
Efficient Forwarding Anomaly Detection in
Software-Defined Networks

Qi Li , Senior Member, IEEE, Yunpeng Liu, Zhuotao Liu , Peng Zhang , and Chunhui Pang

Abstract—Data centers, the critical infrastructure underpinning Cloud computing, often employ Software-Defined Networks (SDN) to

manage cluster, wide-area and enterprise networks. As the network forwarding in SDN is dynamically programmed by controllers, it is

crucial to ensure that the controller intent is correctly translated into underlying forwarding rules. Therefore, detecting and locating

forwarding anomalies in SDN is a fundamental problem in production networks. Existing research proposals, roughly categorized into

probing-based, packet piggybacking-based, and flow statistics analysis-based, either impose significant overhead or do not provide

sufficient coverage for certain forwarding anomalies. In this article, we propose FADE , a controllable and passive measuring scheme

to simultaneously deliver detection efficiency and accuracy. FADE first analyzes the entire network topology and flow rules, and then

computes a minimal set of flows that can cover all forwarding rules. For each selected network flow, FADE decides the optimal number

of monitoring positions on its path (much less than total number of hops), and installs dedicated rules to collect flow statistics. FADE

controls the installation and expiration of these rules, along with unique flow labels, to guarantee the accuracy of collected statistics,

based on which FADE algorithmically decides whether a forwarding anomaly is detected, and if so it further locates the anomaly. On

top of FADE , we propose iFADE (a more scalable version of FADE) to further optimize the usage and deployment of dedicated

measurement rules. iFADE achieves over 40 percent rule reduction compared with FADE . We implement a prototype of both FADE

and iFADE in about 12 000 lines of code and evaluate the prototype extensively. The experiment results demonstrate ðiÞ FADE and

iFADE are accurate, e.g., they achieve over 95 percent true positive rate and 99 percent true negative rate in anomaly detection; ðiiÞ
FADE and iFADE are lightweight, e.g., they reduce the overhead of control messages compared with state-of-the-art by about 50 and

90 percent, respectively.

Index Terms—Software defined networking, cross-plane consistency check, forwarding anomaly

Ç

1 INTRODUCTION

DATA centers are critical infrastructure underpinning the
Cloud computing. Nowadays, production data centers

often employ Software-Defined Networking (SDN) to man-
age both cluster networks [1], wide area networks [2], [3]
and enterprise networks [4]. SDN adopts a new networking
paradigm by separating the control plane from the data
plane [5]. However, SDN itself does not ensure the flow rule
consistency between what is intended in the control plane
and what is actually programmed in the data plane, which
may result in forwarding anomalies, i.e., packets are
forwarded along wrong paths [6], [7], [8]. In production
SDN networks, forwarding anomalies can be caused by
hardware faults [8], [9], software bugs introduced by the

routing agent when translating the controller intent into
data-plane forwarding rules [10], and even attacks [6], [11].

To detect forwarding anomalies, our research commu-
nity has proposed several categories of approaches, includ-
ing network probing [12], [13], [14], [15], path piggybacking
[16], [17], [18], [19], and flow statistics analysis [20], [21],
[22], [23], [24]. However, these solutions either impose sig-
nificant overhead or are not comprehensive enough to
detect certain forwarding anomalies. For instance, path pig-
gybacking approaches typically require non-trivial protocol
changes and hardware capabilities that are not available on
commodity switches; flow statistics based approaches incur
significant control-plane overhead for ubiquitous statistics
collection from all flows; and the probing-based approaches
have a tradeoff between accurate detection and probing
overhead (see more detailed analysis in Section 2). We sum-
marize the major properties of these solutions in Table 1.

In this paper, we propose an efficient Forwarding Anom-
aly Detection architEcture (FADE) to detect forwarding
anomalies in SDN. The key insight of FADE is that flow
rules matching the same network flow should have consis-
tent view on the flow’s statistics. By intelligently computing
a small set of measurement rules, placing them optimally
across the network, and accurately collecting and analyzing
their statistics, FADE is able to detect and locate forwarding
anomalies more efficiently than prior proposals. Towards
this end, FADE is designed with a group of tightly coupled
components: ðiÞ a flow selection module that models the net-
work into a forwarding graph and provably decides a

� Qi Li, Yunpeng Liu, and Chunhui Pang are with the Institute for Network
Sciences and Cyberspace and Beijing National Research Centre for Infor-
mation Science and Technology (BNRist), Tsinghua University, Beijing
100084, China. E-mail: qli01@tsinghua.edu.cn, {liuyp20, pch14}@mails.
tsinghua.edu.cn.

� Zhuotao Liu is with the Institute for Network Sciences and Cyberspace and
Beijing National Research Centre for Information Science and Technology
(BNRist), Tsinghua University, Beijing 100084, China, with the Google
Inc., CA 94043 USA, and also with the University of Illinois at Urbana-
Champaign, IL 95051 USA. E-mail: zhuotaoliu@tsinghua.edu.cn.

� Peng Zhang is with the School of Computer Science, Xi’an Jiaotong
University, Xi’an 710049, China. E-mail: p-zhang@xjtu.edu.cn.

Manuscript received 23 June 2020; revised 13 Mar. 2021; accepted 14 Mar. 2021.
Date of publication 26 Mar. 2021; date of current version 13May 2021.
(Corresponding author: Zhuotao Liu.)
Recommended for acceptance by Y. Yang.
Digital Object Identifier no. 10.1109/TPDS.2021.3068135

2676 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0001-7721-2675
https://orcid.org/0000-0001-7721-2675
https://orcid.org/0000-0001-7721-2675
https://orcid.org/0000-0001-7721-2675
https://orcid.org/0000-0001-7721-2675
mailto:qli01@tsinghua.edu.cn
mailto:liuyp20@mails.tsinghua.edu.cn
mailto:pch14@mails.tsinghua.edu.cn
mailto:zhuotaoliu@tsinghua.edu.cn
mailto:p-zhang@xjtu.edu.cn

minimal set of flows that are able to cover all forwarding
rules in the network; ðiiÞ a probe selection module that can
find the optimal number of measurement rules required for
each selected network flow; ðiiiÞ a rule installation module
that generates dedicated rules on selected probe positions
and accurately collects their statistics by controlling the
installation and expiration of these rules; and finally ðivÞ an
anomaly detection module that analyzes the flow statistics
to decide and locate anomalies.

On top of FADE , we further propose iFADE , a scal-
able version of FADE to support large scale deployment.
The design goal of iFADE is to reduce the number of
required flow rules while still achieving similar detec-
tion accuracy to FADE . iFADE is powered by two inno-
vative designs. First, by analyzing the flow paths and
forwarding actions on each hop, iFADE safely aggregates
a set of flows that traverse the same sequence of switches
and are forwarded by the same sequence of actions. As a
result, iFADE only needs to install a single measurement
rule on each switch (except for the ingress one) for the
entire aggregate flow. Second, iFADE uses a detection
scheduling scheme that can divide the entire detection
task into multiple rounds so that iFADE is still deploy-
able even if the available rule capacity on switches is
much smaller than the number of required flow rules.
We formulate the scheduling problem as an integer lin-
ear programming problem and propose heuristics to
solve it with near-optimal effectiveness.

We implement a prototype of FADE and iFADE on our
physical testbed in approximately 12,000 lines of Java code.
We extensively evaluate both systems to report their detec-
tion accuracy / efficiency / robustness, control plane and
data plane overhead, as well as the algorithm efficiency in a
large-scale network topology. Overall, both systems achieve
over 95 percent true positive detection rate and nearly 100
percent true negative rate, with small throughput overhead
(less than 3 percent) in both control plane and data plane.
Compared with prior work SPHINX [20] with similar detec-
tion accuracy, FADE and iFADE introduce much smaller
detection overhead; for instance, to measure flow statistics,
SPHINX generates 3x and 10x more OpenFlow messages
than FADE and iFADE , respectively.

In summary, we make the following concrete contribu-
tions in this paper.

� We propose FADE , an effective and accurate anom-
aly detection architecture for SDN. By intelligently
selecting a minimal set of network flows and

optimally placing a set of measurement flow rules,
FADE is able to achieve near optimal detection accu-
racy, while introducing very small overhead.

� On top of FADE , we propose iFADE , a more scal-
able version of FADE which not only greatly reduces
measurement rule consumption, but also is deploy-
able even if the available rule capacity on switches is
much smaller than the total number of required mea-
surement rules. iFADE improves scalability of FADE
while retaining a comparable detection accuracy
with FADE .

� We implement a prototype of FADE and iFADE in
roughly 12,000 lines of Code (mostly in Java), and
extensively evaluate their performance on our physical
testbed. Overall, the experimental results demonstrate
that FADE and iFADE have achieved their design
goals. For instance, both FADE and iFADE achieve
over 95 percent truepositive rate for detecting forward-
ing anomalies in various topologies, and meanwhile
iFADE reduces the number of required measurement
rules by over 40 percent comparedwithFADE .

2 RELATED WORK

Detecting and fixing forwarding anomalies has drawn sig-
nificant attention from our research community. Prior pro-
posals on addressing SDN forwarding anomalies can be
divided into three major categories, i.e., sending probes,
piggybacking path information in packets, and analyzing
flow statistics.

