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Abstract—Practical Byzantine Fault Tolerance (PBFT) consensusmechanism shows a great potential to break the performance

bottleneck of the Proof-of-Work (PoW)-based blockchain systems, which typically support only dozens of transactions per second and

requireminutes to hours for transaction confirmation. However, due to frequent inter-node communications, PBFTmechanism has a poor

node scalability and thus it is typically adopted in small networks. To enable PBFT in large systems such asmassive Internet of Things

(IoT) ecosystems and blockchain, in this article, a scalablemulti-layer PBFT-based consensusmechanism is proposed by hierarchically

grouping nodes into different layers and limiting the communication within the group.We first propose an optimal double-layer PBFT and

show that the communication complexity is significantly reduced. Specifically, we prove that when the nodes are evenly distributed within

the sub-groups in the second layer, the communication complexity isminimized. The security threshold is analyzed based on faulty

probability determined (FPD) and faulty number determined (FND)models, respectively. We also provide a practical protocol for the

proposed double-layer PBFT system. Finally, the results are extended to arbitrary-layer PBFT systemswith communication complexity

and security analysis. Simulation results verify the effectiveness of the analytical results.

Index Terms—PBFT, communication complexity, node scalability, consensus mechanism, blockchain
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1 INTRODUCTION

THE consensus mechanism/algorithm, which orders trans-
actions and guarantees the integrity with consistency of

the blockchain across geographically distributed nodes, is of
importance to blockchains, which is the backbone of ground-
breaking decentralized ledger technology and cryptocur-
rency. It provides secure, accountable, and immutable and
low-cost solutions. Thus, it has shown great potential in vari-
ous sectors such as financial services, energy trading, supply
chainmanagement, Internet of Things (IoT), etc [1].

The consensus algorithms largely determine the perfor-
mance of distributed system especially for blockchains, such
as transaction throughput, latency, node scalability, security
level, etc. Depending on application scenarios and perfor-
mance requirements, different consensus algorithms can be
considered. In the case of a permission-less public block-
chain, nodes are allowed to join or leave the network without
permission and authentication; therefore proof based algo-
rithms such as Proof-of-Work (PoW) [2], Proof-of-Stake (PoS)
[3], and their variants are commonly used in many public
blockchain applications, where the cryptocurrency such as
Bitcoin is the most well-known one. Proof based algorithms
are designed with excellent node scalability performance

through nodes competition, which is essential to deal with
the double-spending problem. However, they could be
very resource demanding. For instance, recently published
estimates of bitcoin’s electricity consumption are wide-
ranging, on the order of 20-80 TWh annually, or about
0:1%� 0:3% of global electricity consumption [4]. Also,
these consensus mechanisms have other limitations, such
as long transaction confirmation latency and low through-
put. For instance, the Transaction Per Second (TPS) is gen-
erally limited to 7 in Bitcoin and about 15 in Ethereum,
while the transaction confirmation delay is typically as
considerable as 10 minutes in Bitcoin and 15 seconds in
Ethereum [5]. It is worth pointing out the computational
requirement of Proof-based consensus varies from one to
another, the notable examples of non-computing Proof-
based consensus is InterPlanetary File System (IPFS), a dis-
tributed file system uses the concept of proof-of-space/
space-time [6]. Though, Proof-based consensus has been
mostly seen in the applications of public blockchain, it has
a limited generic distributed system and blockchain cover-
age, as it is still incrementally resource demanding, and
the search of voting-based consensus for blockchain and
new generation distributed system is imminent.

Unlike the public blockchain, the private and consortium
blockchains prefer to adopt lighter consensus protocols such
as PBFT, Paxos [7] and Raft [8], [9] to reduce the amount of
computational power and improve the transaction through-
put [10]. They have been widely used in general distributed
systems for data synchronization, meanwhile, their property
is also critically important to the application scenarios of the
blockchain-enabled IoT ecosystem, which is typically com-
posed of low cost and low power devices. Though some pri-
vate chain suitable consensus only enables the Crash Fault
Tolerance (CFT) [8], as it does not protect the integrity of
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transactions from malicious attacks, but they are acceptable
for private blockchainwhere the nodes are trusted.

1.1 PBFT Applied to Blockchain

To protect distributed systems from malicious users, Practi-
cal Byzantine Fault Tolerance (PBFT) was proposed in [11]
as an improved and practical protocol based on original
Byzantine Fault Tolerance (BFT) [9], [12]. Comparing to the
Proof based consensus such as PoW, where the security
threshold is 51 percent, i.e., absolute secure transaction can
be achieved if the malicious user(s) occupies no more than
half of the overall resource, PBFT requires the number of
malicious users under 33 percent of total participants to
ensure the system immune from the malicious attacks [11].

PBFT is favoured for private and consortium chains, thanks
to the lower complexity and low energy consumption, which
is particularly important for wireless IoT applications [13]. A
promising advancement of PBFT can be found inHyperledger
development [14], part of Hyperledger business blockchain
frameworks, which has been adopted by tech giants like IBM
orWall Street Fintech, such as J.P.Morgan [15].

1.2 Motivations

Though PBFT has shown good performance in terms of
latency, resource requirement and nodes complexity, the node
scalability, which is a metric tomeasure howwell the network
reflects the capacity of the system to handle the increasing
number of nodes, is a bottleneck of PBFT since it relies on
heavy inter-node communications. Thus, from the communi-
cation complexity perspective, the PBFT based blockchain
hardly scales up to 100 nodes [16].

Variant PBFT-based consensuses have been proposed to
solve the problem of poor scalability. For example, PBFTwith
short-lived signature [17], minimizes the consensus time for
signature verifying. Another significant evolution path is
sharding, where shards have their own consensus group;
hence the transactions can be confirmed within a short time
because of the smaller size network [18], [19]. However, the
trade-off includes increased communication costs and low-
ered security levels. For instance, every shard keeps its own
data, which is not shared with other shards. In the case of
users requesting contracts on several shards, inter-node com-
munications go up quickly. Meanwhile, putting segments of
data into different repositories without proper redundancy
and recoverability is risky. Losing control of any individual
shard will interrupt the blockchain completely, either causing
untraceable and irreversible records to future records or fork-
ing the chain from the breaking point [20].

