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Abstract—Within scientific infrastructuscientists execute millions of computational jobs daily, resulting in the movement of petabytes

of data over the heterogeneous infrastructure. Monitoring the computing and user activities over such a complex infrastructure is

incredibly demanding. Whereas present solutions are traditionally based on a Relational Database Management System (RDBMS) for

data storage and processing, recent developments evaluate the Lambda Architecture (LA). In particular these studies have evaluated

data storage and batch processing for processing large-scale monitoring datasets using Hadoop and its MapReduce framework.

Although LA performed better than the RDBMS following evaluation, it was fairly complex to implement and maintain. This paper

presents an Optimised Lambda Architecture (OLA) using the Apache Spark ecosystem, which involves modelling an efficient way of

joining batch computation and real-time computation transparently without the need to add complexity. A few models were explored:

pure streaming, pure batch computation, and the combination of both batch and streaming. An evaluation of the OLA on the CERN IT

on-premises Hadoop cluster and the public Amazon cloud infrastructure for the monitoring WLCG Data acTivities (WDT) use case are

both presented, demonstrating how the new architecture can offer benefits by combining both batch and real-time processing to

compensate for batch-processing latency.

Index Terms—Big data, distributed systems, lambda architecture, low-latency computation, parallel computing
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1 INTRODUCTION

MONITORING a scientific experiment requires the gather-
ing of a large volume of data that is produced at a

rapid rate. This is illustrated in Fig. 1 that shows events pro-
duced over various days.

Scientific infrastructures can be highly distributed
and heterogeneous platforms with various middleware
characteristics, job submission and execution tools, and
diverse methods of transferring and accessing datasets.
The high computation activity and distributed nature of
the infrastructure make the system extremely complex.
Monitoring is necessary as it provides a clear status of a
task including job distribution by sites and over time,
the basis of failure, and advanced plots providing a use-
ful and engaging interface to the users [2]. Efficient mon-
itoring is necessary in order to present a comprehensive
strategy to recognise and resolve any potential issues
within the infrastructure that may cause failures or inef-
ficiencies. Such failures or inefficiencies may be brought

about by cyberattacks, as well as work overloads in the
infrastructure. To identify the root cause of a problem
with a specific task, the support group requires a moni-
toring system capable of presenting comprehensive infor-
mation detailing the task itself [2]. This is an important
factor in the overall effective utilisation of resources.
Knowledge obtained from the monitoring system can be
utilised for automating or streamlining the infrastruc-
ture, which would include improved job allocation and
increased efficiency in resource deployment.

The main objective of the scientific use case is the need to
process an arbitrary set of historical data, and handle recom-
putation or an old backlog of data injected by producers. In
the scientific realm it is normal to have jobs running for a
long period of time. Old backlog injection is therefore very
common when a long running job is completed. It is neces-
sary to have both a batch layer as well as a streaming layer
(real-time) as presented in [3]. However, this requires better
mechanisms in place to simplify the system. In this paper an
Optimised Lambda Architecture (OLA) has been presented,
and evaluated.

The rest of the article is organised as follows. Section 2 of
this article examines other Big Data architectures, and intro-
duces the WLCG monitoring use case as well as challenges
with handling low-latency computations. Section 3 introdu-
ces three variations of Big Data architectures: pure stateless
batch computation, pure stateful streaming computation,
and a combination of batch and streaming computation.
This section also details how the architectures may be joined
together using algorithms. Section 4 introduces evaluation
results of the proposed architecture. Section 5 highlights
the main contributions, and how the proposed architecture
has improved the overall performance of the WDT use case.
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2 BACKGROUND

Monitoring events, metadata of the jobs, and data transfers
are collected and analysed to produce summary plots used
by operators and experts to evaluate computing activities
[4]. Due to the high volume and velocity of the events that
are produced, the traditional methods are not optimal. The
WLCG Data acTivities (WDT) dashboards are a set of moni-
toring tools utilised to monitor data access, and transfer
data across WLCG sites through various protocols and ser-
vice [3]. The monitored services using WDT include the
HTTP federations, XRootD, ATLAS Distributed Data Man-
agement (DDM) system, and the File Transfer Service (FTS).
The WDT use case is one of the most data intensive applica-
tions, and the WDT dashboards struggle from the restriction
of the original processing infrastructure [3]. The original
architecture relies on an Oracle database to store, process,
and serve the monitoring data [3]. Raw monitoring events
are archived in tables for several years, while periodic PL/
SQL jobs run at regular intervals (10 minutes) to transform
raw data into summarised time-series statistics. These are
then fed into dedicated tables where they are eventually
exposed to the web-framework for user visualisation [3].
For data intensive use cases, such as WDT, this approach
has several limitations [3]. Scalability is difficult to achieve;
PL/SQL execution time fluctuates from seconds to minutes
due to input rate spikes, affecting overall user interface
latency [3]. Advanced processing algorithms are too com-
plex to implement in PL/SQL within the dashboard 10
minutes time constraint, and reprocessing of the full raw
data can take days [3].

While examining the performance of various traditional
and modern architectures, authors in [5], [6] talk about the
Lambda Architecture (LA). According to [5], [6] the LA’s
primary objective is to fulfil requirements for any infrastruc-
ture that is fault-tolerant, robust, or prone to human as well
as hardware faults. This is due to its ability to function in a
variety of ways, in situations where it is critical to ensure
that the system has low-latency while providing regular
updates to users. Therefore, the final system developed
using the LA is linearly mountable and it scales outwards.
The LA has several critical layers, or stages for servicing a
system. The first stage involves the entrance of raw data
into the system. At this stage, the data is dispatched to two
different layers, the speed and the batch layers, where it is
processed. In the batch layer, the data is managed within
the master data set and pre-computed into batch views.
Then, it is forwarded to the serving layer where the batch

views are indexed to allow for the data to be queried in
low-latency. In the speed layer, only recent data is proc-
essed, and the LA is able to compensate for high-latency of
updates for the data in the system. Queries entering the sys-
tem are answered when the results of the batch views in the
serving layer and the speed layer are merged [5], [6].