Probing Based Anomaly Detection. Probing based anomaly
detection approaches [12], [13], [14], [15] sample packets
from network flows as probing packets, and then replay
these packets to detect anomalies. They analyze flow rules
in the control plane and then decide, for instance by solving
mathematical problems [15], what probing packets are
required to either traverse suspicious flow paths [14] or
cover all network flows [12]. The probing packets need to be
forwarded to the SDN controller on every hop via PacketIn
messages. The primary challenge of such solutions is a
trade-off between detection accuracy and controller over-
head: although sending a large number of probes can
improve anomaly detection coverage, those packets, in
practice, could effectively result in Denial of Service to the
SDN controller due to those excessive control messages, as
well as reduced network throughput. Besides, some of these
proposals [12], [13] check only the first and the last hop on
network paths. Thus, they cannot detect traffic interception

TABLE 1
Comparison With Existing Forwarding Anomaly Detection

Scheme No New Packet Headers and
Device Updates

Traffic-Interception Detection
Approaches

Measurement Overhead

Networking probing [12], [13], [14],
[15]

@ � Measure all rules and
packet replay

Path piggybacking [16], [17], [18], [19] � @ Hardware upgrade and
protocol changes

Statistics analysis [20], [21], [22], [23],
[24], [25], [26], [27]

@ @ Measure all rules and flows

FADE / iFADE @ @ Measure a minimal set of
probe rules

LI ET AL.: EFFICIENT FORWARDING ANOMALY DETECTION IN SOFTWARE-DEFINED NETWORKS 2677

forwarding anomalies where network flows are detoured
from their desired paths but eventually return to the correct
destinations.

Path Piggybacking Based Anomaly Detection. The path pig-
gybacking approaches [16], [17], [18], [19] leverage custom-
ized packet headers to encode path information into
packets, and verify the path when packets exit the network.
The inserted path information includes cryptographic tags
[17], compressed Message Authentication Codes [18] or
encoded OpenFlow switch IDs [16]. Although theoretically
sound, these approaches often require non-trivial protocol
changes and hardware capabilities that are not available on
commodity switches. Such solutions, essentially, share the
same design principle of the various Internet security proto-
cols that require new packet headers and switch / router
firmware update, which have been proven to be impractical
for real-world deployment [28].

Statistics Analysis Based Anomaly Detection. The statistics-
based approaches [20], [21], [22], [23], [24], [25], [26], [27]
discover forwarding anomalies by performing heavyweight
flow statistics collection and analysis. Towards this end,
they propose to collect various statistics, including Open-
Flow flow statistics from all flow rules [20], port-based sta-
tistics [21], network counter rules [22], [23], [27], and packet
trajectory data [24]. However, these solutions often impose
significant communication overhead as they require to col-
lect statistics from a vast majority of, if not all, flow rules.
For instance, SPHINX [20] generates up to ten times of con-
trol messages than our scheme. Additionally, their collec-
tion and detection are static since they cannot evolve their
methodology (such as dynamically adjusting statistics col-
lection frequency and refining the scope of suspicious or
benign flow rules) to agilely react to network dynamics.

Flow Measurement. Flow measurement is the foundation
of networking engineering tasks, including anomaly detec-
tion, traffic engineering, capacity planning, fabric migration
and so on. There are two approaches in traditional flow
measurement: sampling and streaming. The sampling-
based approaches [29], [30], [31] sample network packets
and send them to remote servers for analysis or being used
to maintain local flow statistics that would be consumed
later by remote servers. Such methods provide only coarse-
grained measurements, and therefore their accuracy is not
satisfactory [32]. The streaming approaches [32], [33], [34]
leverage specialized algorithms and data structures to
store measurement results, e.g., flow counters. They achieve
higher accuracy on specific metrics with few resources. In
this paper, both of our schemes require collecting flow sta-
tistics accurately from a set of dedicated measurement rules.
The key to realize that is to ensure that during their lifetime,
these rules process the same set of network packets. Based
on prior work on leveraging timers or triggers [35] to notify
specific events to the control plane, it is possible to build a
synchronous measurement system for our schemes.

3 PROBLEM STATEMENT

3.1 Background

SDN, conceptually, is a centralized networking architecture
where the network forwarding (i.e., the data plane) is com-
puted by a controller (i.e., the control plane). As a result,

routing policies in SDN go beyond the typical shortest path
routing. This benefit is truly realized in the era of Cloud
computing when Cloud providers build numerous data
centers across the globe. To hyperconnect these data centers
(both connecting the computing clusters within a data cen-
ter [1] and interconnecting different data centers [2]), data
center networks are required to deliver extremely high
bisection bandwidth. Towards this end, Cloud providers
often build rich topologies in data center networks, such as
Fat-tree [36], and then apply SDN to intelligently and
dynamically program routing paths (e.g., perform traffic
engineering) to fully utilize the available network paths.

However, SDN itself does not ensure that the intended
paths by the controller are faithfully translated or pro-
grammed on switches, i.e., SDN networks may experience
forwarding anomalies where packets are wrongly dropped or
detoured from the paths intended by the controller. In pro-
duction SDN networks such as B4 [2] and Jupiter [1], a
gigantic software, conceptually a Routing Agent [10] or a
control plane [37], is responsible for translating the desired
forwarding intent given by the controllers to the actual for-
warding rules on switches, and the translation is often per-
formed on different levels (i.e., hierarchical), including the
global level that controls the entire network and the domain
level that controls a sector of the network. Because of its
complexity, the Routing Agent is bug-prone. As a result,
checking the consistency between the control-plane intent
and data-plane realization to detect and rectify forwarding
anomalies is critical in production SDN networks. In addi-
tion, prior works (such as [11], [38]) show that deliberate
attacks may also result in forwarding anomalies in SDN
networks.

3.1.1 An Introductory Example

In this paper, a network flow (or flow) represents a stream of
packets that are processed by the same sequence of switch
flow rules while they traverse the network. The correct rule
path of a flow means the sequence of rules intended by the
controller, while the actual rule path of the flow is the actual
sequence of rules matched by the flow in the data plane. In
the rest of this paper, we use rule path to denote the correct
rule path unless otherwise specified. The design goal of
FADE is to detect forwarding anomalies where the actual
rule paths are inconsistent with the correct rule paths.

Consider an introductory example in Fig. 1. Given the
forwarding intent in Fig. 1a, we build forwarding graph
(Fig. 1c) to represent the intent. A forwarding graph is a uni-
directional graph that consists of sequences of flow rules
matched by the same network flow, i.e., the forwarding
graph is composed of all intended rule paths. For instance,
in the forwarding graph, the correct rule path of the flow
starting from s1 and destined for 10:0:1:0=24 should be {r11,
r31, r41}. If we assume that switch s3 has an abnormal rule
r33 installed (either due to software bugs or attacks) to drop
the flow, the actual rule path of the flow will be {r11, r33}.
Thus, network flow destined for 10:0:1:0=24 experiences a
forwarding anomaly because the intended rule path for the
flow and its actual flow path are inconsistent.

In this paper, we categorized forwarding anomalies into
two major groups: traffic hijacking and traffic interception. In

2678 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

traffic hijacking, flows are dropped, or redirected to wrong
rule paths, and they never return to the correct rule paths.
In traffic interception, flows are first detoured to wrong rule
paths, but finally return to the correct rule paths before exit-
ing the network. FADE is designed to detect both types of
anomalies. In reality, it is very rare for flows to experience
the so-called “compound forwarding anomalies”; for
instance, a flow is first detoured, then returned back to the
correct the path, and finally dropped. Thus we ignore such
cases in this paper and assume a flow experiences at most a
single type of forwarding anomaly (as the definitions of two
types of anomalies are mutually exclusive).

4 FADE DESIGN

In this section, we present the detailed design of FADE ,
starting with its overview.

4.1 Design Overview

FADE is a Forwarding Anomaly Detection architEcture
designed particularly for SDN. As shown in Fig. 2, FADE is
designed with four tightly coupled components. The flow
selection module first organizes the rule paths of all flows
into a forwarding graph based on the network topology and
flow rules. Then, it selects a minimal set of flows that is
provably able to cover all rule paths in the forwarding
graph. For each selected flow, FADE algorithmically decides
the optimal number of required measurement probes on the
flow’s rule path. Afterwards, FADE generates and installs
dedicated measurement rules for those probes and starts to
collect flow statistics. FADE ensures that all dedicated flow
rules matched by the same flow process the same set of
packets by synchronizing the installation and expiration of
these rules. Finally, FADE collects flow statistics of these
rules upon rule expiration, and verifies whether the col-
lected statistics are consistent. If not, a forwarding anomaly
is detected and FADE continues to localize the anomalous
rules.

4.2 Flow Selection

The goal of flow selection is to identify a minimal set of
flows whose rule paths can cover those of all other flows
such that FADE can uses this subset of flows instead of all
network flows to validate packet forwarding. Flow selection
is performed atop the forwarding graph. In order to con-
struct the forwarding graph, FADE intercepts the flow rules
intended by the controller and virtually computes the
graph. To this end, we leverage HSA [39] to analyze the
dependencies among different flow rules, and incremen-
tally update forwarding graph whenever any rules are
updated due to network dynamics.

