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Abstract—Neural machine translation (NMT) is one of themost critical applications in natural language processing (NLP) with themain

idea of converting text in one language to another using deep neural networks. In recent year, we have seen continuous development

of NMT by integratingmore emerging technologies, such as bidirectional gated recurrent units (GRU), attentionmechanisms, and

beam-search algorithms, for improved translation quality. However, with the increasing problem size, the real-life NMTmodels have

becomemuchmore complicated and difficult to implement on hardware for acceleration opportunities. In this article, we aim to exploit the

capability of FPGAs to deliver highly efficient implementations for real-life NMT applications.Wemap the inference of a large-scaleNMT

model with total computation of 172GFLOP to a highly optimized high-level synthesis (HLS) IP and integrate the IP into Xilinx VCU118

FPGA platform. Themodel haswidely used key features for NMTs, including the bidirectional GRU layer, attentionmechanism, and beam

search.We quantize themodel tomixed-precision representation in which parameters and portions of calculations are in 16-bit half

precision, and others remain as 32-bit floating-point. Compared to the float NMT implementation on FPGA,we achieve 13.1� speedup

with an end-to-end performance of 22.0GFLOPSwithout any accuracy degradation. Based on our knowledge, this is the first work that

successfully implements a real-life end-to-end NMTmodel to an FPGAon board.

Index Terms—Hardware-efficient inference, neural machine translation, FPGA, high level synthesis

Ç

1 INTRODUCTION

MACHINE translation is one of the most popular natural
language processing (NLP) tasks. Compared to tradi-

tional statistical machine translation (SMT) that relies on
statistical models, neural machine translation (NMT), using
DNNs (deep neural networks) to model entire input senten-
ces and predict the likelihood of sequence of words, has
demonstrated much higher accuracy [1], [2]. However, as
researchers pursue the highest accuracy of NMT, the model
has been aggregated with hundreds of millions of parame-
ters and needs hundreds of GPU hours for training [3]. To
reduce the model size, some researchers applied quantiza-
tion mechanisms to NMT models, truncating the parame-
ters but preserving floating-point calculations of the models
due to accuracy concerns [4], [5].

Besides CPUs and GPUs, FPGA, an energy-efficient alter-
native, has been considered as another candidate with strong
computational power and has achieved great performance on
various DNN tasks [6], [7], [8]. However, the conventional
ways of writing hardware description language (HDL) code
for FPGAs are both painful and take much longer time than
code development on CPU/GPU.High-level synthesis (HLS),
converting high-level language such as C, C++ to HDL

automatically, largely mitigates the time-consuming FPGA
code development process [9], [10], [11], [12], [13], [14], [15].

In our work, we map the inference of a representative
encoder-decoder based NMT model proposed in [16] with
total computation of 172 GFLOP to a highly optimized HLS
IP and integrate the IP into Xilinx VCU118 FPGA platform.
The model has widely used key features for NMTs including
bidirectional GRU layer, attention mechanism, and beam
search algorithm. We quantize the model to mixed-precision
representation in which parameters and portions of calcula-
tion are in 16-bit half precision, and others remain as 32-bit
floating-point. This paper is a continuation of our previous
work [17], the first real-life NMT design on FPGAs using
floating-point precision. The key improvements compared
to [17] include a hybrid-precision NMT model design to
achieve improved board-level performance and the same
level of accuracy as the floating-point version, a heteroge-
neous decoder design to integrate dedicated decoders for
layers with different compute-to-communication (CTC)
ratios, and a refined attention module to optimize the com-
putation order and reduce process latency. To sum up, fol-
lowing are the contributions of this work:

� We introduce a hardware-oriented profiler and a compre-
hensive task partitioning strategy for mapping NMT
onto FPGAs. The proposed profiler first identifies
computational demands and memory requirements
of the targeted NMT Please provide the author for
Recommended for acceptance.model. The proposed
task partition strategy then helps to allocate hardware
resources for different tasks inNMT according to their
compute and memory-access features, and eventually
to fully utilize the available hardware resources fol-
lowing the profiling analysis.
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� We propose a heterogeneous decoder design to effi-
ciently process the decoding process of recently
developed encoder-decoder NMT models. Different
decoding processes within the same NMT model can
be treated specifically, as we integrate two heteroge-
neous decoders (Decoder Five and Decoder One) to
provide better accommodations of the computation
demands with different CTC ratios.

� As the attention mechanism is one of the most import
and compute-intensive features in NMT models, we
provide a refined attention module to improve our
design’s board-level performance. It effectively
increases the reuse of DNN parameters, reduces the
number of external data transfer, and constructs well-
balanced pipelines to maximize the performance.

� We introduce highly optimized HLS IPs as major build-
ing blocks for implementing the demanding NMT
model on the targeted FPGA. We apply a variety of
optimization techniques, such as partial on-chip
weight storage, weight sharing, buffer sharing, opti-
mized matrix-vector-multiplication (MVM), array
partitioning, loop unrolling, and pipelining.

� To improve the inference speed, we leverage a
hybrid-precision model on our board-level implemen-
tation on a Xilinx VCU118 FPGA. We quantize the
NMT model based on both performance and accu-
racy considerations and we increase the performance
over the floating-point version by 13.1� while main-
taining the same accuracy.

2 RELATED WORK

2.1 NMT
Before the wide adoption of DNNs, machine translations
mainly rely on statisticalmethods to find thehighest probability
of the target language phrase when translating the current
input words based on bilingual text corpora. As deep neural
networks become popular, researchers start to apply fully-con-
nected layers and recurrent neural network (RNN) layers on
machine translation to provide better translation quality [18],
[19]. After that, models of machine translation are mostly
DNN-based with encoder-decoder structures (also known as
the sequence-to-sequence models) [1], [2]. These NMT models
first adopt RNNs to encode the input sentences into internal
context vectors which summarize the input contexts. Decoders
(which are also built of RNNs) then translate context vectors
into different languages. For challenging tasks, such as long
sentence translations, pureRNNsmay fail to remember the pre-
vious information as the gap between the information and cur-
rent task increases due to vanishing gradient. Thus, long short-
term memory (LSTM), a special kind of RNN, is introduced to
mitigate this issue, preserving portions of previous outputs in
memory cells [20]. Another special RNN is also proposed,
called gate recurrent unit (GRU), which requires less computa-
tion thanLSTMwhile still achieving similar accuracy [21].