The communication complexity issues in the PBFT sys-
tem is due to the exhaustive peer to peer communication
among the nodes. To reduce the cost of communication,
intuitively, one can construct a hierarchical multi-layer
PBFT by refraining the communication within their layers
or sub-groups. The sub-consensus can be performed per
group, and the overall consensus can be defined as exceeds
the number of groups achieved the sub-consensus. This
multi-layer PBFT system model is initially proposed in [21],
providing a brief analysis of communication complexity
based on a particular case. However, there are still many
challenges to be addressed before this idea can be applied

in a real system. First, the complexity analysis derived in
the [21] cannot be applied to generic situations as it is devel-
oped under the premise that the number of nodes in each
sub-group is equal. To better represent the practical situa-
tion, detailed analysis should be provided considering vari-
ous node allocation scenarios. Also, the security analysis in
[21] is derived under the hypothesis that faulty nodes only
exist in the bottom layer, which does not apply to real situa-
tions where faulty nodes are randomly distributed into all
layers. Therefore, new security analysis should also be pro-
vided to verify the reliability of multi-layer PBFT system.
Finally, to ensure liveness and safety of the network, a new
complete protocol is also needed.

1.3 Contributions and Organizations

In this paper, we first propose a double-layer PBFT system,
as shown in Fig. 1, where we havem replicas in the first layer
and n sub-layer replicas in the second layer, which give a
total number of 1þmþmn nodes in the network. Then we
extend this system model to a more general X-layer case
(X > 2; X 2 I) to analyze and compare communication
complexity in multi-layer systems. The security analysis
shows that the security performance is improved over time,
and the consensus algorithm accommodates at most bn3c�bm2c
faulty nodes to ensure the absolute safety of the system
under malicious attacks. Meanwhile, only m2 þmn2 inter-
node messages, instead of OðZ2Þ messages in a traditional
single-layer PBFT network consensus, are required.

However, it is inevitable that the scalability is improved at
the cost of a longer delay as the consensus-reaching process
goes through more than one layer. As a result, the proposed
multi-layer PBFT would not be appropriate for systems such
as some financial scenarios in consortium blockchain which
requires both node scalability and low latency transaction.
On the contrary, in other applications such as blockchain-
enabled scenarios with massive IoT devices connection,
where scalability is a bottleneck but not latency, multi-layer
PBFT provides a solution with greatly improved node scal-
ability while protecting the system from malicious attacks
[22], [23], [24]. For instance, blockchain can be used to play
an important role for tracking and managing all elements
involved in supply chain from raw materials to the final
products to ensure the quality of the manufacturing [25].

Fig. 1. Topology of the proposed double-layer PBFT system. (Note that
we give double-layer system as an example here, the idea proposed in
this paper can be extended to arbitrary-layer PBFT).
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Given the fact that there are many players within the system,
traditional single layer PBFT based blockchain is hard to
scale up. With multi-layer PBFT, the suppliers could be
divided into groups and layers and consensus can be
reached among them to provide reliable information for dif-
ferent parties and ensure the efficiency of manufacturing.

Note that, in such hierarchical scenarios, the consensus is
reached in a network with biased rights in different layers.
Indeed, we have seen the most consensus models in block-
chain have treated their nodes with the equality, however, it
is also common to find examples of inequality in real-life for
upper level scalability and availability; for example, the prac-
tice of liquid democracy, has shown a good influence on
social stability and performing the best interests of repre-
sented members, in which case, the participants are still in
active power after the upper-tier delegate is elected. Another
common example of master/slave (leader/follower) model
of data storage has produced promising results regarding
the availability and I/O performance. Moreover, a lack of
flexibility and liquid can be added with the proposed
dynamic multi-layer design. The multi-layer PBFT and the
advanced system together form a rolling, robust and flexible
consensus for not only digital distributed systems, but also
prompts real-life impacts. From this point of view, the pro-
posed PBFT consensus serves as a viable solution to the cur-
rent society to a trade-off between an efficient but low
secure, centralized architecture and a highly secure but low
efficient distributed one.

To summarize, this papermakes the following contributions

� This paper first introduces a novel double-layer
PBFT model. This model is scalable since it reduces
the inter-node communications to C � 1:9Z

4
3, com-

paring to the traditional PBFT system of OðZ2Þ.
� Second, the analytical security performance of the

proposed system is derived. It proves that under cer-
tain conditions, the maximum number of faulty
nodes can increase from bm3c to bn3c�bm2c.

� Third, a new double-layer PBFT protocol is intro-
duced, based on which consensus can be reached
among nodes in different layers.

� Finally, a general X-layer PBFT model is proposed,
which is proven to have the minimum communica-
tion complexity reduced to linear C ¼ 16Z�16

3 when
the network depth is maximized to Xmax. Addition-
ally, the security threshold is derived.

The rest of the paper is organized as follows. Section 2
reviews the relatedwork. In Section 3, the double-layer PBFT
model is proposed. Then, the communication complexity is
analyzed and compared to the original PBFT. In Section 4,
the security threshold is derived based on the double-layer
system. A general X-layer system is proposed and analyzed
in Section 5. Section 6 proposes the protocols for double-layer
PBFT system and Section 7 concludes the paper.

2 RELATED WORK

Variant consensus algorithms have been designed for permis-
sioned blockchain to provide safety under trustless environ-
ment with different performances [26]. Practical Byzantine
Fault Tolerance (PBFT) [11] is one of the most popular State

Machine Replication (SMR) technology, which provides 1
3

optimal tolerance under malicious attacks with low latency.
In recent years, with the growing interest in blockchain, many
new protocols based on SMR are proposed. In The Next 700
BFT Protocols, the author present a method to simplify the
designing of new protocols by introducing Abortable Byzan-
tine faulT toleRant stAte maChine replicaTion (Abstract) as a
new way to illustrated BFT [27]. Results show that the pro-
posed protocol by using Abstract provides a better perfor-
mance in terms of both latency and throughput.

Apart from the application in permissioned blockchain,
the concept of quorum certificate is also borrowed in Ether-
eum Casper to provide safety for Ethereum 2.0 [28]. It is an
extra mechanism on top of PoS and serves as a finality gad-
get. The Casper does not generate the block but determines
the sequence of blocks on chain. The designated replicas
(validators in Ethereum) votes for a parent-children rela-
tionship for two collections of blocks and form a quorum
certificate granted by more than 2

3 of replicas. Considering
that Ethereum 2.0 updates rapidly, it is difficult to draw a
conclusion on the application of shards and Casper. The
sharding may sacrifice safety and increase communication
complexity, and the actual implementation of Casper in
Ethereum 2.0 also affects it.

