
3D Perception With Slanted Stixels on GPU
Daniel Hernandez-Juarez , Antonio Espinosa , David Vazquez , Antonio M. Lopez , and Juan C. Moure

Abstract—This article presents a GPU-accelerated software design of the recently proposed model of Slanted Stixels, which

represents the geometric and semantic information of a scene in a compact and accurate way. We reformulate the measurement depth

model to reduce the computational complexity of the algorithm, relying on the confidence of the depth estimation and the identification

of invalid values to handle outliers. The proposed massively parallel scheme and data layout for the irregular computation pattern that

corresponds to a Dynamic Programming paradigm is described and carefully analyzed in performance terms. Performance is shown to

scale gracefully on current generation embedded GPUs. We assess the proposed methods in terms of semantic and geometric

accuracy as well as run-time performance on three publicly available benchmark datasets. Our approach achieves real-time

performance with high accuracy for 2048 � 1024 image sizes and 4 � 4 Stixel resolution on the low-power embedded GPU of an

NVIDIATegra Xavier.

Index Terms—Stereo vision, stixel world, autonomous vehicles, scene understanding, computer vision, embedded systems,

GPU acceleration

Ç

1 INTRODUCTION

ADVANCED driver assistance systems (ADAS), autono-
mous vehicles, robots and other intelligent devices

need to understand their environment. Stereo camera sys-
tems provide geometric (distance) and semantic (classifica-
tion) data to estimate both the semantic class and the
distance of objects and the free space in a given scene. The
large amount of low-level per-pixel data is very costly to
transmit and process and commonly a medium-level repre-
sentation known as the Stixel World [1], [2] is used. It relies
on the fact that man-made environments mostly present
horizontal and vertical planar surfaces, like roads, side-
walks or soil (horizontal), and buildings, pedestrians or cars
(vertical). This medium-level representation must be com-
puted in real-time to serve as a building block of higher-
level modules, such as localization and planning.

The Stixel world has been successfully used for repre-
senting traffic scenes, as introduced in [2]. The field of intel-
ligent vehicles has been using this model over the last years
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. The Stixel
world defines a compact representation of the dense 3D dis-
parity data obtained from stereo vision that uses rectangles,
the so called Stixels, as elements. Stixels are classified either

as ground-like planes, upright objects or sky, which are the
primitive geometric elements found in urban environments.
This representation transforms millions of disparity pixels
to hundreds or thousands of Stixels. At the same time, most
scene structures, such as free space and obstacles, which are
relevant for autonomous driving tasks, are adequately
represented.

The Stixel world can model the scene structures with cer-
tain constraints, e.g. sky is above the horizon line and
objects usually lie or stay on ground. Generally, the geomet-
ric constraints of a scene are tightened to the vertical direc-
tion. Hence, the environment can be modeled as a column-
wise segmentation of the image with a 3D stick-like shape,
i.e. a set of Stixels, c.f. Fig. 1. The segmentation of the image
is estimated by solving a column-wise energy minimization
problem, taking depth and semantic cues as inputs as well
as a priori information that is used to regularize the solution.
The Stixel model has been successfully used for automotive
vision applications either to decrease parsing time, increase
accuracy, or both [14], [15], [16], [17], [18], [19], [20].

The Slanted Stixel world model recently proposed in [11],
[12] generalizes the original proposal with a more flexible
plane model that overcomes the previous rather restrictive
constant depth and constant height assumptions for object
and ground Stixels, respectively, and accurately represents
arbitrary kinds of slanted objects and non-flat roads. Basi-
cally, the Slanted model defines a plane in the disparity
space defined by two random variables: line slope and inter-
cept. It has been proved to provide substantially better qual-
ity on scenarios with non-flat roads.

Stixel segmentation is a highly computationally complex
optimization problem, and the higher representation quality
of the slanted model comes at the price of even higher com-
plexity: if the input image contains h rows and w columns,
the algorithmic complexity is Oðw� h3Þ. One way to reduce
complexity is to reduce the size of the input images (depth
and semantics), both in horizontal and vertical dimensions.
The problem is that increasing the granularity of the Stixels

� Daniel Hernandez-Juarez is with the SLAMcore Ltd., SE1 1JA, London, U.K.
E-mail: dhernandez0@gmail.com.

� Antonio Espinosa and Juan C. Moure are with the Universitat Autonoma
de Barcelona, 08193 Bellaterra, Spain.
E-mail: {AntonioMiguel.Espinosa, juancarlos.moure}@uab.cat.

� David Vazquez is with the Element AI, Montreal, QC H2S 3G9, Canada.
E-mail: dvazquez@elementai.com.

� Antonio M. Lopez is with the Universitat Autonoma de Barcelona, 08193
Bellaterra, Spain, and also with the Computer Vision Center, Universitat
Autonoma de Barcelona, 08193 Bellaterra, Spain.
E-mail: antonio@cvc.uab.es.

Manuscript received 16 Apr. 2020; revised 13 Mar. 2021; accepted 18 Mar. 2021.
Date of publication 22 Mar. 2021; date of current version 8 Apr. 2021.
(Corresponding author: Daniel Hernandez-Juarez.)
Recommended for acceptance by F. Wolf.
Digital Object Identifier no. 10.1109/TPDS.2021.3067836

2434 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 10, OCTOBER 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5878-1549
https://orcid.org/0000-0001-5878-1549
https://orcid.org/0000-0001-5878-1549
https://orcid.org/0000-0001-5878-1549
https://orcid.org/0000-0001-5878-1549
https://orcid.org/0000-0002-6460-3789
https://orcid.org/0000-0002-6460-3789
https://orcid.org/0000-0002-6460-3789
https://orcid.org/0000-0002-6460-3789
https://orcid.org/0000-0002-6460-3789
https://orcid.org/0000-0002-2845-8158
https://orcid.org/0000-0002-2845-8158
https://orcid.org/0000-0002-2845-8158
https://orcid.org/0000-0002-2845-8158
https://orcid.org/0000-0002-2845-8158
https://orcid.org/0000-0002-6979-5783
https://orcid.org/0000-0002-6979-5783
https://orcid.org/0000-0002-6979-5783
https://orcid.org/0000-0002-6979-5783
https://orcid.org/0000-0002-6979-5783
https://orcid.org/0000-0001-6697-0331
https://orcid.org/0000-0001-6697-0331
https://orcid.org/0000-0001-6697-0331
https://orcid.org/0000-0001-6697-0331
https://orcid.org/0000-0001-6697-0331
mailto:dhernandez0@gmail.com
mailto:AntonioMiguel.Espinosa@uab.cat
mailto:juancarlos.moure@uab.cat
mailto:dvazquez@elementai.com
mailto:antonio@cvc.uab.es

(or, equivalently, decreasing the resolution of the Stixel) also
reduces the quality of the segmented representation.

2048-by-1024-pixel images scaled 4 and 8 times are seg-
mented, respectively, at 0.7 and 6.6 frames per second (fps)
on a six-core Intel i7-6800K processor [12]. These perfor-
mance results do not meet the real-time or energy efficiency
requirements of autonomous driving applications. Real-
time performance is achieved by further reducing the reso-
lution of the input images to levels that sacrifice the quality
of the resulting segmentation. Dedicated hardware designs
(e.g. FPGA or ASIC) may provide faster implementations,
but are very inflexible and expensive regarding changes in
the algorithms.

Embedded GPU-accelerated systems, like the NVIDIA
Jetson and DrivePX platforms, allow low-cost and low-
energy consumption, real-time Stixel computation. GPUs
are very well suited for algorithms exhibiting massive paral-
lelism, like the dynamic programming techniques used for
Stixel segmentation. However, to achieve competitive per-
formance, inefficiencies due to existing data dependencies
that lead to explicit synchronizations, must be reduced by
careful work distribution and cooperation, along with a
proper data layout design.

Our goal is to develop a faster algorithm and GPU-accel-
erated implementation solving the optimization problem
for Slanted Stixel segmentation. We want to process high-
resolution input images at high speed in order to reach real-
time performance with low energy consumption, but with-
out sacrificing segmentation accuracy. To this extent, we
propose a novel depth measurement model that enables the
application of several algorithmic techniques to reduce the
computational complexity of Slanted Stixels from Oðw� h3Þ
to Oðw� h2Þ. Very briefly, the proposed cost equations can
be formally derived to find an optimal solution of the result-
ing weighted least squares problem in closed form, an then
multiple pre-computed Summed Area Tables (SATs) can be

used to compute the cost of each Stixel in constant time. The
definition of Slanted Stixels using two random variables
(slant and intercept) instead of one, disables the usage of
the same algorithmic strategies used for the basic Stixels [2].
For more details, see Section 3.4.

We have also developed a completely new massively
parallel design for GPU execution based on some ideas
taken from our previous work [4], which implements the
algorithm for the original Stixel model [2]. Compared to [4],
our proposal makes better use of local (register) and shared
memory for storing cost, index and Summed Area tables,
and avoids some of the synchronization operations. These
enhancements are achieved by modifying the distribution
of work among threads, and by reusing the same memory
areas at different phases of the execution, see Section 4.