In agreement with the views of [5], [6], this article [7]
explains that another approach to a real-time system and ana-
lytics platform is the KappaArchitecture (KA). TheKAuses a
software architecture approach and it avoids the implemen-
tation of relational databases. Instead, it has an immutable
log for append only. According to report [8], it is from this
log that data is streamed and fed into stores for serving via a
computational system. Supplementing the assertions in [8],
the report [9] reveals that KA is a simpler architecture in com-
parison to the LA. In fact, it is a simpler and easier version of
LA. This is due to the fact that, excluding the batch processing
part of the LA, the parts and functionality of the Kappa archi-
tecture are very similar to those of the LA.

By detailing some of the benefits associated with the use
of KA, the report [9] explains that it was initially invented
to avoid the issue of maintaining two different codes frame-
works for the speed and batch layer respectively, as is the
case with the LA. This implies that the main idea behind the
KA is to ensure that real-time data processing systems, and
the continuous data reprocessing systems, are integrated
into one effective and efficient system. This is important as
both parts are absolutely critical to analytics platforms [7].

Though the KA only has two layers, the streaming layer
and the serving layer, it also has a data section that supports
other basic functionalities of a real-time system including
storing results and historical data. In this approach, the
stream processing jobs are tackled first, then the data
reprocessing jobs are carried out when some stream proc-
essing jobs require modification, alteration, or reprocessing.

The serving layer in the KA, similar to the LA, is used to
forward the queries based on the results of the processing
carried out. With regard to its application and use, [10]
argues that where algorithms for real-time data and histori-
cal data processing systems are different from each other,
the LA should be used. According to [11] the main benefit
associated with KA is that it allows developers of real-time
systems to operate, test, and debug on a single framework
for processing.

The KA is mainly stream processing, reliable when cou-
pled with tools offering certain guarantees such as Kafka
(though Kafka is a temporary buffer, where the retention
policy can be hours, days at maximum). Processing an arbi-
trary set of historical data, a feature which is relevant in the
scientific infrastructure to handle recomputation is limited
with this architecture.

Authors in [12], [13] proposed solutions for tackling the
limitation with Big Data architectures that only supports
general purpose applications. A computational model
called distributed stream processing is presented in [12] to
characterise it as a real-time infrastructure, which would
work well for a pure streaming use case. This architecture is
similar to the KA, due to its inability to process historical
data that is necessary for monitoring the scientific infra-
structure. The WDT use case also requires a time-critical
analytics, an architecture has been proposed in [13], which

Fig. 1. WDT events size [1].
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adopts the idea of the LA using various technologies. This
architecture forces code duplication for batch and real-time
computations.

The LA was employed to support the WDT use case in
[3]. However, by combining and synchronising many tech-
nologies, the issue of high complexity became a significant
concern. The LA that is presented in [3] demonstrated that
it has the ability to work well for monitoring. Most notably,
the WDT use case has shown that it outperforms the tradi-
tional architecture. However, with the complexity of a
three-layer structure that includes various technologies,
comes a price when integrating all three layers together to
serve several main goals (monitoring infrastructure in real-
time, supporting scalability, ease of implementation, main-
tenance and migration). Having different technologies for
each layer would be difficult to integrate, implement, and
maintain. There is a pressing need to identify a single solu-
tion that can accommodate and integrate the batch layer as
well as the streaming layer for monitoring events seam-
lessly. Apache Spark [14] is a new parallel processing para-
digm similar to MapReduce [15], but with improved
analytical performance. By exercising in-memory computa-
tion, it has the ability to support iterative computation [16],
[17]. It can also support data streaming, which is useful in
optimising the LA to limit code differences between the
batch and streaming layers. It can also support SQL-like
commands, interactive command line, machine learning,
and Graphx [18]. Having Spark batch and streaming under
a stack is useful in optimising the LA. The Spark streaming
and batch computations adapt the Resilient Distributed
Dataset (RDD), an abstract data collection that is distributed
across nodes for parallel processing [18], [19]. Transforma-
tion and computation logics can therefore be reused
between batch and streaming layers.

Spark processes are ‘lazy’ [18], and no action is carried
out until it is required. An example would be the RDD,
which does not physically hold data. It contains instructions
on what to do when an action is called. The RDDs support
two types of operations: transformations, which create a
new dataset from an existing one, and actions, which return
values to the driver program after running a computation
on the dataset. For example; the mapPartition is a transfor-
mation that passes each dataset element to a partition level
through a function and returns a new RDD representing the
results. Counter to this, reduceByKey is an action that aggre-
gates all the items of the RDD using a function and returns
the final result to the driver program.

By default, each transformed RDD may be recomputed
every time it is put into action. It is also possible to persist
an RDD in memory using the persist (or cache) method, in
which case Spark would keep the computed data in mem-
ory for expedited access the next time it is queried. There is
also support for persisting RDDs on disk, or replicated
across multiple nodes [19]. When monitoring a scientific
infrastructure it is typical that various statistics are derived
from the same monitoring events. In-memory storage and
computations are profitable as multiple yet distinct compu-
tations can be carried out by a job on the cached data. This
will make it easier to maintain the job as well. The LA evalu-
ated in [3] employs MapReduce framework which does not
support in-memory persistence [15], so data cannot be

shared. In order to implement a complex algorithm in Map-
Reduce framework it requires the creation of chained Map-
Reduce jobs. Essentially, the output of a job will need to be
directly connected to the input of the next job. Spark does
not require this due to in-memory processing. Spark can
also support global data sharing using Tachyon (licensed
under Apache), which is a memory-centric distributed stor-
age system that can be used for data sharing.

Spark Streaming supports three notable functions:

1. Cumulative Computations, which supports cumulative
statistics computation while streaming in new data
(incremental calculations). Spark Streaming supports
maintenance of the state (which is stored information
at a given instant in time) for those statistics. The Spark
Streaming library has a function called updateStateBy-
Key formaintaining andmanipulating the state [18].

2. Windowed Computations, which is useful when the
data received in the last n amount of time is non-triv-
ial. Spark Streaming readily splits the input data into
the desired time windows for easy processing, using
the window function of the streaming library [18]. A
function such as forEachRDD allows access to the
RDDs created at each time interval.

3. Transformation, which returns a newDStream (stream
of events) by applying an RDD to RDD function for
every RDD of the source DStream [18]. This is where
the code can be reused between batch and streaming
layers using the transform() function as both frame-
works support RDD as the core component. This
feature also supports merging (i.e., joining) the batch
RDDs with the streaming RDDs, which optimises
the LA.

