delay in disseminating operations as well as due
to actions of the cache replacement policy. Typically, most
systems feature a cache eviction policy that favors recently
or frequently accessed objects (e.g., LRU, LFU). We expect
that with our mechanism, a cache will contain the objects of
the last applied RHB and the most recently accessed objects
for any node (with the primary or read-serving nodes being
somewhat ahead of others). It is not a goal of our work to
keep caches fully in sync, and we think that there is little
benefit in trying to achieve such a stringent objective. Our
approach is a best effort mechanism aiming to help non-
read-serving replicas track the read working set and thus be
well prepared to serve future reads. In Section 4 we show

Fig. 3. Reads may be re-ordered relative to writes, however caches
always contain the latest state written to disk

2110 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

that our mechanism is able to achieve our goal with no
noticeable overhead.

4 EVALUATION

In this section we evaluate the benefits of allowing non-read-
serving replicas track the readworking set using our extended
prototype of MongoDB v4.0.6. The MongoDB binaries used
have been compiled with debug symbols. Our results show
that the system exhibits stable performance after shifting the
node that serves reads from primary to the nearest secondary
replica after the workload migration. The overhead of our
mechanisms does not have a measurable impact on overall
system performance (compared to the baseline implementa-
tion). Unless otherwise stated, all experiments use a non-
shardedMongoDB installationwith one replica group consist-
ing of one primary and two replica nodes. Our main experi-
mental testbed consists of four servers, each equipped with a
Intel Xeon Bronze 3106 8-core 1.70GHz CPU, 16GB DDR4
2666MHz DIMMs, 256GB Intel D3-S4610 SSD and 2TB Ultra-
star 7K2 HDD, running Ubuntu Linux 16.04.6 LTS, intercon-
nected via a 10Gb/s Dell N4032 switch. Whenever a different
testbed is used (such as AWSEC2 in Section 4.2), this is clearly
stated in the text.

Our evaluation includes three workloads: the Yahoo
Cloud Serving Benchmark (YCSB) [37] v0.11, TPC-C [38], a
popular OLTP benchmark adapted for NoSQL systems [39];
and an analytical processing workload modeled after the
popular TPC-H [40] benchmark. In all cases the workload
driver executes on a dedicated server. In experiments where
the workload switches the read-serving node to the nearest
replica (to achieve the shortest possible latency), we side-
step the fact that our testbed has a flat network topology
(nearly identical latency across all replicas) and emulate the
selection of the nearest replica via MongoDB’s server tag-
ging feature [41]. The dataset is loaded fresh onto MongoDB
nodes before each experiment and caches are dropped
before each run.

4.1 Performance Impact During Reconfiguration

In this section we evaluate our method under the YCSB
workload generator. The benchmark is configured to pro-
duce two different mixes of reads versus updates/writes: a

100% read workload to stress our mechanism as the primary
node has to keep up with a busy read-hints module, and
80% (reads)-20% (updates) to demonstrate performance
under a mixed workload including both reads and writes.

Unless otherwise stated, the requested keys are randomly
selected from a uniform distribution. The dataset consists of
50 million unique records result in 60GB of data on disk
(including indexes) per node. The number of YCSB client
threads (number of parallel connections between database
client and servers) is set to 8, empirically determined to stress
the cluster while keeping average response time under 20ms
(considered a reasonable threshold). MongoDB is configured
with 10GB of cache size. Read and write concern use the
majority option by default.

Fig. 4 depicts YCSB throughput (ops/sec) under the
read-only workload, with data stored on HDDs on each
node. As in all subsequent figures, time (x-axis) starts 30
minutes into the experiment, when the system is deemed to
have reached a steady state. The y-axis depicts throughput
in YCSB ops/sec. Fig. 5 presents the MongoDB cache miss
rate on node 1 (the primary node that serves client requests
at the beginning of the run), and node 2 (the nearest replica
serving reads after the workload migration). Figs. 4a and 5a
correspond to unmodified MongoDB, while Figs. 4b and 5b
correspond to our prototype. The vertical dashed line repre-
sents the transition of the read-serving node from node 1 to
node 2.

Fig. 4a exhibits a clear performance hit for unmodified
MongoDB (read-hints module is disabled), right after the
reconfiguration at 3600 seconds. We observe system through-
put (217 ops/sec before the reconfiguration) dropping to 65
ops/sec right after reconfiguration (a 70% reduction), taking
18 minutes to reach its pre-reconfiguration serving rate again.
The performance hit is explained by the new serving node
(node 2) high cache miss rate (up to 86%) at the early stages of
its serving operation phase (Fig. 5a), significantly higher than
the 31%miss rate that either node experiences while at steady
state. Note that the reported cachemiss rate takes into account
data and index accesses, as MongoDB loads indexes into its
internal cache to speed up read requests. In Fig. 5a, node 2
reports 0% cache activity before it starts serving client
requests (as it does not perform any read operations); simi-
larly node 1 does not serve reads after theworkloadmigration

Fig. 4. Throughput under read-only workload, HDD used as back-end store.