Table 1 helps comparing our contribution with respect to
the previous work. The last row in the table describes our
proposal for a novel cost equation that basically removes
the usage of a uniform distribution to model the occurrence
of disparity measurement outliers by the usage of the confi-
dence of the depth estimation and of the semantic cues.
Thanks to this reformulation, our algorithm has lower
computational complexity than the original algorithm for
Slanted Stixels. Also, the last column in the table describes
the characteristics of the two GPU implementations that we
have developed and evaluated in this paper. The proposed
cost equation does not only lead to an algorithm that com-
putes Stixel costs in constant time, but also allows using
smaller SATs (Summed Area Tables), which fit into the
shared memory of the GPU and contribute to a more effi-
cient execution.

We have done an in-depth evaluation of the two GPU-
accelerated programs in terms of run-time as well as seman-
tic and depth accuracy, carried out on several benchmarks.
Fig. 2 shows some of the main results to illustrate the trade-
off between accuracy and run-time. Our proposal using the

Fig. 1. Scene representation of a challenging street environment obtained by our method. Geometric or Depth (left), semantic (center) and
3D (right) representations are shown. In Fig. 1a, color encodes depth from close (red) to far (green). In Fig. 1b, color encodes the semantic
class following [21].

TABLE 1
Comparison of the Different Stixel Models in Terms of Inputs, Complexity, and GPU Implementation Details

Model Inputs Complexity Accuracy GPU version

Stixel World [2] Disparity w� h2 Bad Implemented in [4], Most SATs in global memory, Cost and
Index table in sharedmemory, Cost computed in constant time

Slanted Stixels [12] Disparity, Disparity confidence,
Semantic segmentation

w� h3 Good
Implemented in thiswork, Semantic SATs in sharedmemory,
Cost and Index table in registers, Disparity SATs not feasible:
cost computed in linear time, Very unbalancedwork

Novel Disparity, Cost
Measurement [ours]

Disparity, Disparity confidence,
Semantic segmentation

w� h2 Good
Implemented in this work, Disparity and Semantic SATs in
shared memory, Cost and index table in registers, Cost
computed in constant time

HERNANDEZ-JUAREZ ETAL.: 3D PERCEPTION WITH SLANTED STIXELS ON GPU 2435

modified cost equation increases the average disparity error
around 3.5 percent for both Stixel resolutions (4x and 8x),
but the resulting program runs on an embedded low-power
GPU more than 8 times faster. In this particular H/W sys-
tem, our GPU implementation of the original Slanted Stixels
achieves real-time performance only for Stixel resolution
8x8 (red square), while our GPU implementation using the
novel model achieves real-time performance for Stixel reso-
lution 4x4 (blue triangle), which improves the disparity
error by more than 9 percent. More details are provided in
Section 5.

To sum up, we provide two versions for GPU-accelerated
Stixel segmentation that can achieve real-time and low-
energy consumption in our embedded system hardware.
Both versions offer a different trade-off between segmenta-
tion accuracy and running time. In a time-limited and low-
power scenario, the version using our proposed cost mea-
surement equation ends up providing better segmentation
accuracy.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews the state of the art. Section 3 presents the for-
mulation of Slanted Stixels, while the modification of the
measurement model and its rationale is detailed in Sec-
tion 3.4. Section 4 explains basic concepts for efficient GPU
acceleration and describes our proposed GPU-based optimi-
zations for real-time Stixel computation. Section 5 presents
the experiments we carried out and analyzes the accuracy
and execution speed of our proposed method. Finally, we
state our conclusions in Section 6.

2 RELATED WORK

We will first comment on work proposing different road
scene models. Occupancy grid maps are models used to
represent the surrounding of the vehicle [17], [22], [23], [24].
Typically, a grid in bird’s eye perspective is defined and
used to detect occupied grid cells and then, from this infor-
mation, to extract the obstacles, navigable area, and non-
observable areas from range data. These grids and the Stixel
world both represent the 2D image in terms of column-wise

stripes allowing to capture the camera data in a polar fash-
ion. Also, the Stixel data model is similar to the forward
step usually found in occupancy grid maps [7]. However,
the Stixel inference method in the image domain presents
important differences compared to classical grid-based
approaches.

Our work builds upon the proposal from [3]: they use
semantic cues in addition to depth to extract a Stixel repre-
sentation, which is able to provide a rich yet compact repre-
sentation of the traffic scene. We also base our method on
[12]: the Slanted Stixels model incorporates a novel plane
model together with effective priors on the plane parame-
ters, and it is able to represent scenes with complex non-flat
roads.

There are some methods [1], [5], [8], [9], that represent
simplified scene models with a single Stixel per column.
The advantage of these approaches is that the computa-
tional complexity of the underlying algorithms is linear, but
they cannot represent some complex scenarios found in the
real world, e.g. a pedestrian and a building in the same
column.

A recent work [10] uses edge-based disparity maps to
compute Stixels. Their method is fast but gives inferior
accuracy compared to the original Stixel model [25].

Finally, there is some work proposing fast implementa-
tions for Stixel computation. The FPGA implementation
from [17] runs at 25 Hz with an image resolution of 1 mega-
pixels and a Stixel resolution of 5 pixels.

An earlier work [11], [12] proposed a method to rule out
the most unlikely Stixel cuts, thereby saving computational
time by applying the Stixel algorithm only to the probable
Stixel cuts. The methods for generating the over-segmenta-
tion of the image where restricted to have linear time com-
plexity so that the added run-time is not high. Two methods
were analyzed, one based on times series compression and
one using a trained neural network. In practice, most of the
time the number of feasible Stixel cuts remaining in the
over-segmentation is significantly small. But the biggest
drawback of this approach is that the run-time of the algo-
rithm is variable and then non-predictable, which is a prob-
lem for building a real-time system. Anyway, this method is
orthogonal to our proposal and both could be combined.

A previous GPU-accelerated version of the Stixel’s
method [4] only includes the original non-slanted model
[2]. The GPU version proposed in this work implements a
richer Stixel method that incorporates more cues, e.g.
semantic segmentation [3], disparity confidence [25], as well
as, a novel depth model for slanted scenes [12]. Compared
to [4], the usage of local (register) and shared memory is
improved by an enhanced arrangement of the Summed
Area Tables (SATs) and the cost and index tables, by a better
distribution of the work among the parallel threads, and by
a simpler synchronization required during the execution.

3 THE STIXEL MODEL

The Stixel world is a compressed representation of a 3D
scene that preserves its relevant structure. Given that the
vertical dimension dominates the structure of street envi-
ronments, the Stixel world segments the image into inde-
pendent columns composed of stick-like super-pixels with a

Fig. 2. This chart illustrates the trade-off between accuracy and run-time.
We compare Slanted Stixels [12] and our method, both with Stixel reso-
lution 4� 4 and 8� 8. Disparity error corresponds to results for SYN-
THIA-SF [11], and run-time was measured on the NVIDIA Tegra Xavier
embedded GPU. Our model with 4� 4 Stixel resolution (blue triangle)
shows a good trade-off between accuracy and run-time, being the one
closer to the bottom-left corner.

2436 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 10, OCTOBER 2021

3D planar depth model and semantic labels. There are three
structural classes derived exclusively from depth data:
ground (Stixels with a slant similar to the expected ground
plane), object (almost vertical Stixels, usually lying on the
ground), and sky (Stixels at infinite distance). Semantic clas-
ses are refinements to those structural classes (e.g. road or
sidewalk are ground classes, whereas building and vehicle
are object classes). Prior to the segmentation, the per-pixel
input images are downsized to the desired vertical and hori-
zontal Stixel resolution.

An example of Stixel segmentation is presented in Fig. 3.
The column highlighted in the image on the right is down-
sized, and the disparity measurements (inverse of depth)
for each Stixel on the column are shown on the left. The
resulting Stixel segmentation and labeling are defined by
the colored thick lines.

The rest of this section defines the mathematical formula-
tion of the Stixel model and how to solve the problem of
joint optimization through dynamic programming. The last
subsection presents our proposal for modifying the mathe-
matical model in order to reduce the computational com-
plexity of the problem.

3.1 Mathematical Formulation

A Stixel column segmentation SS consists of an arbitrary
numberN of Stixels, ssi, each representing four random vari-
ables: the Stixel extent via bottom row V b

i and top row V t
i , as

well as its semantic class Ci and depth model Di (slope and
intercept). Thereby, the number of Stixels itself is a random
variable that is optimized jointly during inference. The joint
segmentation and labeling problem is carried out indepen-
dently for each image column via optimization of the poste-
rior distribution P SS jMMð Þ, a Maximum A Posteriori
estimation problem (MAP) defined over a Stixel

segmentation SS given all measurementsMM from that partic-
ular column.

Applying the Bayes’ theorem, the posterior probability
can be rewritten using the unnormalized likelihood and
prior distributions as 1

Z
~P MM jSSð Þ ~P SSð Þ. In order to avoid

numerical problems with small magnitudes of the individ-
ual probabilities, the likelihoods are transformed to log-like-
lihoods via P SS jMMð Þ ¼ e�E ss;mmð Þ, and the MAP estimation
problem is then converted to a cost minimization problem,
where E �ð Þ is the energy (or cost) function.