One problem PBFT protocols may encountered is the dif-
ficulty to implement. BFT-SMART is so far the most popular
open-source library for BFT-SMR application based on Java,
filling the gap between the literature work and practical
implementation [29]. Evaluation shows that the throughput
of BFT-SMART reaches more than 80,000 TPS. Also,
although it is simpler than other BFT implementing sys-
tems, it still contains 13.5K lines of Java code, which is
much more complicated than the implementing systems for
Paxos [26].

Another bottleneck of PBFT is its scalability. As mentioned
in the introduction, the communication complexity limits the
performance of protocols. Former researchers have also pro-
posed various solutions. TheHotStuff leverages threshold sig-
nature to reduce communication complexity [30]. In each
phase, the primary broadcasts messages and each replica
responses a valid message with a partial signature. The pri-
mary collects them responses with partial signature more
than 2

3 replicas and combine into a digital signature. This signa-
ture is broadcasted by replica again, which serves as a quorum
certificate. Unlike HotStuff, the multi-layer PBFT proposed
improves node scalability by reorganizing network structure,
where the threshold signature can also be applied to further
reduce the communication complexity. Moreover, it is notice-
able that as the network scales up, the primary inHotStuff has
to collect and broadcasts an increasing number of messages
and combines more partial signatures. This workload can be
barked down by implementing our tree-like structure. Also,
the pace of HotStuff is affected by the primary since it waits
for the aggregation of partial signature to advance.

3 COMMUNICATION COMPLEXITY OF

DOUBLE-LAYER PBFT

3.1 Original Single-Layer PBFT

Before introducing the system model of double-layer PBFT,
the protocol and communication complexity of original
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single-layer PBFT [11] are briefly analyzed in this subsec-
tion. Fig. 2 shows the protocol diagram of the original sin-
gle-layer PBFT. As an example, we assume there is one
primary node and three state machine replicas. The consen-
sus is triggered by a client sending a request to the nodes’
header (Replica 0). Then consensus will be operated among
the nodes, and if an agreement is reached among the repli-
cas, the new record will be committed to the blockchain,
vice versa. The whole consensus process includes three
stages pre� prepare, prepare and commit as shown in
Fig. 2. On receiving the request from the client, the primary
node (i.e., Replica 0) broadcasts a pre� prepare message to
the other nodes. In prepare and commit stages, all replicas
send messages to check the validity of received messages.
In each stage, a minimum number of consistent messages
are required for stepping into the subsequent stage.

The consensus is technically reached when the commit
phase is successful among the majority of non-faulty nodes.
Specifically, the client must receive at least f þ 1 replies (f
denotes the number of faulty nodes in the group) from the
nodes to validate the final consensus with a total number of
3f þ 1 replicas. This ensures that at least one non-faulty rep-
lica replies to this operation. In the case of the client fails to
collect f þ 1 replies, the client may resend the request to pri-
mary for retry. Upon receiving the same request again, if the
consensus is already reached on the commit phase, replicas
just resend the final stage messages. If the consensus is not
reached, the network goes over the protocol again.

From Fig. 2, we can see that PBFT is a communication
demanding protocol. Given the total node number Z, the
original single-layer PBFT requires OðZ2Þ times of inter-
node communications to reach consensus. Obviously, the
system is not scalable since the complexity burden is non-
affordable when Z is large (i.e., thousands).

In the next, a scalable multi-layer PBFT system and pro-
tocol is proposed to reduce the communication complexity.
The performance analysis and protocol design of a double-
layer system will be introduced first, and then the arbitrary-
layer system will be proposed in Section 5.

3.2 Protocol Overview of Double-Layer PBFT

In the double-layer PBFT protocol, scalability is improved
by recursively inserting the PBFT consensus algorithm
between commit and reply phases as the sub-layer algo-
rithm. The higher layer forms a certificate, which proves
that the consensus was reached. With this certificate, a node
in the first layer initiates a PBFT consensus reaching process
among second layer nodes.

As illustrated in Fig. 1, there arem replicas and a primary
node in the first layer. Each replica in the first layer forms a

consensus group with n sub-layer replicas in the second
layer. The primary invokes a new operation by multicasting
pre� prepare messages to replicas in the first layer with
information about this operation. The replica accepts valid
pre� prepare requests and step into prepare phase by mul-
ticasting prepare messages within the first layer. If one rep-
lica receives no less than 2f identical prepare messages
from other first-layer replicas, that operation is prepared on
this replica. A prepared replica then multicasts commitmes-
sages among first-layer replicas.

Similarly, this operation is committed after collecting 2f
identical commit messages. At this point, this particularly
first-layer replica is considered as the primary node in its con-
sensus group and starts consensus reaching by multicasting
new prepreparemessages to its sub-layer nodes. For instance,
in Fig. 1, a committed node r1 sends pre� prepare messages
to node r2 and other replicas in ConsensusGroup0. Second-
layer replicas repeat the process mentioned above until the
commit phase. Finally, all committed replicas in the second
layer send reply messages to primaries, and primaries reply
to the client. This protocolwill be stated in detail in Section 6.

3.3 Communication Complexity Analysis of
Double-Layer PBFT

The double-layer PBFT model is proposed in Fig. 1, where
the first-layer leader controls m replicas, each of which
serves as a primary node of the n sub-layer replicas in the
second layer. Therefore, there are 1þmþmn nodes in
the system. Note that here we assume each sub-group in the
second layer has the same number of nodes, and a generic
case will be discussed in Proposition 4. Based on this, the
communication complexity can be calculated as the follow-
ing proposition.

Proposition 1. For a double-layer PBFT system with m replicas
in the first layer and n sub-layer replicas in each sub-group, the
communication complexity C to reach consensus is

C ¼ ðmþ 1Þ2 þmðnþ 1Þ2: (1)

Proof is derived in Appendix, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2020.3042392.