PAPAIOANNOU AND MAGOUTIS: ADDRESSING THE READ-PERFORMANCE IMPACT OF RECONFIGURATIONS IN REPLICATED KEY-VALUE STORES 2111

starts directing its requests to the nearest replica.We note that
had node 2 been operating as a read-serving node in the
recent past, the performance impact may be lower than
observed in this experiment.

Fig. 4b depicts throughput with our RHM enabled. The
reported throughput is about 211 ops/sec during the whole
run of the experiment, while the MongoDB cache miss rate
remains stable at 31% at all nodes during the entire run
(Fig. 5b). We observe that our mechanisms are effective in
keeping replica caches up to date, saving a 55% spike on the
cache miss rate experienced by unmodified MongoDB
when the nearest replica starts serving client requests.
Unmodified MongoDB cannot meet its pre-reconfiguration
throughput for a long period of time, even with a cache size
of 10 GB.

For further insight into internal resource use, we report
the total amount of physical memory used in each node
(Fig. 6). In line with observations in Fig. 5b, it takes almost
20 minutes to bring data in memory right after reconfigura-
tion at 3600 seconds with unmodified MongoDB (Fig. 6a,
node 2). Our prototype (Fig. 6b) is able to maintain data in
memory (application cache) in node 2, resulting in a
smoother transition to the new configuration. Note that the
memory reported as used exceeds 10GB (the MongoDB
cache size) as it includes the memory used by the MongoDB
process and the OS as well.

Next we study the effect of a faster storage device (SSD)
on the performance impact during reconfiguration. In gen-
eral, using SSDs we expect to be able to serve client requests
and to recover (restore a replica’s working set) at a higher
rate. Fig. 7a depicts throughput with unmodified MongoDB
using SSD as a back-end store. The system initially serves
requests at a rate of 2260 ops/sec. At 1250 seconds we trig-
ger the workload migration and the serving replica moves
from node 1 to node 2, which causes a clear performance
hit. The throughput drops at 1510 ops/sec (a 33.1% reduc-
tion), taking over 2 minutes to reach its stable state again of
2260 ops/sec, caused by cold-cache misses at the new serv-
ing node. Fig. 8a depicts MongoDB cache experiencing a
87% miss rate right after reconfiguration, before reaching
again its stable rate at 31% until the end of the run. Our pro-
totype is able to maintain throughput stable during the
whole run (Fig. 7b) as the MongoDB cache-miss rate is not
affected when moving the serving replica from node 1 to
node 2 (Fig. 8b).

We note that with the read-hints module disabled, Mon-
goDB cache-miss rate at the early stages of reconfiguration
does not depend on the back-end store (HDD or SSD). This is
expected as the dataset and cache capacity are the same in
both cases. In the case of SSD, the system is able to recover
faster as it can serve client requests at a higher rate. However,

Fig. 5. Cache miss rate under read-only workload, HDD used as back-end store.

Fig. 6. Monitoring memory use.
Fig. 7. Throughput under read-only workload, SSD used as back-end
store.

2112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

recovery time would increase as cache sizes grow, as seen in
Section 4.3. Overall we observe that even with faster storage
devices, a primary-backup replication management system
that executes reads only at the primary, exhibits a steep
performance degradation for long periods of time (several
minutes) right after reconfiguration, due to cold-cache
misses at the new serving node. Our mechanisms are able to
mask this impact with nomeasurable performance overhead
in steady-state performance.

4.2 Multi-Shard Deployments on AWS EC2

Next we evaluate the RHM mechanism over a sharded
MongoDB deployment using multiple replica groups. The
evaluation was carried out on Amazon EC2 cloud platform,
to validate portability and reproducibility of our results.
Our database is split in three shards. Each shard comprises
a replica group. Each server node hosts two MongoDB
instances, a primary and a secondary replica, belonging to
different shards. A multi-shard deployment requires a Mon-
goDB metadata config server and a query router process
(mongos), interfacing between client applications and the
sharded cluster2. The 3 EC2 VMs allocated for the database
nodes are of type r5a.xlarge featuring 4 vCPUs and 32GB of
memory. Each MongoDB process is configured with 14GB
of cache size. The metadata server is hosted on a c5.xlarge
(4 high performance vCPUs) instance. We use a dedicated
c5.xlarge instance for the YCSB workload generator.

Fig. 9 depicts the aggregate throughput of unmodified
MongoDB versus with RHM enabled. In the case of
unmodified MongoDB (top graph) we observe a clear per-
formance hit during reconfiguration, with system through-
put dropping from 1090 ops/sec before reconfiguration to
below 500 ops/sec right after reconfiguration, requiring
almost 2 minutes to fully recover to the pre-reconfigura-
tion throughput. MongoDB with RHM enabled exhibits a
smooth transition to the new configuration (Fig. 9b). The
cache-miss ratio for unmodified MongoDB is up to 75% for
the new primary node right after the reconfiguration,
exhibiting a similar trend to the cache-miss ratio of experi-
ments in Section 4.1.

