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Abstract—The substitution of nucleotides at specific positions in the genome of a population, known as single-nucleotide

polymorphisms (SNPs), has been correlated with a number of important diseases. Complex conditions such as Alzheimer’s disease or

Crohn’s disease are significantly linked to genetics when the impact of multiple SNPs is considered. SNPs often interact in an epistatic

manner, where the joint effect of multiple SNPs may not be simply mapped to a linear additive combination of individual effects.

Genome-wide association studies considering epistasis are computationally challenging, especially when performing triplet searches is

required. Some contemporary computer architectures support fused XOR and population count as the highest throughput operations

as part of tensor operations. This article presents a new approach for efficiently repurposing this capability to accelerate 2-way (pairs)

and 3-way (triplets) epistasis detection searches. Experimental evaluation targeting the Turing GPU architecture resulted in previously

unattainable levels of performance, with the proposal being able to evaluate up to 108.1 and 54.5 tera unique sets of SNPs per second,

scaled to the sample size, in 2-way and 3-way searches, respectively.

Index Terms—GWAS, two- and three-way epistasis, performance evaluation, parallel architectures
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1 INTRODUCTION

VARIATIONS of a nucleotide at specific positions in the
genome of a given population, known as single-nucleo-

tide polymorphisms (SNPs), have been correlated with a
number of traits [1]. Genome-wide association studies
(GWAS) often rely on SNPs as biological markers, identify-
ing the SNPs that are statistically most correlated to a given
trait. In a case-control study, this is achieved by processing
a dataset representing the genotype of a given population
for cases and controls. This has practical applications in the
context of personalized medicine, discovery of disease
cause, pharmacogenetics and forensics [2], [3].

Considering the combined effect of different SNPs, a
phenomenon known as epistasis, allows correlating geno-
type and phenotype in situations for which considering
SNPs individually is not sufficient [4]. However, this is com-
putationally demanding, especially when a study must take
into account more than two SNPs at a given time in the con-
text of an exhaustive search. This raises the importance of
synergically combining software development and hard-
ware architectures to address this problem.

Epistasis detection suits parallel architectures. This
includes multi-core central processing units (CPUs) [5], [6].

However, given the data-parallel nature of the problem,
massively parallel architectures tend to be favoured. This
includes specialized architectures in field programmable
gate arrays (FPGAs) [7], [8] and, especially, graphics proc-
essing units (GPUs) [5], [8], [9], [10], [11], [12], [13]. Most
methods adopted for epistasis detection only perform pair-
wise searches [5], [6], [7], [8], [9], [11], [12], [14], and a few
triplet searches [10], [13], [15].

Current hardware trends are strongly focused on special-
ization [16]. Some contemporary accelerators have capabili-
ties targeted at processing deep neural networks (DNNs).
NVIDIA introduced in 2017, with the Volta architecture, the
first generation of GPU tensor cores, units specialized to
matrix multiplication that are mainly targeted at processing
DNNs. Volta tensor cores, which operate at 16-bit precision,
have been used in [10] to accelerate epistasis searches.

Advances in DNN research have allowed to further
reduce compute precision. To process DNNs more effi-
ciently, faster and/or in a more ubiquitous manner, new
hardware has been introduced. Google’s tensor processing
unit (TPU) [17], NVIDIA Turing GPUs [18], and Intel
Habanna architectures [19] are capable of performing inte-
ger matrix multiplication with eight or less bits. Quantiza-
tion reduces the memory requirements and improves
performance, especially if natively supported by the target
architecture. The more aggressive the quantization is, the
more performance, area and/or energy efficiency can
improve, especially if relying on integer computation [20].

The most extreme quantization is displayed by binarized
(or binary) neural networks (BNNs). Certain BNNs (e.g.,
XNOR-Networks [21]) approximate computation using
binary operations. Through representing þ1 by 1 and �1 by
0, a dot product of a matrix multiplication from a convolu-
tion layer is implemented with binary XNOR (or XOR),
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population count (POPC, the number of bits set to 1) and
accumulation. The dot product in the �1 and þ1 domain is
derived with 2� POPCðA� BÞ �N (from XNOR) orN � 2�
POPCðA� BÞ (from XOR), where A and B are bit vectors and
N is the number of bits per vector [22].

Some NVIDIA GPUs, starting from the Turing architec-
ture, have native support for executing the matrix opera-
tions required to process BNNs. These GPUs deliver up to
16� the throughput per cycle on tensor cores in comparison
to 16-bit floating point arithmetic. However, on the Turing
tensor cores, at the level of a single bit only fused XOR and
population count operations are supported.

To address productivity and performance portability in
deep learning and related application domains (e.g., dense
linear algebra, stencil computations), recent developments
in the software front include domain specific languages
(DSLs) and toolchains with optimizing compilers for effi-
ciently targeting GPUs or other parallel architectures [23],
[24], [25], [26]. This paper proposes algorithms for exhaus-
tive 2-way (pairs) and 3-way (triplets) epistasis detection
searches1 that efficiently exploit the current and future
architectures with tensor processing hardware and native
support for fused XOR and population count operations.
We make the following three main contributions:

1) a method that enables the efficient use of fused XOR
and population count as part of matrix operations in
the context of 2-way and 3-way epistasis searches;

2) specialized internal representations of the input
dataset are explored to boost core computations;

3) the amount of SNP combinations per round of evalu-
ations is balanced to improve efficiency when data-
sets with different shapes are processed.

Contribution 1) pertains to the exploitation of architec-
tures that support fused XOR and population count with
significantly higher throughput in relation to other opera-
tions. This capability is used in the scope of an optimized
strategy for counting the frequency of each genotype that
results from combining two (2-way search) or three (3-way
search) SNPs, considering all-to-all combinations. Contribu-
tion 2) consists in exploring the use of a specialized data
representation in memory that better suits the particular
computations performed and the targeted hardware. Con-
tribution 3) concerns with the evaluation of the impact of

using different amounts of SNPs in the individual matrix
operations to tune the performance of epistasis searches.

Our work focuses on proposing an approach for repurpos-
ing the novel capabilities in current GPU architectures for epis-
tasis detection purposes. The proposed approach largely
derives its performance from translating computations pertain-
ing to counting genotype frequencies to tensorized binary oper-
ations. These frequencies are the starting point for calculating a
multitude of objective scoring functions, making the proposal
suitable to accelerate different epistasis detection scenarios.

The organization of this paper is the following. Section 2
presents a formulation of the problem under study. Section 3
introduces the proposal, describing the internal dataset
representation herein used and focusing on efficient con-
struction of contingency tables in 2-way searches. This
includes explaining, still in the context of pairwise searches,
how the proposal exploits hardware capable of natively
performing fused XOR and population count as part of
matrix operations. Section 4 explains how the proposal
tackles 3-way searches. Section 5 details how the proposed
methods are efficiently targeted at modern GPUs capable of
very high throughput tensorized XOR and population count.
Section 6 introduces the systems that have been used, and
presents and discusses the achieved experimental results.
Section 7 presents related work, including a performance-
wise comparison in relation to state-of-the-art approaches.
Final remarks and conclusions are drawn in Section 8.

2 PROBLEM FORMULATION

An epistasis detection search is concerned with the identifica-
tion of correlation between sets of interacting SNPs (genotype)
and a given condition or disease (phenotype). This is accom-
plished taking as input a dataset D, of size N � ðM þ 1Þ,
where N represents the number of case-control samples and
M is the number of SNPs to take into consideration. A given
entry D½i; j�; i 2 f1; . . . ;Ng; j 2 f1; . . . ;Mg represents the
genotypic configuration observed at the ith sample for the jth
SNP. There are three possible genotypic configurations
(alleles) that a sample can take for a given SNP. These are the
homozygous major (AA), the heterozygous (Aa) and the
homozygous minor (aa) alleles; encoded as 0, 1 or 2, respec-
tively. Finally, the entriesD½i;M þ 1� hold a 0 if the ith sample
is a control and 1 otherwise (i.e., if it is a case). Fig. 1a depicts a
representation of a dataset in the format described above,
where lines represent SNPs and columns represent samples.

Epistasis detection involves the identification of the com-
bination of SNPs ½x1; x2; . . . ; xk� that is most correlated with

Fig. 1. Essential concepts of epistasis detection in the context of pair-wise searches.

1. Source code repository with implementations available at:
https://github.com/hiperbio/tensor-episdet.
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the trait under study, where k represents the interaction
order. Exhaustive approaches, i.e., considering all-to-all
combinations of k SNPs at a time (k-way search), can be
implemented in the following three steps:

Step 1) assess frequencies of each of the 3k combined geno-
types in the input dataset, for each combination of
SNPs, for cases and controls;

Step 2) score each set of SNPs, based on the number of
occurrences of each of the combined genotypes for
cases and controls;

Step 1) reduce scores to identify the set of SNPs that is
most correlated to phenotype in regard to a given
objective scoring function.