In the next, we aim to find the optimal setup of a double-
layer system with given Z nodes to provide the lowest com-
munication cost. When the overall number of nodes Z is
given to form a double-layer PBFT, we can assign either
larger groups (i.e., smaller m and larger n) or a larger num-
ber of groups (i.e., larger m and smaller n). Proposition 2
gives the best grouping algorithm in terms of minimizing
the communication complexity.

Proposition 2. For a double-layer system containing Z nodes in
total, the minimum communication complexity can be achieved
when n equals to the nearest integer to the real positive root of
following equation:

n3 þ 3n2 þ n ¼ 2Z � 1; 3 � n � Z � 4

3

� �
: (2)

Proof is derived in Appendix, available in the online supple-
mental material.

Fig. 2. Single-layer PBFT consensus processing [11].
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Note that, Proposition 2 is based on the assumption that
the system is full, in other words, the number of sub-layer
replicas in each sub-group is equal.

Proposition 2 provides with a pragmatic method to design
a double-layer PBFT system with minimum C. In the next,
we try to find a direct function of C versus Z so that the
communication complexity of any double-layer system can
be estimated analytically.

Proposition 3. When m and n are fixed by optimal allocation
and the system is full, the relationship between communication
complexity C and total node number Z can be written as

C � 1:9Z
4
3: (3)

Proof is derived in Appendix, available in the online supple-
mental material.

Fig. 3 compares the analytical and estimated results from
Propositions 2 and 3 respectively and validates the availabil-
ity of Equation (3).

From Fig. 3 we can see that compared with original sin-
gle-layer PBFT, where C is quadratic of Z, the communica-
tion complexity is greatly reduced in double-layer PBFT
systems. For example, the communication complexity of a
system with 1000 nodes is reduced by two orders of magni-
tude, from 106 to 2�104. Unfortunately, the communication
complexity of the double-layer PBFT system is still not lin-
ear against the node number; instead, it is of 4

3 order.
In the following proposition, we focus on the setup of the

systems that are not full. In other words, the number of sub-
layer replicas in each sub-group may be different.

Proposition 4. If the double-layer system is not full, the commu-
nication complexity reaches a smaller value when the vacancies
are equally distributed into the sub-groups. The minimum
value can be reached by distributing vacancies to the minimum
number of sub-groups.

Proof is derived in Appendix, available in the online supple-
mental material.

Through double-layer PBFT, complexity can be signifi-
cantly lowered compared to the original single-layer PBFT.
However, the proposed system may cause a longer delay.

In addition, with such a topology, the security performance
should be analytically investigated to guide the actual sys-
tem deployment.

4 SECURITY ANALYSIS

4.1 Security Threshold Analysis

In the double-layer PBFT, nodes in both layers participate in
the consensus reaching process. The first layer is a classic
PBFT model that tolerates no more than bm3c faulty nodes
based on the conclusion Z >¼ 3f þ 1 [11]. In the second
layer, as there arem PBFT consensus groups, we need to ana-
lyze the threshold of consensus-reached sub-groups
required to ensure the security and Liveness of the whole
system.During the consensus-reaching process, as the leader
of each sub-group directly send post� reply to the client,
each consensus sub-group is regarded as a whole. While any
individual node in PBFT systems can be divided into three
categories, including consensus reached, not reached and
faulty node. A consensus network may only be in two situa-
tions: consensus reached and not reached. In other words, a
consensus sub-group would also be in two situations, either
consensus reached or not. In this case, a system tolerates at
most bm2 c failed groups to reach consensus, i.e., the security
threshold of consensus-reached sub-groups is bm2c.

To facilitate distributed systems and blockchain in differ-
ent environments, we analyze the success rate in two models
under malicious attacks. The faulty probability determined
(FPD) model is used when the probability of every single
faulty node is fixed, and the faulty number determined
(FND) model is used when the number of faulty nodes in the
system is fixed. In these two models, we are given different
initial conditions to analyze the security performance of the
system. More specifically, we assume the faulty nodes in the
FPD model are independent with each other, and they have
the same faulty probability. Conversely, in the FND model,
the probability of whether one node is faulty depends on
other nodes because the total number of faulty nodes is fixed.
In addition, these two models have different application sce-
narios. The FNDmodel, which is more similar with the tradi-
tional PBFT, is suitable for small systems where the number
of faulty nodes can be easily estimated. However, it is more
appropriate to use FPDmodel to evaluate the performance of
large systems where node failure is estimated by probability.
For example, in manufacture, we are often given the reject
rate of one product instead of the specific number. Finally,
though FPD and FND models have many differences, the
security performances of them approach the same as the sys-
tem scaling up, which will be shown in Section 4.2. In addi-
tion, the frequently used notations are summarized in Table 1.

4.1.1 Faulty Probability Determined

Let’s assume Pf is the faulty probability of each node. To
find out the relationship between the success rate PP and
Pf , we shall first define two important conditions, under
which consensus can be reached.

� no more than bm3c faulty nodes in the first layer
(EVENT A)

� no more than bm2c groups fail in the second layer
(EVENT B)

Fig. 3. Comparison of analytical and estimated results of communication
complexity for double-layer PBFT.
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In addition, Event A and Event B are not independent. If
one replica in the first layer is faulty, it will be impossible
for the corresponding sub-group to reach consensus. There-
fore, we have PP ¼ P ðAÞ�P ðBjAÞ. Assume that there are i
faulty nodes in the first layer and 0 � i � bm3c. According to
the cumulative distribution function [31], we can get

P ðAÞ ¼
Xbm3 c
i¼0

Ci
m 1� Pf

� �ðm�iÞ
Pi
f : (4)

The value of P ðBjAÞ depends on the value of P ðAÞ. Equa-
tion (4) indicates there are already i faulty nodes in the first
layer. It means i out ofm groups in the second layer share no
chance to reach consensus as they have a faulty leader. There-
fore, there can be atmost bm2c failed groups in the second layer.
We assume there are j groups, which do not have a faulty
leader, fail to reach consensus. 0 � j � bm2 c � i. We have

P ðBjAÞ ¼
Xbm2 c�i
j¼0

Pj
g 1� Pg

� �ðm�i�jÞ
: (5)

Pg represents the probability of a group, with a non-faulty
leader, failing to reach consensus. We assume there are g
faulty nodes in one single group. To make this group fail,
bn3c þ 1 � g � n since PBFT group tolerates up to bn3c faulty
nodes. Therefore, we have