3 ARCHITECTURE AND DESIGN

The core part of the OLA inherits the technologies and
approaches from [3], [20] such as a message broker, data
pipeline (Flume), storage (HDFS), and serving layer (Elastic-
search). This is outlined in Figs. 2 and 3.

The main requirement of any monitoring architecture is
that it be able to provide information about the infrastruc-
ture in near-real-time so appropriate action can be taken.

Fig. 2. Pure stateless batch computation. Monitoring events were sent to
the Hadoop Distributed File System (HDFS) for batch computation,
which can be scheduled to run at any preferred time interval.
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Therefore, the following approaches were designed and
implemented:

1. Pure stateless batch computation as seen in Fig. 2,
which can be scheduled to run at a preferred inter-
val. The system will not have any knowledge of the
previous jobs. This does not support real-time com-
putation, but Spark framework provides in-memory
computations. Therefore, the execution time can be
compared with the MapReduce framework that was
used in [3]. The batch computation can also be used
for historical computation (i.e., high-latency).

2. Pure stateful streaming computation as seen in Fig. 3,
will carry out incremental computation on continu-
ously streaming data 24 hours/7 days a week. From
this, it can maintain the state of the computed statis-
tics. It also has a checkpoint mechanism to dump the
state to the disk; in case of job failure it can pick up
from where it stopped. This method on it is own is
enough for real-time computation. This allows the
complexities of merging multiple technologies, as in
the LA, to be eliminated.

3. A combination of batch and streaming computation
is also shown in Fig. 3. Pure streaming is enough,
but the potential of getting duplicate events from
the message brokers due to failure is prevalent.
Having pure streaming computation cannot
address this issue, as the raw events are dropped
once they are processed. The state of the streaming
job cannot keep the unique ID of the events once
they are aggregated by a key (e.g., sites). Incorpo-
rating batch computation can correct the inaccurate
statistics as it will recompute whole datasets from
the storage layer, eliminating duplicate events.
Having a streaming layer do continuous calcula-
tion, while scheduling the batch layer to run at
specified intervals in order to override the results
ultimately validating the statistics seems most
appropriate. As pointed out previously, historical
computation is necessary in scientific domains, so it
is important to incorporate a batch layer in the

architecture. To support this approach, the monitor-
ing events were duplicated with one being sent to the
HDFS for batch computation, while the other was
streamed straight into the streaming receiver. How-
ever, there are a variety of complexities that need to
be addressed in synchronising these approaches
together including: informing the streaming job about
newly available data (computed by batch job) so that
it may utilise it to override the streaming state as well
as the serving layer that is used for storing computed
statistics for serving the UI, and a mechanism to elim-
inate the network communication bottleneck at the
serving layer to make sure only the newly streamed
data are updated/inserted into the serving layer.
This is discussed further in Section 3.1.

3.1 Merging and Synchronising Optimised Lambda
Architecture Layers

This section explores how the batch, serving, and streaming
layers are merged and synchronised.

Batch Layer. The batch layer is a high-latency mechanism,
so computing an enormous volume of data would result in a
delay which would be reflected in monitoring statistics. It is
important that the batch should discard some statistics, a cer-
tain amount of data which is linked to how often the batch
process is executed andhowbig the dataset is. These ‘missing
statistics’ can be accommodated by the streaming layer.

Dfiltered ¼ Fdiscard Draw9 Btime �Bintervalð Þð Þ: (1)

In Equation (1), how the monitoring events should be
discarded from the computation is represented by a formula
expression. In this equation FdiscardðÞ is the function for dis-
carding events, Draw is the number of raw events prior to
event selection (filter), Btime is the batch execution time,
Binterval is the time interval for discarding events from the
batch and ðBtime �BintervalÞ calculates the time frame for
selecting events and for emitting all existing, 9, events that
match the condition. Assuming a batch job runs at Btime,
specified Binterval 1 hour, a batch should discard all the
events in a time > ðBtime � BintervalÞ. This will prevent hav-
ing partially computed results, which will be compensated
by the streaming layer.

Dbatch ¼ Dfiltered !Fmap K;Vð Þ !Freduce K;Vð Þ! Sdata
batch: (2)

Equation (2) describes how the selected (filtered) events,
Dfiltered, will go through a mapping process, FmapðÞ, to gen-
erate (K)ey (a unique ID for the statistics)/(V)alues (matri-
ces values associated with the key) pairs. Subsequently, it
will go through the reduce process, FreduceðÞ, to aggregate
the values by the key from all distributed nodes, which are
then stored in a designated storage, Sdata

batch, folder. The batch
process will write the result (i.e., a new file) into a known
folder on HDFS (this can be replaced by any storage layer,
e.g., Tachyon).

Streaming Layer. In the consolidated streaming and batch
layers, previously computed statistics (if they exist) need to
be loaded from the serving layer, which can be represented
by Equation (3).

Fig. 3. Pure stateful streaming and combination of both batch and
streaming computations. Monitoring events were duplicated with one
sent to the HDFS for batch computation, while the other streamed
straight into the streaming receiver for incremental computation.
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Serving Layer process

Dstorage
stats ¼ Fstorage

load ðTcurrent; TfromÞ
¼ Dstorage

filtered ¼ Dstorage
input > Tcurrent � Tfrom

� �� �n
; (3)

where Dstorage
stats are the loaded pre-computed monitoring sta-

tistics from the serving layer, Tcurrent is the current time-
stamp, Tfrom is the timestamp that statistics will be loaded
from and Fstorage

load ðÞ is the loading function for loading data
from the serving layer. If input data, Dstorage

input , which are all
statistics from the serving layer to the DB load function, are
greater than ðTcurrent � TfromÞ then select, and return the sta-
tisticsDstorage

filtered.

Dstorage
processed ¼ Dstorage

stats !Fmap K;Vð Þ! Mstorage
stats : (4)

Equation (4) is an expression for Dstorage
processed, the mapped

and stored statistics selected from the serving layer Dstorage
stats

into the memory, which goes through a mapping process,
FmapðÞ, generates (K)ey/(V)alues pairs, which are then
stored into memory and/or disk, Mstorage

stats for later usage
(i.e., for merging with other layers).