The amount of solutions to evaluate, depicted in Fig. 1b
for 2-way searches (i.e., k ¼ 2), is M!

k!ðM�kÞ! for the general
case. The computational complexity is especially impacted
by the amount of SNPs M in the input data and the interac-
tion order k. The latter results in the exponential growth
with the number of sets considered [27]. Moreover, the
interaction order also impacts the number of combined gen-
otypes (3k) that need to be accounted per candidate set,
which further contributes to increase the required computa-
tional resources and/or time-to-solution. The impact of the
number of samples on the computational cost is linear.

In order to achieve the performance levels that are
required to process challenging datasets, current hardware
trends need to be taken into account when designing and
developing high-throughput high-order exhaustive epista-
sis detection solutions. Recurrent calculations for the deter-
mination of the frequencies of genotypes, stored in a
contingency or frequency table, must be implemented in such
a way that makes full use of the selected target architec-
tures. Notice that the construction of these tables entails
core calculations that are independent of the objective scor-
ing function used to guide the search (e.g., G-test [28], Gini
score [29], K2 Bayesian score [30], mutual information [31]).

3 ACCELERATING EPISTASIS DETECTION WITH

NATIVE BINARY PROCESSING CAPABILITIES

Given the large amount of computation and memory
accesses required in the context of exhaustive epistasis
searches, it is imperative to efficiently use the available
hardware. This section presents how the proposal in the
paper is tailored for high performance, including how to
exploit high throughput fused XOR and population count, a
novel capability found in tensor-based architectures.

3.1 Data Representation

The internal representation proposed herein is based on a
binarized representation of the input data first introduced
in the context of epistasis detection for targeting CPUs [32].
Fig. 1c illustrates the use of this type of representation in the
context of the calculation of genotype frequencies (Step 1 in
Section 2) for 2-way searches. The information pertaining to
a given SNP is stored in six bit vectors, each representing
the occurrence of one of the three possible individual geno-
types in the samples in the input data, for controls or cases
(three bits per sample). Each bit vector has a length of N0 or
N1 bits, the number of controls or cases, respectively, with

each position of a bit vector representing a single sample. A
bit at a specific position of one of these bit vectors is set to 1
if the sample it represents (case or control) has the particular
SNP allele that the bit vector represents, and 0 otherwise.
Genotype frequencies are stored in a contingency table, rep-
resented as two columns at the center of Fig. 1c (left column
for controls, right column for cases), each holding as many
values as the amount of different possible genotype combi-
nations in a given SNP interaction (9 in 2-way searches).

On top of reducing the memory footprint of a given input
dataset, which improves the effective memory bandwidth,
such representation allows one to rely on bitwise operations
and population counts. These operations are natively sup-
ported in hardware in contemporary parallel architectures,
allowing to achieve higher performance compared with solu-
tions directly operating, for example, on genotypic data repre-
sented by 0, 1 and 2. Notice that while splitting the dataset into
controls and cases can be an optimization useful on its own, as
it renders it unnecessary to load information about the pheno-
type during computation, it is a requirement in the context of
the proposal for enabling direct mapping of the output of the
binary operations to updates to the contingency tables.

The proposal uses a technique that allows achieving
exhaustive detection relying on information about two gen-
otypes out of the three possible genotypes (AA, Aa or aa).
Thus, only four bit vectors per SNP (two for controls and
two for cases), instead of six, are represented in memory.
Frequency counts for the homozigous minor allele (aa) per-
taining to each SNP, represented by the number 2 in the for-
mat in Fig. 1a, are calculated from the counts of the two
other genotypes. Counts for combined genotypes having
this genotype in any of the SNPs that are part of a given
combination are also inferred as explained in detail in
Sections 3.4 and 4.2, in 2-way and 3-way detection, respec-
tively. The proposal relies on an interleaved memory repre-
sentation, depicted besides an alternative non-interleaved
representation in Fig. 2. In the interleaved representation,
the two bit vectors pertaining to the two represented geno-
types of a given SNP are contiguous in memory. This
impacts on how data is processed, enabling improved effi-
ciency in the context of tensorized computations.

3.2 Relating Epistasis Detection to
Matrix Operations

DNN processing is typically accelerated using hardware
specialized to perform matrix multiplication in floating-

Fig. 2. Non-interleaved and interleaved internal data representation.
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point or integer numerical types with reduced precision.
The use of highly efficient general matrix multiply (GEMM)
kernels to perform core computations as part of epistasis
searches has been recently proposed for targeting tensor
hardware [10]. In order to make efficient use of the tensor
hardware capabilities targeting BNNs, one has to be able to
relate epistasis detection searches to matrix operations
where XOR and population count replace multiply-add.

The calculation of the occurrences of each of the nine
genotypes in pairwise detection, for cases and controls, can
be performed using matrix operations that resemble matrix
multiplication, with bitwise AND and population count
replacing multiply-and-add. Notice that applying the AND
operation between pairings of bit vectors from different
SNPs, representing the presence of specific alleles, results in
bit vectors with set bits (i.e., set to 1) in positions represent-
ing samples (cases or controls) that have the particular
resulting genotype. The mapping to fused XOR and popula-
tion count operations is explained in the following section.

Relying on this type of matrix processing can result in a
large number of repeated or non-useful sets of SNPs being
evaluated. Notice that in 2-way searches, the ratio of combi-
nations where repetitions are not allowed, herein referred to
as unique sets, to all permutations (including repetitions) is

given by the fraction
M
2ð Þ

M2 . For a large M, if all permutations

were evaluated, only close to 1=2 would represent unique
sets. Notice that combining SNPs X and Y is not dependent
on their order. Thus, instead of processing all genotypic data
at once (for controls or cases), the data is processed in multi-
ple rounds, where each round processes distinct combina-
tions of blocks of contiguous SNPs from the controls matrix
or the cases matrix. This has the additional effect of reducing

the memory requirements. Following from
M
2ð Þ

ð
PM=B

i¼0
M
B�iÞ�B2

,

considering blocks ofB SNPs and a total ofM SNPs, the ratio
of unique sets evaluated is M�1

BþM . In short, this ratio improves
with the use of smaller matrices, in regard to the amount of
SNPs, in the kernel calls implementing these operations. Still,
one should pay attention to the fact that these matrix opera-
tions, when individually executed, are expected to achieve
higher performance with large inputs, as is typically the case
with GEMMkernels.

3.3 Fused XOR and POPC as Core Operations

The calculation of genotype frequencies using binary opera-
tions typically entails using bitwise AND followed by popu-
lation count. However, to leverage the type of hardware the
proposal in this paper targets, it is required to express epis-
tasis detection calculations resorting to fused XOR and pop-
ulation count operations. Contrary to what happens in the
context of BNNs, matrix multiplication in the �1 and þ1
domain is not a core calculation in epistasis searches. Thus,
instead of using the equations used when processing BNNs,
we devised a specialized formula based on Lemma 3.1.

Lemma 3.1. Given the three allowed elementwise pairings of bits
resulting from combining bit vectors A and B, where at least one
of the bit vectors is set to 1 at the given position, then Equation (1)
relates the number of bits set to 1 following the AND operation to
the number of bits set to 1 following the XOR operation.

POPCðA �BÞ ¼ POPCðAÞ þ POPCðBÞ � POPCðA�BÞ
2

: (1)

Proof. Using C1, C2 and C3 to denote the number of posi-
tions set to 1 only in bit vector A, only in bit vector B and
in both bit vectors, respectively, then one arrives to the
equation above from the following equivalences.

POPCðAÞ ¼ C1 þ C3 (2)

POPCðBÞ ¼ C2 þ C3 (3)

POPCðA�BÞ ¼ C1 þ C2 (4)

POPCðA �BÞ ¼ C3: (5)

Subtracting the number of occurrences of 1’s pair-
ing with a 0 — Equation (4) — from the total number
of positions set to 1 in bit vectors A and B — sum of
Equations (2) and (3) — only the number of occur-
rences of 1’s pairing with 1 remain — 2� C3. Through
division by 2, one gets the number of pairs of inter-
secting 1’s — Equation (5). This corresponds to count-
ing the number of bits set to 1 after performing the
AND operation between the bit vectors. tu
Individual SNP population counts — represented by

terms POPCðAÞ and POPCðBÞ for two different SNPs —
are calculated once and used in all pair-wise combinations.
This mitigates the computational cost of the computation.