The aggregate steady-state throughput in this experi-
ment is lower than reported in the experiments of Sec-
tion 4.1. This is due to different specs of the two platforms
and the additional entities (metadata configuration server
and query router) required for a multi-shard MongoDB
deployment.2 However, both cases exhibit a similar trend:
unmodified MongoDB suffers a significant performance hit
due to cold-cache misses after a reconfiguration, whereas
MongoDB with RHM enabled results in a much smoother
transition.

4.3 Effect of Cache Size on Time to Restore
Performance

In previous experiments we noted that the time to restore
performance of unmodified MongoDB after the read-serv-
ing node changes, improves with a faster back-end store. In
this section we investigate experimentally the impact of the
size of the cache, an important issue in light of larger mem-
ory capacities typical of high-end enterprise servers. To
evaluate the relationship between the time to restore perfor-
mance after a read-serving replica change versus cache size,
we perform experiments using unmodified MongoDB with
an SSD back-end and different cache sizes, measuring the
time to reach its pre-reconfiguration throughput after a pri-
mary change.

To ensure that we can control the memory available for
caching, we had to regulate both MongoDB’s own internal
cache implemented within its storage engine (WiredTiger)
as well as the filesystem cache. MongoDB’ internal Wire-
dTiger cache loads collection data and indexes and is of con-
figurable size; however, the filesystem also indirectly caches
MongoDB data and automatically uses free memory left
unused by the WiredTiger cache or other processes. Mon-
goDB thus benefits from both caches to reduce disk I/O. To
effect a system-wide limit on cache size, we resorted to the
Linux control groups (cgroups) feature that can limit the
total memory available for all caches (MongoDB internal
and filesystem caches).

Fig. 10 shows that there is a direct relationship between
recovery time (time to refill the cache) and cache size.
Increasing cache capacity from 1GB to 10GB leads to longer
time to refill the cache, taking over 2 minutes to reach steady

Fig. 8. Cache miss rate under read-only workload, SSD used a back-end
store.

Fig. 9. Aggregate throughput of a multi-sharded replicated database on
AWS EC2 under read-only workload.

2. https://docs.mongodb.com/manual/sharding

PAPAIOANNOU AND MAGOUTIS: ADDRESSING THE READ-PERFORMANCE IMPACT OF RECONFIGURATIONS IN REPLICATED KEY-VALUE STORES 2113

state performance level with 10 GB of cache as it has to bring
more data into memory to fill the cache and reach steady
state. Production deployments with even larger memory
capacities (orders of magnitude larger memories are very
common in enterprise environments) are expected to result
in much longer periods of low system performance. Large
caches are expected to be characterized by low response
times (during steady-state performance) and long time to
refill after a reconfiguration, yielding prolonged periods of
large (as a ratio of recovery versus steady-state perfor-
mance) SLO violations, making a strong case for the mecha-
nisms proposed in this paper.

4.4 Effect of Cache Access Pattern

To determine what (if any) is the impact of the cache access
pattern, we run experiments with the read-only workload
and a Zipf-distributed (rather than uniform) access pattern.
We thus configure YCSB to select keys using the Zipf distri-
bution, which exhibits a stronger temporal locality and is
expected to increase the efficiency of cache and result in
higher overall throughput.

In Fig. 11 we observe that throughput is indeed increased
to 2689 ops/sec. MongoDB (both the unmodified version
and our prototype) exhibits a stable miss rate at 18% over the
entire run. Following a reconfiguration, the throughput of
unmodified MongoDB drops by 39% due to an increase of
the cache miss rate. The cache behavior follows a similar

trend to the experiments under uniform distribution (Fig. 8).
After the reconfiguration, the cache miss rate increases to
80% (Fig. 12). As the new serving node is warming up its
cache, it takes almost up to 2 minutes for the system to reach
the steady-state throughput following the reconfiguration.
Our prototype exhibits a smooth transition to the new serv-
ing replica, just as in previous cases. Thus, even though we
have stronger locality and more efficient use of cache in this
case, we observe similar behavior to the experiment with
uniform distribution.

4.5 Read-Write Workload

In the 100%-read workload evaluated so far, backup repli-
cas in unmodified MongoDB did not see any of the read
operations, explaining the high miss rates experienced after
reconfiguration. As soon as writes are introduced into the
mix, however, backup replicas have a way to learn of
updates (as writes are propagated through the stores repli-
cation mechanism). Thus, if the working set of future reads has
strong spatial and temporal overlap with the working set of past
writes, it is expected that the performance impact of a recon-
figuration action will be reduced. Indeed, our experiments
showed that when the percentage of writes issued by YCSB
increase, the performance impact experienced by unmodi-
fied MongoDB diminishes, due to the fact that reads and
updates access the same set of keys. However, in several
applications (e.g., in typical big-data analytics scenarios
where updates are inserting new records, whereas reads are
accessing past -historical- records) this is not expected to be
the case. To characterize such a scenario, we set up an
experiment with an 80%-20% read-write workload mix.
However, in this case the read and writes are performed on
a different set of keys, using a uniform distribution for both
operation types.