Streaming Layer process. In the streaming layer, the com-
putation is defined as

Dstream
processed ¼ Fdata

transformationðDstreamÞ !Fmap K;Vð Þ !Freduce K;Vð Þ
; (5)

where Dstream
processed is the mapped, aggregated, and computed

statistics from streaming monitoring events, Dstream is the
number of streaming monitoring events, Fdata

transformationðÞ is
the function filtering and transforming events, wich then go
through the mapping process, FmapðÞ, which generates (K)
ey/(V)alues pairs. Finally, it goes through the reduce pro-
cess,FreduceðÞ, to aggregate thevalues by thekey.

Batch Layer process. The batch reading implementation is
defined as

Dbatch
loaded ¼ Fload

batch Dbatchð Þ !Fmap K;Vð Þ
; (6)

where Dbatch
loaded are the statistics read from storage and

mapped, Dbatch is the pre-computed statistics from Equa-
tions (1) and (2), F load

batchðÞ is a function to load only the “new”
pre-computed batch statistics and flag the file as “old” once
it is loaded successfully which then goes through mapping
process, FmapðÞ. The mapping process does not require any
reduction in the statistics as it has already been done by the
batch process.

Synchronise and update. The implementation of joining,
merging and synchronising statistics from all three layers is
defined as

Djoined ¼ Dstorage
processed

[
Dbatch

loaded

[
Dstream

processed

� �
; (7)

where Dstorage
processed are the statistics loaded from the serving

layer, Dbatch
loaded are the data loaded from batch computations,

Dstream
processed are the data computed from streaming data, which

are unioned (joined) and returned as a new datasetDjoined.

The implementation of the statistics state is defined as

Dmemory
state ¼ Fupdate

state ðDjoinedÞ

¼
insert; if storage ¼ 1 ^ state0

overwrite; if batch ¼ 1
update _ insert; if storage0 _ batch0;

8<
:

(8)

where Dmemory
state is where the state of new and old statistics

are kept in the memory for incremental calculation, Djoined

are the joined Dstorage
processed, D

batch
loaded, and Dstream

processed statistics. The
Fupdate
state ðÞ is the state update function for updating the statis-

tics and keeping them in the memory. If the statistics are
from the serving layer, storage, and if it is not already in the
state, state0, then it should insert the statistics into state
memory. If the data are from the batch layer, batch, then it
should over-write the state memory with the batch statistics.
If the statistics are not from serving layer, storage0, or batch
layer, batch0, then they are from the streaming layer (rela-
tively new statistics) so they should be aggregated with the
statistics in the state memory, and updated if they already
exists (or it should insert the statistics into state memory if
they do not exist (totally fresh statistics)).

Update serving layer. Only the new and altered statistics
are inserted/updated into the serving layer which is
defined as:

Dstream
processed

[
Dbatch

loaded

� �
ffl Dmemory

state 8 Fupsert
serving layer (9)

The expression in Equation (9) says union (join) the
Dstream

processed and Dbatch
loaded and then leftjoin, ffl, with the Dmemory

state ,
to insert/update only the new and updated statistics from
the batch (if Dbatch exists in the spooling location) and
streamed statistics into the serving layer. Statistics from
Dstorage

processed are not required because they are already in the
serving layer. For each, 8, statistics partition, establish a con-
nection to the serving layer and bulk upsert, update the
records if it already exists in the serving layer, otherwise
insert new records. Finally, set up a checkpoint at a speci-
fied interval for recovery in case of any failure.

- Summary. In short, the functions explained above are:

1. The batch layer will write the result in a known
folder on HDFS (this can be replaced by any storage
layer e.g., Tachyon). The streaming layer will ini-
tially load specified data from the serving layer to
start incremental calculations from old statistics.
Then, at each micro-batch loop, and at the end of the
statistics computation, it will check if there are any
data in the “batch” folder. If yes, load the computed
data, join with its last computed results from history,
and insert the newly computed results into the serv-
ing layer while updating the history.

2. The batch layer should discard some statistics, cer-
tain data which are linked to how often the batch
process is executed and the expected delay in proc-
essing the ever growing dataset. Assuming a batch
run at time t, discard the last hour of data, the batch
should discard all the statistics referring to time
interval > t �1 hour, this will prevent having a par-
tially computed result.
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3. The streaming layer will run forever, and the batch
process can be executed regularly, or on-demand.
Broker queues can be used for ingesting messages
from the data pipeline so that if the streaming fails,
the data will be retained on the broker indefinitely.

4. The serving layer insertion time will be reasonably
short due to micro-batch computation. When the
streaming iteration reads the full batch, and inserts it
into the serving layer, it will stop processing new
data. This has the potential of being noticeable on the
UI. Thiswould only be a short-lived temporary glitch.
Datawould still be present and it would quickly (scal-
ing nodes and paralleling the tasks would improve
performance) recover when insertion is over.

4 PERFORMANCE EVALUATION OF THE OPTIMISED

LAMBDA ARCHITECTURE

4.1 Experiment Setup

For the evaluation of theOLA, the sameCERN ITon-premises
Hadoop cluster that was used in [3] for evaluating LA was
used. The cluster consisted of 15 nodes of Intel(R) Xeon(R)
CPUE5-2650 v2@ 2.60GHz (8 nodes: 32 cores/64GB, 7 nodes:
4 cores/8 GB). Hadoop-2.6 and Spark-1.6.0 were configured
on all machines. The OLAwas also evaluated on the Amazon
cloud infrastructure [21], as described in Section 4.5.

The OLA was evaluated from the aspects of scalability,
low-latency processing time, jobs workflow such as parallel
processing versus sequential with various data caching
mechanism, and execution time over various data size, data
format, and data compression.