3.4 Optimizing Calculations in 2-Way Searches

The counts pertaining to the three possible genotypes, con-
sidering a given SNP individually, have to add exactly to
the number of records in the dataset. For a given SNP, sam-
ples that do not have one of two of the genotypes, out of the
possible three, will have the remaining kind. Taking
fXa; Ybg to denote the value corresponding to the hypothet-
ical execution of a bitwise AND operation between bit vec-
tors representing allele types (a and b) of SNPs X and Y
followed by the population count operation on the resulting
bit vector (mapped to XOR+POPC as detailed in the previ-
ous section); and f:; Ybg to represent the number of bits set
to 1 (i.e., population count) in bit vector Yb, one can rely on
the equivalence:

fX2; Ybg ¼ f:; Ybg � ðfX0; Ybg þ fX1; YbgÞ: (6)

This equivalence allows to analytically derive the number of
occurrences of genotypes that have an allele of type 2
(homozygous minor: aa) in at least one of the SNPs (X in
the equation). Having calculated fX0; Y0g and fX1; Y0g,
fX2; Y0g is analytically derived. Similarly, after calculating
fX0; Y1g and fX1; Y1g, one can derive fX2; Y1g. Notice that
the values for f:; Ybg corresponding to each of the possible
allele types for SNP Y are reused multiple times for combi-
nation with any SNP X. At this point, the terms yet to deter-
mine are the ones involving the combination of X0, X1 and
X2 with Y2, which are derived relying on the same principle,
withX and Y swapped in the equation above.
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Fig. 3 illustrates this process. Dashed lines represent
genotypes whose frequencies are derived combining
knowledge about frequencies for other genotypes (repre-
sented by double lines) with frequency counts of individ-
ual SNP alleles. The decomposition herein used only relies
on processing genotypic data relative to two of the three
possible alleles, which allows a proportional reduction in
memory use.

The complete contingency table (2� 32 values) for any
given pair of SNPs in a 2-way search is constructed from
the values calculated for 22 combined genotypes (sepa-
rately for cases and controls). The remaining 32 � 22 (i.e.,
five) can be calculated with simple arithmetic operations
(sums and subtractions), allowing to reduce the number
of fused XOR and population count operations by a factor
of 2:25�.

3.5 Pairwise Detection Searches Overview

Algorithm 1 represents the pseudocode of a 2-way search,
including the construction of contingency tables for all pairs
of SNPs, scoring those pairs and finding the pair most corre-
lated to phenotype (given a scoring function).

Algorithm 1. Pseudocode of a 2-Way Search

Data: h0, h1,M, N0,N1, B
Result: s
hostToDeviceðh0j1; d0j1;M;N0j1; B; 0Þ;
pop0j1 ¼ indivPopðd0j1;M;N0j1; B; 0Þ;
forXi ¼ 0; Xi < M; Xiþ ¼ B do
for Yi ¼ Xi; Yi < M; Yiþ ¼ B do
if ðXi ¼¼ 0Þ && ððYi þBÞ < MÞ then
hostToDeviceðh0j1; d0j1;M;N0j1; B; Yi þBÞ;
pop0j1 ¼ indivPopðd0j1;M;N0j1; B; Yi þBÞ;

end
xorPop0j1 ¼ tensorXorPopðd0j1;M;N0j1; B;Xi; YiÞ;
cTab0j1 ¼ xorPop2andPopðxorPop0j1; pop0j1;M;B;Xi; YiÞ;
cTab0j1 ¼ genFreqInferðcTab0j1; pop0j1;M;Xi; YiÞ;
scores ¼ applyScoreðcTab0; cTab1Þ;
s ¼ findGloballyBestSolðscores; sÞ;

end
end

The matrices composed of bitvectors representing geno-
typic data (see Section 3.1), h0 (controls matrix) and h1

(cases matrix), the amount of controls and cases, N0 and N1,
the number of SNPs M, and the number of SNPs per block
used for combination, B, are inputs to Algorithm 1. The
algorithm assumes that the dataset is in (or has been prepro-
cessed to) the binary representation. Inputs with 0|1 in sub-
script (e.g., h0j1, d0j1, N0j1, xorPop0j1) represent separated
execution for controls (0) or cases (1).

Counting genotype frequencies taking into account SNPs
individually (indivPop) is very fast. This is performed in
blocks because the dataset is transferred to the accelerator
(hostToDevice) in blocks. Transferring to the device mem-
ory can take non-negligible time for some datasets, which is
dealt with by overlapping with computation on the device.
Notice that the cost of transferring the dataset grows linearly
both with the number of samples and the number of SNPs.
In contrast, while the computational cost grows linearly with
the number of samples, it grows by a factor of close to 4�
with the number of SNPs, as M

2

� �
represents the number of

combinations that need to be processed. The Xi and Yi loop
iterators are incremented by B every iteration. In order to
avoid processing (as much as possible) non-unique sets of
SNPs, the iterator of the innermost loop in Algorithm 1, Yi,
assumes values from Xi (iterator of the outermost loop) to
M �B. The matrices representing the dataset are padded in
situations whereM is not amultiple ofB.

The execution of the XOR+POPC matrix operations
using tensor hardware (tensorXorPop) followed by the
construction of complete contingency tables from the out-
put of the former (xorPop2andPop and genFreqIn-

fer), the application of a scoring function on top of
contingency tables (applyScore) and the reduction of
scores to find the best candidate solution (findGlobally-
BestSol) correspond to Step 1, Step 2 and Step 3 of the
epistasis detection algorithm introduced in Section 2.
Calls to tensorXorPop and xorPop2andPop implement
the approach detailed in Sections 3.2 and 3.3; genFre-
qInfer is explained in Section 3.4, while the particular
type of computations and implementation details pertain-
ing to findGloballyBestSol and applyScore are
introduced in Sections 5.3 and 5.4, respectively. Execution
of these steps is performed in rounds for each pair of
blocks of SNPs. The use of the interleaved layout (see Sec-
tion 3.1) makes each round map to a single matrix opera-
tion per phenotype state. A total of 8 matrix operations
are required for the non-interleaved approach.

The proposal in this paper allows by design the concur-
rent execution of evaluations pertaining to different combi-
nations of blocks of SNPs. This allows maximizing the use
of the targeted device, especially in situations where the
block size is small in relation to the available resources.
Moreover, concurrent execution results in the overlap of dif-
ferent compute and memory related operations, enabling
the more efficient usage of different types of execution units
and the memory hierarchy of the targeted device as a whole.

Fig. 4 depicts the combination of two blocks of SNPs X
and Y , considering, for illustration purposes, a dataset with
8 SNPs and a block size B of 2 SNPs. The 16 cells, represent
4 (proto) genotype frequencies for each of the 4 pairs of
SNPs resulting from combining (all-to-all) 2 SNPs X with 2
SNPs Y . These values are used to derive the 4 frequencies
for the genotype combinations (0,0), (0,1), (1,0) and (1,1).
Then, from those, the remaining 5 frequencies, for the geno-
types (0,2), (1,2), (2,0), (2,1) and (2,2), are calculated.

In the depicted example,Xi equals 0 and Yi equals 2, thus
it represents the second round executed by the pair of loops
from Algorithm 1 (i.e., the second combination of a block of
SNPs X with a block of SNPs Y ). In this evaluation round,
all pairs of SNPs are unique. The only situations that result

Fig. 3. Calculation of genotype frequencies for a 2-way SNP interaction.
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in some of the sets of SNPs processed in the matrix opera-
tions being non-unique are whenXi equals Yi, such as is the
case of the first iteration of the nested loops (both Xi and Yi

equal to 0). These combinations of blocks are still per-
formed, as B�1

2B of the resulting pairs of SNPs are unique.
Our proposal also supports using a variable block size

strategy. This strategy relies on the use of smaller blocks
(i.e., subblocks) to process combinations of SNPs that, if
using a fixed block size strategy, would result in processing
all intra-block permutations of SNPs in each of the dMBe
blocks of B SNPs. In some cases, the use of subblocks can
lead to an improvement of the ratio of unique sets that is
sufficient to offset the possible loss in efficiency in the use of
the GPU resources, resulting in overall higher performance
at epistasis detection searches. Fig. 5 represents, for illustra-
tive purposes, considering a block size B of 2 SNPs, how all
pairings of SNPs that are inside of any given block of size B
(i.e., Xi ¼¼ Yi) can be processed using subblocks with B

2
SNPs in the context of a 2-way search. In total, considering
the whole dataset, the final pass of such 2-step approach to
combining SNPs entails performing dMBe � 3 matrix opera-
tions per sample type. The terms on the left and right side
of the multiplication sign represent the number of blocks of
size B in the dataset and the number of combinations of
subblocks of size B

2 per block of B SNPs, respectively.
In cases where B is sufficiently large, it is possible for

such strategy to benefit from additional intermediate
passes. Considering one additional pass (i.e., three in total),
the second pass (i.e., after processing all combinations of
distinct blocks of SNPs of size B) entails a single matrix
operation using subblocks of B

2 SNPs, per block of size B,
per sample type (cases and controls). Combination of sub-
blocks of the same index is only performed in the final pass,
considering subblocks of B

4 SNPs, resulting in dM
ðB2Þ
e � 3 addi-

tional matrix operations. Notice that only the final pass
results in processing repeated combinations of SNPs.