The next breakthrough in NMT is the attention mecha-
nism, which helps paying “attention” to related input vectors
before generating each specific output word and significantly
improves the long sentence translation [16]. The encoder-
decoder model with attention has become the most represen-
tative paradigm guiding the future direction of NMT model
design. For example, Google proposes a large-scale NMT

model, called GNMT, with 16 LSTM layers and an attention
mechanism, to provide high-quality translation services [22].
Besides the RNN-based implementation, Facebook uses con-
volutional neural networks (CNNs) to encode sentences fol-
lowing the same model design paradigm [23]. Recently, a
newmodel, called Transformer, has once again improved the
translation quality [24]. It adopts the same design paradigm
(the encoder-decoder with attention) but mainly depends on
the attention modules (e.g., multi-head attention and masked
multi-head attention) instead of the RNN-based structure.
Beside the attention mechanism, major layers in this new
model also share similarities with the representative one in
[16], such as using feed forward layers, linear layers, and soft-
max layers. Therefore, we select the model in [16] for research
on hardware implementation.

2.2 FPGA
We have seen extensive studies in DNN accelerator using
FPGA to deliver competitive energy efficiency and perfor-
mance [25], [26]. For DNN applications, matrix-vector multi-
plications are widely applied. Despite the wide variety of
DNN models, MVM is the main computation inside each of
them, such as the most distinctive attention mechanism in
NMT. To accelerate the process of convolutional layers,
authors in [6] propose a FPGA-based accelerator by applying
loop tiling, unrolling, pipelining and data reuse under mem-
ory bandwidth and resource constraints. For LSTM, ESE is
proposed in [27] to provide high-performance and load-
balancing acceleration with comprehensive sparsity and
quantization exploration. Other designs [28], [29] also pres-
ent alternative power-efficient solutions for RNNs. Another
work propose a CPU-FPGA system for NMT acceleration
while only MVM engines are mapped to FPGAs, and CPU
handles the rest of calculations [30]. These works focus more
on building an accelerator engine solely for a single DNN
layer or MVM processes, while still needing calculations on
the host side to run the entire DNNmodel.

There are also other works that deploy a complete net-
work on an FPGAboard. For example, lots of successful com-
puter-vision related implementations have been deployed
on FPGAs [7], [8], [31], [32]. In addition, a long-term recur-
rent convolutional network (with both CNN and RNN) for
video content recognition is mapped to a Virtex-7 FPGA
with high performance and efficiency [15]. To speedup the
design of FPGA-based accelerators, DNNBuilder is pro-
posed in [8] as an automated tool to directlymap customized
CNNs written in software to FPGAs with automatic optimi-
zation. Besides the computer vision field, an FPGA-based
RNN implementation can be used for NMT tasks, such as
the design in [33]. However, the problem size of this work is
below 30 GOP, which is much smaller than our real-life
NMT implementationwith 172 GFLOP.

Regarding our hardware implementation, we target the
NMT model in [16] as it includes all essential components
(especially the attentionmechanism) required bymodernNMT
models. Starting from this model helps us better understand
implementing current and futureNMTworkloads on FPGAs.
Also, onemain goal of this work is to demonstrate the flexibil-
ity and efficiency of using HLS. With the higher abstraction
level of hardware design, we can make faster responses to
support different models by reconstructing the behavior-level
design and reusing the pre-built HLS IPs to avoid tedious and
repetitive jobs. It also means we can continuously improve
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the hardware design by adding new HLS IPs to support any
emerging components inNMTmodels.

3 NMT MODEL

3.1 Overall Structure
The structure of the sequence-to-sequence based NMT model
is presented in Fig. 1. Themodel is equippedwith bidirectional
GRU layer for encoder, and attention mechanism and beam
search for decoder. Two dictionaries for source and target lan-
guage respectively are used for mapping words in each lan-
guage to indices. Input sentences with Li words first are
parsed to words which are then converted to corresponding
indices after looking up the source dictionary. The indices are
transformed to Li embedding vectors, and then sent to the
encoder. The decoder takes the encoded outputs and generates
Lo output indices. The indices are transformed to words fol-
lowing the mapping in the target dictionary, and then detoke-
nized to target sentences. In this project, the FPGA takes
preprocessed input indices and calculates indices of target lan-
guage as outputs. The maximum numbers supported for Li

and Lo are both 50, and the size of both dictionaries of source
and target languages are 30000words.

3.2 Encoder
There are two inputs for the GRU layer: a vector denoting
input word and another vector representing memory of this
layer. Equation (1) is the updated gate representing the frac-
tion the memory should be updated, while Equation (2),
reset gate, represents the amount of memory that should be
discarded. Equations (3) and (4) generate the current output
according to the gate values. The current output vector is
going to be the memory for the next iteration.

zðtÞ ¼ sðW ðzÞxðtÞ þ U ðzÞhðt�1ÞÞ (1)

rðtÞ ¼ sðW ðrÞxðtÞ þ U ðrÞhðt�1ÞÞ: (2)

~hðtÞ ¼ tanhðUðrðtÞ � hðt�1ÞÞ þWxðtÞÞ: (3)

hðtÞ ¼ ð1� zðtÞÞhðt�1Þ þ zðtÞ ~hðtÞ: (4)

A Bidirectional GRU (with output vector size of 2048) is
applied as the encoder, so that both words come before and
after the current word can be linked. As shown in Fig. 2,
one forward GRU layer takes words in regular order and
another backward GRU layer takes the words reversely.
Output vectors of each layer denoting the same word are
concatenated as the final encoded results. Thus, a set of

encoded vectors with size of Li � 2048 is computed. The
encoder connects words with each other in the input sen-
tence, making each word correlated with preceding and fol-
lowing words to achieve a better translation result. A FC
layer with activation function tanh is treated as a bridge
between the encoder and decoder; it takes the average of
the encoded vectors and the output is used as the initial
GRUmemory of the decoder.