The energy function is the summation of the energies of
the whole Stixel segmentation, which can be separated into
the likelihood or data term, Edata �ð Þ, and the prior term,
Eprior �ð Þ.

E ss;mmð Þ ¼
XN
i¼1

ðEdata ssi;mmð Þ þ Eprior ssið ÞÞ : (1)

The likelihood or data term Edata �ð Þ rates how well the meas-
urements mm fit to the overlapping Stixel ssi. This energy is
further split in a semantic term and a depth term

Edata ssi;mmð Þ ¼ Edepth ssi; ddð Þ þ wl � Esem ssi; llð Þ : (2)

The parameter wl controls the influence of the semantic data
term. The input is provided by a fully convolutional net-
work (FCN) that delivers normalized semantic scores lvðciÞ
with

P
ci
lvðciÞ ¼ 1 for all classes ci at pixels v. The semantic

energy favors semantic classes of the Stixel that fit to the
observed pixel-level semantic input [3]. The semantic likeli-
hood term is

Esem ssi; llð Þ ¼
Xvti
v¼vb

i

�logðlvðciÞÞ: (3)

The depth term is defined by a probabilistic and genera-
tive sensor model Pv �ð Þ that considers the accordance of
the depth measurement dv at row v to the depth model of
Stixel ssi

Edepth ssi; ddð Þ ¼
Xvti
v¼vb

i

�log Pv Dv ¼ dv jSSi ¼ ssið Þð Þ: (4)

Following Slanted Stixels [12], we use a plane depth
model that overcomes the previous rather restrictive con-
stant depth and constant height assumptions for object and
ground Stixels, respectively. To this end, we formulate the
depth modelD ssi; vð Þ using two random variables defining a
plane in the disparity space (slope and intercept) that evalu-
ates to the disparity in row v via

D ssi; vð Þ ¼ bi � vþ ai: (5)

Note that we assume narrow Stixels and thus can neglect
one plane parameter, i.e. the roll.

The measurement model for disparities is then defined as
a combination of a Gaussian and a uniform distribution

PvðDv jSSiÞ ¼ pout
ZU

þ 1� pout
ZG ssið Þ e

� cv dv�D ssi;vð Þð Þ
s ssið Þ

� �2

: (6)

Fig. 3. Example of the Stixel segmentation and labeling of a column in a
typical scene (on the right). The input disparity measurements (black
thin lines) and output Stixels encoded with semantic colors (colored thick
lines) are shown on the left. Taken from [12].

HERNANDEZ-JUAREZ ETAL.: 3D PERCEPTION WITH SLANTED STIXELS ON GPU 2437

The Gaussian distribution models the typical disparity
noise and the uniform distribution, weighted by a constant
probability for outliers pout, makes the model more robust
to outliers. The Gaussian sensor noise model is centered at
the expected disparity D ssi; vð Þ given the depth model of the
Stixel and has confidence cv. ZU and ZG ssið Þ normalize
the distributions. Similarly to [25], we use the confidence
of the depth estimates cv to influence the shape of the dis-
tribution s ssið Þ.

The prior or smoothness term captures the knowledge
about the traffic scene, such as, sky Stixels are unlikely
below the horizon line, objects tend to be close to the
ground, or there is a small number of objects in the
scene. In order to model the complexity of the segmenta-
tion, we include a constant term for each segment to
favor configurations composed of fewer Stixels. The
Markov property is used to reduce the prior definition to
pairwise mutual dependencies of each pair of adjacent
Stixels and the likelihood of the bottom Stixel. Refer to
[7], [12] for a more comprehensive definition of the
priors.

We define a prior term for the depth model of Stixels,
Eplane ssið Þ, that expects the two random variables A, B repre-
senting the plane parameters of a Stixel to be Gaussian dis-
tributed, i.e.

Eplane ssið Þ ¼ a� ma
ci

sa
ci

 !2

þ b� mb
ci

sb
ci

 !2

�log Zð Þ: (7)

This prior favors planes in accordance to the expected 3D
layout corresponding to the particular geometric class ci. E.
g. object Stixels are expected to have an approximately con-
stant disparity, i.e. mb

object ¼ 0. The expected road slant
ma
ground can be set using prior knowledge or by means of an

specific method for road surface detection.

3.2 Algorithm Based on Dynamic Programming

Dynamic Programming (DP) solves a complex problem by
dividing it into simpler sub-problems and storing the partial
solutions on memory. This way, when the same sub-prob-
lem appears, computation time is saved by retrieving the
partial solution from memory instead of solving the sub-
problem repeatedly.

We apply the DP strategy to compute the column seg-
mentation with minimum global cost. In order to express
the optimization problem as a recursive resolution of
smaller sub-problems, we use a special notation for the
three different structural classes: obtb ¼ fvb; vt; objectg,
grtb ¼ fvb; vt; groundg, and sktb ¼ fvb; vt; skyg. OBk (respec-
tively, GRk and SKk) refers to the aggregated cost corre-
sponding to the optimal Stixel segmentation from
position 0 to k of the given column, assuming that the last
Stixel is an object (respectively, ground and sky). Given
the previous notation, we next show the recursive defini-
tion of the problem:

OB0 ¼ Edataðob00Þ þ Epriorðob00Þ
GR0 ¼ Edataðgr00Þ þ Epriorðgr00Þ
SK0 ¼ Edataðsk00Þ þ Epriorðsk00Þ

(8)

OBk ¼ min

Edataðobk0Þ þEpriorðobk0Þ
Edataðobk1Þ þEpriorðobk1; ob0Þ þOB0

Edataðobk1Þ þEpriorðobk1; gr0Þ þGR0

Edataðobk1Þ þEpriorðobk1; sk0Þ þ SK0

:::
EdataðobkkÞ þ Epriorðobkk; obk�1Þ þOBk�1

EdataðobkkÞ þ Epriorðobkk; grk�1Þ þGRk�1

EdataðobkkÞ þEpriorðobkk; skk�1Þ þ SKk�1

8>>>>>>>>>><
>>>>>>>>>>:

(9)

Eq. (8) defines the solution for the base case problem,
which is the case of one Stixel made by the first single pixel.
Eq. (9) indicates how to solve a problem of size k, i.e. how to
compute the partial solutions OBk, GRk, and SKk, using the
solutions for smaller problems. We only show the case for
object Stixels, but the other cases are solved similarly. All the
possible object Stixels ending at position k (and starting at
positions from 1 to k) are connected with the last Stixel of
the segmentation with minimal cost of the corresponding
size, which were previously computed and memorized in
C. Connections are evaluated for the three Stixel structural
classes using the prior term.

Once the cost table C is completely computed, a back-
tracking procedure retrieves the resulting Stixel segmenta-
tion by starting from the top row of C and computing the
successive minimum value Ck

min ¼ minðOBk;GRk; SKkÞ.

3.3 Reduce the Algorithm’s Complexity Using SATs

As shown by Eq. (9), solving a sub-problem of size k
requires computing the minimum cost of all the k possible
positions of a cut between Stixels for the 3 possible struc-
tural classes. We use this to calculate the time complexity of
the algorithm. Since the number of structural classes is con-
stant and k ranges from 0 to the total number of pixels in a
column, h, then the Stixel segmentation problem for a single
column requires Oðh2Þ steps. The backtracking phase can be
done in a linear number of steps, OðhÞ, by creating an index
table linking each Stixel and the next Stixel with minimum
cost during the DP solving phase.

Each step of the DP process must compute the prior and
data terms of one single Stixel. The prior term is a function
of the parameters of one or two Stixels, and can be com-
puted in a constant number of operations. The data term,
though, depends on the depth, confidence, and semantic
class measurements of all the pixels composing the Stixel,
and therefore requires a number of operations proportional
to the Stixel length, which ranges between 1 and h. The chal-
lenge is to express the computation of the data term as a
constant number of operations. We achieve this goal by pre-
computing partial results derived from the measurement
data (similarly to [4], [26]) and by a slight modification of
Eq. (6) that facilitates the parallelization.

The semantic cost of a Stixel is the summation of the loga-
rithm of the probabilities corresponding to the individual
pixels (c.f. Eq. (3)). We pre-compute the values correspond-
ing to each pixel and store them into a Look-Up Table
(LUT), one for each semantic class. Then, we pre-compute
the prefix sum or Summed-Area Table (SAT [27]) of each
LUT, i.e. the successive accumulated costs corresponding to

2438 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 10, OCTOBER 2021

all the previous pixels. The computation of the semantic
data term of a Stixel is then performed in constant time as
follows:

Esem ssi; llð Þ ¼ SATciðvtiÞ � SATciðvbi � 1Þ: (10)

Notice that the total computation complexity for creating
the SATs corresponding to an image column is OðhÞ, which
is lower than the computation complexity of the DP algo-
rithm: Oðh2Þ.