4 GENERALIZING FOR THIRD-ORDER SEARCHES

In 3-way epistasis detection searches, if evaluating all permu-

tations, only close to 1=6 (from
M
3ð Þ

M3 ) of the evaluated triplets

would be of real use. Following from
M
3ð Þ

ð
PM=B

i¼0
ðiþ1Þ�B�ðMB�iÞÞ�B2

,

the ratio of useful triplets of SNPs is ðM�2ÞðM�1Þ
ðBþMÞð2BþMÞ . As is the

case for 2-way searches, as the number of SNPs per combina-
tion block grows, the ratio of unique sets (i.e., combinations
of SNPs divided by possible permutations) decreases. How-
ever, here the effect of B is significantly more pronounced.
Moreover, notice that themethod for using XOR and popula-
tion count operations for processing a binarized dataset, as
described in the previous section, has been tailored for pair-
wise searches. Exploiting these operations in the context of
3-way searches poses new challenges. In this sectionwe intro-
duce their nature and explain how the proposal in this paper
overcomes them.

4.1 Fused XOR and POPC in 3-Way Searches

If relying only on general-purpose cores, combining a triplet
of SNPs (X, Y , and Z) can be performed through the appli-
cation of the AND operation. First, between bit vectors rep-
resenting alleles of SNPs X and Y , followed by the
combination with SNP Z, via an additional AND operation,
per allele type, with the bit vectors resulting from the previ-
ous step. Considering cases and controls, this results in 4�
33 AND operations and 2� 33 population counts (across the
whole vectors). The exact number of instructions depends
on their data-width and the number of samples.

The proposed approach iteratively combines an SNP X
with a block of SNPs Y , relying on general-purpose execu-
tion units, and offloads the combination of the output of the
previous step with a block of SNPs Z to the specialized units
that perform fused XOR and population count operations.
The cost of combining an SNP X with each SNP in a block
of SNPs Y in general-purpose execution units is hidden
behind the considerably larger computational complexity
related to the final combination with a block of SNPs Z.

There is extensive reuse of operations. The output of the
AND operations performed for the construction of the
matrix combining an SNP X with a block of SNPs Y is
reused for combining with multiple blocks of SNPs Z.
Notice that the bit vectors resulting from each combination
of a given SNP X with an SNP from a block of SNPs Y are
used B times per combination with a block of SNPs Z.

4.2 Optimizing Calculations in 3-Way Searches

The strategy used to determine the combined genotype
frequencies in the context of 3-way interactions (illustrated
in Fig. 6) requires processing only eight genotypes with

Fig. 4. Combining blocks of SNPs X and Y . Each cell represents the
operation POPC ða� bÞ.

Fig. 5. Processing all pairwise combinations inside a block of B SNPs
using subblocks of B2 SNPs.

Fig. 6. Calculation of genotype frequencies for a 3-way SNP interaction.
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tensorized operations. The genotypes represented by dashed
lines are calculated using previously calculated population
counts for pairwise SNP interactions. Notice that this repre-
sents only an increase of 2� the number of bit-level XOR
operations in relation to pairwise searches, while the number
of genotypes increases by a factor of 3� .

Combined genotypes with one or more interacting SNPs
with allele of kind 2 (aa) are analytically derived. Equation (7)
represents the equivalence that allows one to derive the fre-
quencies of combined genotypes where SNP X assumes the
aa allele. Frequencies where the SNP Y and/or the SNP Z is
of kind 2 are found relying on the same approach.

fX2; Yb; Zgg ¼ f:; Yb; Zgg � ðfX0; Yb; Zgg þ fX1; Yb; ZggÞ:
(7)

The overall impact of the analytical derivation is larger than
in 2-way. In 3-way searches, the amount of tensorized oper-
ations is reduced by 3:375� (versus 2:25�), as only 8 of the
27 genotypes are mapped into matrix operations.

4.3 Triplet Detection Searches Overview

In the particular case of 3-way searches, the algorithm must
be devised in a way that takes into account memory use,
given the growth in terms of number of combinations to
evaluate. Algorithm 2 presents the pseudocode for a 3-way
search. In relation to pairwise searches, triplet searches rely
on the following additional steps: a) calculation of popula-
tion counts for allelic combinations between B SNPs in a
block of SNPs Y , starting at Yi, and SNPs with indexes
larger or equal to Yi (pairPopBlockY); b) combination of a
SNP X with a block of SNPs Y using the AND operation
(combineXandY); c) calculation of population counts for
allelic combinations between an individual SNP X and
SNPs with index larger or equal to Yi (pairPopX).

Algorithm 2. Pseudocode of a 3-way Search

Data: h0, h1,M, N0,N1, B
Result: s
hostToDeviceðh0j1; d0j1;M;N0j1Þ;
pop0j1 ¼ indivPopðd0j1;M;N0j1Þ;
for Yi ¼ 0; Yi < M; Yiþ ¼ B do
popBlockY0j1 ¼ pairPopBlockY ðd0j1;M;N0j1; B; YiÞ;
forXi ¼ 0; Xi < ðYi þBÞ; Xiþ ¼ 1 do
XandY0j1 ¼ combineXandY ðd0j1;M;N0j1; B;Xi; YiÞ;
popX0j1 ¼ pairPopXðd0j1; B;N0j1; Xi; YiÞ;
for Zi ¼ Yi; Zi < M; Ziþ ¼ B do
xorPop0j1 ¼ tensorPopXorðXandY0j1; d0j1;M;N0j1; B; ZiÞ;
cTab0j1 ¼ xorPop2andPopðxorPop0j1; pop0j1; popX0j1;
M;B; Yi; ZiÞ;
cTab0j1 ¼ genFreqInferðcTab0j1; popX0j1;
popBlockY0j1;M;Xi; Yi; ZiÞ;
scores ¼ applyScoreðcTab0; cTab1Þ;
s ¼ findGloballyBestSolðscores; sÞ;

end
end

end

The remaining parts of the algorithm are mostly equiva-
lent to the ones performed in 2-way searches, with a core
difference related to having to deal with larger contingency

tables. As is the case of 2-way searches, the fused XOR and
population count operations (tensorPopXor) followed by
the construction of contingency tables (xorPop2andPop
and genFreqInfer), application of the scoring function
(applyScore) and the reduction of the scores (findGlo-
ballyBestSol) map to Step 1, Step 2 and Step 3 introduced
in Section 2; and can be executed concurrently by process-
ing different combinations of blocks of SNPs at the same
time. Execution of pairPopX and pairPopBlockY can be
done concurrently with the next algorithm steps until right
after execution of tensorPopXor. The use of the inter-
leaved representation allows the step performing the
XOR+POPC to be implemented in a single matrix operation
per phenotypic state. A total of 16 matrix operations are per-
formed with the non-interleved approach.

The calculation of population counts for pairwise interac-
tions, used in xorPop2andPop and genFreqInfer to
construct contingency tables from the output of execution
on the tensor cores, is split into two parts for improving
algorithmic efficiency, particularly in relation to memory
usage. Compared with calculating population counts for
all-to-all pairwise combinations of SNPs all at once, this
decomposition requires significantly less memory, while
supporting efficient overlapping with other algorithm steps.

Fig. 7 depicts the input matrices to the XOR+POPC
matrix operations and the output matrix, for an example
with 8 SNPs and relying on a block size B of 2 SNPs. The
input matrix A is generated from the binarized dataset, as
represented at the right side of that figure. The 32 cells of
the outputmatrix C represent 8 (proto) genotype frequencies
for each of the 4 triplets of SNPs resulting from combining
(all-to-all) a single SNP X with 2 SNPs Y and 2 SNPs Z.
These values are used to calculate the 8 frequencies for the
genotypes (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0)
and (1,1,1). From those frequencies, the remaining 19 are
derived with simple arithmetic operations.