Pg ¼
Xn

g¼bn3cþ1
Cg

nP
g
f 1� Pf

� �n�g
: (6)

We can get the function of the system consensus success
rate PP against Pf as follows:

PP ¼
Xbm3 c

i¼0ðC
i
mð1� PfÞðm�iÞPi

f

Xbm2 c�i
j¼0

Pj
g ð1� PgÞðm�i�jÞÞ:

(7)

To verify the closed-form expression derived, a simulation
is performed based on random sampling in MATLAB. In the
simulation process, we take the faulty probability Pf and
node number m, n as the input and use a random array con-
sisting mþmn numbers to represent the status of nodes.
Each number in this random array is either 1 or 0, represent-
ing faulty and non-faulty node respectively. On top of that,

we set that each array element has a probability of Pf to be 1
(faulty), otherwise it is 0 (non-faulty). In this case, by counting
the faulty nodes in each layer and sub-group and comparing
the results with the thresholds, we can determine whether the
consensus can be reached or not. Then, the above mentioned
process is repeated over 10000 times and the simulation suc-
cess rate for one value of Pf can be obtained by taking the
ration of success times to the total repeating times. Finally, by
increasing Pf from 0 to 1, we can easily get the simulation
curve and compare it to the analytical result of the closed-
form expression. The simulation design of the FND model is
similar while the only difference is that FND takes the faulty
node number instead of faulty probability as the input.

Note that, the purpose of the simulation is to examine the
correctness of the derivations. Therefore, the complex peer-
to-peer communication process is temporarily ignored in the
simulation performed. However, we are also working on a
system simulation, which takes every communication and
view change into consideration, to further test the multi-
layer PBFT system.

Fig. 4 shows clearly that the two curves match well,
which verifies the effectiveness of the analytical result.

4.1.2 Faulty Number Determined

In the FND model, we assume that there are K faulty nodes
in the whole system and aim to find the relationship
between K and the success rate PN . Meanwhile, we can use
the same assumption of event A and event B to calculate
PN , PN ¼ P ðAÞ�P ðBjAÞ.

Unlike the FPD model, P ðAÞ and P ðBjAÞ are calculated
using the hypergeometric model [32] since the FND model
is based on the prerequisite of a fixed number of faulty
nodes. Thus, we have

P ðAÞ ¼ 1

CK
mþmn

Xbm3 c
i¼0

Ci
mC

K�i
mn : (8)

Also, there should be at most bm2c � i failed sub-groups with
non-faulty leaders, which means at most bm2 c � i sub-groups
havemore than bn3c faulty nodes. However, in the FNDmodel,
the number of faulty nodes in each group affects situations in
the other groups so that it will be extremely complicated to

Fig. 4. Analytical and simulation results for success rate in FPD model.
(m ¼ n ¼ 30).

TABLE 1
Frequently Used Notations

Notation Definition

PP consensus success rate in FPD model
Pf faulty probability of nodes
P ðAÞ probability of Event A
P ðBjAÞ probability of Event B under the condition of

Event A happening
PN consensus success rate in FNDmodel
K total number of faulty nodes
PA consensus success rate in advanced model
ZX total number of nodes inX-layer system
CX communication complexity ofX-layer system
TX threshold to guarantee success inX-layer system
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considerm groups together. Therefore, a simplified binomial
distribution model on the group level is adopted, assuming
every group has the same faulty probability of Pg2.

Pg2 represents the probability of a group with a non-
faulty leader failing in the second layer. It can be calculated
as follows:

P ðBjAÞ �
Xbm2 c�i
j¼0

Pj
g2 1� Pg2

� �ðm�i�jÞ
; (9)

Pg2 ¼
Xn

g¼bn3cþ1

Cg
nC

K�g
mn�n�1

CK
mþmn�1

: (10)

Then we can get the probability PN againstK as

PN ¼ 1

CK
mþmn

Xbm3 c
i¼0ðC

i
mC

K�i
mnXðbm2 c�iÞ

j¼0 Pj
g2 1� Pg2

� �ðm�i�jÞÞ: (11)

In Equation (11),
Pbm3 c

i¼0C
i
mC

K�i
mn requires K � i > 0 since the

combinatorics of a combination number must be positive.
When K � i > 0, i.e., K < bm3 c, the success rate can be sim-
ply calculated as

PN ¼ 1

CK
mþmn

XK

i¼0C
i
mC

K�i
mn : (12)

The curves in Fig. 5 show that, in the high success region
where ðPN > 0:85Þ, the analytical curve matches the simu-
lation curve. When the success rate of the system is lower,
there is a slight difference between our calculation and sim-
ulation results. The rationale behind this is that a part of the
model (group level in the second layer) is simplified from
hypergeometric distribution to the binomial distribution by
using Pg2 as a failure rate for every group in Equation (10).
However, the error is negligible and will approach zero as
the total number of the nodes in the system increases since
the hypergeometric distribution approaches the binomial
distribution in large systems [32].

4.2 Fault Tolerance Evaluation

Comparing the FPD model and the FND model with differ-
ent network sizes, Fig. 6 shows that the curves of the two
models gradually concur asm and n increase.

From Fig. 6, it can also be observed that as m and n get
larger, the slope of the success rate curve approaches infinity
around x ¼ 1

3 in both models. If we increase m and n to 500,
the curve shows amore obvious trend to step around Pf ¼ 1

3 ,
as in Fig. 7. The rationale behind this is that for a scaled-up
system, faulty nodes are approximately evenly distributed.
In this case, the proportion of faulty nodes in the whole sys-
tem and that in each sub-group are very close. In other
words, with the proportion of faulty nodes in the whole sys-
tem reaching around 1

3 , the corresponding proportion within
each consensus group also approximates 1

3 , which is the
security threshold in original single-layer PBFT. Therefore,
the success rate steps to zero when the proportion of faulty
nodes or the faulty probability exceeds 1

3 . Therefore, we have
the following proposition.

Proposition 5. The system tolerates a larger proportion of faulty
nodes when scaling up. The fault tolerance of double-layer
PBFT converges to 1

3 when Z goes to infinite.