3.3 Decoder
After the encoder finds the correlation between input words
and forms a set of encoded vectors, the decoder runs recur-
rently and analyzes the vectors and output word in the previ-
ous iteration to predict the current output word. If the eos (end
of sentence) is chosen as the current output word, the loop is
terminated. As shown in Fig. 3, the previous output word
embedding vector and encoder output are the inputs for each
iteration. A GRU layer links all of the previous output words,
and both GRU output (s) and encoded vectors (hi) are sent to
attention mechanism. Recurrently, the GRU output and atten-
tion output are the corresponding inputs for the next GRU
layer (GRU nl). Both of the GRU layers in the decoder have
output vector size of 1024. The GRU nl output (s) is going to
be the memory portion for the first GRU layer during the next
decoding iteration. The previous outputword embedding vec-
tor, output of attention and GRU nl are sent to three parallel
FC layers (FF Previous, FF Context, FF GRU) each with 512
neurons, respectively. Summations of FC outputs are sent to
another FC layerwith softmax function, generating a probabil-
ity map representing the probability of each word in the target
dictionary. The beam search algorithm determines which
words to choose as the next outputs.

3.4 Attention Mechanism

eij ¼ v> tanhðUas
0
j þWahiÞ (5)

aij ¼ expðeijÞPLi
i expðeijÞ

: (6)

Fig. 1. Overall structure of the targeted NMT model.

Fig. 2. NMT encoder with bidirectional GRU layer.

Fig. 3. Detailed decoder structure.
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cj ¼
XLi

i

aijhi: (7)

The translation process is not purely one-to-one mapping.
Eachword in the input sentence is related to some extent to the
current output words, but with different degree of relativity.
The attention mechanism determines the level of relativity,
paying more attention to more related input words and less to
others within each decoding process. It takes the last output
word vector and the encoded input vectors as inputs, comput-
ing the importance of each encoded input indices in terms of
generating the next output word. We use Bahdanau Attention
in Equations 5 � 7 in the NMT model [16]. In each iteration j,
the energy state (denoting the level of relativity) of each of Li

encoded vectors (eij) is calculated taking the encoded vector hi

and GRU output s0j. Then the level of importance for each
encoded vector aij is computed by performing softmax of Li

energy states. The final attention outputs for the current decod-
ing iteration (cj) areweighted average of the encoded vectors.

3.5 Beam Search
In each decoding process, a probability map is generated
denoting the probability of being the next potential output
word index. Choosing the highest probability for a complete
sentence with multiple words requires exponential
decoding which is unrealistic, while only preserving the
highest probability word index does not guarantee the
optimal results. To overcome this challenge, beam search
algorithm is introduced, which only keeps a fixed num-
ber of active candidates at each time step. We choose
beam size K ¼ 5. Thus, after the initial index BOS (begin
of sentence) is sent to decoder and generates a probabil-
ity map, only the top five word indices are preserved.
Then after the first iteration, each iteration only has at
most five decoding processes as shown in Fig. 4, and
among the 5 � 30000 scores generated, the next top five
potential answers are preserved. The translation process
terminates when all five tracks reach eos, where the sen-
tence with the highest score is selected.

4 DESIGN APPROACHES AND PROFILING

Unlike instruction-based CPUs and GPUs, FPGA allows
direct computing and data transferring on hardware and
the parallelism of each layer is adjustable. However, each
FPGA has limited resources and memory bandwidth. Thus,
profiling the NMT model is needed to properly partition
the resource to different computational and memory-related
tasks. In this section, we present our profiling results and
analyze the computational demand and memory overhead
of the NMTmodel.

4.1 Design Approaches to FPGA Implementation
To implement the targeted NMT on FPGAs, we cover certain
design approaches, including model profiling, task partition-
ing, and HLS IP configuration, and the goal is to generate the
optimized HLS-based designs by considering the complexity
of input models and available resources of the targeted devi-
ces. To achieve this goal, the proposed partitioning strategy
first takes the profiling results of the targeted NMT model
(e.g., layer type, compute/memory demand, CTC ratio, and
operation distribution) as inputs and selects the correspond-
ing HLS IPs for constructing the whole design. These HLS IPs

(such as the MVM kernels, non-linear functions, sorting ker-
nels) are the basic hardware building blocks, which are highly
configurable and can be configured to deliver different per-
formances by consuming more or fewer resources. The next
approach is to configure these selected HLS IPs properly to
maximize the achievable performance given limited hard-
ware resources. Since most of the computations in NMT can
be represented as a nested for-loop style, we adopt HLS loop-
optimizations (e.g., loop unrolling and loop pipelining) to
speed-up corresponding IPs by increasing their parallelism.
Now, the partitioning strategy has finished its job by deliver-
ing HLS IPs with proper configurations. After that, these con-
figured HLS IPs are passed to the HLS design flow for RTL
generation. We eventually have the board-level implementa-
tion after logic synthesis, placement, and routing for the tar-
geted FPGA.

These design approaches also show good versatility, and
they can be applied to handle other NMT models or DNNs
once we have the corresponding configurable HLS IPs avail-
able. Since most of the DNN use modular designs (e.g.,
repeatedly using the limited types of neural network layers
to construct the entire DNN), they can be well accommo-
dated by using our approaches, starting from model profil-
ing, task partitioning, to hardware implementation using
HLS IPs.

4.2 Computational Demand
The targeted NMT model requires 172 GFLOP total compu-
tation and its computational distribution translating 50-
word source sentence to 50-word output text is shown in
Fig. 5. The encoding process (FC bridge included) consists
of 50 steps of bi-directional GRU layer with 2048 neurons in
total and an FC layer with 1024 neurons. However, even
with large number of neurons, the encoder is negligible
(0.43 percent of total computation) compared to the total
decoding processes since the beam search algorithm
requires five decoding processes per step, and there are 50
steps in total. For each decoding process, attention mecha-
nism has the most computation (90.64 percent of the decod-
ing process). The second most computation-demanded is
the final FF Combined layer since it has 30000 neurons in
order to generate the probability map. However, the
amount of computation in this FF layer is still minimal com-
pared to the attention mechanism. Thus, an efficient optimi-
zation technique applied on attention mechanism layer can
significantly improve the total NMT performance.