5 TARGETING GPUS WITH TENSOR CORES

PROVIDING HIGH XOR AND POPC
THROUGHPUT

In certain modern GPUs, such as is the case with NVIDIA
Turing GPUs with tensor cores, fused XOR and population
count, executed in tensorized fashion with 32-bit integer

Fig. 7. Combining an SNP X with blocks of SNPs Y and Z. Each cell rep-
resents the operation POPC ðða � bÞ � gÞ.
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accumulation, are the highest throughput operations. Thus,
such GPUs are highly suitable as a target for the proposal.
Due to their nature, they are also suited to the computations
required for the classification (i.e., scoring) based on the con-
tingency tables and for the reduction operations. This allows
one to rely on the GPU to perform all types of computations
in epistasis detection searches, eliminating the need for
potentially costly synchronization primitives and/or mem-
ory transfers between different kinds of accelerators via the
host such as in [8].

5.1 Turing GPU Architecture

The Turing streaming multiprocessor (SM) is the most basic
building block in the Turing architecture [18]. Each SM is
composed by four main processing blocks. Each one of the
latter has one instruction scheduling and dispatch unit,
64 KBytes of register file space, 16� IEE754 32-bit floating
point scalar arithmetic logic units (ALUs), 16� 32-bit integer
scalar ALUs, two tensor cores, four load/store units and
four special function units. In addition, each SM has four
texture units, 96 KBytes of L1 cache/shared memory, one
ray tracing core and two scalar 64-bit floating-point ALUs.

5.2 Throughput of Core Operations

In order to assess the importance of mapping core computa-
tions of epistasis detection to XOR and population count
operations when targeting Turing GPUs, it is important to
take into consideration the peak performance advantage
compared with relying on the more conceptually straight-
forward use of AND and population count operations.

On the general-purpose cores of the GPU (i.e., CUDA
cores), the bitwise AND, XOR and POPC instructions operate
on 32-bit words. AND and XOR instructions execute, on the
CUDA cores in the Turing architecture, with a throughput of
64 instructions per cycle per SM, resulting in 2048 bits proc-
essed per clock cycle per SM. The throughput of POPC
instructions per SM on the general-purpose cores is 16 per
cycle (4� lower than for AND or XOR), which results in
512 bits per clock cycle per SM. However, the eight tensor
cores in a SM are capable of operating 8192 bits (fragment size
is 8� 8� 128) per cycle with fused XOR þ POPC, the only
operation supported at the level of a single bit.

Notice that there would be no advantage in relying on
XOR instead of AND (in addition to POPC) if not using the
tensor cores, sinse there is no difference in throughput
between these operations on CUDA cores. The throughput
of POPC represents the absolute maximum performance
ceiling for the epistasis searches. Fused XOR and population
count on the tensor cores allows achieving a considerably
higher throughput in comparison to executing AND fol-
lowed by POPC on the general-purpose cores. Moreover,
POPC has a lower throughput than AND (or XOR), which
results in a potential for a performance improvement of an
order of magnitude, if the tensor cores are used as proposed.

5.3 Exploiting the Heterogeneous GPU Architecture

To fully utilize a GPU with tensor cores, one has to map a
given application in such a way that fully exploits the het-
erogeneity of the architecture. The proposal allows offload-
ing a key portion of the calculation of genotype frequencies

in 2-way and 3-way epistasis searches to the tensor cores.
The kernel that relies on fused XOR and population count
on the tensor cores has been implemented using CUT-
LASS [33], a collection of CUDA template abstractions. The
first and second inputs to the binary matrix operations in
CUTLASS are row-major and column-major, respectively.
Thus, SNP allelic combinations using the matrix-matrix
operations are produced from the same genotypic data
representation in memory. The remaining steps of the pro-
posal rely exclusively on the general-purpose GPU cores.

The implementation targeting the Turing GPUs exploits
the fact that the proposal allows concurrent execution of
operations pertaining to different combinations of SNPs.
Multiple CUDA streams are used, each processing a partic-
ular combination of blocks of SNPs at a given time. This
results in overlapping kernel calls that make use of the ten-
sor cores and calls that exclusively use the regular datapath.
Overlapping different combination rounds allows masking
the cost of certain computations and memory accesses, as
more resources of the GPU (of the same and of different
kind) have a chance of being exercised at any given time.

Derivation of genotype frequencies from the output of the
kernel that uses the tensor cores, derivation of the remaining
3k � 2k frequencies, application of the scoring function and
reduction, including identification of the set most correlated
with phenotype, are tasks that are combined into the same ker-
nel. In 3-way searches, the additional steps related to the calcu-
lation of genotype frequencies of pairwise combinations (two
distinct phases) and the precombination of a block of SNPs
with a given individual SNP are conducted by three additional
GPUkernels.

The proposal has been implemented in a way that strives
to optimize the use of the GPU memory subsystem, taking
into account both bandwidth and latency. The reduction of
scores relies on registers, shared memory and global mem-
ory, at the thread-level (each thread of the kernel processes
multiple contingency tables), at the level of individual
thread blocks and between thread blocks, respectively.

5.4 Objective Scoring Function

We rely on the Bayesian K2 score [30], [34] as the main
objective function. The K2 score is widely used in the con-
text of epistasis detection and can be defined as:

K2 ¼
XI
i¼1

Xriþ1

b¼1

log ðbÞ �
XJ
j¼1

Xrij
d¼1

log ðdÞ
 !

: (8)

The K2 score, as is the case for other objective functions,
calculates a score based on the number of occurrences ri of
each of the I possible genotypes (I ¼ 3k) in samples, taking
into account the frequency rij in samples pertaining to the
specific considered J phenotypic states (J ¼ 2).

Multiple strategies for optimizing the scoring of sets of
SNPs have been devised and implemented in the scope of
this paper. First, the proposal relies on the gamma function.
This function widens the scope of the factorial function to
complex numbers as per GðnÞ ¼ ðn� 1Þ!. The lgamma

intrinsic, which computes the natural logarithm of the
gamma function, is used to calculate the sums of natural
logarithms after translation to logarithms of factorial. In
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order to achieve maximum efficiency, the GPU kernel com-
puting the scores accesses a table with precomputed
lgamma values through read-only data cache (__ldg()).
The proposal computes at the application start the lgamma

values that might be required during a given epistasis run,
based on the amount of cases and controls in the dataset.
This step is overlapped with the transfer of a portion of the
dataset to GPU memory.

Mutual information scoring [31], popular in the context
of GWAS (e.g., [13], [15]), has also been implemented. This
allows to experimentally show (see Section 6.3) that the pro-
posal can operate efficiently with other scoring functions.
As is the case with K2, mutual information also operates
over the 3k contingency table values pertaining to each
phenotypic state. The implementation optimizations previ-
ously described for the former, including the use of a
lookup table, are also applicable to the latter.

6 EXPERIMENTAL RESULTS

This section presents the experimental methodology and the
results obtained with the proposal when processing differ-
ent datasets with different numbers of SNPs and samples,
highlighting relevant parameters.

6.1 Experimental Setup

6.1.1 Target systems

The main target of the experimental evaluation is a worksta-
tion with an Intel Xeon E3 1245 V3 (Haswell @3.6 GHz)
quad-core CPU, 16 Gigabytes of DDR3 and a NVIDIA
GeForce 2070S graphics card (TU104-410-A1 @1,605/1,785
MHz). The CUDA 10.1 toolkit (V10.1.243), CUTLASS 1.3
and GCC 8.4 have been used on top of Ubuntu 20.04. Addi-
tional experiments have been conducted on a system with
an AMD Ryzen 3600 (Zen 2 @4.2 GHz) six-core CPU, 32
Gigabytes of DDR4 and an NVIDIA Titan RTX graphics
card (TU102-400-A1 @1,350/1,770 MHz). This system has
been used for performing a final evaluation of the proposal,
relying on the highest performing implementation.

The GeForce 2070S and the Titan RTX have 40 and 72
SMs, resulting in 2560 and 4608 CUDA cores (i.e., number
of 32-bit integer and 32-bit floating-point scalar ALUs), and
320 and 576 tensor cores, respectively. Both are connected to
the host through a PCI Express 3.0 bus with 16 lanes.

6.1.2 Performance Metric and Evaluated Parameters

The performance metric the proposal strives to maximize is
the number of unique sets of SNPs evaluated per second
scaled to the sample size. This metric allows comparing the
throughput of different approaches, even when using data-
sets with different numbers of SNPs and/or samples. We
rely on this metric for comparing the proposal to the related
state-of-the-art. Tensor tera operations per second (TOPS)
are also reported for selected runs, as this metric is repre-
sentative of efficiency in usage of the GPU resources.