Fig. 6 only compares the situations where m and n are
multiples of 3. We choose these special circumstances
because when the m and n are multiples of 3, the system
provides better security performance compared with others.

Fig. 5. Analytical and simulation curves for success rate in the FND
model. (m ¼ n ¼ 30).

Fig. 6. FPD and FND models’ analytical results with differentm and n.

Fig. 7. Analytical result of FPD model withm ¼ n ¼ 500.
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This can be explained by considering the threshold of faulty
nodes within each group. For example, two PBFT groups
with 3f þ 1 and 3f þ 3 nodes can both tolerate f faulty
nodes at most based on the conclusion in [11]. However, the
ratio of maximum faulty nodes to the total nodes in the first
group is bigger than that in the second one. Therefore,
assigning m and n to be multiple of three makes the ratio
reaches its maximum. Bringing these groups together, the
whole system also shows better security performance.
Moreover, when m is a multiple of 6, the security perfor-
mance is even better since we require at least half of the
sub-groups to reach consensus. This means two systems
with m ¼ 18 and m ¼ 19, for example, both tolerate 9 failed
sub-groups at most. In this way, systems with an even inte-
ger m hold a larger ratio of faulty nodes. Based on these, we
have the following Remark.

Remark By assigning m and n to be multiples of 6 and 3
respectively, the fault tolerance performance can be
improved.

4.3 Advanced System and Security Optimization

In this subsection, the advanced system is proposed as an
ideal and ultimate situationwhere the nodes in the two layers
are classified. We assume that nodes in the first layer are
always non-faulty, while nodes in the second layer have a
probability of Pf to be faulty. Note that, this is built under the
assumption that, by implementing view change whenever
vulnerability is detected in the first layer, after a long period,
the nodes left in the first layer are the ones with higher reli-
ability. These nodes show more stable performance and
remain faithful for a certain period of time. The consensus
success rate of the advanced system can be calculated as

PA ¼
Xbm2 c
j¼0

Pj
g3 1� Pg3

� �ðm�jÞ
; (13)

Pg3 ¼
Xn

g¼bn3cþ1
Cg

nP
g
f 1� Pf

� �n�g
; (14)

where Pf represents the faulty probability of second-layer
nodes and PA represents the consensus success rate of the
advanced system. Comparing the analytical result with the

simulation results in Fig. 8, we can see that the two curves
concur. This proves the analytical result is valid.

In the practical systems, it is alwaysworth to knowwhat the
determined security threshold is, i.e., to achieve 100 percent
success rate, what is the maximum faulty nodes. Unlike the
single-layer PBFT, the double-layer PBFT can be vulnerable
if the faulty nodes are randomly distributed. This is because
that the first layer is made up of one PBFT group consisting
of a limited number of nodes, and the system has no chance
to reach consensus if more than one-third of them are faulty
nodes. In this case, as long as there are more bm3 c faulty nodes
in the system, some specific faulty node distributions will
cause the system to fail. In other words, the first-layer nodes
have more weights than the second for the final decision.
However, as wementioned in the introduction, this topology
is very useful in decentralized systems to balance efficiency
and security performance.

Fortunately, the determined security threshold can be
improved over the operation time. In the advanced system
where there is no faulty node in the first layer, the success rate
stays at 100 percent until the number of faulty nodes increases
to bn3c�bm2 c. Note that the intermediate states exist but not pre-
sented. Therefore, we have the following proposition.

Proposition 6. To achieve 100 percent success rate, the maxi-
mum number of faulty nodes tolerated increases from bm3c to
bn3c�bm2 c if the advanced system can be achieved.

However, this does not indicate that the consensus rate
falls immediately to 0 when this threshold is exceeded. As
shown in Fig. 8, the curve does not show a rapid decline until
the probability of faulty nodes reaches around 0.3. To guar-
antees 100 percent success of consensus, number of faulty
nodes cannot be more than 1/6 of overall nodes. However,
in practical deployments, especially with wireless communi-
cation uncertainty in large systems, it is very costly (and
even impossible) to achieve a 100 percent success of consen-
sus. Thus, fault tolerance of the double-layer systemdepends
on the reliability requirement in different scenarios. For
example, in 5G where the reliability requirement is lowered
to 99.999 percent [33], the statistical fault tolerance is much
higher than 1

6 according to Fig. 8.

5 X-LAYER PBFT SYSTEM

5.1 Communication Complexity Analysis
ofX-Layer System

X-layer PBFT system represents a general situation where
nodes in a network are allocated to more than 2 layers. The
consensus algorithm of ith (i � X) layer is inserted between
the commit and reply phase in i� 1th layer so that communi-
cation complexity can be further lowered. Suppose in an
X-layer system,where every layer is full, the number of nodes
in each subgroup in the ith ofX-layer ismi þ 1 (m0 ¼ 1). The
total number of nodesZX in thisX-layer system is

ZX ¼ 1þ
XX
a¼1

Ya
i¼1

mi

 !
: (15)

The communication complexity CX of this X-layer PBFT
system is

Fig. 8. Analytical and simulation curves for success rate in advanced
system. (m ¼ n ¼ 30).
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CX ¼
XX
i¼1

mi�2mi�1ðmi þ 1Þ2; (16)

wherem�1 is defined to be 1.
In this case, the minimum communication complexity of

X-layer system can also be transformed into a typical opti-
mization problem, which aims to solve the minimum value
of Equation (16) under the restriction of Equation (15). The
method is similar to Proposition 2, which is omitted here.
Fig. 9 compares the communication complexity of systems
with the same number of nodes but different network
depth. It shows that lower communication complexity can
be obtained by dividing a system into more layers.

Therefore, we infer that the minimum communication
complexity CXmin will be reached if a system is divided into
maximum network depth Xmax, i.e., by allocating the mini-
mum number of 3 replicas into every sub-group. In other
words, the Xth layer contains 3X nodes in total. For given
Z,Xmax can be expressed as

Xmax ¼ blog 3 2Z þ 1ð Þc � 1: (17)

To analyze the communication complexity of this limiting
case, we suppose that Z is an integer that satisfies Z ¼
1þ 3þ 32 þ � � � þ 3Xmax . This is to say, there are exactly 3
replicas in each sub-group in each layer. In this case, CXmin

can be calculated as

CXmin ¼
XXmax

i¼1
3i�1ð3þ 1Þ2 (18)

¼ 16� 1� 3Xmax

1� 3
(19)

¼ 16Z � 16

3
: (20)

So far, we have analyzed the communication complexity of
multi-layer PBFT when the network depth is maximized.
During this process, we make an assumption about the num-
ber of replicas in each sub-group to explore the what the com-
munication complexitywould approachwhenX continues to
increase. The analytical result shows the communication com-
plexity of the Xmax-layer system is lowered to 16Z�16

3 , a linear

relationship with the node number Z. Therefore, we have the
following proposition.