Once the forwarding graph is constructed, we apply
Algorithm 1 to select the minimal set of flows. At the highest
level, the selection algorithm proceeds as follows. It starts
from egress rules with out-degree of 0, representing the
last-hop rules installed on the network borders (line 2-3 of
Algorithm 1). For each egress rule, it performs reversed
depth-first traversal (DFT) of the graph until reaching a rule
that has an in-degree of 0, i.e., an ingress rule (line 5-17). We
explain later why the algorithm performs DFT on a reversed
graph. A rule may have multiple precedent rules in the for-
warding graph, meaning multiple network flows may share
this rule. Such rule paths are later handled by backtracking
of the DFT (line 8). Once the DFT exits without exception, it
also ensures that no loops are found in the forwarding
graph. Otherwise, loop-based forwarding anomalies are
detected and FADE prunes the looping rule paths and con-
tinues with a directed acyclic graph. Note that some net-
work flows are unnecessary to be investigated if their rule
paths are fully covered by those of other flows. For example,
as shown in Fig. 1, a flow entering from switch s1 and desti-
nated to 10:0:1:0=24 has rule path fr11; r31; r41g, which is a
superset of the rule path of a flow entering from switch s3
and destinated to 10:0:1:0=24. Thus, the latter flow is not
necessary for further analysis. By constructing rule paths
from egress rules, i.e., a reversed DFT, our algorithm guar-
antees to only select the rule paths that are not part of any
other paths.

Fig. 1. The forwarding flow rules (a), the network topology (b), and the
forwarding graph built for the network (c).

Fig. 2. The architecture of FADE . FADE contains four tightly coupled
components: ðiÞ a flow selection module that selects a minimal set of
flows provably covering all forwarding rules in the network; ðiiÞ a probe
selection module that can find the optimal number of measurement rules
required for each selected flow; ðiiiÞ a rule installation module that gener-
ates and programs these measurement rules, and finally ðivÞ an anomaly
detection module that analyzes the flow statistics collected from these
measurement rules to decide and locate anomalies.

LI ET AL.: EFFICIENT FORWARDING ANOMALY DETECTION IN SOFTWARE-DEFINED NETWORKS 2679

After graph traversal finishes, one sequence of rules
from an egress rule to an ingress rule represents a
reversed and ‘longest’ rule path matched by a network
flow, which will be selected for subsequent forwarding
verification. We formalize the flow selection logic in
Algorithm 1.

Algorithm 1. Flow Selection Algorithm

Input: G ¼ ðV;EÞ: the forwarding graph
Output: result: saves selected flows and their rule paths

1 begin
2 result= ;, Re= G.GetEgressRulesðÞ, wq= ; /* wq stands

for the waiting queue of the DFT. An item of wq consists of
selected flows and its rule path./*

3 forall re in Re do
/* start DFT from all egress rules/*

4 wq.add ({new rulePathðreÞ, new flowðreÞg
5 while !wq.emptyðÞ do

/* search until all rules are covered/*
6 rp, f= wq.popFrontðÞ
7 tmp= rp.frontðÞ /* the first rule of a rule path/*
8 while ðRpre= G.getPreviousRulesðtmpÞÞ 6¼ ; do

/* search all previous rules of a rule path/*
9 tmp= Rpre.get(0)
10 rp.pushFrontðtmpÞ // extend the rule path
11 f= f \ new flowðtmpÞ

/* if there are multiple search choices, search the
first one and temporarily store other choices
into wq/*

12 for i= 1 ! Rpre.sizeðÞ do
13 newRp= copyðrpÞ
14 newRp.insert(0, Rpre.getðiÞÞ
15 newF= f\ new flowðRpre.getðiÞÞ
16 wq.pushBackðfnewRp, newFgÞ
17 result.insertðfnewRp, newFgÞ
18 return result

Theorem 1. The set of selected network flows by Algorithm 1
provably covers all rule paths in the forwarding graph.

Proof. From the definition of the forwarding graph, it is
clear that the graph may contain multiple connected com-
ponents. Since the algorithm prunes any possible loops
during traversal, each connected component eventually
becomes a directed acyclic and fully connected graph
(i.e., a DAG). Thus, to prove the above algorithm, it is suf-
ficient to prove that the same condition holds within a
DAG.

By performing depth-first traversal in a DAG starting
from an egress rule and terminating at an ingress rule,
the algorithm ensures it can find all longest reversed rule
paths in the DAG. For any network flow F in the DAG,
its rule path must start with an ingress rule and termi-
nate at an egress rule. Thus, its rule path must be a subset
of one of the longest reversed rule paths returned by the
algorithm. Therefore, if we denote the network flow
matched by the longest rule path as F�, then F� guaran-
tees to cover the rule path of F . In other words, only
selecting the network flows matched by the longest rule
paths is sufficient to cover all possible rule paths in the
DAG. tu

4.3 Probe Selection

For all selected network flows by Algorithm 1, FADE
invents a controllable and passive probing scheme to collect
their flow statistics. In particular, given a selected network
flow, FADE chooses a set of rules on its rule path as the
probing spots. The selected rules are referred to as probes.
For each probe, FADE generates a dedicated rule to over-
write it. By overwriting, we mean the dedicated rule has the
same action with the probe, but with higher priority. Thus,
these dedicated rules do not change the network forward-
ing behaviors, i.e., they are passive rules. However, FADE
can configure and update the installation and timeout of
these dedicated rules for the sake of statistics collection. We
elaborate on how to select probes in this subsection and dis-
cuss the generation of dedicated flow rules in the following
subsection.

Ideally, two probes, installed on the first and last hop of
the rule path, are required to measure a flow. Unfortu-
nately, this approach is not sufficient for traffic interception
anomaly, which detours the network flows intermediately
without changing their sources and destinations. Thus,
extra probes are required in FADE . To figure out the best
number of probes needed to maximize the detection proba-
bility, we tackle the probe selection problem via a probabi-
listic model. Recall that we assume that a flow rule incurs
only one type of forwarding anomaly. Consider the case
where a rule path has n rules (hops) and we select k probes
from the rule path, as shown in Fig. 3. Note that the first
rule and the last rule must be selected as probes. Therefore,
the remaining k� 2 probes should be chosen from the n� 2
intermediate rules. A traffic hijacking anomaly can be
detected if the anomalous rule hijacking the traffic is not
selected as a probe. Thus, the detection probability is

p1ðkÞ ¼
n�3
k�2ð Þ
n�2
k�2ð Þ ¼

n�k
n�2 . An interception anomaly can be

detected if the anomalous rule detouring the traffic is not

selected as a probe and meanwhile at least one probe exists

on the intercepted path. Under the constraint that the anom-

alous rule is not selected, there are n�3
k�2

� �
combinations,

including n�l�2
k�2

� �
combinations in which no probes on the

intercepted path are selected. Therefore, the detection prob-

ability is p2ðk; lÞ ¼
n�3
k�2ð Þ� n�l�2

k�2ð Þ
n�2
k�2ð Þ ¼ n�k

n�2 � ðn�kÞ...ðn�k�lþ1Þ
ðn�2Þ...ðn�l�1Þ , where

l is the length of the intercepted path and 2 � l < n.

For simplicity, we assume the interception and hijacking
anomalies happen with an equal probability (although it is
straightforward to consider a weighted linear combination
of the two probabilities). Thus, the overall probability of
finding a forwarding anomaly for a flow rule is the sum of
the aforementioned two probabilities. Further, the probabil-
ity of detecting traffic interception attack is also factored by

Fig. 3. Optimizing the number of probes.

2680 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

the length of the hijacked path, which is unknown a priori.
Thus, we enumerate all possible length of the hijacked
paths, and compute overall probability as follows:

pðkÞ ¼ p1ðkÞ þ
Xn�1

l¼2

p2ðk; lÞ
ðn� 1� lÞ ; ð2 � k � nÞ: (1)

In practice, the length of a rule path is often less than 32 [40].
We list the optimal k for varying rule path lengths in
Table 2.

4.4 Rule Generation

The rule generation stage controls the installation and expi-
ration of the dedicated measurement rules for selected
probes. We divide the dedicated rules into two categories,
denoted byR1 andR2, respectively. For each flow, the rules
in R1 are responsible for matching packets and stamping a
unique label onto the headers of the matched packets. Thus,
R1 should be installed to overwrite the first probe, i.e., in an
ingress point. Since the flow label assignment process is cen-
tralized, FADE guarantees its uniqueness across network
flows. In practice, based on what fields are still available,
FADE may use MPLS label, VLAN label, ToS field, or their
combinations to carry the label (for instance, our prototype
uses a combination of VLAN label and ToS field). Besides
attaching a flow label, the action of R1 should copy its
probe’s action to not change the forwarding behaviors. In
general, FADE only generates one R1 for each network flow,
but it may generate multiple R1 rules if the network flow is
originated from multiple sources. Rules in R2, installed to
overwrite all subsequent probes, are responsible for count-
ing packets with the label attached by R1. The actions of
rules in R2 are also copied directly from the corresponding
probes, except that the last rule in R2 should strip the label
to ensure that packets are intact for subsequent forwarding.
At the end of this subsection, we have a concrete example of
the dedicated flow rules generated for the network shown
in Fig. 1.