In order to fully analyse the performance attained by the
proposal, we evaluate it under different conditions. We evalu-
ate the benefit of the usage of the interleaved data representa-
tion, comparing the achieved performance with that of the
usage of a non-interleaved representation (see Section 3.1). The

impact of different block sizes of a fixed amount of SNPs (128,
256, 512, 1024 or 2048), as-well of using a variable block size
strategy to achieve higher performance through improving
the ratio of unique sets processed, are also evaluated. In addi-
tion, we evaluate the use of different numbers of CUDA
streams (1, 2, 4 or 8) for concurrent execution of evaluation
rounds. In comparison with 3-way searches, 2-way searches
are expected to reach completion in orders of magnitude less
time. Experiments pertaining to 2-way searches entailed 20
independent runs, as ameasure to reduce the possible effect of
other processes executing on the targeted system due to the
small execution time of some searches. The herein presented
results correspond to themedian value for those runs.

The experiments reported in this paper process synthetic
datasets with 2048, 4096, 8192, 16384 or 32768 SNPs. In pair-
wise searches, these result in the evaluation of close to 2, 8,
34, 134 and 537 mega (�106) combinations, respectively. In
triplet searches, these entail 1430, 11445, 91592, 732874 and
5863525 mega combinations, respectively. Different num-
bers of samples are also considered, through evaluation of
datasets with 8192, 16384, 32768, 65536, 131072 or 262144
patient records (half cases/controls). Notice that although
the data used in the experiments is synthetic, the specific
values on the dataset do not affect the volume of operations
to be performed by the proposal, thus making the reported
performance representative of what one would achieve
using data obtained through DNA sequencing.

6.2 Effect of Number of SNPs per Block
and of Streams

Figs. 8a and 8b show the performance achieved in 2-way
and 3-way searches, with a dataset with 8192 SNPs and
262144 samples, when blocks with different amounts of
SNPs (128, 256, 512, 1024 or 2048) and of CUDA streams (1,
2, 4 or 8) processing evaluation rounds are adopted.

The use of multiple streams for processing the evaluation
rounds enables concurrent execution of instances of the ker-
nel that operates allelic data using tensor core operations
and of the kernel code that derives the contingency table val-
ues, calculates the scoring function and reduces the scores.
The use of multiple streams is particularly helpful when
processing small blocks of SNPs, as it allows to significantly
increase the utilization of the available GPU resources.

The interleaved representation achieved higher perfor-
mance for any given block size and number of streams.
More streams tends to diminish the difference between the
performance achieved with interleaved and non-interleaved
representations. Moreover, when using the interleaved
representation, the advantage of using multiple streams is
exhausted with fewer streams. It is often the case that using
4 or even only 2 streams already allows achieving perfor-
mance that is very close to the one obtained with 8 streams.
Doubling the SNPs per block results in the number of
thread blocks per each individual kernel execution perform-
ing the matrix operations on a particular stream increasing
by 4�, which is in line with the increase in computation per
round. However, the number of thread blocks per grid is
4� (8�) larger in 2-way (3-way) searches with the interleaved
approach, in relation to that with the non-interleaved
approach. This allowed the interleaved approach to make,
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for the same number of streams and number of SNPs per
block, amore efficient use of the GPU resources. For example,
using blocks of 256 SNPs, in 2-way (3-way) searches, with the
interleaved approach there are 16 (32) thread blocks per ker-
nel execution. Using the non-interleaved approach only 4
thread blocks are instantiated per grid in a given stream,
both in 2-way or 3-way searches, which is not enough to fully
saturate all available SMs (40) even if using 8 streams.

The grid sizes mentioned here result from the use of
thread block and warp tile sizes of (1024,128,128) and
(1024,32,64), respectively. This particular setting within
CUTLASS has been experimentally determined to result in
higher performance in comparison with a number of other
tiling configurations; even in relation to those enabling
higher SM occupancy than the one achieved (256 active
threads, out of a maximum of 1024 in Turing). Notice that a
compromise must be made when setting these parameters,
since there are conflicting goals. Enlarging the thread block
tile results in higher SM occupancy and has the potential to
improve usage of the device global memory bandwidth.
However, it also results in smaller grid sizes for a given
amount of SNPs per block. Higher occupancy can also be
achieved by reducing the warp tile, but doing so decreases
data reuse within warps, resulting in a performance loss for
any of the other smaller tile configurations tested.

The selection of a suitable block size for a given epistasis
detection run is of utmost importance. Table 1 depicts the
ratios of unique sets that are processed for 2-way and 3-way
searches, which depends on the number of SNPs in a given
dataset (M), and the number of SNPs per block (B). These
ratios have a significant impact on the overall performance.
Higher performance is achieved through striking a balance
between efficient use of the GPU resources and a favorable
ratio of unique sets (i.e., as close to 1 as possible). Especially

when processing datasets with a relatively small amount of
SNPs, the use of large block sizes results in processing a large
amount of non-unique sets. For 8192 SNPs, in a 2-way search,
the use of blocks of 128 SNPs results in a ratio of 0.984 unique
sets, while using blocks of 2048 SNPs results in a ratio of 0.8
unique sets. In a 3-way search these numbers drop to 0.954
and 0.533, respectively. Notice that while a block of 128 SNPs
results in a ratio of unique sets closer to 1 than any other
amount of SNPs per block evaluated, using more SNPs per
block has resulted in higher performance because of
improved utilization of the GPU resources. It is also impor-
tant to notice that for a given block size, the ratio of unique
sets of SNPs processed is the same in both the interleaved
and non-interleaved approaches. Thus, any increase in
throughput processing sets of SNPs translates directly into
performance improvements in epistasis searches.

In the 2-way search experiments, depicted in Fig. 8a,
higher performance has been achieved with a block of 512
SNPs, for both memory representation approaches. How-
ever, when using the interleaved representation, a block
size of 256 SNPs achieves similar performance. In contrast,
when using the non-interleaved approach, a block of 256
SNPs is not sufficient to achieve the highest attainable per-
formance. Such block size is too small for achieving full use
of the GPU resources, even with 8 streams. As expected,
using fewer streams, requires the use of larger block sizes.
In the interleaved approach, if using only 1 stream, highest
performance is achieved with a block of 1024 SNPs. If using
the non-interleaved approach, similar performance is
achieved with blocks of 1024 or 2048 SNPs.

Selecting a block size is especially important in 3-way
searches, as the impact on the ratio of unique sets is more
pronounced. The achieved performance drops sharply
when using a block with more SNPs than required to

TABLE 1
Ratio of Unique Sets for 2-Way and 3-Way Searches for Datasets WithM SNPs and Blocks of B SNPs

Fig. 8. Number of unique pairs / triplets (�1012) processed per second, scaled to the sample size, achieved for the use of different numbers of
streams (1, 2, 4 or 8) and different numbers of SNPs per block (128, 256, 512, 1024, or 2048) in 2-way (pairs) and 3-way (triplets) searches on a sys-
tem with a Xeon E3-1245 V3 CPU and a GeForce 2070S GPU, for a dataset with 8192 SNPs and 262144 samples.
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efficiently use the GPU. In 3-way, depicted in Fig. 8b, for the
non-interleaved approach, a block of 512 SNPs resulted in
higher performance than when using a block of 256 SNPs.
However, when relying on the interleaved approach, using
a block of 256 SNPs led to higher performance. In addition,
when using small blocks, such as that block size, the differ-
ence in performance between the non-interleaved and inter-
leaved approaches is larger in 3-way than in 2-way
searches. Notice that in 3-way searches, for the interleaved
approach the first input to the matrix operations is 2� larger
than the second input, which results from the combination
of a given a block of SNPs Y with two bit vectors (genotypes
0 and 1) of a given SNP X into a single matrix. In 3-way, for
a block size of 256 SNPs, using the non-interleaved
approach, both outer dimensions in the binarized matrix
operations equal 256. With the interleaved approach, these
become 1024 and 512, respectively. As happens in 2-way,
when using a small amount of streams in 3-way searches, a
larger block is often required. Using only 1 stream to per-
form the evaluation rounds, the highest performance is
achieved with a block of 256 or 1024 SNPs, for the inter-
leaved and the non-interleaved approaches, respectively.

Table 2 shows the average TOPS achieved in the tensor
cores, for 2-way and 3-way searches considering either 1 or
8 concurrent steams, for the non-interleaved or the inter-
leaved representation and different block sizes. The TOPS
metric reported herein counts fused XOR and population
count as two operations. For the same parameters, the
interleaved representation always achieved more Tensor
TOPS. Increasing the block size up to 1024 SNPs always
improved this metric. If using a single stream, blocks
of 2048 SNPs further improved TOPS in 2-way searches.
In 3-way, TOPS only increased further if using the non-
interleaved representation. The interleaved approach
achieves saturation of the GPU resources with a smaller
block size due to larger inputs in the matrix operations. All
other parameters being equal, Tensor TOPS tends to be
higher in 3-way searches. This is largely due to a higher
ratio of computation in relation to memory transfers. As
expected, the use of multiple streams tends to result in
higher TOPS. High throughput can be achieved for the
largest block sizes using a single stream. However, achiev-
ing high throughput with small blocks of SNPs is required
for highest detection performance, due to an improved
ratio of unique sets.