The data term of sky Stixels only depends on the dispar-
ity and confidence of the pixel individually, and can be
computed in constant time by using SATs. But the data
term of ground and object Stixels depends not only on the
measurements but also on the depth model used.

In a previous work [4], [26], they implemented a non-
slanted depth model with a pre-determined constant road
slant and a constant depth for objects. For ground Stixels
they substituted the depth model D ssi; vð Þ in Eq. (6) and pre-
computed the LUTs and the corresponding SATs for each
image column. Object Stixels, though, have a constant model
that is set as the mean disparity of the Stixel. They solved
the problem by creating a separate SAT for each possible
integer value for D ssi; vð Þ; i.e. they quantized the mean dis-
parities into integer values. This approach proved empiri-
cally to be both accurate and efficient, with time and
memory complexities proportional to Oðh� dmaxÞ, where
dmax is the maximum disparity measurement, which in
practice is lower than h.

3.4 Modified Measurement Model for Slanted Stixels

Compared to the model used in [4], the Stixel model consid-
ered here and described in Section 3.1 is much more elabo-
rated. One crucial drawback is that, since the slanted plane
depth model defined by Eq. (5) depends on two random
variables A and B (intercept and slope) and not one, the
quantization approach is no longer viable, for the time and
memory complexity to create the SATs would exceed the
work saved. The advantage of the new model is that it
incorporates semantic cues and confidence for the disparity
measurements, that can be used to slightly modify the mea-
surement model without significantly affecting accuracy.

First, we will describe how to compute the optimal
parameters a; b for a given Stixel in constant time. Next we
will explain the modification in Eq. (6) that allows comput-
ing the data term cost in constant time.

Similarly to [11], when optimizing for the plane parame-
ters ai; bi of a certain Stixel ssi, all other optimization parame-
ters are independent of the actual choice of the plane
parameters, and we can simplify

argmin
ai;bi

E ss;mmð Þ ¼ argmin
ai;bi

Estixel ssi;mmð Þ þEplane ssið Þ;

(11)

and minimize the global energy function with respect to the
plane parameters of all Stixels and all geometric classes inde-
pendently. By deriving the mathematical expressions we can
find an optimal solution of the resulting weighted least squares
problem in closed form. The calculation of the solution in con-
stant time relies on the pre-computation of multiple SATs.

The optimal plane parameters of a Stixel ssi can be substi-
tuted in Eq. (6) to compute the depth cost of each pixel and
then compute the summation of the cost to obtain the over-
all cost of the Stixel, Edepth ssi; ddð Þ, as in Eq. (4). This is how
the computation is implemented in [11], [12], giving raise to
a total algorithm complexity of Oðh3Þ steps per image col-
umn, which is very expensive.

Eq. (6), in its current form, cannot be formally derived to
apply the same kind of mathematical and computational
transformations as the ones done for computing in constant
time the plane parameters. The problem is due to the uni-
form distribution that was proposed in the original Stixel
world, and was critical to model the occurrence of disparity
measurement outliers. Our model, though, includes alterna-
tives to soften the effect of those outliers, like the usage of
confidence for the disparity measurements (invalid dispar-
ities are modelled as having zero confidence) and the usage
of semantic cues. Our proposal, then, is to remove the uni-
form distribution from the depth model

PvðDv jSSiÞ ¼ 1

ZG ssið Þ e
� cv dv�D ssi;vð Þð Þ

s ssið Þ

� �2

: (12)

The logarithm of the previous equation can be computed
in constant time by using multiple pre-computed SATs. An
additional advantage of this computational design versus
the proposal in [4] is that all the required SATs have time
and memory complexity OðhÞ, instead of Oðh� dmaxÞ, and
that the disparity range is not quantized.

If the input image contains w columns, then the time
complexity for the proposed algorithm is Oðw� h2Þ. If out-
lier disparity measurements get a low confidence estima-
tion, cv, or the semantic data is robust for those outliers,
then the accuracy provided by the proposed depth model,
Eq. (12), will be similar to the accuracy provided by the orig-
inal model, Eq. (6).

4 MASSIVE PARALLELIZATION

This section describes and discusses the massively parallel
organization and data layouts designed for the Stixel com-
putation pipeline. We first start with a brief explanation of
the performance-critical elements of a GPU architecture and
then follow with a description of the GPU-accelerated
design and the analysis of the design trade-offs.

4.1 GPU Architecture and Performance

GPUs are massively-parallel devices containing tens of
throughput-oriented processing units called streaming multi-
processors (SMs). Compute and memory operations are exe-
cuted as vector (SIMD) instructions and are highly
pipelined in order to save energy and transistor budged.
SMs can execute several vector instructions per cycle,
selected from multiple independent execution flows: the
higher the available instruction-, vector- and thread-level
parallelism, the better the pipeline utilization.

The CUDA programming model merges vector-level and
thread-level parallelism, and allows defining a very large
number of potentially concurrent execution instances
(called threads) of the same program code. A unique two-
level identifier (ThrId, CTAid) is used to specialize each

HERNANDEZ-JUAREZ ETAL.: 3D PERCEPTION WITH SLANTED STIXELS ON GPU 2439

thread for a particular data and/or function. A CTA (Cooper-
ative Thread Array) comprises all the threads with the same
CTAid, which run simultaneously and until completion in
the same SM, and can share a fast but limited memory
space: the so-called Shared Memory.

The CUDA 9.0 specification introduces cooperative groups
to dynamically organize groups of threads to perform col-
lective operations involving communication and synchroni-
zation, which enable complex patterns of parallel
cooperation. The hardware scheduler maps threads in the
same cooperative group to vector instructions, which are
executed efficiently, specially when the size of the group
matches the hardware warp size (or number of vector
lanes).

Each thread has its own private Local Memory space, com-
monly mapped to registers by the compiler. A large space of
Global Memory is public to all execution instances, and is
mapped into a large-capacity but long-latency device mem-
ory, which is accelerated using a two-level hierarchy of
cache memories.

The parallelization scheme of an algorithm and the data
layout determine the available parallelism at the instruction,
vector and thread level and the memory access pattern. A
large amount of parallelism is required for hiding operation
latencies and achieving high resource usage. Additionally,
efficient memory performance requires that the set of
addresses generated by a group of consecutive threads refer
to consecutive positions that can be coalesced into a single,
wider memory transaction. Since the bandwidth of the
device memory is often a performance bottleneck, an effi-
cient CUDA code should promote data reuse on the internal
caches, the shared memory, and the registers.

4.2 Downsampling and Transpose

The input to the Stixel segmentation pipeline is a collection
of z dense images of width W and height H (c.f. Fig. 4). The
first image contains the disparity for each pixel, the second
image holds the disparity confidence, and the remaining
images contain the probabilities corresponding to each
semantic class. The first stage in the algorithm pipeline

downsizes the inputs, both in the horizontal and vertical
dimensions, to produce a more compact representation and
also to reduce the computational load of the subsequent
stages. Since the downsized 3D output matrix will be later
processed by columns, the output data is transposed on the
fly, stored as consecutive columns of memory (column-
wise) instead of consecutive rows of memory (row-wise).
Fusing the downsampling and transposition stages saves
expensive intermediate reads and writes to global memory.

The left table in Fig. 4 depicts the computational analy-
sis of the algorithm. Each input data element must be
read once, and must be added to its neighbor elements to
provide a mean value written to the output matrix. Since
the amount of input and output data on practical scenar-
ios is too large to fit into the last-level cache of a GPU,
memory operations will be solved on the device memory.
Although the theoretical arithmetic intensity (ratio of
abstract compute operations to memory operations) is
constant, since device memory accesses are more expen-
sive than the involved compute operations, the perfor-
mance of executing this stage on a GPU will be limited by
the performance of the device memory. Since there are
much more memory reads than writes, this analysis
encourages a thread layout aimed at maximizing the read
bandwidth from the device memory.

The proposed parallel scheme, depicted in the upper part
of Fig. 4, distributes the average reduction of the data in
image blocks of size s� t (where s and t are the horizontal
and vertical Stixel resolution, respectively) to cooperative
groups of t threads, with each group operating indepen-
dently to calculate a single output value. Each thread first
accumulates the values corresponding to a column of s pix-
els, then the t threads in the group perform a cooperative
horizontal reduction, and finally the first thread in the
group writes the average result in the transposed position.
The reduction operation is implemented using shuffle oper-
ations when t is a power of two, or else using Shared
Memory.

The CTA size have been set to 256 threads and the SM
occupancy is 70 percent, limited by the available register
storage. However, the performance bottleneck has been

Fig. 4. Downsampling and Transpose: computational analysis and parallel scheme. The width and height of the input images areW and H. There are
z channels corresponding to disparity map, disparity confidence and semantic probabilities. The horizontal and vertical Stixel resolution is defined by
s and t, respectively. Accordingly, h ¼ H

s and w ¼ W
t .

2440 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 10, OCTOBER 2021

empirically measured to be the read bandwidth to the
device memory, which approaches between 70 and 90 per-
cent of the peak bandwidth. The most important perfor-
mance issue is to make consecutive threads (from the same
group and from consecutive groups) to read data from con-
secutive pixels (row-wise) from the device memory, and
then promote the coalescing of memory read operations.