Fig. 13a depicts results with unmodified MongoDB, with
read throughput exhibiting a clear performance hit, up to
58% during reconfiguration. This is due to the high cache
miss rate (89%) on the new serving replica right after the
workload migration (Fig. 14a). Write throughput is not
affected by the reconfiguration as caching does not directly
affect write performance.

Fig. 10. Time to restore performance level versus cache size.

Fig. 11. Throughput under read-only workload, Zipf distribution, SSD
back-end store.

Fig. 12. Cache miss rate under read-only workload, Zipf distribution,
SSD back-end store.

2114 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

4.6 Re-Electing a Past Primary

In previous sections, the replica node that takes over as a pri-
mary has an empty cache as would be the case if that node
recently joined the group. In a system that has been online for
some time and, especially for a node that has served as a rep-
lica-group primary in the past, it may be the case that its cache
has some or all of the key-values in the current working set of
the client application, thus resulting in few or no cachemisses
after the reconfiguration. In Fig. 15a (YCSB throughput) we
exhibit the outcome of a second reconfiguration re-electing as
leader node 1 at 610 sec, after having served as leader in 0-300
sec, with RHM disabled. The throughput remains unaffected
during the second reconfiguration as YCSB clients access the
same working set during the run. In Fig. 15b we observe that
node 1’s cache miss rate does not increase when node 1
becomes primary again. Several practical factors however can
still render a past leader’s cache cold: One such case is when
an application’s working set changes over time, a fact that has
been supported by analyses of real environments [2]. Other
factors that may occasionally wipe out the memory contents
of replica nodes are (1) replicamigrations that often take place
in the background for load balancing or management needs,
or (2) power losses and reboots.

To highlight the impact of a time-varying working set
when RHM is disabled, we set up an experiment3 featuring
two synthetic workloads (two YCSB instances) with differ-
ent working sets. Again we perform two reconfigurations,
with node 1 re-elected primary for a second time at 580 sec
(Fig. 16). Initially, node 1 is primary and serves requests
from clients accessing key set 1. At 435 sec it steps down
and node 2 takes over as primary. At about the same same
time, an additional set of clients starts accessing a different
set of keys (key set 2). As node 2 has an empty cache (first
time serving as primary), we observe a performance hit of
up to 65% (Fig. 16). We note the reduced throughput per cli-
ent group in 435-560 sec as they share the replica group. At
560 sec the set of clients accessing key set 1 stop executing,
briefly improving throughput for clients accessing key set 2.
At 580 sec, node 1 is promoted to primary again. While
node 1 has keys in its cache, they are no longer useful as the
working set has changed, resulting again in a performance
drop. Enabling RHM (not shown in Fig. 16) results in a
smooth transition from node 1 to node 2 (for clients access-
ing key set 1) and back to node 1 (for clients accessing
key set 2).

4.7 Performance Overhead

In this section we study the performance overhead of our
mechanisms, namely the monitoring and logging of read
requests into in-memory buffers (the read-hits buffers) and
their communication to replica nodes. We focus on the per-
formance impact on throughput under a 100% read work-
load, in order to fully stress our mechanisms which only
apply to read operations.

We repeat the experiment of Section 4.1 using SSD as
back-end store and we measure the performance overhead
in terms of throughput while the system is at steady state
without applying a change of the serving node. In this case
the CPU utilization is at 80% (combined user and system
time). We break overhead in two parts: (a) the impact of
logging every read request and (b) the impact of replicating
the read log under different configurations. In our first

Fig. 13. Throughput under read-write workload, uniform distribution,
SSD back-end store.

Fig. 14. Cache miss rate under read-write workload, uniform distribution,
SSD back-end store.

Fig. 15. Node 1 serves as primary again at 600 sec after a second recon-
figuration (RHM disabled, same working set).

3. We use a slightly different testbed (Intel Xeon Bronze 3206 8-core
CPU 1.90GHz, 32GB DDR4, Micron 5200 MAX SSD) in this experiment.

PAPAIOANNOU AND MAGOUTIS: ADDRESSING THE READ-PERFORMANCE IMPACT OF RECONFIGURATIONS IN REPLICATED KEY-VALUE STORES 2115

experiment we enable the logging mechanism but do not
replicate the read log. Although we do not replicate the
read log across replicas, we still swap the read-log buffer
(part of the double buffering being performed, Section 3.1)
every 90 ms. The average performance impact of logging is
found to be 0.6% (average of 10 runs with a relative stan-
dard deviation of 0.16%).

We next study the impact of our mechanismwith the rep-
lication of read log enabled. The reported impact is cumula-
tive, meaning that it includes the cost of logging of read
requests and the cost of replication of the read log buffers.
We experiment with different replication intervals and num-
ber of replicas to sync the read log with. When only one rep-
lica gets the read-log updates the performance overhead is
0.9%, increasing to 1.6%when all replicas receive the updates
(average of 10 runs for each configuration, with relative stan-
dard deviation 0.25% and 0.21% respectively). Experiment-
ing with different replication intervals (90ms and 1000ms)
does not seem to have any impact on the overall system per-
formance. A short replication interval creates small frequent
batches of read log that are replicated across replicas while a
long interval creates less frequent but bursty batches. Over-
all, we find that the performance impact of our mechanism
tomaintain up-to-date read caches across replicas is minimal
even under stress.