Independent runs of 2-way (3-way) searches relying on the
interleaved approach using 8 streams have been profiled. On
instances considering, on top of data transfers, only the kernel
performing the matrix operations, 381 (684), 457 (704), 484
(706), 497 (698) and 476 (693) TOPS were achieved for block
sizes of 128, 256, 512, 1024 or 2048 SNPs. Comparing with the

TOPS reported in Table 2, it is clear that the proposal is oper-
ating at close to the throughput of the kernel that performs
the matrix operations using the tensor cores. Profiling the
complete proposal in 2-way (3-way) searches reported a GPU
utilization of 77.11 percent (76.42 percent) for the matrix-
matrix operations, 12.27 percent (0.00 percent) for memory
transfers, 5.47 percent (15.40 percent) for the kernel code that
derives contingency tables, scores sets of SNPs and reduces
scores, and 5.15 percent (0.00 percent) for counting genotype
frequencies for individual SNPs. The remaining 8.18 percent
in the 3-way search is attributed to the three additional ker-
nels (see Section 4.3). In 3-way, the amount of combinations
evaluated (2730� in relation to 2-way)makes the cost of trans-
fers and of counting individual genotype frequencies negligi-
ble. Notice that for larger datasets, the matrix operations are
expected to dominate evenmore over the other kernel codes.

6.3 Scaling With the Number of Samples

The effect of the amount of samples in the performance is of a
different nature than that of the number of SNPs. Fig. 9
depicts the results achieved for runs relying on K2 or mutual
information scoring. These include the use of the interleaved
representation, 8 streams and the number of SNPs per block
that individually resulted in the highest performance, for
datasets with different numbers of SNPs (2048, 4096, 8192 or
16384) and between 8192 and 262144 samples.

As expected, each successive doubling of the number of
samples results in a less substantial relative performance
improvement, as the use of the GPU resources approaches
the maximum. In 2-way searches, when considering 2048
SNPs, increasing the number of samples from 8192 to 16384

TABLE 2
Average Tera Operations Per Second (TOPS) Achieved at the Tensor Cores of the GeForce 2070S GPU in 2-way or 3-way Searches
(8192 SNPs and 262144 Samples) With the Non-Interleaved or Interleaved Approaches, Using a Single or Multiple Streams (8) and

Considering Blocks of B SNPs

Fig. 9. Performance scaling with number of samples (between 8192 and
262144) on system with a Xeon E3-1245 V3 CPU and a GeForce 2070S
GPU, for datasets with different numbers of SNPs (2048, 4096, 8192,
16384), using 8 streams and block size that resulted in the highest per-
formance. K2: K2 Bayesian scoring. MI: Mutual Information scoring.
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resulted in a 1:5� improvement. For 16384 SNPs, perfor-
mance improves by 1:39� . In 3-way searches, performance
is more affected by the number of samples. Performance
increases by 1:66� and 1:68� when going from 8192 to
16384 samples, for the datasets with 2048 and 16384 SNPs,
respectively. As expected, highest performance is achieved
with 262144 samples, both in 2-way and 3-way runs. The
same pattern can be seen when dealing with datasets with
different numbers of SNPs. Finally, identical performance
has been achieved with both scoring functions, since both
rely on the same calculation approach using a lookup table.

6.4 Tuning and Evaluation on Additional System

Fig. 10 shows the performance achieved on two systems
with Turing GPUs, for 2-way and 3-way searches, datasets
with 262144 samples, and 16384 or 32768 SNPs. These
results are for a fixed block size of 512 SNPs, identified as
the size that provides the highest performance, and for a
variable block size strategy that relies on two block size
halving steps (see Section 3.5). The latter strategy relied on a
starting block size of 1024 (2-way) or 512 (3-way) SNPs.

The achieved performance improved in 3-way due to a
significant increase of the ratio of unique sets, as a result of
a considerable portion of the matrix operations being per-
formed with small blocks (256 or 128 SNPs). In 2-way, the
achieved improvement results from the combined benefit of
part of the computations being performed with larger
blocks of data (1024 SNPs) and a slight improvement of the
ratio of unique sets processed. In 2-way and 3-way searches,
for the largest dataset (32768 SNPs and 262144 samples), the
system with a Titan RTX (GeForce 2070S) achieves 869 and
894 (588 and 591) Tensor TOPS using a fixed block size,
while 871 and 898 (594 and 586) Tensor TOPS are achieved
using the variable block size strategy, respectively.

Top performance on 2-way searches, shown in Fig 10a,
improves by 1:41� from the Geforce 2070S to the Titan RTX
system on the dataset with 16384 SNPs. On the 32768 SNPs
dataset, the improvement is 1:47� . On 3-way searches, the
relative performance improvement from the Geforce 2070S to
the Titan RTX system, shown in Fig 10b, is more substantial
than in 2-way searches. In addition, between these systems,
performance improves as much on the 16384 SNPs dataset
(1:54�) as on the 32768 SNPs dataset (1:53�). In 3-way
searches computation completely dominates over the cost of

transferring data to the GPU. For the same reason, when ana-
lysing the systems individually, in relation to 2-way searches,
the performance achieved processing 32768 SNPs is not
significantly higher than that for 16384 SNPs.

The improvements result from the efficient use of the
additional resources in the Titan RTX, which has 80 percent
more SMs than the GeForce 2070S. Although they have the
same advertised boost frequency (1770MHz), the former has
a more modest nominal frequency (1350 MHz) compared to
the latter (1605 MHz). Given that the proposal exercises the
GPU to a high degree and that the TDP of the Titan RTX is
only 30 percent higher (280W versus 215W), more aggressive
throttling is to be expected. As a matter of fact, the GeForce
2070S consistently achieved higher clock frequencies.

7 RELATED WORK

Given the additional complexity of exhaustive 3-way
searches, most approaches only tackle pairwise searches (e.g.,
[5], [6], [7], [8], [9], [11], [12], [14], [35]). The former are rarely
tackled and often rely on multi-GPU systems (e.g., [13]) or
supercomputers (e.g., [10], [15]). Non-exhaustive methods
(e.g., [36], [37], [38], [39]) can achieve faster detection. How-
ever, that comes at the cost of decreased detection accuracy.

State-of-the-art approaches relying on exhaustive methods
have targetedmulticore CPUs (e.g., [5], [6]), specialized archi-
tectures in FPGAs (e.g., [7], [8]), GPUs (e.g., [5], [8], [9], [10],
[11], [12], [13], [35]) and other parallel architectures, such as
Intel XeonPhi accelerators (e.g., [11], [14]). GPUs are especially
suitable targets, because of their compute resources in relation
to cost and the data-parallel nature of epistasis detection.

Table 3 shows the performance reported for a number of
epistasis detection approaches that rely on exhaustive meth-
ods targeted at systems with accelerators. The development
of algorithms and implementations enabling efficient
exploitation of novel hardware features and accelerator
devices for epistasis detection purposes has been one of the
main performance drivers. Notice that compared with other
approaches, the proposal herein presented achieves higher
performance per node, considering both targeted systems.
This is the case even in comparison with approaches that
rely on the use of multiple GPUs per node.

The comparison with related art is focused on
MPI3SNP [15] and CoMet [10]. These approaches have been
recently published, representing the state-of-the-art in
GPU-based epistasis detection approaches using exhaustive
search methods. MPI3SNP has been compiled from source
and executed on the same systems targeted by the proposal.
In the case of CoMet, which is especially interesting because
it uses tensor cores, although it targets a different precision
and uses a different exploitation method, we relied on com-
paring the performance achieved by the proposal with that
reported in the corresponding paper, taking into account
that systems with different capabilities have been used.