Fig. 4. Beam search with two kinds of decoding iterations.
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4.3 Memory Overhead
With limited storage, parameters of the NMT model cannot
be fully loaded on-chip. Thus, most of them are stored off-
chip, and load from off-chip DRAM whenever they are
needed. For optimization, memory overhead should be ana-
lyzed in order to properly arrange the computation order
and choose the portion of parameters to store on-chip.
Parameters in the NMT model are weights, biases and word
embedding vectors. Weights are always used in dominated
matrix-vector-multiplication operations, while unlike con-
volutional layers, each element in the weight is only used
once during MVM process. Thus the computation-to-com-
munication (CTC) ratio is only one, making the process
memory-bounded. The computation can only proceed after
the weight is loaded to the buffer. However, due to beam
search algorithm, if the five decoding processes in the same
step run concurrently, even though they aim at different
output sentences, they can potentially share the loaded
weights and compute correspondingly, increasing the CTC
ratio to five. In addition, when we calculate energy states in
attention mechanism, all encoded vectors actually use the
same set of weights, so that the weights are highly reused.
Time could be wasted if we load those weights iteratively
during each energy state calculation.

5 NMT HARDWARE DESIGN

The profiling analysis points out the dominant computa-
tional demand and memory overhead of the targeted NMT
model, so that we can configure our hardware accordingly.
Additionally, we further improve the translator with highly
optimized IPs, quantization technique and algorithm refine-
ment to achieve optimal performance. In this section, we
demonstrate our design methodology regarding the compli-
cated network interconnection, computational demand, and
resource utilization using high-level synthesis (HLS).

5.1 NMT Overall Structure
Overall accelerator structure of NMT is shown in Fig. 6. Our
design efficiently utilize the resources on board using cus-
tomized modules. The NMT hardware consists of three por-
tions: logic, on-chip memory and off-chip memory. The
logic portion handles all of the control logic and computa-
tion, which includes LUT (lookup table), FF (flip-flop) and
DSP resources. BRAM is the on-chip memory while DRAM
is the off-chip memory.

In NMT logic portion, the translator consists of an
encoder and an decoder. According to the profiling results
mentioned in the previous section, computation of the
encoder is negligible compared to decoders. Therefore,
most resources are allocated for decoder optimization. Two

kinds of decoder modules, Decoder One and Decoder Five, are
instantiated, where the former is only used for the first itera-
tion of the decoding process, and the latter is for decoding
five different potential tracks. Therefore, three main mod-
ules are instantiated in the hardware, the encoder with bidi-
rectional GRU layer, Decoder One for decoding one
process, and Decoder Five for decoding five processes.
Inside those main modules, MVM kernels as well as non-
linear computation function modules are created, where
each MVM Five module handles five matrix-vector-multi-
plication processes while MVM One only handles a single
process. For the encoder and Decoder One, only single
MVM One kernel module is shared by all of MVM pro-
cesses, while multiple MVM Five kernels are instantiated in
the most computationally demanded Decoder Five module.
As shown in Fig. 6, each set of non-linear and MVM Five
modules is instantiated for computation in GRU, attention
mechanism, GRU_nl layers. For all fully-connected layers in
Decoder Five, one MVM Five module is shared by all of
them. Besides those main modules, logic for sorting and
selecting the best five scores is also included.

For on-chip memory, we create buffers on the BRAM for
intermediate results, MVM processes and scores of sentences.
Partial weights and attention-related buffer, Att_wh, are stored
on the URAM. Other parameters including weights, biases,
word embedding vectors for both source language and target
language, input indices and output indices are stored off-chip.

5.2 Heterogeneous Decoders
Based on the beam search algorithm in Fig. 4, two kinds of
decoding processes are executed during translation. We
separate them into different modules, Decoder Five and
Decoder One, for two reasons. First, when decoding five
processes, weights can be shared by them if they run con-
currently. Encapsulating them into a single module can
assure that each MVM process shares the weights. Second,
there are redundancies in the model, so that the first decod-
ing process can calculate certain results and store them in a
buffer, where the rest of decoding process can directly use
without redundant calculation.

5.2.1 Decoder Five Versus Decoder One

Decoder Five is responsible for most of calculations in NMT.
Five decoding processes run concurrently with shared buf-
fers and computational IPs. As we apply beam search algo-
rithm with beam size 5 in our model, five decoding
processes are needed for each iteration in the decoder, and
those decoding processes require the same set of weights
and biases. Instead of executing those processes sequen-
tially, the processes are running concurrently, so that the
weights loaded from off-chip memory by one process can
be reused by the other four decoding processes, increasing
the computation-to-communication (CTC) ratio to five.
Thus memory-bounded MVM operations can use more CEs
(MVM Five kernel) for computation achieving better perfor-
mance. Compared to Decoder Five, Decoder One only needs
to handle one input vectors for only one iteration, a single
MVM kernel is enough to handle all of the decoding task.

5.2.2 Refined Attention Mechanism

To further optimize our design, we change the computation
order and store the pre-calculated results in the attention

Fig. 5. Operation distribution in the targeted NMT (left) and computa-
tional demand breakdown in a single decoding process (right).

1870 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021



mechanism module. The optimization technique greatly
reduces redundant calculations, so that the calculation is
first done and results are stored by Decoder One for re-
usage in Decoder Five.

Among all of the calculations, attention mechanism
accounts for 90 percent of them according to our profiling
results shown in Fig. 5. The large amount of calculation is
used for computing the energy state of each of Li encoded
vectors, eij in Equation (5), which takes one of encoded vec-
tor hi and GRU output s0j as inputs. During each decoding
iteration j, Li energy states need to be calculated where two
MVM processes are involved in this calculation, Uas

0
j and

Wahi with weight size of 1024� 2048 and 2048� 2048
respectively. However, for each encoder iteration i, Uas

0
j is

constant and Wahi is independent of each decoder iteration
j. It is unnecessary to calculate them in a loop during every
decoding process.