To achieve high detection accuracy, FADE needs to
ensure that R1 and R2 process the same set of network
packets. Towards this end, FADE controls the installation
and expiration of these rules. Specifically, rules inR2 should
be ready before R1 becomes effective; and after R1 expires,
R2 should be alive long enough to handle the packets
tagged byR1. Formally, let i1 and i2 be the installation times
of R1 and R2, and t1 and t2 be their effective times. Let dmax

denote the larger value of the following two latencies: ðiÞ the
maximum rule programming latency and (2) the maximum
forwarding latency across the network. Then, within ½i1; i1 þ
dmax�, R1 becomes effective, and within ½i1 þ t1; i1 þ t1 þ
dmax�, R1 expires. We can compute the similar time win-
dows for R2. To ensure the correctness of the aforemen-
tioned invariant, FADE should ensure ðiÞ R2 is effective
before R1 is programmed, i.e., i2 þ dmax < i1; and ðiiÞ R2

expires after the last packet tagged by R1 exits the network,
i.e., i2 þ t2 > ði1 þ dmax þ t1Þ þ dmax, as illustrated in Fig. 4.
These constraints can be simplified to Equations (2) and (3)

i1 � i2 � dmax (2)

t2 � t1 � 3dmax: (3)

Example. We wrap up this subsection with the generated
flows for the network shown in Fig. 1. For flows entering
from s1 and destinated to 10:0:1:0=24, its rule path is
{r11; r31; r41}. Then, FADE selects r11 and r41 as probes, and
generates two dedicated rules. In the example, we use the
ToS field to carry the label and assign label 4 to this flow.
Also, we assume the duration of collecting flow statistics is
2s and dmax is 500ms. We list the dedicated rules in Table 3.
Note that the installation time is relative. By controlling the
installation time, we make sure thatR1 rules take effect after
R2 rules. From the table, it is clear that the first dedicated
ruleR1 matches packets that the corresponding probe could
match and attaches a flow label to the packets. R2 only
matches packets tagged by R1 and further strips the label
(by resetting the ToS field).

4.5 Anomaly Identification and Location

FADE detects anomalies by analyzing flow statistics collected
from these dedicated flow rules. Overall, the detection logic
proceeds as follows. Consider a case where k probes are
selected for a flow; the ith probe is on the nith switch (denote
as sni) on the forwarding path. For this flow, FADE generates
jþ 1 R1 rules (j � 0) and k� 1 R2 rules. We denote these
rules as m1;1;m1;2; . . .;m1;jþ1;m2; . . .;mk. The sum of packet
counters reported by R1 rules is p1, and miði � 2Þ reports
packet counter pi. Thus, if p1 6¼ pk, FADE detects a traffic
hijacking anomaly. Further, the anomaly should be located
between snu�1

and snu where u is the smallest number satisfy-
ing pu 6¼ p1 (line 4-5 of Algorithm 2). However, even if p1 is
equal to pk, traffic interception may still occur. To verify that,

TABLE 2
The Optimal Number of Probes

Rule path length 3 ½4; 8� ½9; 13� ½14; 21� ½22; 32�
Optimal k 2 3 4 5 6

Fig. 4. Installation and hard timeout of dedicated measurement rules.

TABLE 3
The Generated Dedicated Rules for FADE

symbol probe switch installation time priority hard timeout match action

R1 r11 s1 500ms 65535 1s ip_tos=0,ip_dst=10.0.1.0/24 set_tos=4, output:1
R2 r41 s4 0ms 65535 3s ip_tos=4,ip_dst=10.0.1.0/24 set_tos=0, output:4

LI ET AL.: EFFICIENT FORWARDING ANOMALY DETECTION IN SOFTWARE-DEFINED NETWORKS 2681

FADE checks whether there exists u and v
(2 � u � v � k� 1) such that pi (i 2 ½u; v�) is different from pj
(j =2 ½u; v�; j 2 ½1; k�). If so, an interception anomaly is detected
and the anomaly is located between snu�1

and snv (line 7). To
further locate the precise anomalous rule, FADE iteratively
processes the suspicious rule path as a new rule path (line
16) until the length of the suspicious path is reduced to be 3
(line 12-14). At this termination stage, FADE can conclude
that the malicious rule is the middle hop of the rule path. We
formalize the above logic in Algorithm 2.

5 iFADE DESIGN

In this section, we further introduce a more scalable version
of FADE , denoted as iFADE, which significantly reduces
the number of required dedicated flow rules compared
with FADE, while achieving almost the same detection
accuracy. At a high level, FADE invents two mechanisms to
reduce rule consumption and enhance the scalability. First,
it aggregates a set of selected network flows if their rule
paths traverse the same sequence of switches, and mean-
while the corresponding rules on the rule paths have the
same actions. For instance, in Fig. 1, the two network flows
entering switch s2 and matched by two rule paths, {r21, r31,
r41} and {r22, r32, r42}, satisfy the aforementioned conditions
and therefore can be aggregated for anomaly detection.
Such aggregation greatly saves the number of required ded-
icated rules since only one set of R2 rules is necessary for
each aggregate flow. Second, since the R1 rules, installed on
the ingress switches, cannot be safely aggregated, iFADE

incorporates a round-based mechanism, i.e., splitting the
detection for aggregate flows into multiple rounds and
investigating only a part of aggregate flows in each round.
By solving an Integer Linear Programming (ILP) problem,
iFADE is able to minimize the maximum number of dedi-
cated rules required on any switches.

Note that, the goal of iFADE is to solve the possible scal-
ability issues in large-scale networks. By aggregating flow
paths, iFADE trades flow table space usage with moderate
time overhead introduced by more detection rounds. There-
fore, iFADE should not be viewed as a substitute of FADE .
It depends on the actual network scale and the requirements
on detection latency to decide which method to use, and
they can certainly be deployed simultaneously.

5.1 Rule Computation Under Flow Aggregation

Similar to FADE , iFADE also has four phases, i.e., flow
selection, probe selection, rule generation, and anomaly
identification. Except for the probe selection phase, iFADE
has different designs in other phases due to flow aggrega-
tion. In the following subsections, we present the design
details of iFADE.

5.1.1 Flow Selection

To guarantee coverage, iFADE also performs DFT on the
forwarding graph for aggregate flow selection. However,
the algorithm needs to be aware of physical locations of
flow rules, i.e., whether some flow rules are installed on the
same switch. In particular, the algorithm proceeds as fol-
lows. First, the algorithm groups all egress rules on the
same switch with the same actions as one rule category (line
5-6 of Algorithm 3). Each rule category is perceived as a sin-
gle virtual traversal runner which starts and drives an itera-
tion of the DFT. During traversal, a rule category is split
into multiple categories if the category’s precedent rules
have different actions, i.e., they cannot be grouped into the
same category anymore (line 13). For any rule category, its
DFT terminates when all its precedent rules contain only
ingress rules (line 16-17). Once the DFT for the entire graph
terminates, rules in the same category form a set of rule
paths, each of which is associated with one network flow.
These network flows are considered as a single aggregate
flow. We formalize the traversal logic in Algorithm 3.

5.1.2 Dedicated Rule Generation

For each aggregate flow used for anomaly detection, iFADE
needs to generate dedicated R1 rules, for matching each
member flow, and a set of R2 rules, for matching all mem-
ber flows. To this end, different rules in R1 need to attach
the same packet label, i.e., all individual flows in the same
aggregate flow should carry the same label. Again, since the
label assignment is centralized controlled, iFADE can ensure
the label uniqueness across different aggregate flows.
Besides label tagging and striping, all dedicated rules have
same actions as their corresponding probes to preserve the
original networking forwarding.

Since flow aggregation only partially changes the con-
tents of dedicated rules, it does not affect the installation
and expiration of these rules. Thus, iFADE adopts the same
mechanism for rule timing as FADE . We list the examples

Algorithm 2. Anomaly Identification Algorithm
Input: m1;1; . . . ;m1;jþ1;m2; . . . ;mk: dedicated flow rules of

the network flow
sni ; pi: switch and packet count of rulemi

rp: rule path of the flow
Output: the anomalous rule or the resubmit rule path

1 begin
2 SuspisiousPath= ;, u ¼ �1
3 u ¼ minifi : pi 6¼ p1; 1 � i � kg
4 if p1 6¼ pk then /* traffic hijacking/*
5 SuspisiousPath= ½snu�1

; snu �
6 else if u 6¼ �1 then /* traffic interception,

intercepted path: ½snu ; snv �/*
7 v ¼ maxifi : pi ¼ pu; u � i � kg
8 SuspisiousPath= ½snu�1

; snv �
9 else if isResubmitted(rp) then

/* find no anomaly in resubmitted rule path and rese-
lect probes in the next detection round/*

10 resubmitRulePath(rp)
11 return
12 if length(SuspisiousPath) == 3 then
13 rerr = rp½nu � 1� /* suspicious rule path is short

enough, and the malicious rule is on the switch
before snu/*

14 return rerr
15 else
16 resubmitRulePath(SuspisiousPath) /* suspi-

cious rule path is not short enough, so resubmit to
locate the anomaly/*

17 return

2682 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

of generated rules in iFADE in Table 4. The first two rules
are the R1 rules for the aggregate flow with two member
flows. Both flows are assigned the same label (represented
by the same ToS value), which is further matched by the sin-
gle dedicated ruleR2 on subsequent switches.