Proposition 7. The communication complexity is further low-
ered by increasing network depth and is in the range of 1:9Z

4
3 �

C � 16Z�16
3 . In other words, multi-layer PBFT system provides

better node scalability compared with the original PBFT.

However, it is worth mentioning that other performances
such as security and latency serve as a trade-off when
reducing the communication complexity. Detailed analysis
is provided in Sections 5.2 and 5.3 as follows.

5.2 Security Analysis ofX-Layer System

Like the double-layer system, the security performance of
the X-layer PBFT system can also be optimized over opera-
tion time by a proper protocol. In this case, the threshold TX

to maintain the success rate at 100 percent is

TX ¼
$
mX

3

%
�
$QX�1

i¼1 mi

2

%
: (21)

From Equation (21), it can be seen that TX < 1
6 and it

drops as X increases. In other words, by increasing the net-
work depth, the security performance is weakened while
the communication complexity is improved. This is because
increasing layer number leads to fewer node number in
each layer, which makes the system more vulnerable to ran-
domly distributed faulty nodes. In the practical scenarios,
this trade-off should be considered when designing multi-
layer PBFT systems.

5.3 Latency Analysis

Another trade-off when reducing the communication com-
plexity is latency, which will be analyzed in this subsection.
In the proposed multi-layer PBFT, we construct a hierarchi-
cal structure to limit the peer-to-peer communication within
each group or layer. Meanwhile, it is inevitable that the sys-
tem confirmation delay is prolonged since the consensus
reaching process is carried out in each layer successively.

In fact, the confirmation delay would keep increase with
increasing network depth X. Assuming that each layer
takes average tavg seconds to reach consensus and propagate
to the next layer, the average propagation delay tapd holds a
linear relationship with the network depth X, i.e., tapd ¼
Xtavg. Fortunately, if the protocol is used in the Internet, we
can use parallel routes and distribute different information
through different paths. In this way, though the consensus-
reaching process still goes through different layers, the
delay within groups is reduced, contributing to a lowered
overall latency [34].

Conclusively, compared with original PBFT, the multi-
layer PBFT sacrifices certain system delay while providing
low complexity. Even though, compared with other consen-
sus algorithms such as PoW that has good scalability, the
latency of multi-layer PBFT is significantly lower. Therefore,
the proposed system can be regarded as a trade-off between
system delay and scalability of the existing protocols. Table 2
is provided to compare the performances of different proto-
cols and the proposed multi-layer PBFT. As such, Consider-
ing the different demands of practical scenarios, different

Fig. 9. Communication complexity of PBFT and multi-layer systems.
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consensus protocols could be adopted to provide optimal
performance accordingly.

6 THE PROTOCOL

In this section, we propose a practical protocol dedicated to
the double-layer PBFT, where replicas in the first layer are
denoted as r1i (superscript 1 for layer number, subscript i
for replica index). r1i act as leaders for corresponding sec-
ond-layer replicas (r2i ). One leading r1i and its corresponding
r2i s, all together, form a consensus group, resulting in a tree-
like topology structure.

When each group reaches consensus, group members
reply to their leader instead of the client. Then the leader
collects replies and sends it to the client on behalf of that
consensus group. The client accepts the results only agreed
by more than half consensus groups. The protocol overview
is illustrated in Fig. 10. Meanwhile, there is a group configu-
ration GP that describes the allocation group members and
their leader. It will be updated when the network structure
is changed. In brief, the new protocol inserts successive
pre� prepare, prepare, and commit phases before starting
the commit phase in the upper layer.

6.1 Consensus Flow

6.1.1 The Client

A client c sends a request message ½o; t; c	request to primary.
This request invokes an operation owith timestamp t. Time-
stamps are ordered by time, so the stamp of later operation
contains higher values. The request is sent to the replica.
The identity of the replica is extracted from the view num-
ber contained in replies from previous operations. On
receiving the request, primary multicasts messages using
the protocol stated below.

All group leaders reply results to the client directly. The
poset� reply has the form ½o; t; c; i; r; rc1; n; GP 	poset�reply
where n is the current view number, i is the replica number,
r is the result of the execution, rc is the reply certificate and
GP describes the replicas allocation.

Assuming there are a number of m replicas in the first
layer and n in the second, and the number of faulty replicas
in a consensus group is fg (to distinguish from f). If leaders
have received fg þ 1 matching valid replies from the same
consensus group, this group is said to have reached consen-
sus. The network reaches consensus when more than half of
the groups have the same replies. The client only accepts
results replied from group leaders when at least half of
them are consistent.

6.1.2 First-Layer Protocol

In the first layer, the primary and m replicas form a con-
sensus group. When primary p receives a request M ¼
½o; t; c	request from client, it authenticates the request and cli-
ent’s identity. Then primary assigns a sequence number a to
M. After that, the primary steps into pre� prepare phase by
multicasting ½M;d;a; n	pre�prepare1 where d is the digest of M
(superscript is to distinguish pre� prepare1 in the first layer
from pre� prepare2 in the second layer). Primary multicasts
messages only among r1. Thus, only r1 reacts on pre�
prepare1. The propagation is restricted since the protocol
runs layer by layer.

For pre� prepare, prepare and commit messages, a rep-
lica r1i accepts the one with the same view n; the authenticity
is then verified; a is between watermark h and H. The
watermark is introduced to ensure a weak synchronization
and defined in Section 6.4.

With conditions above, a replica i in the first layer accepts
a pre� prepare1 message from primary only when there is
none different request with the same view n and sequence
number a is accepted. Then it multicasts ½d;a; i; n	prepare1 mes-
sages to all r1i in the first layer. It records both pre� prepare1

and prepare1 messages to its log. During the prepare phase,
each r1i replica collects 2f messages with matching sequence
number a, view n, and request M. With the received pre�
prepare1 messages, they form prepared� certificate1, which
indicates a particular r1i replica has prepared the request.