Our optimized attention module is shown in Fig. 7. In
our design, Uas

0
j is first calculated and stored temporarily

for both MVM calculations in Decoder One and Decoder
Five. Wahi is only calculated in Decoder One. The results of
each encoded vectors are stored in a buffer so that the
Decoder Five can directly use them during calculation. In
this way, there is no MVM calculated iteratively in attention
mechanism after the first decoding process. In addition,
since attention mechanism dominates the decoder calcula-
tion, on-chip weight storage can be applied to this module,
so that when calculating the energy states for each encoded
vector, we do not need to iteratively load the weights from

off-chip DRAM, while other on-chip weights can also be
used for quicker attention mechanism calculation.

5.3 Matrix-Vector Multiplication
According to the equations for FC layers, GRU layers and
attention mechanism, matrix-vector multiplication (MVM)
is the main computation inside the NMT model, in which
the vector represents input and matrix represents weights.
We utilize the benefits of half-precision data format with
pipelined compute engines to optimize the MVM process.

5.3.1 Half Precision

Half precision is a 16-bit floating-point format, which con-
sists of 1 sign bit, 5 bits for exponent and 11 bits for fraction.
Compared to 32-bit single-floating-point precision, 16-bit
half precision has less memory and computational resource
requirements. As shown in Table 1, fmul and fadd represent
multiplication and addition for float values, while hmul and
hadd stand for multiplication and addition of half values.
The DSP, flip-flop, and lookup table usage of float calcula-
tion are 2-3 times more than that of half calculation.

However, half precision has much more range and preci-
sion limitations. To avoid out-of-range issues and maintain
the accuracy, while still utilizing the benefits from the half-
precision datatype, the NMT model is quantized with
mixed-precision representation. In our quantization scheme,
all of the parameters including weights, biases and word-
embedding vectors are represented by 16-bit half precision
to reduce the overall loading workload. Buffers and compu-
tational IPs for MVM kernels are also half-precision which
require much less utilization than the floating-point alterna-
tive. Other non-linear operations and results remain as 32-bit
floating-point to prevent from overflow or underflow. Under
limited off-chip memory bandwidth, twice the weights can
be loaded per unit time, while similar accuracy can be
achieved by using the mixed-precision method after read-
justing theweights arrangement by retraining.

5.3.2 MVM Kernel Design

Two kinds of MVM processes happened in the translator,
MVMOne and MVMFive, where the former takes one input
vector while the latter takes five input vectors. In Fig. 8,
MVM Five is presented to demonstrate our MVM kernel
design.

To fully utilize the 512-bit data width in the AXI
(Advanced eXtensible Interface) bus which is used for trans-
ferring off-chip memory data to the NMT IP, we set the

Fig. 6. Accelerator-level structure of NMT.

Fig. 7. Optimized flow for attention mechanism.
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width of off-chip data port to 512 by specifying the port type
as ap_int< 512 >, a special data format in HLS with custom-
izable data width. As shown in Fig. 8, 32 weights in half pre-
cision are copied from off-chip DDR memory to MVM
buffer per loading time. Besides weights, portions of input
vectors are converted from floats to half values and also
copied to MVM buffers.

After the loading process, data in theMVMbuffer are sent
to a MVM kernel inside which multiple compute engines
(CE) are instantiated. Each of them is a MAC (multiplier–
accumulator) unit which receives n pairs of half values, first
multiplies each pair, and adds all of the results using an
adder tree. Each computation stage in the CE is pipelined so
that multiple executions in one CE can be overlapped. For
instance, if we need to compute two sets of inputs, once the
first set finishes the calculation of the multiplication stage,
the next one can start to use the CE. The next calculation
does not have to wait until the current calculation finishes.
After computing portions of inputs, the results are converted
back to float and added to corresponding portions of the out-
put vectors.

The load, compute, and store processes are pipelined
using pragmas and the global MVM buffers are fully parti-
tioned for optimal performance. Sizes of global buffers and
compute engines are fine-tuned so that the loading time
and computation plus storing time can be highly matched
so the runtime of these processes can be mostly overlapped
in the pipeline to achieve the best performance.

5.3.3 MVM One Versus MVM Five

In pipelined load, compute and store processes, different
numbers of MVM buffers and CEs are instantiated for
MVM One (used for encoder and Decoder One) and MVM
Five (used for Decoder Five) in order to compensate the
dominant loading time with matched computational
resources. Our goal is to construct a balanced pipeline,

where each stage should has similar latency, so that we
can maximize the pipeline performance. To adjust the
stage latency, we adopt the proposed partitioning strategy
to provide guidelines for parallel setups. In our design,
each HLS IP supports multi-dimensional parallel process-
ing, which enable flexible adjustments. For example, we
list different configurations of the proposed MVM Five
kernel in Table 2, when targeting the Float32 NMT model.
We notice different parallelism setups not only affect
resource consumption but performance. Also, allocating
more DSP resources does not mean better performance.
The MVM Five kernel with 4 � CE64 achieves the same
performance as the case with 2 � CE64. The reason is that
the data loading latency starts dominating the overall
latency once the parallelism is higher than 2 � CE64 in this
particular scenario. Building even bigger computation
units can not help improve performance. Therefore, we
need the task partitioning strategy to help manage
resource allocations and deliver HLS IPs with suitable con-
figurations for optimized results.

Similarly, when targeting the hybrid-precision NMT
model, we decide to use CE64 in our MVM design after
model profiling and task partitioning. It means each CE
receives 64 pairs of half values. The weight buffer size of
both MVM designs is 64� 2. Thus, each time 64 weights
from neighboring 2 rows are loaded off-chip. On the other
hand, with CTC = 5, three CEs are instantiated in the MVM
Five kernel, while only one CE is instantiated for MVM One
kernel with CTC = 1. More computational resources are
allocated for MVM Five to match the higher CTC value. A
64� 5 buffer is created in MVM Five, while a smaller 64� 1
buffer is used for MVM One kernel to load input vectors of
one or five decoding processes.