Three different computing and data intensive algorithms
from the WDT use case were used for evaluating the OLA:

1. Access Pattern—This algorithm works out what are
the hot (popular) and cold (unpopular) data. Hot
data is very popular among physicists, so they need
to be replicated and distributed across many nodes
for load balancing, and better accessibility. An exam-
ple of the access pattern algorithm:
1) Inject Log Message event into Map statement.
2) Split the Log Message into several Log Map Events

according to the time bins the initial event belongs.
3) Inject each of the Log Map Events into a single Log

Statistic Event and compute the following:
a) If (client domain == server domain) then

remote access = 1 else 0
b) If (read bytes + write bytes == file size) then is

transfer = 1 else 0
4) Aggregate all the single log statistics:

a) If user domain == null then replace it with
server username. In case that server username
is also null replace it with “n/a”

b) If file name == null then replace it with “n/a”
c) AVG(file size)
d) If (read bytes > 0) then number of read = 1 else

is 0
e) SUM(read bytes)
f) If (read bytes > 0) then sum(end time - start

time) else read time = 0
g) If (write bytes > 0) then number of write = 1

else is 0

h) SUM(write bytes)
i) If (write bytes > 0) then sum(end time - start

time) else write time = 0.
5) Aggregate and Reduce all the log statistics:

a) If there is not already a time bin for the injected
log statistic events then create it and insert
(establish connection to Elasticsearch and Bulk
insert).

b) Else update the existing bin (update the Elastic-
search document version).

2. Transfer Statistics—This algorithm has already been
used in LA evaluation and works out the average
data transfer rate from site A to B. A completed file
transfer lasting several hours from site A to site B,
also contributes to several time bins in the past.
Information about the average traffic from site A to
site B has to be updated. An example of the transfer
statistics algorithm:
1) Inject Log Message event into Map statement.
2) Split the Log Message into several Log Map Events

according to the time bins the initial event belongs.
3) Inject each of the Log Map Events into a Single Log

Statistic Event and compute the following:
a) If writes bytes at close > 0 then we have a cli-

ent domain else we have a server domain.
b) If read bytes at close > 0 then we have a server

domain else we have a client domain.
c) If client domain = server domain set remote

access 0 else set is as 1.
d) If writes bytes at close + read bytes at close =

file size set is transfer = 1 else is transfer = 0.
e) If read bytes at close > 0 then setactivity = ‘r’.
f) if write bytes at close > 0 then set activity =

‘w’.
g) if write bytes at close <¼ 0 and read bytes at

close ¼< 0 then set activity = ‘u’.
4) Aggregate all the single log statistics:

a) If there is not already a time bin for the injected
Single log statistic event then create it and
insert.

b) Else update the existing bin.
i) active = active + new.active
ii) bytes = bytes + new.bytes
iii) activeTime = activeTime + new.

activeTime
3. User Activities—This algorithm works out the num-

ber of active users, and how much data they have
downloaded within a specified time interval. An
example of the user activities algorithm:
1) Inject Log Message event into Map statement.
2) Split the Log Message into several Log Map Events

according to the time bins the initial event belongs.
3) Inject each of the Log Map Events into a Single Log

Statistic Event and compute the following:
a) If (client domain == server domain) then

remote access = 1 else 0
b) If (read bytes + write bytes == file size) then is

transfer = 1 else 0
c) If if user domain == null then replace it with

server username
4) Aggregate all the single log statistics:
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a) SUM(read single bytes)
b) SUM(read vector bytes)
c) SUM(file size)

5) Aggregate and Reduce all the log statistics:
a) If there is not already a time bin for the injected

log statistic events then create it and insert
(establish connection to Elasticsearch and Bulk
insert).

b) Else update the existing bin (update the Elastic-
search document version).

4.2 Illustration of the Workflow

An evaluation of theworkflow in theOLA is presented in this
section using those algorithms described in Section 4.1. Job 1,
Job 2, and Job 3 in Figs. 4 and 5 denote Transform Statistics,
Access Pattern, andUserActivities algorithm respectively.

The timeline in Fig. 4 shows sequential job execution,
where jobs were performed one at a time. The next job will
only be initiated once the previous job has been completed.
This workflow is useful when the later job is dependent on
the previous job, e.g., when the second job relies on the
results computed by the previous (similar to the MapRe-
duce framework).

Fig. 5 shows parallel job execution, where multiple con-
current jobs (i.e., Transfer Statistics, Access Pattern, and
User Activities) are executed at the same time. This is not
achievable with the MapReduce framework presented in
[3]. This is the workflow that is beneficial for carrying out
in-memory computation, meaning data can be loaded into
memory, and used by concurrent jobs rather than having
each job load data from the storage layer.

After all executors required for a job have been regis-
tered, the job commences execution. The executors were
removed when the job was complete, in order to make
resources available for other jobs.

In Spark, a job is joined with a chain of RDD dependen-
cies arranged in a direct acyclic graph (DAG) as can be seen
in Fig. 6. From the DAG, it can be seen that the evaluated
WDT use case (i.e., Transfer Statistics) first executed a text-
File operation to read data from the HDFS, then called the
mapPartitions operation to transform the data into Java
Objects, calling another mapPartitions operation to extract
the required data and to carry out an initial transformation.
Subsequently, it then called a reduceByKey function (in the
second stage, which is dependent on the first stage) to
aggregate the final results, and finally the saveAsTextFile
operation was used to save the data into HDFS. It can be
seen that each executor immediately applied the subsequent
mapPartitions action to the dataset partition after reading it
from HDFS in the same task, minimising the data shuffles
between nodes. The black dots in the boxes represent RDDs
created by the corresponding actions [22].

Spark supports caching stages into memory so that data
may be reused, rather than recomputed. Fig. 7 illustrates
that Stage 3 reads data from HDFS and carries out initial
transformation, caching into memory (shown greyed out).
The subsequent jobs can easily recover the stage from mem-
ory, therefore, reducing re-computation time.

Fig. 4. Sequential jobs execution time. Jobs were executed one at a
time.

Fig. 5. Parallel jobs execution time. Multiple jobs were executed at a
time.

Fig. 6. Overview of job stages.

Fig. 7. Cached stages were reused by parallel jobs. The green circle
denotes that an RDD is cached from the previous stage. The greyed
stage (cached) was skipped by the following concurrent jobs.
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Fig. 8 shows an insight into Stage 3 of the event timeline
from Fig. 6. It shows that tasks are distributed to two worker
nodes. Most of the execution time was spent on computing
the statistics rather than scheduler delay, network or I/O
overheads. This is not unexpected since the job involves
shuffling very little data. Each executor is performing three
tasks concurrently, due to the CPU cores which are explic-
itly configured with the job submission. The parallelism can
be increased or decreased in direct relation to the number of
cores, which would have an effect on performance.