Finally, we focus on the cost of RHM maintenance under
resource strain, caused by the sharing of resources between
a primary and a backup replica co-located on the same node
on AWS EC2. We use a single-shard deployment and focus
on the performance (throughput) of a single node hosting
the primary replica and a backup. To fully stress the RHM
system, we use a read-only workload. We compare unmodi-
fied MongoDB to the same system with RHM enabled with
a workload that drives the former at an average CPU utili-
zation of 70%, considered fully utilized. At that point, we
observe 4.65% lower throughput for MongoDB with RHM
versus the unmodified, as seen by clients. For a lighter
loaded server, we observe no noticeable impact on overall
system performance. While the impact is considered low
even under stress, RHM could be temporarily stopped or
selectively apply read hints to reduce it even further
(Section 4.8).

4.8 Selectively Applying Read Hints

As noted in Section 3, a secondary replica can selectively
apply the read hints it receives via RHM from the primary
to reduce the overhead of the mechanism. Here we quantify
the overhead (CPU and read I/O) attributed to RHM when
applying a fraction of the read hints received (10%, 20%,
33%, 50%) under a YCSB workload with a uniform access
pattern. Our results highlight the point that RHM can be
applied in an adjustable manner, in line with the amount of
resources available to a specific deployment at any point in
time. In addition, RHM can be switched off during periods
of excessive load, and turned back on after such periods or
after more resources are provided to a deployment.

Table 1 shows that as the amount of hints applied is
reduced, RHM overhead (CPU and read I/O4) is also
reduced while the cache miss rate on the node that takes
over as primary after reconfiguration increases. The cache
miss rate on the primary node (which applies all read
requests) is 30% at steady state. We also observe that apply-
ing 50% of read hints on replicas matches the miss rate on
the primary allowing a smooth primary transition between
nodes. This is evidence that significant benefits are possible
by applying even a small fraction (10-33%) of read hints.

Another key point is that the RHM mechanism can be
turned off during periods of overload (90-100%). These are
not expected to last too long, either because they are typi-
cally due to bursts and expected to recede or will be
absorbed by adding new resources (elasticity actions), at
which point RHM dissemination can resume at a level (% of
hints) adjusted to the current level of load.

4.9 Space Overhead

Read-oplog entries contain just the minimum description of
requested data (IDs and some filters) necessary to identify
the requested data. To reduce the read log size and the
amount of data sent over the wire, we omit (unnecessary to
the replicas) information regarding the session id, signature
hash and other fields of the read request used on primary
node. A replica that receives read log batches can recon-
struct and apply the corresponding read requests. In this
case the space overhead of the read log entry is 39 bytes (the
collection name and the contents of the filter).

As the read log is replicated in batches across replicas,
the communication interval affects the size of each batch
but not the total data transferred over the network. A

TABLE 1
Applying Fewer Read-Hints Lowers RHM Overhead, at the Cost

of Reduced Cache Efficiency After Reconfiguration

%Hints Cache CPU Disk reads

Applied miss rate usr+sys I/O wait MB/s ops/s

10% 39% 5.2% 0.37% 8.8 484
20% 33% 7.3% 2.36% 16.2 794
33% 31% 10.2% 4.26% 25.1 1137
50% 30% 13.4% 5.97% 34.9 1501
100% 30% 24.7% 8.62% 60.9 2426

Fig. 16. Node 1 serves as primary again at 580 sec after a second recon-
figuration (RHM disabled, working set changes).

4. We use mpstat and iostat to collect CPU and I/O statistics
respectively; themonitored I/Odevice is used exclusively byMongoDB

2116 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

replication interval of 1000 ms corresponds to a batch size of
2,260 log entries (matching the serving rate of read requests
reported in Section 4.1 using SSD as back-end store). A rep-
lication interval of 90 ms (default in our prototype) corre-
sponds to a batch size of 205 entries. In both cases, 2,260
requests/sec are communicated to replicas, resulting in 88
Kbytes/sec per replica. The required network bandwidth to
replicate the read log is analogous to the serving rate of
reads on primary. However we communicate only a mini-
mal description of read requests as hints and not the data
itself. In the experiments described in this section, we log all
read requests. In Section 4.10, we evaluate our optimiza-
tions to further reduce the size of the read log.

4.10 Optimizations to Reduce Read-Hints
Buffer Size

Batching reads operations provides an opportunity to reduce
the total size of the read log to be shipped across replicas as
multiple requests for the same data can be logged just once
(summarized) in the buffer. This depends on the access pat-
tern of data, the replication interval of read log (as summari-
zation can be performed for requests within the same
interval) as well as the serving rate of the system. A system
with high serving rate using a long replication interval and
featuring strong locality in the access pattern, can greatly
reduce the amount of transferred data across replicas.