4.3 Computation of Summed Area Tables

As explained in Section 3, our implementation makes exten-
sive use of Summed Area Tables (SATs). There are five
SATs per input image column for computing the plane
parameters a and b determining the depth model of a stixel,
and three additional SATs for computing the depth term
cost for the three structural classes. The semantic term cost
requires one SAT per semantic class; we use 18 classes in
the experiments presented in Section 5.

The generation of each SAT involves three steps: (1) read
values from the input 3D matrix generated in the previous
pipeline stage; (2) compute the data terms and storing them
in a LUT; and (3) calculate the prefix sum of the LUT to gen-
erate the SAT. The arithmetic intensity is constant but rela-
tively high (c.f. left table on Fig. 5), due to the expensive
mathematical operations that are applied to compute the
data term costs.

There are several parallel configurations that are efficient
for this stage. However, we opt to fuse this stage and the fol-
lowing stages into the same CUDA kernel in order to save
the intermediate reads and writes to global memory, and
reuse data on the Shared Memory. Then, the best thread
configuration is determined by the computational character-
istics of the next stage.

The proposed parallel scheme (upper-left part of Fig. 5)
consists of w cooperative groups of h threads. Each coopera-
tive group generates the 26 SATs corresponding to one
image column and stores them into the Shared Memory.
Threads read the input (transposed) column data from
Global Memory in a coalesced way, compute the LUT val-
ues in parallel and write them to Shared Memory.

The prefix sum is computed on the Shared Memory and
involves a cooperative parallel pattern, requiring communi-
cation and synchronization. We use the parallel scan algo-
rithm proposed by Harris et al. [28], but modify the original
implementation using register-to-register shuffle instruc-
tions, in order to afford Shared Memory reads and writes.
The collective prefix sum operations involve log2ðhÞ extra
computation steps with respect to the serial computation.
Using less than h threads improves the work-efficiency of
the algorithm, and using warpsz = 32 threads is the best
option, thanks to the fast hardware support for synchroni-
zation and communication at the warp level. However, in
practice, since the prefix sum stage involves a very small
percentage of the total computation load, we do not see any
performance difference.

The GPU implementation of the original Stixels, [4], used
a very large SAT that did not fit into the Shared Memory
and provoked a large amount of accesses to the device
memory that reduced the performance. The proposals
described in Section 3.3 and Section 3.4 to implement the
Slanted Stixels model reduce the memory requirements for
the SATs and allows storing them completely into the
Shared Memory.

4.4 Dynamic Programming Stage

The Dynamic Programming (DP) computation stage, both
on the original model of Slanted Stixels [12] and our pro-
posal, has the higher computational complexity (c.f. left
table on Fig. 5), and for practical cases is the most time-con-
suming step. Our proposed design exploits the locality of
the data accesses to move most memory accesses to the
Shared Memory and the Local Memory, making the arith-
metic intensity proportional to h and, therefore, we can
ignore the device memory accesses. However, this stage is
the most elusive for massive parallelization.

The parallel processing of each input column is simple,
but not enough to efficiently exploit current GPUs for the
image sizes considered in typical applications. The chal-
lenge is to extract fine-grain parallelism when processing

Fig. 5. Stages for generating SATs, Dynamic Programming (DP) computation, and Backtracking, which are fused into the same CUDA kernel. The
computational analysis and parallel scheme are shown for the original proposal [12] and our proposal. w, h, z are defined in Fig. 4. vbottom, vtop, dslope,
dintercept, and C define the Stixel properties: bottom & top row, depth model, and semantic class.

HERNANDEZ-JUAREZ ETAL.: 3D PERCEPTION WITH SLANTED STIXELS ON GPU 2441

each column, since there are data dependencies and irregu-
lar parallelism that complicate the task. To this end, we
assign a Cooperative Thread Array (CTA) of h threads to a
DP task associated with each column (see Fig. 5).

The DP recurrence shown in Eq. (9) defines how to calcu-
late the minimum cost of a problem OBk with k pixels using
the results computed for smaller problems. The most
straightforward parallel design option (A) is to use k + 1 of
the CTA threads to cooperatively compute OBk (and GRk

and SKk) for each problem size k (0 � k < h). An alterna-
tive option (B) is to assign each CTA thread, i, the task of
computing OBi (and GRi and SKi). Both parallel schemes,
A and B: (1) do not balance the computation work evenly;
and (2) involve data dependencies that reduce parallelism
and require additional synchronization.

The first parallel design (A) starts using a single thread
and increases the number of running threads progressively.
Each step requires a cooperative parallel minimum opera-
tion. Option B starts using h threads and decreases the num-
ber of active threads on every step of the DP solving
process. Each step involves a broadcast of the cost values
computed by the running thread with minimum identifier.
This last option is the one selected, and depicted on Fig. 5.

Both parallel options involve multiple reads to consecutive
positions or to the same position on the 26 SATs. As explained
before, the SATs are stored into Shared Memory, which pro-
vides efficient accesses. Only option B allows each thread to
hold into the thread-private registers (or Local Memory) its cor-
responding portion of both the cost table and the index table.
In each iteration, the threadwithminimum identifier computes
the final value in the corresponding cost table entry, and then
uses the Shared Memory to broadcast that value; a barrier is
used to enforce the required synchronization; and finally, that
thread becomes idle. Option A is slower because it requires
more synchronization operations anddatamovements.

The performance of this stage is latency-bounded due to
the lack of parallelism. There are three causes for the limited
parallelism: (1) the relatively high memory requirements on
the Shared and Local Memory; (2) the decreasing amount of
independent work as the recurrence loop advances; and (3)
the synchronization barriers between recurrent steps, which
reduce the effective parallelism.

Specifically, each thread holds an average of 26 float
numbers in the Shared Memory and uses 79 local registers.
The best thread block configuration contains 256 threads,
which requires 19.75 Ki registers and 26 KiB of Shared
Memory per block. Both Pascal and Volta CUDA architec-
tures provide 64 Ki registers per SM (see Table 4), which
pose a limit of three 256-thread blocks per SM
(3� 19:75 ¼ 59:25 Ki registers out of 64). However, the Pas-
cal architecture only provides 64 KiB of Shared Memory,
which allows allocating two blocks of threads, while the
Volta architecture provides 96 KiB of Shared Memory, and
allows reaching the limit of 3 blocks of threads. Overall, the
maximum GPU occupancy is 512 threads out of 2048 (25
percent) in a Pascal GPU, and 768 out of 2048 threads (37.5
percent) in a Volta GPU. The effective average GPU occu-
pancy is almost half of the peak values, due to the reduction
of parallelism in the algorithm (2), and the synchronization
operations (3). Even with this hard limitations, the GPU
computation cores have an utilization between 30 and 50

percent. Moving some data to Global Memory releases
space on the Shared and Local Memory and increases the
potential thread-level parallelism, but results in a much
higher instruction count and performance becomes limited
by the device memory latency.

The computational complexity of the original model of
Slanted Stixels [11], [12] is higher (Oðw� h3Þ) than that of our
novel depth model (Oðw� h2Þ), described in Section 3.4. Also,
since the original algorithm computes the cost of a Stixel with
linear time complexity on the Stixel height, it suffers from a
high load unbalance, which reduces the effective parallelism
and, therefore, the utilization of the GPU resources.

4.5 Backtracking and Data Compaction

The backtracking step is an inherently sequential process for
each column. As described in Section 3.2, the program navi-
gates back on an index table created during the DP solving
stage and produces a variable-size list of Stixels, c.f. Fig. 5.
The lack of parallelism seems to discourage a GPU imple-
mentation, but the time to transfer the index tables to the
CPU, or even from Shared Memory to Global Memory, is
higher than the time to perform the task on the GPU (less
than 0.5 percent of the overall execution time).

As shown in Fig. 5, we fuse the backtracking stage with
the two previous stages into the same CUDA kernels. The
CTA threads copy the index table from local registers to
Shared Memory (reusing the space devoted to the SATs, not
needed in the backtracking stage), and then a single thread
processes the index table and generates the final output. A
fixed (and conservatively large) amount of Global Memory
is allocated per column to hold the variable-size lists of Stix-
els. A final and very fast execution kernel is used to compact
the information into a contiguous region of Global Memory.

5 EXPERIMENTS

This section assesses the accuracy and performance of our
proposal. We first verify that our method maintains the
same accuracy level as the previous Slanted Stixel model
[12]. For that purpose, we evaluate on both synthetic and
real data, c.f. Section 5.1.1, and report quantitative and qual-
itative results, c.f. Section 5.1.3. We also show and discuss
the performance advantage of our novel depth model for
GPUs and show quantitative results, c.f. Section 5.2.

5.1 Accuracy and Compression Experiments

5.1.1 Datasets

We use two datasets with real images, KITTI 2015 [29], [30]
and Cityscapes [21], and one dataset with synthetic images,
SYNTHIA-SF (SYNTHIA San Francisco) [11].