4.3 Performance Evaluation on WLCG Environment
and WDT Use Case

In this section the batch computation, as well as the real-
time computation of the OLA, were evaluated.

Evaluation of Spark’s batch computation. An evaluation of
Spark batch computation over increasing dataset size was
carried out that was similar to the evaluation detailed in [3].
This evaluation was carried out on the same dataset so that it
could be comparedwith theMapReduce framework compu-
tation. Although Spark supports in-memory computation, it
was not used in this evaluation as the job consisted of a single
algorithm (transfer statistics). It was unnecessary to persist
the dataset into memory as there were no follow-up jobs that
could benefit from it. The evaluation results are shown in
Fig. 9. It can be seen that computing 30 days of the dataset
overall was completed in �2 minutes by the Avro, CSV and
JSON jobs. It can also be seen that execution time linearly
increases as the dataset size is increased. Nevertheless, the
performance was better when compared with the current

approach used by the WDT. Again the performance pattern
of the data types are similar to the MapReduce job, as Avro
performed better overall compared to the other jobs. On the
other hand, JSON performed poorly when compared with
the other jobs. In total, the JSON and CSV jobs took an aver-
age of 64 and 14 percent more execution time comparedwith
Avro, respectively.

A comparison of the job execution time usingMapReduce
framework from [3] and using Spark is presented in Fig. 10.
It can be observed that Spark jobs performed much better
when compared with the MapReduce jobs, although data
persistence was not used in both frameworks. The first day
dataset (smallest) took a lot less time for computing using
Spark, whereas computing using MapReduce took signifi-
cantly more. From this observation it can be concluded that
Spark took less overhead time in allocating resources when
compared with the MapReduce. Nevertheless, MapReduce
job execution time stablised as the dataset size was were
increased further as only minor oscillations were seen. Com-
paratively the Spark execution time increased linearly when
the dataset size was increased. The Spark-Avro job total exe-
cution time on average was 43 percent less than the MR-
Avro job, whereas the Spark-CSV performance improved by
38 percent when compared to the counterpart, and the
Spark-JSON improved 23 percent compared to its counter-
part. All Spark jobs appeared to have performed better than
their counterpart, but the most improvement can be seen
with the Spark-Avro computation.

Fig. 11 shows the execution time over various data parti-
tion sizes (i.e., parallelisation, which is the process of split-
ting the dataset into a number of partitions, and allocating
tasks to process each of those split portions). It can be seen
that the execution time improved as the number of parti-
tions was increased (execution time decreased). It can also
be observed that after the job met a certain number of parti-
tions, the execution time stabilised. This can be explained
by the fact that more partitions would require an equal
share of tasks, requiring finding resources, allocating, and
garbage collections. This would also require shuffling data
over the network. It can be observed that the Avro job per-
formed better compared to the other two jobs.

In the previous evaluation, only a single job (algorithm)
was evaluated, so persisting the dataset into memory was

Fig. 8. Concurrent tasks execution. A job was split into multiple tasks and
executed in each executor CPU core concurrently.

Fig. 9. Computation of Avro, CSV and JSON files over augmented data-
set (day 1 to 30 days). The primary axis (a) shows the execution time that
is being represented by lines, whereas the secondary axis (b) represents
the input data size in Megabytes (MB) which is represented by bars.

Fig. 10. Comparison of the MapReduce versus the Spark framework
against various data types.
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not trivial. In order to benefit from the in-memory compu-
tation, it was necessary to evaluate multiple jobs (multiple
statistics algorithms) on the same dataset (i.e., derive vari-
ous statistics from the same dataset). The single job
assessed previously only parallelises the tasks, but as mul-
tiple jobs may be deployed to profit from in-memory com-
putation, it was essential to evaluate parallel job execution
versus sequential job execution. Fig. 12 illustrates parallel
jobs performed better than the sequential jobs; in particu-
lar, the cached job performed exceptionally well. However,
when comparing the uncached parallel job with the cached
sequential job, it is evident that the parallel job performed
better, which could only be explained by the simultaneous
job execution. The sequential job requires submitting one
job at a time so that the next one in the queue can only be
submitted when the previous job has been completed. This
is not the case for the parallel job as it would submit all
jobs at one time. This should not be a problem in the OLA,
as it can scale dynamically when there are more demands
for resources.

Fig. 13 shows the evaluation of execution time over vari-
ous types of data persistence used in parallel jobs submis-
sion. The persistence options are:

� Memory only (MEMORY_ONLY), which only uses
the memory for caching the dataset. In the case of a
dataset being larger than the memory capacity, it
will use the disk for dumping the remaining dataset.

� Memory only with two replications (MEMORY_
ONLY_2), which is similar to MEMORY_ONLY but
it replicates the dataset two times for improved data
availability.

� Memory only with serialisation (MEMORY_ONLY_
SER), which is similar to MEMORY_ONLY, but it
uses serialisation to compact the data so that more
information can be stored into memory as memory
spaces are very limited. However, serialising and
deserialisation will add computation overhead to
the job.

� Memory only with two serialised replications (MEM-
ORY_ONLY_SER_2), which is similar to MEMO-
RY_ONLY_SER but replicates the dataset two times.

� Disk only (DISK_ONLY), which spills the dataset
onto the disk.

� Disk only with two replications (DISK_ONLY_2),
which is similar to DISK_ONLY but it replicate the
dataset two times.

� Memory and disk (MEMORY_AND_DISK), which
uses both memory and disk for storage, but some
data that need to be persisted into memory are con-
figurable at execution time.

� Memory and disk with two replications (MEMO-
RY_AND_DISK_2), which is similar to the MEMO-
RY_AND_DISK but with two replications of the
dataset.

� Memory and disk with serialisation (MEMORY_
AND_DISK_SER), which is analogous to the MEMO-
RY_AND_DISK but it uses serialisation to compact
the data so that more data can be stored in memory.

� Memory and disk with two serialised replications
(MEMORY_AND_DISK_SER_2), which is similar to
MEMORY_AND_DISK_SER but with two replica-
tions of the dataset.