5.1.3 Anomaly Identification

The anomaly identification in iFADE needs to consider the
flow aggregation. We use the following notations for
describing the process. Consider an aggregate flow with l
member flows, denoted as f1; f2; . . .; fl. m1;i;j denotes the jth
dedicated rule in R1 generated for member flow fi (recall

that similar to FADE , iFADE may generate multiple R1

rules for one individual flow); pm denotes the number of
packets reported by the kth switch on path. Thus, in normal
scenarios without forwarding anomalies, the following
equation holds:

p2 ¼ p3 ¼ 	 	 	 ¼ pk ¼
X

i

X

j

p1;i;j: (4)

Denote p1 ¼
P

i

P
j p1;i;j, we have a simplified version of the

equation as

p2 ¼ p3 ¼ 	 	 	 ¼ pk ¼ p1: (5)

The anomaly detection algorithm of iFADE works as fol-
lows. Starting from p1, it checks whether the current counter
is consistent with its subsequent one. If not, a suspicious sub-
path is found. Since the sub-path carries an aggregate flow,
to reuse the anomaly detection algorithm of FADE designed
for single-flow use cases, we split the aggregate flow into
smaller ones (i.e., sub-aggregate flows) and reevaluate flow
statistics for each of them. It is feasible to split the aggregate
flow since each member flow has its own R1 rules. If the sta-
tistics of a sub-aggregate flow is consistent, then it includes
no anomalous member flows. Otherwise, we further split the
suspicious sub-aggregate flow. The recursion terminates
when a sub-aggregate flow only contains a single flow. We
formalize the above logic in Algorithm 4.

Algorithm 4. Anomaly Identification Algorithm of
iFADE

Input: arp: the aggregate rule path to be detected
Output: the anomalous rule

iFadeAnomalyIdent(arp)
begin
1 genAndInstallProbes(arp)

/* check anomaly in the same way as Algorithm 2/*
2 if hasAnomaly(arp) then
3 if isSplitable(arp) then
4 subArp1, subArp2= split(arp)
5 genAndInstallProbesðsubArp1Þ
6 genAndInstallProbes ðsubArp2Þ
7 result= iFadeAnomalyIdent(subArp1)
8 result= result[iFadeAnomalyIdent(subArp2)
9 return result
10 else

/* if the aggregate flow contains only one flow,
leverage the anomaly identification algorithm of
FADE to locate the anomaly/*

11 result= FadeAnomalyIdent(arp)
12 return result

Algorithm 3. Aggregate Flow Selection
Input: G: forwarding graph; S: switches in the network
Output: result: the rule paths of aggregate flows

1 begin
2 result ¼ ; /* the final result set of aggregate rule paths/*
3 wq ¼ ; /* temporary set of aggregate rule paths/*
4 forall s in S do

/* get all egress rules on s and classify them/*
5 Re ¼ G.getEgressRulesðsÞ
6 Ce ¼ ClassifyByActionListðReÞ
7 forall c in Ce do

/* initiate aggregated rule paths/*
8 wq:pushBack (new AggregatedPathðcÞÞ
9 while !wq:emptyðÞ do
10 arp ¼ wq:popFrontðÞ /* currently searched aggre-

gate rule path/*
11 repeat

/* repeat until there are no previous rules/*
12 pre ¼ G:getPreviousðarp:frontðÞÞ

/* classify previous rules of the aggregated rule path
according the switches and actions/*

13 C ¼ ClassifyBySwitchAndActionListðpreÞ
14 if C:sizeðÞ ¼¼ 0 then
15 result:addðarpÞ /* find a new result/*
16 else if C:sizeðÞ ¼¼ 1 then
17 arp:pushFrontðC:getð0ÞÞ /* extend the rule path

of aggregated flow/*
18 else

/* if there are multiple subsequent search choices,
search the first one and temporarily store other
choices into wq/*

19 for i ¼ 1 ! G:sizeðÞ do
20 newArp ¼ copyðarpÞ
21 newArp:pushFrontðC:getðiÞÞ
22 wq:pushBackðnewArpÞ
23 arp:pushFrontðC:getð0ÞÞ
24 until C:sizeðÞ ¼¼ 0

TABLE 4
Dedicated Rule Generation in iFADE

symbol probe switch install time priority hard timeout match action

R1 r21 s2 500ms 65535 1s ip_dst=10.0.1.0/24,ip_tos=0 set_tos=4,output:2
R1 r22 s2 500ms 65535 1s ip_dst=10.0.2.0/24,ip_tos=0 set_tos=4,output:2
R2 r41; r42 s4 0ms 65535 3s ip_tos=4 set_tos=0,output:4

LI ET AL.: EFFICIENT FORWARDING ANOMALY DETECTION IN SOFTWARE-DEFINED NETWORKS 2683

5.2 Scheduling Detection into Rounds

Since flow aggregation only saves R2 rule consumption, we
may still encounter scalability issues for R1 rules in large-
scale deployment. iFADE divides and conquers this issue by
scheduling anomaly detection into different rounds such
that only a subset of R1 rules are required in each round.
The scheduling is not just random division. Instead, iFADE
formalizes it as an Integer Linear Programming (ILP) prob-
lem to optimize the scheduling.

The ILP Model. The notations used in our ILP model are
listed in Table 5. The optimization goal is to minimize the
maximum number of rules required on every switch in each
detection round. Formally, we formulate the problem as
follows.

Equation (6) states the optimization goal. Equation (7)
formulates the total dedicated rules, including R1 and R2

rules, required on a specific switch s. Constraints in Equa-
tions (8) and (9) indicate that the rule consumption on one
switch cannot exceed the maximum reserved rule capacity
(our optimization metric) and the available rule capacity on
this switch. Equation (10) states each individual flow in a

should be investigated in some round; together with Equa-
tion (10), Equation (11) indicates that all member flows in a

are investigated eventually before the algorithm exits

Minimize tm (6)

Subject to
X

a2A
isa

X

j2a
Xj

ar þ
X

a2A
msar ¼ usr; 8r; 8s (7)

usr � ts; 8r; 8s (8)

usr � tm; 8r; 8s (9)

X

r2R
Xj

ar ¼ 1; 8j 2 a; 8a (10)

X

r2R

X

j2a
Xj

ar ¼ jaj; 8a: (11)

Heuristics. Since the ILP problem is NP-hard, we develop
heuristics to solve it. AsR1 rule shortage tends to be the bot-
tleneck, we sort all aggregate flows by their membership
sizes. In each round, we schedule one or more non-investi-
gated aggregate flows. Denote an aggregate flow under
investigation as FA. The scheduling for FA is feasible if the
network has sufficient capacity to program all its required
R1 and R2 rules. If the scheduling is infeasible due to R1

rule limitation, we further split FA into two sub-aggregate
flows. We greedily include as many network flows as possi-
ble into the first sub-aggregate flow so that it is detectable in
this round. Note that the greedy allocation has reservation:
on each switch, while computing how manyR1 rules can be
installed, we reserve K rules for installing R2 such that we
may schedule some other aggregate flows in this round.
Our heuristic chooses K¼ 2, considering that we have the
chance of allocating two aggregate flows in one round. This
value is adjustable. The second sub-aggregate flow, contain-
ing the rest flows, is deferred to some subsequent round,
depending on its membership size.

Algorithm 5.Heuristic for Solving the ILP Problem

Input: the set of aggregate flows A; the number of dedicated
rules ts that could be installed on switch s.

Output: how many single flows in each aggregate flow
should be detected in each run.

1 begin
2 result ¼ fg
3 reserve ¼ 2 � jSj
4 forall FA in SortBySize ðAÞ do
5 round= 1
6 while notEmptyðFAÞ do

/* iterate until all flows in FA are scheduled/*
7 availableOnIngress ¼ getAvailTCAMðr; getIngress

(FA))
8 if R2Installableðr; FA) and

availableOnIngress > reserve then
9 installR2Rulesðr, FA)

/* split the aggregate flow if the space on ingress
switches is not enough for R1 rules/*

10 subflow; remainedFlow ¼
FA.splitByR1LimitðavailableOnIngressÞ

11 FA ¼ remainedFlow
12 installR1Rulesðr; subflowÞ
13 result:addDetectionðr; subflowÞ
14 roundþ¼ 1 /* schedule the remaining flows in FA

into the next round/*
15 return result;

However, if the scheduling for FA fails due to R2 limita-
tion, this indicates that the rule capacity has been exhausted.
Thus, we need to first finish the detection for some already
allocated flows, free some rule space, and continue investi-
gation for the remaining aggregate flows. We formalize our
heuristics in Algorithm 5. It is straightforward that the
computational complexity of the algorithm is linear.

6 IMPLEMENTATION

We implement a prototype of FADE and iFADE as applica-
tions running on the Floodlight [41] controller, in

TABLE 5
Notations Used in the ILP Model

Symbol Description

A The set of aggregate flows in the network.
a One specific aggregate flow.
jaj The number of member flows in the aggregate flow a.
R The number of rounds. R is dynamic.
r One specific round.
Xj

ar Xj
ar ¼ 1 if a member flow j in a is being investigated

in round r; otherwiseXj
ar ¼ 0.

isa isa ¼ 1 if switch s is the ingress point of aggregate
flow a; otherwise isa ¼ 0.

msar msar ¼ 1 if any probe of the aggregate flow a is
installed on switch s in round r; otherwisemsar ¼ 0

ts The available rule capacity on switch s.
usr The number of dedicated rules installed on switch s

in round r.
tm The maximum number of dedicated rules needed on

every switch and in each round.