In this section we study two different access patterns
(uniform, Zipf) under two different read log replication
interval settings using the fixed serving rate of our system
using SSD back-end. Under uniform accesses, almost all the
requested keys in every interval are unique, even when the
duration of the interval is set to 1,000 ms. Due to the rela-
tively large dataset size (50 million unique keys) it is highly
unlikely that during an interval the driver selects the same
keys more than once. Under the Zipf distribution, we find
that 12% fewer data are transferred to replicas when we use
the default read log replication interval of 90 ms. Setting the
interval to 1000 ms, 21% fewer read log data are transferred
over the network to replicas.

When network bandwidth is scarce, one could apply
compression or use more sophisticated deduplication tech-
niques [36] on the read log to further reduce network traffic.

4.11 TPC Workloads

This section extends our evaluation using workloads mod-
eled after two popular TPC benchmarks, TPC-C (online trans-
action processing) and TPC-H (online analytical processing).

4.11.1 TPC-C

We experimented with TPC-C [38], a popular online trans-
action processing benchmark emulating a commerce system
with five types of transactions. While initially designed to
test traditional RDBMS systems, we used a recent imple-
mentation that adapts it to match the NoSQL document
data model and to test transactional features [39] [42].

The database is populated to simulate 500 warehouses
resulting in 66 GB of data size (41.5 GB on disk space using
compression). To have a continuous view of performance,
we adapted the benchmark to report throughput and
response time for each query every 2 seconds.

Queries are served by the primary node at the start
of the run. Initially we aimed to shift the read-serving
node to the nearest secondary during the run. However,
in this way we could re-target only the STOCK LEVEL

query (a read-only query) [39] towards the secondary
node. We thus moved towards scenarios where we
switch the primary node within the replica group. This
may occur during a failover action or to improve per-
formance [18], [19], [22], [23]. In this case, all transac-
tions are executed in the node that serves as primary.
However, switching the primary yields minimal impact
on performance (we observe no cold-cache misses). An
analysis showed that this is because most of the queries
have a similar pattern (read, then update (modify) the same
keys), thus eventually propagating the read working set
to all replica caches, achieving as a side effect the bene-
fits of our mechanism. We wanted to investigate
whether a different type of workload, online analytical
processing, has different characteristics. Our results are
summarized next.

4.11.2 TPC-H

TPC-H [40] emulates a decision support system or business
intelligence database environment tasked with providing
answers for business analyses on a dataset, initially
designed for traditional RDBMSs. The workload is generally
read- and scan-intensive. We implemented a subset of the
benchmark,5 namely the ”Pricing Summary Report Query
(Q1)” compatible with the MongoDB query model. This
query reports the amount of business that was billed,
shipped, and returned. The query exhibits a high degree of
complexity. As it has to scan and fetch data from disk and
then perform aggregation operations on them (e.g., sum,
average), it is both I/O and CPU intensive. We load the
database using the DBGen6 tool using a scaling factor of 10.
To improve transaction performance, we built indexes on
fields used for the query. The total database size is 29 GB
(resulting in 13 GB on-disk allocated space using compres-
sion). The query parameters (e.g., the shipdate interval) are
randomly selected.

Initially the query is executed on the primary node
with a warm cache (having previously executed another
instance of the query), achieving an execution time of 1.2
sec with a nearly 0% cache miss rate. After workload
migration (changing read replica) with our mechanism
enabled, the query execution time is the same as the new
read node has a warm cache. After disabling our mecha-
nism however, replica caches cannot stay in sync with the
primary node’s cache. Thus, after a migration, query exe-
cution time increases to 6.3 sec (a 5.25 times slower query
execution time) due to initial cold-cache misses. Fig. 17
shows that the cache miss rate is between 60% and 40%
during the execution of the query that performs read and
scan operations. Our mechanism is able to maintain
warm caches across replicas, achieving an 80% reduction
of execution time.

5. The database schema could be adapted to better fit the NoSQL
document data model but this is out of scope of this work

6. DBGen is a TPC provided software package that must be used to
produce the data used to populate the database.

PAPAIOANNOU AND MAGOUTIS: ADDRESSING THE READ-PERFORMANCE IMPACT OF RECONFIGURATIONS IN REPLICATED KEY-VALUE STORES 2117

5 CONCLUSION

In this paper we propose a low-overhead mechanism for
maintaining warm read caches across all replicas in systems
that serve reads from a small number of (typically one) repli-
cas. We find that the mechanism can have significant perfor-
mance benefits during reconfiguration actions, avoiding
large performance drops for long periods of time (order of
minutes). The performance drops avoided by ourmechanism
are observable even with faster storage devices and are pro-
portional to the size of the cache. Mixed (read/write) work-
loads featuring non-overlapping read andwrite working sets
are also exposed to the problem described in this paper and
benefit from our solution. All in all, the proposedmechanism
is low cost, easy to implement and retrofit in existing systems,
and results in significant benefits during reconfiguration
actions. Its low performance impact observed under periods
of resource strain can be avoided by reducing or stopping the
maintenance of read hints during such periods. While the
benefits of our mechanism are not on the common path of
system performance, the challenge addressed in this work
has the potential to be even more impactful in the future, as
reconfigurations become more frequent for management
actions such as replica rejuvenation, proactive recovery,
adaptive placement, and to mask the performance impact of
resource-heavy activities.