As shown in Fig. 13, it is evident that in-memory persis-
tence outperformed the other methods. Having two replica-
tions of the dataset into memory did not improve the
performance compared to the single dataset. In general, seri-
alisation did not perform well, which is understandable as
extra overhead is required for serialising and deserialising
the dataset. Using memory and disk performed better than
the pure disk option. It was better to recompute from the

Fig. 11. Execution time versus the number of partitions of various data
types.

Fig. 12. Comparison of parallel and sequential jobs with cached and unc-
ached datasets. Execution time versus parallel, sequential cached and
uncached jobs.

Fig. 13. Comparison of various cache types. Execution time versus com-
putation of data cached in memory, disk, and memory and disk (also a
combination of replicated and serialised dataset).
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source rather than reading the cached data from disk. When
clustered and compared the execution time of all memory
only, disk only, and disk and memory, the disk only options
took 104 percent more execution time than the memory only
options, whereas the memory and disk options took 83 per-
centmore execution time than thememory only options.

The scalability was evaluated by incrementing the num-
ber of executor nodes one at a time. The memory size was
fixed to 1,024 MB. The evaluated dataset size was 7.5 GB,
which was used for the following evaluations unless other-
wise stated. The total amount of memory allocated for the
jobs can be calculated by multiplying the number of execu-
tors by amount of allocated memory for each executor (i.e.,
1,024 MB). The previous evaluations showed that the Avro
job performed better compared with the CSV and JSON
jobs. Therefore, it was used for the node scalability analysis.
Fig. 14 shows that execution time improved as the number
of executors was increased. However, there was a dramatic
improvement in performance in increasing up to three exec-
utors. With more than three executors, there was not a sig-
nificant further improvement. The execution time decreased
by 64 percent when three executors were used compared to
the initial single executor execution time. However, when
nine more executors were used, compared with the single
executor, the performance improved by 84 percent. This
shows an only 20 percent improvement using nine execu-
tors over three executors. Over allocating resources (in this
case executors) can be wasteful, displacing resources that
could have been used for other jobs.

For the evaluation of memory usage, the number of exec-
utors was fixed at four (for comparison to the former analy-
sis), the number of CPU cores was fixed at one, and
memory was increased by 1,024 MB at each evaluation. The
total amount of memory allocated for the jobs can be calcu-
lated by multiplying the amount of allocated memory for
each executor by the number of executors (i.e., 4). The allo-
cated memory for each core would be the same as the execu-
tors as the core was fixed at 1. Therefore, it does not need to
share the memory. The dataset size was the same as in the
previous evaluation, which was 7.5 GB. The performance
improved rapidly as the memory was increased, as seen in
Fig. 15. What was indisputable from the results, was that
memory plays a significant role in performance. With four
executors a better result was achieved by just increasing the
memory, rather than using ten executors as can be seen
from the previous analysis.

In order to evaluate the CPU core utilisation in optimis-
ing the performance, the number of executors was fixed at
four, and the memory was fixed at 2,048 MB. The number of
cores was increased by one at each execution. Each executor
was allocated 2,048 MB memory, but there were four execu-
tors so the total amount of memory allocated to these jobs
was 8,192 MB. The amount of memory allocated to each
core was calculated by dividing the memory allocated to
each executor (i.e., 2,048 MB), by the total number of cores
allocated to each executor. Again, the performance was
improved as the number of cores was increased as seen in
Fig. 16. The observed improvement in the performance was
caused by the parallelisation of the tasks.

Evaluation of Spark’s Streaming computation. In [3], Esper
was used for carrying out real-time computation, which did
not support scalability. However, Spark Streaming supports
scalability just as it supports batch computation. The perfor-
mance observed with Esper was reasonable for the WDT as
it computed the events as soon as they were received. Nev-
ertheless, to support the foreseen explosion of volume and
speed of the data, scalability is required, so Spark Streaming
was investigated. Despite this, it needs to be evaluated to
see how it performs on a real life scientific application,
which was the same algorithm that was used for evaluating
batch computation (i.e., transfer statistics). A few metrics
are important in evaluating the streaming layer. One such is
the event input rate at which data is being received, while
the other is the processing time of each micro-batch. The

Fig. 14. Execution time versus the number of executors.

Fig. 15. Execution time versus the amount of memory size.

Fig. 16. Execution time versus the number of CPU cores.
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streaming layer was deployed with three executors, each
with 2,048 MB memory and three cores. The streaming layer
was evaluated on the last 1,000 batches of streamed data.
The streaming layer was run for �15 hours at a two seconds
batch interval prior to the evaluation. At the time of the
evaluation, the streaming layer had completed �27 thou-
sand batches and computed �5 million records.

Fig. 17 shows that the streaming layer was receiving data
at a rate of about 116 events/second on average across all
its sources. The streaming layer is capable of handling
much larger events than the one shown in Fig. 17. However,
the source was sending a relatively low load of events at the
time of evaluation.

Fig. 18 presents processing time which shows that these
micro-batches were processed within 88 ms of being
received on average. Displaying a reduced processing
time compared to the batch interval means that the sched-
uling delay (which is the time a batch waits for previous
batches to complete [22]) was almost zero as seen in
Fig. 19. It can also be noted that there were a few spikes
on the schedule delay, including when there was a sud-
den peak in data input rate which increased the schedule
delay by 16 ms. The scheduling delay is the key indicator
of whether the streaming layer is stable or not [22]. In
this particular evaluation it indicated the streaming layer
was very steady.

Fig. 20 shows that the total delay in scheduling and proc-
essing the batches was 105 ms on average. This means the
transfer statistics can be presented to the end user within a
second.

4.4 Evaluating the Accuracy of Monitoring
Computations

To evaluate how accurately the architecture was able to
compute the WLCG sites throughput in time-series, all three

OLA approaches were tested. As shown in Fig. 21, the state-
less batch job was scheduled to run every five minutes and
carry out batch computations on the data stored in HDFS.
However, the plot highlighted in Fig. 21 shows that some
data is missing. This is due to the latency of the batch
computation and the unavailability of the data when the
job started.