5.3.4 Float MVM Versus Mixed-Precision MVM

Under memory-constraint situation, parameters represented
by half precision can load double parameters per unit time
compared to the float parameters. A simplified timing diagram
comparison between float and mixed-precision MVM Five
design is shown in Fig. 9. Even though the mixed-precision
MVM model adds type-conversion operations, the additional
time is hidden by the pipeline. The dominant operation is
still the loading process. For float MVM, the pipeline factor
ii ¼ 8, where ii represents initiation interval, the number
of clock cycle from the beginning of current iteration until
the next iteration can start. Therefore, for float MVM, it
takes 8 cycles to load all of the weights to the on-chip
MVM buffer. However, for pipelined mixed-precision
MVM, ii ¼ 4, proving that half precision can double the
loading speed and thus under memory bounded situation
has 2x speedup.

TABLE 1
Utilization Comparison Between Half and Float

Precision Calculation

Precision Float32 Half16

Calculation fadd fmul hadd hmul

DSP 2 3 2 2
FF 177 128 94 64
LUT 226 77 111 33

Fig. 8. MVM five kernel design with mixed precision in decoder five.

TABLE 2
MVM Kernel Comparison With Different Parallel Setups

MVMKernel Parallelism Norm. Performance DSP

1 � CE32 32 0.42 160
2 � CE32 64 0.81 320
4 � CE32 128 1.00 640
1 � CE64 64 0.51 320
2 � CE64 128 1.00 640
4 � CE64 256 1.00 1280
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5.4 Optimization Techniques for HLS IP Designs
Due to limited resources on the FPGA board, on-chip mem-
ory cannot hold all of the parameters and intermediate
results. Therefore, inputs and weights need to be loaded
from off-chip DDR memory. In addition, most of operations
are memory-bounded MVM operations, and speed of load-
ing data is limited. Under both resource and memory band-
width constraints on the FPGA board, general optimization
techniques are applied to all of modules to accelerate the
NMT with affordable resource overhead. As an example,
the structure of Decoder Five utilizing all of the general
optimization techniques is shown in Fig. 10.

5.4.1 Compute Optimization and Memory Management

Loop Unrolling and Pipelining. Conventionally, iterations of
loops in C programs are executed sequentially and execu-
tion of the next iteration needs to wait until the current loop
has completed. By adding loop unrolling and pipelining
pragmas in a loop, more parallelism can be exploited by
HLS. Multiple iterations can either run completely in paral-
lel or concurrently with partial overlapped runtime. How-
ever, dependency due to same-array access might make the
optimization invalid. To solve this issue, pragmas for array
partitioning are added to partition the array into different
memory blocks so that multiple array elements can be
accessed simultaneously. We applied loop partitioning in
all of our buffers to store intermediate results, and loop
unrolling on the non-linear function calculations.

Buffer Sharing. Due to limited on-chip memory blocks, some
memory blocks for storing temporary intermediate results are
shared. For example, the twoGRU layerswith the samenumber
of neurons in the decoder share the intermediate update gate
and reset gate results, and the same situation happens for the
forward and backward layers of the encoder. Similarly, all
MVM kernels in the decoder share the same set of global
buffers.

IP Sharing. Each layer contains multiple MVM processes
and non-linear calculations. MVM kernels and non-linear

units are shared by a single layer or multiple layers. The
degree of IP sharing is carefully tuned, because the model
cannot be fully mapped into FPGA without sharing, while
too much sharing may cause enormous creations of MUXes
and failure in timing requirements due to long critical paths.
For example, in Fig. 10, one MVM kernel is instantiated in
GRU, attention mechanism, and GRU_nl respectively, while a
single MVM kernel is shared by four FF layers represented
as FF Group. For the encoder and Decoder One, a single
MVM kernel is shared by the entire module.

5.4.2 Examples of the Optimization Techniques

To better explain the optimization techniques, we use an
MVM module as an example in Algorithm 1, which per-
forms matrix-vector-multiplication for a 512x512 matrix and
a 512-dim vector input and generates a 512-dim vector. In
line 1, we specify the interface of this module. Since DNN
parameters are loaded from DRAM (external memory), we
point the argument named data to the AXI bus interface
(line 2), and we use BRAM (on-chip memory) to keep the
input and output vectors.

To reduce data loading latency, we attempt to load more
than one element from the 512-dim input vector. Therefore,
we use a loop unrolling (line 8) directive to unroll the inner
for-loop (line 9) by a factor of eight. In this case, eight input ele-
ments are fetched simultaneously every clock cycle and stored
into a local array variable called kvector. To support such
parallel data loading, we partition the in[512] to split it into
eight equally sized blocks interleaving the original array ele-
ments. Only in this case can we have eight individual data
blocks for fetching eight data simultaneously. The unrolling
and partitioning factors need to be the same, and they can be
configured to other numbers to increase or decrease the data
loading parallelism.

After loading inputs from on-chip buffers (line 7�10) and
external memory (line 13�20), the MVM module starts work-
ing on computations. Inside the kennel module (line 21), we
instantiate two CE64 modules (K_NUM = 2), and each of them
takes 64 inputs (K_SIZE = 64) and performs multiply
and accumulation and generates a 64-dim vector as a
result (line 22�23). With this configuration, the total par-
allel factor of this MVM module is 2�64 = 128. Since we
also apply loop pipelining (line 12), critical stages,
including data loading, compute, type conversion, and
result store, are executed in a pipelined manner, as
shown in Fig. 9.

5.5 High-Level Synthesis
HLS offers a higher level of design abstraction, which can
significantly improve the productivity of FPGA design and

Fig. 9. Timing diagram comparison between float MVM and mixed-
precision MVM.