The well-known stereo challenge KITTI 2015 contains
images with sparse disparity ground truth obtained from a
laser scanner and semantic segmentation ground truth. City-
scapes is a highly complex dataset with dense annotations of
19 classes. SYNTHIA-SF (SYNTHIA San Francisco) is a syn-
thetic dataset that consists of photo-realistic frames rendered
from a virtual city, with precise pixel-level depth and semantic
annotations.

We evaluate depth accuracy on the training images of
KITTI (200) and all the images of SYNTHIA-SF (2224). The

2442 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 10, OCTOBER 2021

semantic accuracy is measured on KITTI, the validation
images of Cityscapes (500), and SYNTHIA-SF.

We want to remark that the datasets chosen for evalua-
tion are not representative of the world, i.e. lacking some
very common kind of pedrestians such as women with
strollers, children, pets and disabled people. Due to the cost
of acquiring more data we evaluate our methods with these
datasets but results can not be considered conclusive.

5.1.2 Experiment Details

Slanted Stixels [12] serves as baseline for the comparison
with our proposal, c.f. Section 3, because it represents the
state-of-the-art results in terms of Stixel accuracy.

As input, we use disparity maps obtained via semi-
global-matching (SGM) [31] and pixel-level semantic labels
computed by a fully convolutional network (FCN) [32]. The
parameters are taken from [3] for fair comparison. For the
same reason, we use the same FCN architecture from [3].
However, FCN weights are not the same, but accuracy
(IoU) of the input is provided for reference. Similarly, SGM
implementation details differ between our implementation
and those of previous works, therefore, input disparity
accuracy is also provided in the respective tables.

Following [12], we use the known camera calibration to
obtain expected ma

ground and mb
ground. We assume that objects

are vertical and set sb
object ! 0;mb

object ¼ 0, because the dis-
parity is too noisy for the slanted object model. Sky Stixels
are assumed to be vertical and very far.

We use three metrics to evaluate our proposed method in
terms of depth and semantic accuracy, and also in terms of
data compression.

The depth accuracy is defined as the same standard met-
ric used to evaluate on KITTI [29], which is the outlier rate

of the disparity estimates. We generate back the dense dis-
parity image from the segmentation obtained from our
method and from [12]. Then, an outlier is a disparity estima-
tion with an absolute error larger than 3 px or a relative
deviation larger than 5 percent compared to the ground
truth.

The semantic accuracy is evaluated as the average Inter-
section-over-Union (IoU) over all 19 classes, which is also a
standard measure for semantics [33].

Data compression is measured as the average number of
pixels per Stixel, and quantifies the complexity of the
obtained representation.

5.1.3 Results

The quantitative results of our proposal and baseline as
described in Section 5.1.2 are shown in Tables 2 and 3 .

The first observation, taken from Table 2, is that both var-
iants provide compact representations of the surrounding,
with a compression larger than 100� compared to the high
resolution input images. Segmentations generated by our
proposal are around 5 percent less compact for KITTI and
SYNTHIA-SF, and 36 and 45 percent less compact for City-
scapes, which is the more complex scenario.

Second, results from Table 3 indicate that our method
achieves very similar accuracy results on all datasets, with
an increase of less than 3.5 percent of the disparity error
and a decrease of less than 1 percent of the IoU. We consider
that this slight degradation of the accuracy results is a small
price to pay for the speed improvement that we will show
on the next section.

Finally, a 4� higher Stixel resolution (4� 4 versus 8� 8)
decreases the compression of the representation between 2
and 3 times but, in return, is more accurate. Note that the
disparity error of the compact representation is lower than
the one of the input generated by the SGM algorithm. The
Stixel world model helps removing input noise thanks to
the joint inference of semantic and depth data.

The observations from the quantitative evaluation are
confirmed also in the qualitative results, c.f. Fig. 6.

Fig. 7 shows the distribution of the disparity errors on the
individual images of the KITTI dataset when using both
Slanted Stixels and ourmodel. The distributions of the errors
are very similar, with most of the images containing a small
number of errors and some images containing more errors.
The last chart shows a histogram of the relative differences
of the disparity error for each individual image. The

TABLE 2
Data Compression Measured in Pixels Per Stixel of Our Method

and [12]

Stixel resolution: 8� 8 Stixel resolution: 4� 4

Dataset Slanted [12] Ours Slanted [12] Ours

KITTI 2015 587 572 254 242
Cityscapes 1105 877 475 331
SYNTHIA-SF 1439 1379 637 606

We evaluate on three datasets: KITTI 2015 [29], Cityscapes [21] and SYN-
THIA-SF [11], c.f. Section 5.1.1.

TABLE 3
Accuracy of Our Method Compared to Slanted Stixels [12], Input SGM, and FCN

Input Stixel resolution: 8� 8 Stixel resolution: 4� 4

Metric Dataset SGM FCN Slanted Stixels [12] Ours Slanted Stixels [12] Ours

Disp Error (%) KITTI 15 8.51 - 8.53 8.72 7.81 7.93
SYNTHIA-SF 10.26 - 8.55 8.85 7.56 7.83

IoU (%) KITTI 15 - 44.51 43.97 43.63 44.54 44.23
Cityscapes - 68.22 66.87 66.75 67.92 67.78
SYNTHIA-SF - 34.01 33.41 33.39 33.82 33.83

We evaluate on three datasets: KITTI 15 [29], Cityscapes [21] and SYNTHIA-SF [11] using these metrics: Disparity Error (lower is better) and Intersection over
Union (higher is better), c.f. Sections 5.1.1, and 5.1.2.Ours is detailed in Section 3.4.

HERNANDEZ-JUAREZ ETAL.: 3D PERCEPTION WITH SLANTED STIXELS ON GPU 2443

differences in the disparity error are relatively small; some-
times they benefit our proposal and to a somewhat greater
extent they harm our proposal.

5.2 Performance Experiments

The main goal of our performance analysis is to evaluate run-
time and efficiency on embedded devices such as the NVIDIA
Tegra X2 and Tegra Xavier c.f. Table 4. All the metrics are mea-
sured using NVIDIA performance tools. We assume the input
data for Stixel segmentation is already into the GPU memory,
and we do no add the time for moving these data from the
CPU memory: Stixel estimation is just a stage in a computer-
vision pipeline that receives the semantic segmentation and

disparity map from stages (stereo matching and FCN) that are
expected to be both executed on the GPU (e.g. using SGM
implemented on the GPU [34]). The list of Stixels generated by
the computation could be post-processed on the GPU, or is
small enough to discard the time for transferring the data to
the CPUmemory.

5.2.1 Results

Figs. 8a and 8b show the performance throughput (frames per
second, or fps) of the CUDA code implementing both Slanted
Stixel models (original and ours), on two GPU systems, using
an image size of 2048� 1024 and for both 8� 8 and 4� 4
Stixel resolution. It is remarkable that real-time rates higher

Fig. 6. Exemplary outputs on real data (KITTI 2015): RGB Image (left), Slanted Stixels [12] (center) and Our Stixels (right) representations are
shown. Color encodes the distance from close (red) to far (green). As we can see, the representation of our proposal is visually similar to the
baseline.

Fig. 7. Histogram of the average disparity errors per image (KITTI 15 dataset [29] and 4� 4 Stixel resolution) when using (a) Slanted Stixels [12] and
(b) our model; and (c) histogram of the relative differences of the disparity error for each individual image (Slanted Stixels - Ours, meaning that nega-
tive numbers indicate the Slanted Stixels outperforms.

than 90 fps are achieved by the Tegra Xavier GPU for both
Stixel resolutions (see Fig. 8a), and even the older Tegra X2
GPU is able to achieve real-time rates for Stixel resolution of
8� 8 pixels (76 fps, c.f. Fig. 8b). On the Tegra Xavier and for a
low Stixel resolution (8� 8), our method is 3:4� faster than
Slanted Stixels [12] (344.3 fps vs 102.4 fps). A higher resolution
(4� 4) provides more accurate segments (c.f. Table 3), but
while our proposal achieves practical frame rates (92.3 fps),
the implementation following [12] is 8:5� slower, which
impedes real-time execution. In fact, the bigger the problem
size (either increasing the Stixel resolution or the image size),
the higher the advantage of our proposal.

A multi-threaded implementation of the original Slanted
Stixels model was evaluated for the same images and a Stixel
resolution of 8 pixels, and reached 6.6 fps on a six-core Intel i7-
6800K CPU [12]. Our implementation reaches 344.3 fps on a
Tegra Xavier, i.e. more that 50 times faster, with a reduced cost
and power envelop (TDP of 30 Watt compared to 140 Watt).
The alternative over-segmentation variant that selects promis-
ing Stixel cuts bymeans of a FCN runs at an average of 27.5 fps
on the same six-core CPU. This approach has the drawback
that the execution time is dependent on the image content (not
predictable), with a worst-case scenario were all the Stixel cuts
must be evaluated and runs even slower than the original ver-
sion. Our GPU-accelerated design runs 12 times faster and
with predictable times.