2684 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

approximately 12,000 lines of Java code.1 For each system,
we implement three modules: rule storage module, rule
graph module and anomaly detection module. Specifically,
the rule storage module is extended from HSA [39]. It reads
and stores all flow rules by monitoring FlowMod messages
and analyzes the dependencies among these rules. Addi-
tionally, it provides RESTful interfaces to accept and record
manually generated flow rules. The rule graph module is
responsible for constructing and updating the forwarding
graph. It intercepts the flow table items sent from the con-
trol plane to the data plane, analyzes dependencies among
these items and constructs the forwarding graph. It also
monitors the network topology change messages and
updates the forwarding graph accordingly. The anomaly
detection module interacts with the other two modules and
detects anomalies according to information retrieved from
them. It includes three working threads, i.e., the detecting
thread, checking thread, and locating thread. The detecting
thread performs flow (or aggregate flow) selection and
probe generation, and the actual dedicated rule installation.
Afterwards, the checking thread collects flow statistics from
expired dedicated rules, and executes the anomaly detec-
tion logic. Once anomalies are detected, the locating thread
is responsible for finding the actual anomalous rules.

7 EVALUATION

Our evaluation centers around the following questions.
ðiÞWhat is the detection accuracy and robustness of FADE and

iFADE? On our physical testbed, we performed a series of
experiments with various network topologies and parame-
ter settings to evaluate the detection accuracy. Overall,
FADE and iFADE achieve over 95 percent true positive rate
and 99 percent true negative rate, and their efficiency is con-
sistent across different settings (Section 7.2).

ðiiÞWhat is the control-plane and data-plane overhead intro-
duced by FADE and iFADE? In Section 7.3, we show that both
FADE and iFADE introduce only several milliseconds of
latency to react to network dynamics, and achieve nearly
identical control-plane throughput as if they were not
enabled. In the data plane (Section 7.4), we show iFADE
consumes over 40 percent less rules than FADE and both
schemes impose negligible forwarding overhead.

Besides, we further evaluate the algorithm effectiveness
of iFADE using a large-scale network topology, demonstrat-
ing that it achieves comparable effectiveness as the produc-
tion-ready optimization solver Gurobi [43]. Finally, we
compare FADE and iFADE with SPHINX [20], which is the

state-of-the-art flow statistics based approach with compa-
rable anomaly coverage and detection accuracy.

7.1 Experiment Setup

We deploy our systems on a Linux Debian workstation with
four Inter Core i5 3470 CPUs (3.2 GHZ). We use Floodlight
as the OpenFlow controller, Mininet as the network emula-
tor and Open vSwitch as the virtual switch. Cbench [44] and
iperf [45] are used to benchmark data plane and control
plane overhead. We list their information in Table 6. For
experiment purpose, we generate aggregate flows as fol-
lows. We configure each host on our testbed with multiple
delegated IP addresses, which are bound to the host’s MAC
address via static ARP entries. Thus, each host can receive
traffic destined to both its real IP addresses and any of its
delegated IPs. Then, we further modify the Floodlight con-
troller so that it forwards traffic according to the packet des-
tination addresses. Thus, an aggregate flow is generated
when one host sends traffic to another host via different via-
ble addresses.

On our testbed, we build two sets of network topology.
The first set contains realistic topologies selected from
Topology Zoo [42], as listed in Table 7. The second set con-
tains only linear topologies, which connect two hosts via
different numbers of hops. We use ovs-ofctl [46] to inject
anomalous flow rules into selected switches. To collect non-
biased results, we independently run each experiment 50
times and compute the average results. Our experimental
results also depend on various parameters. For dmax, the
maximum networking latency, we set it to 500 milliseconds
based on measurements in [47]. Other parameters, such as
the duration of statistics collection, the number of anoma-
lies, and the number of flows, are evaluated explicitly.

7.2 Detection Accuracy and Efficiency

In this subsection, we perform a series of experiments to
evaluate the detection accuracy and efficiency with varying
parameter settings. The detection accuracy is measured by
both true positive rate (TPR, i.e., sensitivity) and true nega-
tive rate (TNR, i.e., specificity); the detection efficiency is
measured by the time it takes for FADE or iFADE to locate
all anomalies, i.e., how long it takes for both TPR and TNR
to converge.

TABLE 6
The Settings of Testbed

Tool Version Usage Tool Version Usage

Debian Jessie Operating System Open vSwitch 2.3.2 The virtual switch
Floodlight 1.2 The OpenFlow controller Cbench 1.1 The PacketIn throughput test tool
Mininet 2.2.1 The network simulator iperf 2.0.5 The network throughput test tool

TABLE 7
Network Topologies Collected From ITZ [42]

Topology Arpanet19706 Spiralight Grena Sago

Switches 9 15 16 18
Links 10 16 15 171. A copy of source code for our prototype is available at https://

github.com/chunhui-pang/fade

LI ET AL.: EFFICIENT FORWARDING ANOMALY DETECTION IN SOFTWARE-DEFINED NETWORKS 2685

https://github.com/chunhui-pang/fade
https://github.com/chunhui-pang/fade

Basic Setting. In the first setting, we use the four realis-
tic topologies. For each topology, we generate 200 net-
work flows among all hosts and inject four anomalous
flow rules. For each selected ‘longest’ network flow, we
collect their statistics for two seconds (i.e., R1 rules
expires after two seconds), and each experiment lasts for
five minutes. We report the measured TPR and TNR for
FADE in Figs. 5a and 5b. We draw two conclusions from
the results: ðiÞ both TPR and TNR are eventually con-
verged to 1; ðiiÞ on average, it takes FADE a few seconds
to locate the first anomaly and tens of seconds to locate
all anomalies. We repeat the same experiments for
iFADE, and report their results in Figs. 6a and 6b. On
average, both TPR and TNR of iFADE are about 5 percent
less than those of FADE. We manually check encoun-
tered detection errors in the experiments and figure out
they are caused by the inaccurate flow statistics reported
by the Open vSwitch. Due to flow aggregation in iFADE ,
such inaccuracy accumulates and eventually impacts
detection accuracy. Additionally, it also takes longer for
iFADE to locate all anomalies. This is as expected because
a single aggregate flow needs to be recursively split into indi-
vidual flows in the anomaly localization stage.

Robustness. We further evaluate the algorithm robustness
of FADE and iFADE under different experimental settings.
We first measure the detection accuracy with larger num-
bers of network flows and anomalous rules. To accurately
create this experimental setting, we adopt a linear topology
with five hops. By changing the number of delegated IPs on
both hosts, we generate different numbers of network flows,
ranging from 80 to 320; for each number of flows, we inject a

certain number of anomalous rules, ranging from 20 to 80,
as listed in Table 8. We report the measured TPR and TNR
for both FADE and iFADE in Figs. 7a and 7b, respectively.
The results indicate: ðiÞ the detection of FADE is robust,
regardless of how many flows and anomalous rules are in
the network; ðiiÞ although iFADE’s TNR is consistently high,
its TPR fluctuates as the number of flows increases. The rea-
son again is because the inaccuracy of flow statistics report
by Open vSwitch accumulates in iFADE .

We further measure the impact of flow statistics collec-
tion duration t1, i.e., how long the R1 rules last. We test four
duration values: t1 to 1, 2, 4 and 8 seconds. Figs. 5c and 6c
plot the TPR for FADE and iFADE , respectively. It is clear
that ðiÞ FADE is robust for all duration values, however the
entire detection period increases as the duration increases;
ðiiÞ due to inaccurate statistic report, iFADE performs much
better for longer detection periods. Thus, we notice a trade-
off between detection accuracy and efficiency in iFADE.
Figs. 8a and 8b plot the TNR for FADE and iFADE, respec-
tively, which demonstrates consistently good performance.

7.3 The Control Plane Overhead

In this experiment, we evaluate the control plane overhead
of FADE and iFADE. We measure two metrics in this regard:
latency for logical forwarding computation and PacketIn
throughput of the SDN controller. The logical forwarding
computation includes all control-plane actions taken by
FADE (or iFADE) to react to network dynamics (e.g., topol-
ogy changes, new flow rules), including reconstructing the
forwarding graph, re-selecting probes and re-generate

Fig. 5. Detection accuracy of FADE.

Fig. 6. Detection accuracy of iFADE.

2686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

dedicated flow rules. This metric reflects the agility of FADE
(or iFADE) for handling network dynamics. We report the
latency of logical forwarding computation in Fig. 9a. Over-
all, the latency is only about 2 milliseconds even in large
scale evaluations. iFADE has slightly higher (about 5 per-
cent more) latency due to its relatively sophisticated flow
selection algorithm.

We further use the standard Cbench [44] tool to bench-
mark the control plane throughput. The tool sends PacketIn
messages to the controller and waits for the corresponding
flow-mod messages to be returned by the controller. Thus,
the throughput of PacketIn messages reflects the overall
capacity of the controller. We compare the PacketIn mes-
sages throughput for FADE , iFADE and a ‘plain’ Floodlight
controller, and report the results in Fig. 9b. It is clear that the
above three controllers have very close throughput, indicat-
ing negligible overhead imposed by FADE and iFADE.