Fig. 10. Detailed structure of Decoder Five and other related logic.
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support efficient design space exploration, especially for a
large-scale design, such as our targeted NMT model with
total computation of 172 GFLOP. In order to design a trans-
lator using HLS, we need to first write the model to synthe-
sizable C/C++ version, removing dynamic allocations and
recursions. Functions and sub-functions are created for each
layer representing hardware modules. Fixed-length arrays
are allocated as on-chip memory blocks for storing interme-
diate and final results, and various operations are converted
to specialized logic clusters. we add specific pragmas to
notify the HLS compiler for special optimizations, such as
loop unrolling and pipelining. We also create global buffers
for data sharing between modules, and design reusable
optimized HLS IPs for each module to achieve the best per-
formance. HLS tools will then finish scheduling, binding,
and generating RTL designs with cycle-accurate descrip-
tions. Since the RTL codes are not directly written by
designers, the design performance largely depends on the
quality of HLS codes and whether the pragmas can be used
accurately. Since HLS is not good at describing control logic
and memory management, improper use of the HLS code
can cause lower performance or efficiency.

6 SYSTEM-LEVEL ARCHITECTURE

6.1 HLS IP Integration
After the development of an HLS IP for our NMT model, a
new AXI4-Lite port is added for revealing the translator’s

control signals, which are memory-mapped from AXI4-Lite
interface to DMA (direct memory access). Among the con-
trol signals, ap start is used to start the HLS IP, ap idle
denotes that the IP is in idle state.

The overall architecture design is shown in Fig. 11. The host
is a desktop PC with an Intel Core i9-9900K CPU, and the
VCU118 FPGA is connected with the host through a PCIe 3.0
interface. In our experiment, the host CPU is only responsible
for passing the input sentences and operating signals, while
the FPGAhandles all the computations.We thenapply amem-
ory-map based mechanism to complete the handshake
between the FPGA board (the translator side) and the host
CPU (host side). The overall architecture includes off-chip
DDR memory, DMA, HLS translator IP and the CPU on the
host side. DMA controls the dataflow among CPU, DDR, and
the translator. Host CPU sends inputs, passes commands to
activate the translator and receives outputs. A driver on the
host side is installed to enable communication between DMA
and host CPU through PCIe.

6.2 Off-Chip Data Placement
The off-chip DRAM is partitioned to dynamic input/output
regions as well as static regions for NMT parameters. As
shown in Fig. 12, input and output regions include input and
output word indices and the length of input and output sen-
tences respectively. Static parameters regions include source
and target word embedding vectors as well as weights.
Before the translation process, the pre-trained weights and
biases are rearranged following the computation order on
the host side. All of the parameters are initially half-precision
values. They are concatenated to 512-bit format, using
ap_int<512> data type. The reordered data is sent to static
region on DRAM memory of the FPGA board through PCIe
port. By appying those modifications, we can activate DDR
burst mode and maximize the memory-bandwidth occupa-
tion during translation. Once the host program is launched,
the input sentences are parsed to tokens and thenmapped to
word indices. The indices as well as sentence lengths are
concatenated to ap_int<512> values, and sent to a specific
region in the DRAM. After inputs are ready, the host pro-
gram launches the HLS IP and both concatenated output size
and output indices are written to a specific region so that the
host program can get the translation result.

7 EXPERIMENTAL RESULTS

7.1 Prepare Work
We use Xilinx Vivado Design Suite v2019.2 to implement
our HLS IP, integrate the IP into Vivado block design, syn-
thesize the netlist, perform placement and routing, and

Fig. 11. System-level architecture for the NMT model.

Algorithm 1. The Optimized MVM Design

1: void mvm(ap_int<512>*data, float in[512],

float out[512]){

2: #pragma HLS INTERFACE m_axi port=data

3: #pragma HLS ARRAY_PARTITION variable=in cyclic

dim=1 factor=8

4: #pragma HLS ARRAY_PARTITION variable=out

cyclic dim=1 factor=8

5: int i,j,k,l,kk; int K_SIZE=64; int K_NUM=2;

6: for(k=0; k<512; k+=K_SIZE){

7: for(i=0; i<K_SIZE; i++){ //To fetch

intermediate results

8: #pragma HLS UNROLL factor=8 //parallel data

loading

9: kvector[i]=(half) in[i+k];

10: }

11: for(l=0; l<512; l+=K_NUM){ //To fetch

parameters from DDR

12: #pragma HLS pipeline ii=4 //pipelined the

loading/compute/store

13: for(j=0; j<K_SIZE; j+=32){

14: for(kk=0; kk<32; kk++){

15: kmatrix[j+kk][0]=Trans_half(data[...]);

16: } }

17: for(j=0; j<K_SIZE; j+=32){

18: for(kk=0; kk<32; kk++){

19: kmatrix[j+kk][1]=Trans_half(data[...]);

20: } }

21: kernel(kmatrix, kvector,kout);

22: out[l]+=(float)kout[0];

23: out[l+1]+=(float)kout[1];

24: } } }
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finally generate bitstream for UltraScale+ VCU118 FPGA
development board. The degree of loop unrolling and array
partitioning in the HLS IP is fine-tuned to prevent from con-
gestion issues during placement and routing. In order to get
weights for our NMT inference, we use a Pytorch imple-
mentation of the model in an open-source project named
NJUNMT-pytorch.1 English-to-French translation is chosen
to demonstrate our work by training the model using
English-French sentence pairs in Europarl dataset [34].

7.2 Accuracy
We use PyTorch 1.3.1 to train both half and float weights for
the targeted NMT model. As shown in Table 3, PyTorch
Float32 denotes the floating-point implementation in PyTorch
while PyTorch Half16 represents the same model with
half-precision weights. To verify the functional correctness of
our FPGA design, we first implement the Float32 model on
FPGA and compare the outputs to the samemodel running by
PyTorch in a separate CPU. Since the results are identical, we
can demonstrate that our FPGA design is functionally correct.
We then calculate the BLEU score (which is a standard set of
criteria to evaluate the quality of text [35]) of these models
listed in Table 3 when running on WMT14 (Conference on
Machine Translation) English-French test dataset. As shown in
Table 3,we get slightly better accuracy result due to regulariza-
tion effect with less number of bits. All of the three results are
similar proving that there is no accuracy degradation in our
work even though partial calculation is in half precision.