Fig. 22 represents both the pure streaming, and the combi-
nation of batch and streaming approaches. Both approaches
show the computation in real-time as highlighted in the plot.
This shows that both of these approaches are capable of pro-
viding up-to-date statistics that are beneficial to the users in
comparison with the pure batch computation approach. The
Spark batch computation performed better than the MapRe-
duce job presented in [3] due to the use of in-memory proc-
essing. The intermediate results were cached into memory in
comparison with the former approach, which utilises the
disk for reading andwriting.

4.5 Evaluation of Scalability, on the Amazon EC2
Cloud Cluster

In the previous section, the OLA was evaluated on the
CERN IT on-premises Hadoop analytics infrastructure
(shared). The architecture was also evaluated on a public
cloud infrastructure to understand how portable the archi-
tecture is. The purpose of the evaluation was not to compare
the performance of the on-premises Hadoop analytics

Fig. 18. Streaming data processing time. Processing time shows that
these batches have been processed within 88 ms on average.

Fig. 17. Streaming data input rate. Streaming job receiving data at a rate
of 116 events/second on average.

Fig. 19. Schedule delay in processing next batch.

Fig. 20. Total delay in scheduling and processing streaming data.

Fig. 21. The Spark batch computations for WLCG monitoring (some sta-
tistics are missing as highlighted).

Fig. 22. The Spark batch and streaming computations for WLCG moni-
toring (statistical data are in near real-time as highlighted).
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infrastructure and the cloud infrastructure, but solely to
understand the flexibility of the OLA model. The metadata
from the ATLAS experiment were used for the evaluation
of the on-premises Hadoop analytics infrastructure,
whereas metadata from the CMS experiment were used
for the evaluation of cloud infrastructure. In this section,
various scalability properties were evaluated on the Ama-
zon cloud cluster such as the number of cores, memory
size, and the number of executors. All three algorithms
discussed in the previous section of this paper were used
to evaluate the parallelism. Taking this into account, the
performance on the cloud may vary in comparison with
the CERN IT Hadoop cluster.

A virtual cluster was created in the Amazon Elastic
Cloud [21] using a general purpose instance “m4.2xlarge”
that has eight virtual CPUs, 32 GB of memory, and 20 GB of
storage per instance. The cluster was configured with four
nodes, one name node, and three data nodes. The nodes
were distributed with 24 GB of data (seven days log data).
For conducting the tests, the job was submitted with various
scalability properties. At each execution, a parameter was
changed, and the rest remained fixed.

Executor memory. Although there were 32 GB of memory
available in each node, it is possible to limit how much
memory should be allocated to a job. For this evaluation,
the number of executors was fixed at four. Then, the jobs
were submitted with varying memory sizes, such as 2 GB, 4

GB, 6 GB, 8 GB, and 20 GB for each executor. Since there
were four executors running, the total memory used for
each test was 8 GB, 16 GB, 24 GB, 32 GB and 80 GB. In gen-
eral, the performance was improved as the memory was
increased. In particular, the performance from 2 GB to 8
GB in the execution time was improved by 48 percent.
What is evident from the Fig. 23 was that the difference in
execution time is not substantial when increasing from 8
GB to 20 GB; in fact, it varies by just 10 seconds. This dif-
ference can be explained by the fact that when 8 GB per
node is used, the total available memory for the jobs is 32
GB; more than enough to accommodate 24 GB of data that
is required to be processed. Any additional memory would
not have a huge impact on job performance, as it would
mostly remain unused.

Executor instances. The evaluation of the executors was
created in order to to measure how performance would be
impacted when changing the number of executors. For this
test, the amount of memory used for each executor was
fixed at 4 GB. The number of cores per executors was fixed
at two. As seen in Fig. 24, the execution time was improved
by 76 percent using four executors, when compared with
just one. The execution time was seven seconds slower
when five executors were used in comparison to four. This
was in part due to there only being four virtual nodes avail-
able in the cluster. When there were five executors, one of
the nodes would run more than one executor, contributing
to an uneven distribution of the job. Ultimately, this would
cause an overloaded node.

Executor cores. The executor cores parameter defines the
number of tasks that each executor can run concurrently.
In this test, the number of cores per executor was ana-
lysed as shown in Fig. 25. The amount of memory used
for each executor was fixed at 4 GB, and the number of
executors was fixed at four, so all nodes would be uti-
lised. The performance improvement of using eight cores
over 2 cores was 69 percent. No difference was observed
between using eight or ten cores. This is due to the fact
that the maximum number of virtual CPU cores available
in each node is eight.

5 CONCLUSION

The three data monitoring approaches presented in this
paper outperform the RDBMS based system and the

Fig. 23. Execution time versus the memory size on the cloud
infrastructure.

Fig. 24. Execution time versus the number of executors on the cloud
infrastructure.

Fig. 25. Time versus the number of cores on the cloud infrastructure.
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Lambda Architecture that is used by the WDT in terms of
execution time, low-latency, maintenance, and scalability.
In particular, the streaming approach provides the up-to-
date state of the infrastructure. The evaluation also shows
that Optimised Lambda Architecture can be ported into
other computing infrastructures with ease, as it was dem-
onstrated in the CERN IT on-premises Hadoop cluster
and a cloud infrastructure. On completion of the work
described in this paper the WLCG monitoring group has
adopted the Optimised Lambda Architecture, a combined
batch and streaming approach, and has been using this
approach for monitoring the WLCG data activities since
October 2015 [23]. Since the deployment of the Optimised
Lambda Architecture, the WDT tools have been able to
monitor infrastructures (e.g., EOS data storage) that it
was once assumed would have been impractical. It has
also saved operational time as well as computation time
in comparison to the traditional architecture formerly
used. With the traditional workflow consisting of local fil-
esystems (dirq) and local collectors, PL/SQL computa-
tions had several hours of operational time per week
dedicated to cleaning up the partition of the machines
and maintaining services. With the Optimised Lambda
Architecture now implemented the corresponding opera-
tional time has reduced to almost zero. An estimated 0.5
days/week is saved through use of the Optimised
Lambda Architecture. In terms of computation time, the
Optimised Lambda Architecture utilises real-time compu-
tation, whereas the traditional architecture required
recomputation at a regular intervals. The Optimised
Lambda Architecture batch layer reduced computation
time by a factor of five when compared with the tradi-
tional PL/SQL system, and by a factor of two when com-
pared with the original Lambda architecture.
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