REFERENCES

[1] B. Charron-Bost, F. Pedone, and A. Schiper, Eds., Replication: The-
ory and Practice. Berlin, Heidelberg: Springer, 2010.

[2] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proc.
ACM SIGMETRICS Perform. Joint Int. Conf. Meas. Model. Comput.
Syst., 2012, pp. 53–64.

[3] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg,
“Distributed systems,” S. Mullender, Ed., 2nd ed. USA: Addison
Wesley, pp. 199–216, 1993.

[4] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in Proc. USENIX Conf. USENIX Annu. Tech.
Conf., 2014, pp. 305–320.

[5] B. Oki and B. Liskov, “Viewstamped replication: A new primary
copy method to support highly-available distributed systems,”
in Proc. Annu. ACM Symp. Princ. Distrib. Comput., 1988, pp. 8–17.

[6] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-perfor-
mance broadcast for primary-backup systems,” in Proc. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., 2011, pp. 245–256.

[7] R. van Renesse and F. B. Schneider, “Chain replication for sup-
porting high throughput and availability,” in Proc. Symp. Oper.
Syst. Des. Implementation, 2004, pp. 91–104.

[8] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133–169, 1998.

[9] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and
P. Li, “Paxos replicated state machines as the basis of a high-
performance data store,” in Proc. USENIX Conf. Netw. Syst. Des.
Implementation, 2011, pp. 141–154.

[10] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live:
An engineering perspective,” in Proc. Annu. ACM Symp. Princ.
Distrib. Comput, 2007, pp. 398–407.

[11] C. Gray and D. Cheriton, “Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency,” in Proc. ACM
Symp. Operating Syst. Princ., 1989, pp. 202–210.

[12] B. W. Lampson, “How to build a highly available system using
consensus,” in Proc. Int. Workshop Distrib. Algorithms, 1996,
pp. 1–17.

[13] I. Moraru, D. G. Andersen, and M. Kaminsky, “Paxos quorum
leases: Fast reads without sacrificing writes,” in Proc. ACM Symp.
Cloud Comput., 2014, pp. 1–13.

[14] D. K. Gifford, “Weighted voting for replicated data,” in Proc. ACM
Symp. Oper. Syst. Princ., 1979, pp. 150–162.

[15] G. DeCandia et al., “Dynamo: Amazon’s Highly Available Key-
value Store,” in Proc. ACM SIGOPS Symp. Oper. Syst. Princ., 2007,
pp. 205–220.

[16] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and
I. Stoica, “Probabilistically bounded staleness for practical partial
quorums,” Proc. VLDB Endowment, vol. 5, no. 8, pp. 776–787,
Apr. 2012.

[17] R. Jim�enez-Peris, M. Pati~no Mart�ınez, G. Alonso, and B. Kemme,
“Are quorums an alternative for data replication?,” ACM Trans.
Database Syst., vol. 28, no. 3, pp. 257–294, 2003.

[18] M. S. Ardekani and D. B. Terry, “A self-configurable geo-
replicated cloud storage system,” in Proc. USENIX Conf. Oper.
Syst. Des. Implementation, 2014, pp. 367–381.

[19] S. Liu and M. Vukoli�c, “Leader set selection for low-latency geo-
replicated state machine,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 7, pp. 1933–1946, Jul. 2017.

[20] A. Sharov, A. Shraer, A.Merchant, andM. Stokely, “Takeme to your
leader! online optimization of distributed storage configurations,” in
Proc. Int. Conf. Very Large Data Bases, 2015, pp. 1490–1501.

[21] O.Wolfson, S. Jajodia, andY.Huang, “An adaptive data replication
algorithm,” ACM Trans. Database Syst., vol. 22, no. 2, pp. 255–314,
1997.

[22] A. Papaioannou and K. Magoutis, “Replica-group leadership
change as a performance enhancing mechanism in NoSQL data
stores,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst., 2018,
pp. 1448–1453.

[23] P. Garefalakis, P. Papadopoulos, and K. Magoutis, “ACaZoo: A dis-
tributed key-value store based on replicated LSM-trees,” in Proc.
IEEE Int. Symp. Reliable Distrib. Syst., Oct. 2014, pp. 211–220.

[24] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” SIGACT
News, vol. 33, no. 2, pp. 51–59, 2002.

[25] Dynamic snitching in Cassandra: Past, present, and future.
Accessed: Dec. 2021. [Online]. Available: https://www.datastax.
com/blog/2012/08/dynamic-snitching-cassandra-past-present-
and-future

[26] L. Suresh,M. Canini, S. Schmid, andA. Feldmann, “C3: Cutting tail
latency in cloud data stores via adaptive replica selection,” in Proc.
USENIX Conf. Netw. Syst. Des. Implementation, 2015, pp. 513–527.