MPI3SNP [15], an evolution of the GPU3SNP [13] multi-
GPU tool for triplet searches, when evaluated in the target
systems with the datasets available in the source code
repository using mutual information scoring, achieved a
maximum throughput of 426.2 and 681.5 giga (�109) triplets
per second, scaled to the sample size, on the systems with
the GeForce 2070S and the Titan RTX, respectively. On the

Fig. 10. Performance achieved on Xeon E3-1245 V3 þ Geforce 2070S
and Ryzen 3600 þ Titan RTX with fixed or variable block size (+) for
datasets with 16384 or 32768 SNPs and 262144 samples.
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same systems, the proposal in this paper has achieved an
improvement in throughput of 83:5� and 80� in 3-way
searches, on the GeForce 2070S and the Titan RTX, respec-
tively. MPI3SNP relies on AND and population count
instructions to construct contingency tables. There is reuse
of intermediate results resulting from execution of the for-
mer instruction, but the searches are still performed on top
of a 3-bit per SNP per sample representation. The perfor-
mance improvement in comparison to MPI3SNP can be
attributed to the efficient use of the highest throughput
operation on the novel GPU tensor cores, the use of an opti-
mized calculation strategy and the techniques devised to
achieve higher overall efficiency when using the GPU. As a
result, the GPUs were exercised to a significantly higher
extent in comparison to when executing MPI3SNP.

CoMet [10] has been evaluated on the Summit supercom-
puter [41], targeting thousands of nodes with six Tesla V100
(Volta architecture [42]) each with up to 98 percent weak scal-
ing efficiency. CoMet relies on a binarized representation
where the allele types are represented by the number of set
bits, but it requires mapping to a different type of representa-
tion for the searching process (as it incurs in a 16� memory
expansion) in order to use the Volta tensor cores. Each entry of
two bits representing an allele becomes represented by counts
of 0’s and 1’s, two 16-bit floating point values. For 2-way and
3-way searches, up to 10:805� 1012 and 3:111� 1012 evalua-
tions of sets of SNPs per second per GPU scaled to the sample
size have been reported. Thus, comparedwithCoMet, the pro-
posal achieves improvement factors of 6:8� and 11:4� , on
the system with the GeForce 2070S, in 2-way and 3-way
searches, respectively. On the system with the Titan RTX,
the improvement factors are of 10� and 17:5� , respectively.
The proposal in this paper can accomplish 2-way and 3-way
searches with comparable efficiency, achieving similar
Tensor TOPS with challenging datasets. The performance
improvement in relation to CoMet is considerably larger in
3-way searches because triplet searches incur in close to a 2�
reduction in the number of sets processed per second in rela-
tion to that achieved in 2-way searches. This is consistent with
the use of the calculation reduction technique presented in
Sections 3.4 (2-way) and 4.2 (3-way). In contrast, the perfor-
mance reported for CoMet in 3-way searches is close to 3�

less than that in 2-way searches, which is in line with the fact
that the approach requires 3� the number of matrix-matrix
operations for processing each plane of triplets of SNPs in a
3-way search, in comparison to evaluation of the pairs of SNPs
in a 2-way search. Notice that although the CoMet approach is
based on vector similarity searching using the Custom Corre-
lation Coefficient [43] statistical measure, the volume and the
kind of computation (i.e., evaluating all-to-all pairs/triplets of
vectors of SNP allelic data) is directly comparable.

In [10], GPU tensor cores are used in 16-bit floating-
point operation relying on standard half-precision cuBLAS
GEMM calls (cublasGemmEx). In contrast, the proposed
approach targets tensor cores relying on matrix operations
structurally similar to GEMM, with fused XOR and popu-
lation count replacing multiply-and-add. Moreover, given
that the tensor cores in the targeted hardware (Turing
GPUs) only support this operation when working at the
level of single bits, we had to go through the additional
step of finding an efficient way to leverage the highest
throughput operation. This allows the proposal to achieve
a significantly higher throughput than possible when oper-
ating 16-bit floating-point data or any other datatype or
data-with. In relation to implementation, the kernel that
uses the tensor cores has been implemented relying on
CUTLASS [33], a set of CUDA templates for linear algebra
subroutines, instead of relying on the cuBLAS [44] library.
At present time, to the best of our knowledge, cuBLAS
does not provide a means to perform GEMM-like compu-
tations in 1-bit precision.

It is important to emphasize that the performance
achieved is not simply due to using a more powerful GPU. In
standard 32-/16-bit floating point precision using the CUDA
cores and in 16-bit floating point precision using the tensor
cores, the Tesla V100 (15.67/31.33 CUDA and 125 Tensor
TFLOPS) is overall comparable to the Titan RTX (16:31=32:62
CUDA and 130 Tensor TFLOPS) and significantly faster than
the GeForce 2070S (9:06=18:12 CUDA and 73 Tensor
TFLOPS). Memory bandwidth is 1:33� higher in the
Tesla V100 (897 GB/s) in relation to that of the Titan RTX
(672 GB/s). Thus, it is expected that the proposal would still
achieve higher performance compared with that achieved
through execution of CoMet on a Turing GPU.

TABLE 3
Performance in Sets (�1012) Processed Per Second Scaled to Number of Samples of Epistasis Detection Approaches

That Target Hardware Accelerators Relying on 2-way and 3-way Exhaustive Search Methods

kth order Approach (# nodes�) Accelerator configuration Performance Performance / node

2-way epiSNP [14] (126�) 2 Intel Phi SE10P 1.593 0.013
GBOOST [9] (1�) 1 GeForce GTX 285 0.064 0.064
multiEpistSearch [35] (24�) 1 Titan 12.626 0.526
GWIS [5], [40] (1�) 1 GeForce GTX 470 0.658 0.658
GWISFI [12] (1�) 1 GeForce GTX 470 0.767 0.767
Wienbrandt et al. [8] (1�) 1 Tesla P100 + 1 Kintex UltraScale KU115 0.941 0.941
multiEpistSearch (Hybrid) [11] (1�) 2 Tesla K20m + 1 Intel Phi 5110P 1.053 1.053
CoMet [10] (4560�) 6 Tesla V100 295633 64.831
Proposal (1�) 1 GeForce 2070S / 1 Titan RTX 73.69 / 108.08 73.69 / 108.08

3-way GPU3SNP [13] (1�) 4 Titan 0.265 0.265
MPI3SNP [15] (4�) 2 Tesla K80 0.555 0.139
CoMet [10] (4373�) 6 Tesla V100 81611 18.658
Proposal (1�) 1 GeForce 2070S / 1 Titan RTX 35.56 / 54.54 35.56 / 54.54
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Fully exploiting GPUs with the Turing architecture
requires a different solution design than if targeting Volta
GPUs. The proposal has been fully designed around the
use of fused XOR and population count operations, a
novel capability in modern tensor cores. Notice that this
capability, at present time not leveraged by most applica-
tions, will likely remain in future architectures because of
its usefulness in the context of processing BNNs. Combin-
ing the exploitation of the highest throughput operations
on a modern accelerator architecture, the use of algorith-
mic optimizations, a carefully devised orchestration strat-
egy and meticulously optimized GPU code allows the
proposal to significantly outperform other state-of-the-art
approaches.

Compared to [45] and [46], two approaches for high-order
epistasis detection from the authors of this paper, the pro-
posal herein presented achieves significantly higher perfor-
mance when executed on the same CPU+GPU system (Xeon
E3-1245 V3 and GeForce 2070S). Compared with the former,
which is a highly optimized 3-way detection approach that
relies only on general-purpose GPU cores (useful for GPU
architectures without tensor cores), the proposal achieves up
to 29:73� improved performance. This is due to the com-
bined use of the tensor cores and an improved calculation
strategy. The latter approach represents a preliminary itera-
tion of the proposal presented in this paper. The algorithms
for 2-way and 3-way searches and their implementations
have been extensively modified in order to allow for an
increased usage of the GPU compute resources, achieved
through the use of the interleaved internal data representa-
tion and a more efficient overlapping of GPU kernel execu-
tion. As a result, processing the same data becomes
significantly faster. For example, a dataset with 16384 SNPs
and 131072 samples, which has been used in the evaluation
of both iterations of the proposal, is processed 1:3� and
1:58� faster in 2-way and 3-way searches, respectively.

8 CONCLUSION

The proposal presented in this paper accelerates epistasis
detection searches in case-control datasets relying on fused
XOR and population count as part of matrix operations. These
operations have the highest throughput on some current proc-
essing devices, such as Turing GPUs. The proposal achieved a
performance of up to 108.1 and 54.5 tera (�1012) combinations
processed per second, scaled to the number of samples, on a
system with a NVIDIA Titan RTX GPU, in 2-way and 3-way
epistasis detection searches, respectively. This represents, per
GPU, performance of an order of magnitude higher than the
highest performing related art approach.

The proposal in this paper computes genotype frequency
tables faster than any other approach. In addition to K2
Bayesian and mutual information scoring, two functions
considered in this paper, these tables are used by a number
of other objective scoring functions. This makes the pro-
posal useful for other challenging bioinformatics problems.

Ongoing work includes adding support for exploiting
the usage of multiple computer nodes through MPI and
accelerating epistasis detection relying on additional classes
of devices, such as FPGAs and accelerators specialized to
neural network training/inferencing.
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