7.4 The Data Plane Overhead

In this experiment, we evaluate the data plane overhead
imposed by FADE and iFADE. We report two evaluation
results in this regard: the number of dedicated flow rules
required for detection (Fig. 10a) and the data plane network
throughput (Fig. 10b). From Fig. 10a, it is clear that the num-
ber of required rules in iFADE is significantly less than
FADE (about 40 percent reduction). More crucially, the
number of required rules in iFADE increases sublinearly
with the number of flows in the network. Thus, iFADE is more
scalable than FADE. In addition, Fig. 10b shows that both
FADE and iFADE slightly degrade the network throughput by
less than 3 percent, which is negligible considering that overall

Fig. 10. Data plane overhead of FADE and iFADE.

Fig. 12. Comparison experiments between FADE, iFADE and SPHINX.

TABLE 8
The Number of Network Flows and the Number of Corresponding Anomalies

Network Flows 80 100 120 140 160 180 200 240 280 320 360 400
Anomaly Rules 20 20 20 20 30 30 40 40 50 60 70 80

Fig. 7. The converged TPR and TNR of (7a) FADE and (7b) iFADE with
different number of flows and anomalies.

Fig. 8. The TNR of (8a) FADE and (8b) iFADE with different t1.

Fig. 9. Control plane overhead of FADE and iFADE.

Fig. 11. Comparison experiments between Gurobi and the heuristic used
in iFADE.

LI ET AL.: EFFICIENT FORWARDING ANOMALY DETECTION IN SOFTWARE-DEFINED NETWORKS 2687

link utilization (even for those bottleneck links) in production
SDNnetworks is about 90 percent [48].

7.5 Effectiveness of Heuristics in Large-Scale
Topology

We further evaluate the effectiveness of the heuristic
used in iFADE to perform detection scheduling (Algo-
rithm 5). We construct a large-scale network topology
based on the forwarding information base (FIB) of the
Internet2 [49].2 Eventually, we extract 12 switches, and
every switch has over 17,000 FIB entries, as shown in
Table 9. We use HSA to analyze these FIBs offline and
construct the forwarding graph, based on which we
extract 61553 flows and 115 aggregate flows (recall that a
flow in our paper is defined as a sequence of switch rules,
as described in Section 3.1.1).

We run Algorithm 5 to schedule detection for all aggre-
gate flows. As a benchmark, we adopt Gurobi [43], a pro-
duction-ready optimization solver, to solve the same ILP
problem. We compare the number of rounds needed and
the maximum consumed rules of our heuristics and Gurobi.
In Fig. 11a, we report the number of rounds it takes for both
solvers to solve the problem under different numbers of
available rules on switches. It is clear that when number of
available rules is more than 200, both solvers have almost
the same effectiveness. When the maximum number of
available flow rules is smaller, Algorithm 5 needs about
only 10 percent more rounds than Gurobi. In addition, we
also report the maximum number of rules used by both
solvers in Fig. 11b. We find that Gurobi requires relatively
less rules than Algorithm 5, especially when the number of
available rules is large. However, the gap between the two
algorithms is not large. Thus, by comparisons in multiple
dimensions, we show that our heuristics have comparable
performance with Gurobi.

7.6 Experimental Comparison With SPHINX [20]

Finally, we report some experimental comparison with
SPHINX [20], the state-of-the-art flow statistics based
work that can achieve similar detection accuracy with
FADE and iFADE. We focus on two metrics in this regard.
First, we report the average detection latency for finding
the first anomaly in different network topologies in
Fig. 12a (FADE and iFADE have very similar results so
we only plot iFADE in the figure). On average, iFADE
takes about one more second than SPHINX. This is
because iFADE has to install two kinds of dedicated mea-
surement rules in a strict order, which introduces

additional delays. Further, we evaluate the detection
overhead introduced by three systems, measured by the
number of OpenFlow control messages generated during
flow statistics collection. As shown in Fig. 12b, on aver-
age, the number of OpenFlow messages generated by
SPHINX is about three times and ten times of that gener-
ated by FADE and iFADE , respectively. Thus, compared
with ubiquitous flow statistic collection, the intelligent
collection mechanism invented by FADE and iFADE sig-
nificantly reduces communication overhead of anomaly
detection. Besides, the number of control messages gen-
erated by iFADE is only about half of that of FADE . This
is because that iFADE installs fewer rules than FADE . In
conclusion, compared with SPHINX, FADE and iFADE
greatly reduce the communication overhead at a small
cost of detection latency.

8 CONCLUSION

In this paper, we propose FADE, an efficient and accurate
forwarding anomaly detection system in SDN. FADE intelli-
gently computes a small set of measurement rules, places
them optimally across the network, and accurately collects
and analyzes their statistics to comprehensively detect and
locate all forwarding anomalies in the network. On top of
FADE, we further propose iFADE, a more scalable version
of FADE that not only saves large numbers of measurement
rules, but also is deployable even if the available switch rule
capacity is much less than the total required rules. We
implement both FADE and iFADE on our physical testbed
in roughly 12,000 lines of code and extensively evaluate
their performance. Overall, both systems achieve over 95
percent true positive detection rate and 99 percent true neg-
ative rate, while imposing small overhead on both the con-
trol plane and data plane.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China under Grant 2018YFB1800304, in part by
NSFC under Grant 61572278 and Grant 61772412, and in
part by BNRist under Grant BNR2020RC01013. The work
of Peng Zhang was supported in part by the K. C. Wong
Education Foundation.

REFERENCES

[1] A. Singh et al., “Jupiter rising: A decade of Clos topologies and
centralized control in Google’s datacenter network,” ACM SIG-
COMMComput. Commun. Rev., vol. 45, pp. 183–197, 2015.

[2] C.-Y. Hong et al., “B4 and after: Managing hierarchy, partitioning,
and asymmetry for availability and scale in Google’s software-
defined WAN,” in Proc. Conf. ACM Special Interest Group Data
Commun., 2018, pp. 74–87.

TABLE 9
The Switches of Internet2 and the Number of FIBs on Them

Switch Name # of FIBs Switch Name # of FIBs Switch Name # of FIBs Switch Name # of FIBs

ATLA 17429 CHIC 17386 NEWY32AOA 17419 PAIX 17477
CLEV 17433 HOUS 17434 SALT 17450 SEAT 17695
KANS 17443 LOSA 17424 WASH 17401 WILC 17479

2. The real-time data has been removed from the website. The data
snapshot we use in our experiments is available at https://github.
com/chunhui-pang/fade/tree/master/real-data/internet2

2688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

https://github.com/chunhui-pang/fade/tree/master/real-data/internet2
https://github.com/chunhui-pang/fade/tree/master/real-data/internet2

[3] C.-Y. Hong et al., “Achieving high utilization with software-
driven WAN,” in Proc. ACM SIGCOMM Conf., 2013, pp. 15–26.

[4] Z. Liu, Y. Cao, X. Zhang, C. Zhu, and F. Zhang, “Managing recur-
rent virtual network updates in multi-tenant datacenters: A sys-
tem perspective,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 8,
pp. 1816–1825, Aug. 2019.

[5] N. McKeown et al., “OpenFlow: Enabling innovation in cam-
pus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
pp. 69–74, 2008.

[6] M. Antikainen, T. Aura, and M. S€arel€a, “Spook in your network:
Attacking an SDN with a compromised OpenFlow switch,” in
Proc. Nordic Conf. Secure IT Syst., 2014, pp. 229–244.

[7] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability
assessment,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics
Softw. Defined Netw., 2013, pp. 151–152.

[8] M. Ku�zniar, P. Pere�s�ıni, and D. Kosti�c, “What you need to know
about SDN flow tables,” in Proc. Int. Conf. Passive Active Meas.,
2015, pp. 347–359.

[9] OpenFlow switch specification, 2012. Accessed: 2019. [Online].
Available: https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.3.0.pdf

[10] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat,
“Evolve or die: High-availability design principles drawn from
Googles network infrastructure,” in Proc. ACM SIGCOMM Conf.,
2016, pp. 58–72.

[11] G. Pickett, “Staying persistent in software defined networks,” in
Black HatUSA, 2015. [Online]. Available: https://paper.bobylive.
com/Meeting_Papers/BlackHat/USA-2015/us-15-Pickett-Staying-
Persistent-In-Software-Defined-Networks-wp.pdf

[12] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen, “Is every flow
on the right track?: Inspect SDN forwarding with rulescope,” in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.

[13] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown,
“Automatic test packet generation,” in Proc. 8th Int. Conf. Emerg.
Netw. Experiments Technol., 2012, pp. 241–252.

[14] K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “SDN tracer-
oute: Tracing SDN forwarding without changing network
behavior,” in Proc. 3rd Workshop Hot Topics Softw. Defined
Netw., 2014, pp. 145–150.

[15] P. Zhang, C. Zhang, and C. Hu, “Fast data plane testing for soft-
ware-defined networks with RuleChecker,” IEEE/ACM Trans.
Netw., vol. 27, no. 1, pp. 173–186, Feb. 2019.

[16] P. Zhang et al., “Mind the Gap: Monitoring the control-data plane
consistency in software defined networks,” in Proc. 12th Int. Conf.
Emerg. Netw. Experiments Technol., 2016, pp. 19–33.