[27] Riak, “Load balancing and proxy configuration,” Accessed: Dec.
2021. [Online]. Available: https://docs.riak.com/riak/kv/2.2.3/
configuring/load-balancing-proxy

[28] “How are read requests accomplished?,” Accessed: Dec. 2021.
[Online]. Available: https://docs.datastax.com/en/ddac/doc/
datastax_enterprise/dbInternals/dbIntClientRequestsRead.html

[29] N. Kolettis and N. D. Fulton, “Software rejuvenation: Analysis,
module and applications,” in Proc. Int. Symp. Fault-Tolerant Com-
put., 1995, pp. 381–390.

[30] V. V. Cogo, A. Nogueira, J. Sousa, M. Pasin, H. P. Reiser, and
A. Bessani, “FITCH: Supporting Adaptive Replicated Services in
the Cloud,” in Proc. Distrib. Appl. Interoperable Syst., 2013, pp. 15–28.

[31] L. A. Barroso, U. H€olzle, and P. Ranganathan, The Datacenter as a
Computer: Designing Warehouse-Scale Machines, Synthesis Lectures
on Computer Architecture, M. Martonosi, Ed., 3rd ed. San Rafael,
CA, USA: Morgan & Claypool, 2019.

[32] D. Stamatakis, N. Tsikoudis, E. Micheli, and K. Magoutis, “A gen-
eral-purpose architecture for replicated metadata services in dis-
tributed file systems,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 10, pp. 2747–2759, Oct. 2017.

Fig. 17. Cache miss rate after migration of the analytics query.

2118 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 9, SEPTEMBER 2022

https://www.datastax.com/blog/2012/08/dynamic-snitching-cassandra-past-present-and-future
https://www.datastax.com/blog/2012/08/dynamic-snitching-cassandra-past-present-and-future
https://www.datastax.com/blog/2012/08/dynamic-snitching-cassandra-past-present-and-future
https://docs.riak.com/riak/kv/2.2.3/configuring/load-balancing-proxy
https://docs.riak.com/riak/kv/2.2.3/configuring/load-balancing-proxy
https://docs.datastax.com/en/ddac/doc/datastax_enterprise/dbInternals/dbIntClientRequestsRead.html
https://docs.datastax.com/en/ddac/doc/datastax_enterprise/dbInternals/dbIntClientRequestsRead.html

[33] R. H. Patterson, G. A. Gibson, and M. Satyanarayanan, “A status
report on research in transparent informed prefetching,” SIGOPS
Oper. Syst. Rev., vol. 27, no. 2, pp. 21–34, 1993.

[34] Y. Chen, S. Byna, and X.-H. Sun, “Data access history cache and
associated data prefetching mechanisms,” in Proc. ACM/IEEE
Conf. Supercomput., 2007, pp. 1–12.

[35] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “A study of integrated
prefetching and caching strategies,” SIGMETRICS Perform. Eval.
Rev., vol. 23, no. 1, pp. 188–197, 1995.

[36] L. Xu, A. Pavlo, S. Sengupta, J. Li, and G. R. Ganger, “Reducing
replication bandwidth for distributed document databases,”
in Proc. ACM Symp. Cloud Comput., 2015, pp. 222–235.

[37] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in Proc. ACM Symp. Cloud Comput., 2010, pp. 143–154.

[38] TPC-C. Accessed: Dec. 2021. [Online]. Available: http://www.
tpc.org/tpcc/

[39] A. Kamsky, “Adapting TPC-C Benchmark to Measure Perfor-
mance of Multi-Document Transactions in MongoDB,” Proc.
VLDB Endowment, vol. 12, no. 12, pp. 2254–2262, Aug. 2019.

[40] TPC-H. Accessed: Dec. 2021. [Online]. Available: http://www.
tpc.org/tpch/

[41] MongoDB Server Manual: Read preference. Accessed: Dec. 2021.
[Online]. Available: https://docs.mongodb.com/manual/core/
read-preference/

[42] TPC-C in Python for MongoDB. Accessed: Dec. 2021. [Online].
Available: https://github.com/mongodb-labs/py-tpcc

Antonis Papaioannou received the PhD degree
from theComputer Science Department, University
of Crete, in November 2021. He is currently a post-
doctoral researcher with the Institute of Computer
Science, Foundation for Research and Technology
- Hellas (FORTH). His research interests include
distributed systems, adaptationmechanisms in rep-
licated data stores and streamprocessing systems.

Kostas Magoutis received the BSc degree from
AUTH, Greece, in 1993, the MA degree from BU, in
1996, and the PhD degree in computer science from
Harvard University, in 2003. He is currently an asso-
ciate professor with the Computer Science Depart-
ment, University of Crete, Greece, and collaborating
researcher with ICS-FORTH. His research interests
include scalable and highly-available distributed sys-
tems and data-intensive services.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

PAPAIOANNOU AND MAGOUTIS: ADDRESSING THE READ-PERFORMANCE IMPACT OF RECONFIGURATIONS IN REPLICATED KEY-VALUE STORES 2119

http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
https://docs.mongodb.com/manual/core/read-preference/
https://docs.mongodb.com/manual/core/read-preference/
https://github.com/mongodb-labs/py-tpcc

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