It is possible to have more aggressive quantization
schemes, using eight or even fewer bits for hardware imple-
mentation. Since the proposed HLS IPs are highly configu-
rable, we can adapt to arbitrary quantization schemes for
inputs, outputs, and intermediate results. However, we did
not involve more aggressive quantizations in the proposed
NMT design due to accuracy concerns.

7.3 Performance and Utilization
Multiple NMT designs are compared in Table 4. The utiliza-
tion is presented as a set of percentages using the same FPGA
(VCU118), and 50-word Translation means the time needed
for translating a 50-word English sentence to a French sen-
tence. We list four models, Float, Orig, Onchip, and Optimized,
where Float represents the original float NMT model imple-
mented in [17],Orig is direct conversion from the original float
model to mixed-precision model without additional optimiza-
tion, Onchip implementation adds on-chip weight storage for

the attention mechanism, and Optimized represents our cur-
rent design with mixed-precision MVM kernels, on-chip
attention weight storage and refined attention mechanism.

7.3.1 Float Versus Half

Since half-precision weights and half-precision calculation
require lessmemory and computational resource, more paral-
lelism of loop unrolling and array partitioning can be applied
to the design. Also, twice as many parameters can be loaded
per unit timewhen parameters are represented as half values.
As shown in Table 4, we achieve 2.5x speedup compared to
the float model after transforming to mixed-precision model
with fine-tuned parallelism. The float model uses much more
LUT and FF than Half implementations, making the routing
process much harder. Partial intermediate results are stored
into URAM instead of BRAM due to congestion. We attempt
to add the optimization techniques similar to those we used
in themixed-precisionmodel, but the floatmodel always fails
due to congestion. The on-chipmemory left is also not enough
for the entire attentionmodule.

7.3.2 Half NMT Implementations

The profiling result proves that the attention mechanism
accounts for most of the calculation in NMT. Therefore, we
statically stored the attention parameters on-chip, and also
added some parallelism in calculating non-linear functions.
Compared to Orig, the latency of Onchip is reduced from
41.7 s to 19.5 s, and 40 percent more URAM usage is intro-
duced. The translation latency is cut to 7.86 s after keeping
the parallelism level the same as Orig and applying atten-
tion mechanism refinement. In terms of utilization, besides
on-chip memory usage, three half NMT implementations
use similar amounts of resource because MVM kernels are
shared inside modules, and utilization cannot be reduced
even if the total number of calculation is less than before.

7.4 Comparison to FPGA-Based Designs
In the previous NMT work [17], the end-to-end perfor-
mance is based on HLS estimation while the real board-level
result is different since the HLS tool cannot estimate off-chip
data transfer latency through AXI bus. It can only process
the floating-point model, which requires twice as much on-
chip memory capacity as the proposed design to store the
same amount of data. Besides, the resource overheads of
multiplication using Float32 and Half16 are quite different,
as shown in Table 1, especially for LUT and FF. With respec-
tively 22 and 11 percent higher utilization of LUT and FF
compared to the Optimized design, the router fails to prop-
erly resolve the congestion issue in the previous design, so
we have to lower the level of parallelism for the design in
order to map it onto the FPGA board. On the contrary, our
proposed design adopts the hybrid-precision scheme that
helps significantly improve the board-level performance.

We present the comparison results in Table 5 among the
proposed design and the FPGA-based designs published in

Fig. 12. Data placement on off-chip DRAM.

TABLE 3
Accuracy Comparison on WMT English! French

(newstest2014)

Model PyTorch Float32 PyTorch Half16 our work

BLEU 22.3 21.9 22.6

1. https://github.com/whr94621/NJUNMT-pytorch
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[33] and [17]. We calculate the end-to-end performance by
the information provided in [33] (problem set size: 2.76
mega-operations divide by overall latency: 0.39 second). As
shown in Table 5, our work has much better performance
than previous works with our Optimized implementation.
Compared to our previous NMT work [17], we achieve
13.1� speedup after all of our optimization techniques with
end-to-end performance of 22.0 GFLOPS.

Compared to the design in [17], we achieve a huge per-
formance gain because the optimized HLS IPs are able to
deliver a higher-level of parallelism even with the same
FPGA. Such a improvement also comes from the proposed
task partitioning by providing suitable IP configurations
(e.g., buffer size, parallelism factors, number of CE instan-
ces, etc.) and the heterogeneous decoder and the refined
attention module by reducing the number of data transfers
from the external memory and increasing the parameter
reuse opportunity.

7.5 Comparison to CPU and GPU Designs
We extend our comparison to evaluate the performance and
efficiency of the CPU- and GPU-based implementation
when targeting the same NMT model with problem size as
172 GFLOP. By running the same 50-word sentence transla-
tion task, we list the results in Table 6. Both CPU and GPU
designs use PyTorch 1.3.1 to execute the targeted model
and both of them target the Float32 version, while the pro-
posed FPGA design targets the hybrid-precision model. In
this case, the GPU-based design achieves the best perfor-
mance and completes the translation in the shortest time.
Our design in VCU118 delivers the highest efficiency com-
pared to the other approaches.

8 CONCLUSION

In this work, we mapped a 172 GFLOP Neural Machine
Translation model with mixed-precision representation to a
single FPGA board. We cut the redundant calculation in

NMT model by changing the calculation order and storing
pre-calculated results appropriately. The proposed design
achieved much better performance by applying optimiza-
tion techniques, such as partial on-chip weight storage,
weight sharing, buffer sharing, optimized matrix-vector-
multiplication IPs, array partitioning, loop unrolling and
pipelining. Unlike previous works which played with
small-scale DNN models, we implemented a real-life NMT
model with all the latest features including bidirectional
GRU, attention mechanism, and beam search algorithm. By
taking advantage of HLS, we fine-tuned our NMT design
with much less effort than using traditional HDL to achieve
optimal performance under FPGA resource constraints.
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