[17] T. Sasaki, C. Pappas, T. Lee, T. Hoefler, and A. Perrig, “SDNsec:
Forwarding accountability for the SDN data plane,” in Proc. 25th
Int. Conf. Comput. Commun. Netw., 2016, pp. 1–10.

[18] P. Zhang, “Towards rule enforcement verification for software
defined networks,” in Proc. IEEE Conf. Comput. Commun., 2017,
pp. 1–9.

[19] Q. Li, X. Zou, Q. Huang, J. Zheng, and P. P. C. Lee, “Dynamic
packet forwarding verification in SDN,” IEEE Trans. Dependable
Secure Comput., vol. 16, no. 6, pp. 915–929, Nov./Dec. 2019.

[20] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX:
Detecting security attacks in software-defined networks,” in Proc.
Annu. Netw. Distrib. Syst.Secur. Symp., 2015. [Online]. Available:
http://dx.doi.org/10.14722/ndss.2015.23064

[21] A. Kamisi�nski andC. Fung, “FlowMon:Detectingmalicious switches
in software-defined networks,” in Proc. Workshop Automated Decision
Making Active CyberDefense, 2015, pp. 39–45.

[22] T.-W. Chao et al., “Securing data planes in software-defined
networks,” inProc. IEEENetSoft Conf.Workshops, 2016, pp. 465–470.

[23] P. Zhang et al., “FOCES: Detecting forwarding anomalies in soft-
ware defined networks,” in Proc. IEEE 38th Int. Conf. Distrib. Com-
put. Syst., 2018, pp. 830–840.

[24] A. Shaghaghi, M. A. Kaafar, and S. Jha, “WedgeTail: An intrusion
prevention system for the data plane of software defined
networks,” in Proc. ACM Asia Conf. Comput. Commun. Secur., 2017,
pp. 849–861.

[25] Q. Li, X. Zou, Q. Huang, J. Zheng, and P. P. C. Lee, “Dynamic
packet forwarding verification in SDN,” IEEE Trans. Dependable
Secure Comput., vol. 16, no. 6, pp. 915–929, Nov./Dec. 2019.

[26] P. Zhang, H. Wu, D. Zhang, and Q. Li, “Verifying rule enforce-
ment in software defined networks with REV,” IEEE/ACM Trans.
Netw., vol. 28, no. 2, pp. 917–929, Apr. 2020.

[27] P. Zhang et al. “Network-wide forwarding anomaly detection and
localization in software defined networks,” IEEE/ACM Trans.
Netw., vol. 29, no. 1, pp. 332–345, Feb. 2021.

[28] Z. Liu, H. Jin, Y.-C. Hu, and M. Bailey, “Practical proactive DDoS-
attack mitigation via endpoint-driven in-network traffic control,”
IEEE/ACMTrans. Netw., vol. 26, no. 4, pp. 1948–1961, Aug. 2018.

[29] sFlow.org. sFlow version 5, 2004. Accessed: 2021. [Online].
Available: https://sflow.org/sflow_version_5.txt

[30] B. Claise, “Cisco systems NetFlow services export version 9,”
RFC 3954, Oct. 2004, doi: 10.17487/RFC3954.

[31] R. Cohen and E. Moroshko, “Sampling-on-demand in SDN,”
IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2612–2622, Dec.
2018.

[32] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani,
“Fast monitoring of traffic subpopulations,” in Proc. 8th ACM SIG-
COMMConf. Internet Meas., 2008, pp. 257–270.

[33] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting,” in Proc. Conf. Appl. Technol. Archit. Protocols Com-
put. Commun., 2002, pp. 323–336.

[34] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang, “Data stream-
ing algorithms for estimating entropy of network traffic,” in Proc.
Joint Int. Conf. Meas. Model. Comput. Syst., 2006, pp. 145–156.

[35] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-
defined networks,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2013, pp. 413–424.

[36] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in Proc. ACM SIGCOMM
Conf. Data Commun., 2008, pp. 63–74.

[37] A. Ferguson et al., “Orion: Google’s software-defined networking
control plane,” in Proc. 18th USENIX Symp. Netw. Syst. Des. Imple-
mentation, 2021. [Online]. Available: https://www.usenix.org/
conference/nsdi21/presentation/ferguson

[38] J. Cao et al., “The crosspath attack: Disrupting the SDN control
channel via shared links,” in Proc. 28th USENIX Secur. Symp.,
2019, pp. 19–36.

[39] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proc. 10th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2013, pp. 99–111.

[40] Y. Vanaubel, J.-J. Pansiot, P. M�erindol, and B. Donnet, “Network
fingerprinting: TTL-based router signatures,” in Proc. Conf. Inter-
net Meas. Conf., 2013, pp. 369–376.

[41] The floodlight controller. [Online]. Available: http://www.
projectfloodlight.org

[42] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, andM. Roughan,
“The internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29,
no. 9, pp. 1765–1775, Oct. 2011.

[43] I. Gurobi Optimization, “Gurobi optimizer reference manual.”
Accessed: 2019. [Online]. Available: http://www.gurobi.com

[44] Cbench. Accessed: 2019. [Online]. Available: http://ctuning.org/
wiki/index.php?title=CTools:CBench

[45] Iperf. Accessed: 2019. [Online]. Available: https://iperf.fr
[46] ovs-ofctl. Accessed: 2019. [Online]. Available: http://www.

openvswitch.org//support/dist-docs/ovs-ofctl.8.txt
[47] C. Yu, C. Lumezanu, A. B. Sharma, Q. Xu, G. Jiang, and H. V.

Madhyastha, “Software-defined latency monitoring in data center
networks,” in Proc. Int. Conf. Passive Active Netw. Meas., 2015, pp.
360–372.

[48] A. Kumar et al., “BwE: Flexible, hierarchical bandwidth allocation
for WAN distributed computing,” in Proc. ACM Conf. Special Inter-
est Group Data Commun., 2015, pp. 1–14.

[49] Internet2 flow rules. [Online]. Available: http://web.archive.org/
web/20160423132602/http://vn.grnoc.iu.edu/Internet2/fib/
index.cgi

Qi Li (Senior Member, IEEE) received the PhD degree from Tsinghua
University, Beijing, China. Currently, he is an associate professor with
Institute for Network Sciences and Cyberspace, Tsinghua University. He
has worked with ETH Zurich and the University of Texas at San Antonio.
His research interests include network and system security, particularly
in Internet and cloud security, mobile security, and big data security. He
is currently an editorial board member of the IEEE Transactions on
Dependable and Secure Computing and the ACM Digital Threats:
Research and Practice.

LI ET AL.: EFFICIENT FORWARDING ANOMALY DETECTION IN SOFTWARE-DEFINED NETWORKS 2689

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-2015/us-15-Pickett-Staying-Persistent-In-Software-Defined-Networks-wp.pdf
https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-2015/us-15-Pickett-Staying-Persistent-In-Software-Defined-Networks-wp.pdf
https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-2015/us-15-Pickett-Staying-Persistent-In-Software-Defined-Networks-wp.pdf
http://dx.doi.org/10.14722/ndss.2015.23064
https://sflow.org/sflow_version_5.txt
http://dx.doi.org/10.17487/RFC3954
https://www.usenix.org/conference/nsdi21/presentation/ferguson
https://www.usenix.org/conference/nsdi21/presentation/ferguson
http://www.projectfloodlight.org
http://www.projectfloodlight.org
http://www.gurobi.com
http://ctuning.org/wiki/index.php?title=CTools:CBench
http://ctuning.org/wiki/index.php?title=CTools:CBench
https://iperf.fr
http://www.openvswitch.org//support/dist-docs/ovs-ofctl.8.txt
http://www.openvswitch.org//support/dist-docs/ovs-ofctl.8.txt
http://web.archive.org/web/20160423132602/http://vn.grnoc.iu.edu/Internet2/fib/index.cgi
http://web.archive.org/web/20160423132602/http://vn.grnoc.iu.edu/Internet2/fib/index.cgi
http://web.archive.org/web/20160423132602/http://vn.grnoc.iu.edu/Internet2/fib/index.cgi

Yunpeng Liu received the BSc degree in computer science from Tsing-
hua University, Beijing, China. Currently, he is working toward the
docter’s degree with the Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing, China. His research interests include net-
work security and data-driven security.

Zhuotao Liu received the BS degree from Shanghai Jiao Tong Univer-
sity, Shanghai, China, and the PhD degree from the University of Illinois
at Urbana-Champaign, Champaign, Illinois. He is currently an assis-
tant professor with the Institute for Network Sciences and Cyber-
space, Tsinghua University. Before joining Tsinghua, he was a
technical lead at Google, managing massive-scale software-defined
datacenter networks. His research interests include network security
& privacy, Blockchain infrastructure, datacenter networking, and sys-
tems security.

Peng Zhang received the PhD degree in computer science from Tsing-
hua University, Beijing, China, in 2013. He was a visiting researcher with
the Chinese University of Hong Kong and Yale University. He is currently
an associate professor with the School of Computer Science and Tech-
nology, Xi’an Jiaotong University, Xi’an, China. He is also with the MOE
Key Lab for Intelligent Networks and Network Security. His research
interests include verification, measurement, and security in computer
networks.

Chunhui Pang received the master’s degree from Tsinghua University,
Beijing, China. His research interests include network security and net-
work measurement.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