Fig. 9 presents a breakdown of the elapsed time and the
IPC (ratio of machine instructions executed per clock cycle
and per SM). For low Stixel resolution (8� 8), the time for
the common Down-sampling & Transpose stage represents a
substantial portion of the total time: 62 percent on the Tegra
Xavier, and 47 percent on the Tegra X2. The performance
bottleneck of this stage is the GPU memory bandwidth and
its execution time is proportional to the size of the original
and down-sampled images. Increasing the Stixel resolution
makes the time of the Dynamic Programming stage to domi-
nate on both GPUs, since the computational complexity of
the DP stage with respect to the image height after down-
sampling is quadratic for our proposal, while it is cubic for
the original Slanted Stixels proposal.

Considering only the Dynamic Programming stage, our pro-
posal executes 7.2 times (8� 8) and 10.9 times (4� 4) faster
than [12] on the Tegra Xavier. Our implementation achieves
higher IPC ratios (1.31� and 1.33� better) on each SM, which
means that our approach exhibits more parallelism. But most
of the speedup is due to a 5.8� and 8.7� reduction on the total
number of machine instructions executed by the GPU (these
data can bederived from the results in Fig. 9). This corroborates
the better algorithmic scalability of our approach.

We now assess the performance differences when using
both GPUs. The Tegra Xavier contains 8 Volta SMs (512 cores)
running at a slightly lower clock frequency than the 4 Pascal
SMs (256 cores) in the older Tegra X2 (c.f. Table 4). This means
a potential raw performance advantage of 1:88�. The speedup
on the execution time of the Dynamic Programming stage is
around 6.5 times for both resolutions, which means that our
implementation is using the Volta cores more efficiently than
the Pascal cores, partially due to a higher GPU occupancy (see
Section 4.4), which improves the IPC ratio (from 1.34� to
1.48�), and partially due to a better low-level codification effi-
ciency (less machine instructions to implement the same basic
operations) of around 2.2 times (derived Fig. 9). The speedup
of the Down-sampling & Transpose stage is around 3.6�, closer
but higher than the 2.3� improvement on the device memory
bandwidth (from 59.7 to 136.5 GB/s). Therefore, our proposal
achieves very good scalability when ported to the new GPU
Xavier architecture.

6 CONCLUSION

We have described and assessed the performance of the first
GPU-accelerated implementation of Slanted Stixels and we
show that our algorithmic proposal is efficient for GPU

TABLE 4
Specifications of GPUs Employed in Our Experiments

Tegra X2 Tegra Xavier

architecture Pascal Volta
clock frequency 1465 MHz 1377 MHz
number of SMs 4 8
number of cores 256 512
registers per SM 64 Ki 64 Ki
shared memory per SM 64 KiB 96 KiB
device memory size 8 GB 32 GB
device memory bandwidth 59.7 GB/s 136.5 GB/s
L2 cache size 4096 KiB 6144 KiB
GFLOPS (single precision) 750 1410
TDP 15 W 30 W

Fig. 8. Frame-rate of our method compared to Slanted Stixels [12] for
2048� 1024 image resolution on the NVIDIA Tegra Xavier and Tegra X2
embedded GPUs.

HERNANDEZ-JUAREZ ETAL.: 3D PERCEPTION WITH SLANTED STIXELS ON GPU 2445

parallelization. Our proposal achieves real-time perfor-
mance for realistic problem sizes, proving that the low-
power envelope and remarkable performance of embedded
CPU-GPU hybrid systems make them good target platforms
for most real-time image processing tasks.

The reformulation of the measurement depth model pro-
posed for Slanted Stixels improves the performance and scal-
ability of the original proposal, while slightly reducing
precision. However, in a real environment with run time limi-
tations, the shorter execution time with respect to the original
proposal allows to increase the resolution of the stixels and
then improve the overall accuracy of the segmentation process.
Compared to the over-segmentation proposal, our approach is
more accurate, faster andwith predictable run-times.

The proposed parallel scheme and data layout for the
irregular computational pattern corresponding to the
Dynamic Programming stage follows general optimization
rules based on a simple GPU performance model. We have
shown that the parallel implementation scales from a previ-
ous generation embedded GPU system to a new generation
GPU, and we expect it to scale gracefully on the forthcom-
ing GPU architectures. Our parallelization strategy is gen-
eral enough to be applied to similar Dynamic Programming
computational patterns, where parallelism may decrease
along the processing task.

ACKNOWLEDGMENTS

The contribution of Daniel Hern�andez, Antonio Espinosa,
and Juan C. Moure was focused on the GPU acceleration of
stixels. The contribution of Daniel Hern�andez, David
V�azquez, and Antonio M. L�opez was focused on the slanted
stixels concept itself from the computer vision viewpoint.
As CVC member, Antonio M. L�opez also thank the General-
itat de Catalunya for its CERCA Program and the ACCIO
agency. The work of Daniel Hern�andez, Antonio Espinosa,
and Juan C. Moure was supported by the Ministerio de
Econom�ıa, Industria y Competitividad under Project
TIN2017-84553-C2-1-R. The work of Antonio M. L�opez was
supported in part by the Project TIN2017-88709-R
(MINECO/AEI/FEDER, UE), and in part by ICREA under
the ICREA Academia Programme.

REFERENCES

[1] H. Badino, U. Franke, and D. Pfeiffer, “The stixel world - A com-
pact medium level representation of the 3D-world,” in Proc. 31st
DAGM Symp. Pattern Recognit., 2009, pp. 51–60.

[2] D. Pfeiffer and U. Franke, “Towards a global optimal multi-layer
stixel representation of dense 3D data,” in Proc. British Mach. Vis.
Conf., 2011, pp. 1–12. [Online]. Available: http://dx.doi.org/
10.5244/C.25.51

[3] L. Schneider et al., “Semantic stixels: Depth is not enough,” in
Proc. IEEE Intell. Veh. Symp., Gotenburg, Sweden, 2016, pp. 110–117.
[Online]. Available: http://dx.doi.org/10.1109/IVS.2016.7535373

[4] D. Hernandez-Juarez , A. Espinosa, J. C. Moure, D. V�azquez, and
A. M. L�opez, “GPU-accelerated real-time stixel computation,” in
Proc. IEEE Winter Conf. Appl. Comput. Vis., Santa Rosa, CA, USA,
2017, pp. 1054–1062. [Online]. Available: https://doi.org/
10.1109/WACV.2017.122

[5] R. Benenson, R. Timofte, and L. J. V. Gool, “Stixels estimation
without depth map computation,” in Proc. IEEE Int. Conf. Comput.
Vis. Workshops, Barcelona, Spain, 2011, pp. 2010–2017. [Online].
Available: http://dx.doi.org/10.1109/ICCVW.2011.6130495

[6] M. Cordts, L. Schneider, M. Enzweiler, U. Franke, and S. Roth,
“Object-level priors for stixel generation,” in Pattern Recognit. 36th
German Conf., M€unster, Germany, 2014, pp. 172–183.

[7] M. Cordts et al., “The stixel world: A medium-level representation
of traffic scenes,” Image Vis. Comput., vol. 68, pp. 40–52, 2017.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0262885617300331

[8] O. Ignat, “Disparity image segmentation for free-space detection,”
in Proc. IEEE 12th Int. Conf. Intell. Comput. Commun. Process.
(ICCP), Sept. 2016, pp. 217–224.

[9] D. Levi, N. Garnett, and E. Fetaya, “StixelNet: A deep convolu-
tional network for obstacle detection and road segmentation,” in
Proc. British Mach. Vis. Conf., Swansea, U.K., 2015, pp. 109.1–109.12.
[Online]. Available: http://dx.doi.org/10.5244/C.29.109

[10] D. A. P. Carrillo and A. Sutherland, “Fast obstacle detection using
sparse edge-based disparity maps,” in Fourth Int. Conf. 3D Vis.
(3DV), 2016, pp. 66–72.

[11] D. Hernandez-Juarez et al., “Slanted stixels: Representing San
Francisco’s steepest streets,” in Proc. Mach. Vis. Conf., London, U.K.,
2017, pp. 87.1–87.12.

[12] D. Hernandez-Juarez et al., “Slanted stixels: A way to repre-
sent steep streets,” Int. J. Comput. Vis., vol. 127, pp. 1643–1658,
2019. [Online]. Available: https://doi.org/10.1007/s11263–019-
01226-9

[13] T. M. Hehn, J. F. P. Kooij, and D. M. Gavrila, “Instance stixels: Seg-
menting and grouping stixels into objects,” in Proc. IEEE Intell.
Veh. Symp (IV), Paris, France, 2019, pp. 2542–2549. [Online].
Available: https://doi.org/10.1109/IVS.2019.8814243

[14] R. Benenson, M. Mathias, R. Timofte, and L. J. V. Gool, “Fast stixel
computation for fast pedestrian detection,” in Proc. Comput. Vis. -
ECCV 2012 Workshops Demonstrations, Florence, Italy, 2012,
pp. 11–20.

Fig. 9. Breakdown of low-level performance metrics for the two main stages of our method: Down-sampling & Transpose stage (common) and
Dynamic Programming stage (ours vs. [12]). IPC is the ratio of machine instructions executed per clock cycle and per SM. Image size is 2048� 1024.

2446 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 10, OCTOBER 2021

http://dx.doi.org/10.5244/C.25.51
http://dx.doi.org/10.5244/C.25.51
http://dx.doi.org/10.1109/IVS.2016.7535373
https://doi.org/10.1109/WACV.2017.122
https://doi.org/10.1109/WACV.2017.122
http://dx.doi.org/10.1109/ICCVW.2011.6130495
http://www.sciencedirect.com/science/article/pii/S0262885617300331
http://www.sciencedirect.com/science/article/pii/S0262885617300331
http://dx.doi.org/10.5244/C.29.109
https://doi.org/10.1007/s11263--019-01226-9
https://doi.org/10.1007/s11263--019-01226-9
https://doi.org/10.1109/IVS.2019.8814243

[15] M. Enzweiler, M. Hummel, D. Pfeiffer, and U. Franke, “Efficient
stixel-based object recognition,” in Proc. IEEE Intell. Veh. Symp.,
Alcal�a de Henares, Madrid, Spain, 2012, pp. 1066–1071. [Online].
Available: http://dx.doi.org/10.1109/IVS.2012.6232137

[16] F. Erbs, B. Schwarz, and U. Franke, “Stixmentation - probabilistic
stixel based traffic scene labeling,” in Proc. British Mach. Vis. Conf.,
Surrey, U.K., 2012, pp. 71.1–71.12. [Online]. Available: https://
doi.org/10.5244/C.26.71

[17] M. Muffert, N. Schneider, and U. Franke, “Stix-fusion: A probabi-
listic stixel integration technique,” in Proc. Can. Conf. Comput.
Robot Vis., Montreal, QC, Canada, 2014, pp. 16–23. [Online]. Avail-
able: http://dx.doi.org/10.1109/CRV.2014.11

[18] D. Pfeiffer and U. Franke, “Modeling dynamic 3D environments
by means of the stixel world,” IEEE Intell. Transport. Syst. Mag.,
vol. 3, no. 3, pp. 24–36, Fall 2011. [Online]. Available: https://doi.
org/10.1109/MITS.2011.942207

[19] T. Scharw€achter, M. Enzweiler, U. Franke, and S. Roth,
“Stixmantics: A medium-level model for real-time semantic scene
understanding,” in Proc. Comput. Vis. - ECCV 2014–13th Eur. Conf.,
Zurich, Switzerland, 2014, pp. 533–548.

[20] X. Li et al., “A new benchmark for vision-based cyclist detection,”
in Proc. IEEE Intell. Veh. Symp. IV, Sweden, 2016, pp. 1028–1033.
[Online]. Available: https://doi.org/10.1109/IVS.2016.7535515

[21] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Las Vegas, NV, USA, 2016, pp. 3213–3223. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2016.350

[22] V. Dhiman, A. Kundu, F. Dellaert, and J. J. Corso, “Modern MAP
inference methods for accurate and fast occupancy grid mapping
on higher order factor graphs,” in Proc. IEEE Int. Conf. Robot. Auto-
mat., 2014, pp. 2037–2044.

[23] D. Nuss, T. Yuan, G. Krehl, M. Stuebler, S. Reuter, and K. Die-
tmayer, “Fusion of laser and radar sensor data with a sequential
monte carlo Bayesian occupancy filter,” in Proc. IEEE Intell. Veh.
Symp. (IV), 2015, pp. 1074–1081.

[24] S. Thrun, “Robotic mapping: A survey,” in Exploring Artificial
Intelligence in the New Millenium, G. Lakemeyer and B. Nebel,
Eds. Amsterdam, The Netherlands: Morgan Kaufmann,
2002.

[25] D. Pfeiffer, S. Gehrig, and N. Schneider, “Exploiting the power of
stereo confidences,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Portland, OR, USA, 2013, pp. 297–304. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2013.45

[26] D. Pfeiffer, “The stixel world - A compact medium-level represen-
tation for efficiently modeling three-dimensional environments,”
Ph.D. dissertation, Math. Nat. Sci. Faculty II, Hu Univ. Berlin, Ber-
lin, Germany, 2014.

[27] P. Viola andM. Jones, “Rapid object detection using a boosted cas-
cade of simple features,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2001, pp. I–I.

[28] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum
(scan) with CUDA,” GPU Gems, vol. 3, no. 39, pp. 851–876, 2007.

[29] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autono-
mous Driving? The KITTI Vision Benchmark Suite,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2012, pp. 3354–3361.

[30] H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and
C. Rother, “Augmented reality meets deep learning for car ins-
tance segmentation in urban scenes,” Int. J. Comput. Vis., vol. 126,
pp. 961–972, 2018.

[31] H. Hirschm€uller, “Stereo processing by semiglobal matching
and mutual information,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 2, pp. 328–341, Feb. 2008. [Online]. Available: http://
dx.doi.org/10.1109/TPAMI.2007.1166

[32] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Boston, MA, USA, 2015, pp. 3431–3440. [Online].
Available: http://dx.doi.org/10.1109/CVPR.2015.7298965

[33] M. Everingham, S. M. A. Eslami, L. J. V. Gool, C. K. I. Williams,
J. M. Winn, and A. Zisserman, “The pascal visual object classes
challenge: A retrospective,” Int. J. Comput. Vis., vol. 111, no. 1,
pp. 98–136, 2015. [Online]. Available: http://dx.doi.org/10.1007/
s11263–014-0733-5

[34] D. Hernandez-Juarez et al., “Embedded real-time stereo estima-
tion via semi-global matching on the GPU,” in Proc. Int. Conf. Com-
put. Sci., 2016, pp. 143–153. [Online]. Available: http://dx.doi.
org/10.1016/j.procs.2016.05.305

Daniel Hernandez-Juarez received the BSc
degree in computer science from Universitat
Autonoma de Barcelona (UAB), in 2014, and the
MSc degree in computer vision from the UAB,
UPC, UPF, and UOC, in 2015. He received the
PhD degree in computer vision, in 2020, from the
UAB, he was supervised by Dr. Juan Carlos
Moure and Dr. David Vazquez. His focus is to
improve 3D perception algorithms and adapt
them to GPU devices. He is currently immersed
in the study of the Stixel World. His research
interests include self-driving cars, deep learning
techniques, 3D perception, and embedded
systems.

Antonio Espinosa is currently an associate pro-
fessor with the Computer Architecture and Oper-
ating Systems Department, Universitat Autonoma
de Barcelona. During the last ten years, he has
participated in several European and national
projects related to computer science, high-perfor-
mance computing, and computational accelerator
systems in collaboration with a number of compa-
nies and research institutions.

David Vazquez is currently a fundamental
research scientist with Element AI, where he
works on computer vision. He was a postdoctoral
researcher with Computer Vision Center of Bar-
celona (CVC) and Montreal Institute of Learning
Algorithms (MILA) and an assistant professor
with the Department of Computer Science,
Autonomous University of Barcelona. He is an
expert in machine perception for autonomous
vehicles and on domain adaptation from simula-
tion to real-world environments.

Antonio M. L�opez is the principal investigator
with Autonomous Driving Lab, Computer Vision
Center, University Aut�onoma de Barcelona
(UAB). He is also an associate professor with
Computer Science Department, UAB. His
research interests include computer vision, com-
puter graphics, machine learning, and autono-
mous driving. He has been deeply involved in the
creation of the SYNTHIA dataset and the CARLA
open-source simulator, both for democratizing
autonomous driving research. He is actively

working hand-on-hand with industry partners to bring state-of-the-art
techniques to the field of autonomous driving. He is granted by the Cata-
lan ICREA Academia Program.

Juan C. Moure is currently an associate profes-
sor with Computer Architecture and Operating
Systems Department, Universitat Autonoma of
Barcelona (UAB), where he teaches computer
architecture, performance engineering, and
parallel programming. He is the author of more
than 50 papers, and has participated in sev-
eral European and Spanish projects related to
high-performance computing. His current
research interests include massive parallel
architectures, programming, and algorithms,

mainly focused on computer vision, signal processing, and bioinfor-
matics applications.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

HERNANDEZ-JUAREZ ETAL.: 3D PERCEPTION WITH SLANTED STIXELS ON GPU 2447

http://dx.doi.org/10.1109/IVS.2012.6232137
https://doi.org/10.5244/C.26.71
https://doi.org/10.5244/C.26.71
http://dx.doi.org/10.1109/CRV.2014.11
https://doi.org/10.1109/MITS.2011.942207
https://doi.org/10.1109/MITS.2011.942207
https://doi.org/10.1109/IVS.2016.7535515
http://dx.doi.org/10.1109/CVPR.2016.350
http://dx.doi.org/10.1109/CVPR.2013.45
http://dx.doi.org/10.1109/TPAMI.2007.1166
http://dx.doi.org/10.1109/TPAMI.2007.1166
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1007/s11263--014-0733-5
http://dx.doi.org/10.1007/s11263--014-0733-5
http://dx.doi.org/10.1016/j.procs.2016.05.305
http://dx.doi.org/10.1016/j.procs.2016.05.305

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