For prepared r1i , it multicasts ½d;a; i; n	commit1 and waits
for more than 2f þ 1 matching commit1 messages with the
same view, sequence and digest from different r1 replicas.
Received messages form commit� certificate1 (cc1) and
this request is said to be committed on replica r1i . Then the
replica pauses the execution and initiates another round of
protocol in the second layer as described in Section 6.1.3.

The committed replicas send ½o; t; i; r; n	reply1 to their group
leader, i.e., the primary in the first layer. The primary con-
firms that this group has reached consensus by checking
more than half of groupmembers reply consistent reply1 mes-
sages, including itself. The group leader collects reply1 and
forms a reply-certificate rc1. After that, this primary replies to
the client with ½o; t; c; i; r; rc1; n; GP 	poset�reply. Notice that it is
not necessary for primary to reply to the client on behalf of
consensus, but we require primary to do so to keep the algo-
rithm the same on all replicas in case amassive deployment.

6.1.3 Second-Layer Protocol

A committed r1i multicasts new pre� prepare message to r2

within the same consensus group, where another round of

TABLE 2
Performance Comparisons of the Proposed and State-of-the-Art Consensuses

Byzantine fault
tolerance

Security Latency Communication
complexity

Scalability

Original PBFT [11] Yes 1
3 Low OðZ2Þ Low

RAFT [8] No 1
2 Low OðZÞ High

Hotstuff [30] Yes 1
3 Medium OðZÞ High

Double-layer PBFT (proposed) Yes Equation (7) Equation (11) Medium 1:9Z
4
3 Medium

Multi-layer PBFT (proposed) Yes Equation (21) High (Increases with
network depth)

1:9Z
4
3 � C � 16Z�16

3 (decreases
with network depth)

High
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PBFT protocol is implemented. All group members reply to
the leader in a similar manner in Section 6.1.2 when the
request is committed again. For a replica r1p which acts as
primary, it multicasts a similar ½M; d;a; n; cc1	pre�prepare2 to r2i
replicas in same consensus group, where cc1 is the
commit� certificate1. The n, a, and M are inherited from
the previous process. A replica r2i in consensus group will
accept the request if the condition mentioned in the first-
layer protocol is satisfied, in addition to the presence of cc1.

On receiving valid pre� prepare2 message, the pre-pre-
pared r2i multicasts ½d;a; i; n	prepare2 messages to all r2i in same
consensus group. It adds both pre� prepare2 and prepare2

messages to its log. In the prepare2 phase, each r2 replica col-
lects 2f messages with matching sequence number a, view n,
and request M. With received pre� prepare2 message, it
forms a quorum prepared certificate2, which indicates that
this r2i replica has prepared the request.

Then the prepared replicas r2i and their r1i leader multi-
cast ½d;a; i; n	commit2 and collect 2f þ 1 matching commit2

messages with the same view, sequence and digest form
different r2i replicas. These commit2 form commit�
certificate2, and this request is said to be committed. Rep-
lica then executes the message which has been committed.
After the execution, all group members reply to the result to
their group leader, and the leader replies to the client in a
similar manner in Section 6.1.2. The pseudocode for proto-
col are described in Algorithms 1, 2 and 3.

Algorithm 1. Primary Normal-Case Pseudocode

while valid request1 received=True do
if client identity authenticated=True then
m n.
multicasts pre� prepare1 to r1.

end if
end while
while valid prepare1 received=True do
if number of valid prepare1 > 2f then
forms prepared� certificate1.
multicasts commit1 to r1.

end if
end while
while valid commit1 received=True do
if number of valid commit1 > 2f then
forms commit� certificate1.

end if
end while
while valid reply1 received=True do
if number of valid reply1 >half of members then
forms rc1.
reply client with post� reply1.

end if
end while

6.2 Faulty Primary Elimination

6.2.1 Faulty Primary Detection

The most commonly applied condition for initiating a view-
change is by detecting whether the primary is responding,
i.e., the replicas keep a timer which will be reset each time a
new request is received. However, a faulty primary that
assigns different pre� prepare to different replicas will not
trigger time-out. Thus, we present a possible mechanism
without a timer to detect faulty primary nodes that multi-
cast random messages during prepare phase. Since one rep-
lica may skip several operations when the connection is
lost, we want the detection to be independent without the
prerequisite of total order and continuous sequence number
a, i.e., replicas accept discrete a as long as it is consistently
increasing/decreasing. To facilitate understanding of the
mechanism, we first assume that the primary is not faulty.
Since there are at most f faulty replicas, the collected 2f þ 1
messages contain f faulty messages in the worst situation.
And the rest f þ 1 messages must be obtained from non-

Fig. 10. Implementation flow chart for double-layer PBFT model.
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faulty replicas; thus, those f þ 1 messages are identical.
Those faulty messages (or the digest of the messages) could
be unmatched with each other. Or, the faulty messages are
identical, but those faulty messages are different from those
matching messages among non-faulty nodes. For simplicity,
we say that in the latter case, there are two versions of mes-
sages in 2f þ 1 collections, one kept among non-faulty repli-
cas, and another version is kept among faulty replicas.

Algorithm 2. r1i Normal-Case Pseudocode

while valid pre� prepare1 received=True do
multicasts prepare1 to p r1.

end while
while valid prepare1 received=True do
if number of valid prepare1 > 2f then
forms prepared� certificate1.
multicasts commit1 to r1.

end if
end while
while valid commit1 received=True do
if number of valid commit1 > 2f then
forms commit� certificate1.
multicasts pre� prepare2 to subordinate r2.

end if
end while
while valid prepare2 received=True do
if number of valid prepare2 > 2f then
forms prepared� certificate2.
multicasts commit2 to r2.

end if
end while
while valid commit2 received=True do
if number of valid commit2 > 2f then
forms commit� certificate2.
reply primary with reply1.

end if
end while
while valid reply2 received=True do
if number of valid reply2 >half of members then
forms rc2.
reply client with post� reply2.

end if
end while

Algorithm 3. r2i Normal-Case Pseudocode

while valid pre� prepare2 received=True do
multicasts prepare2 to r1 r2 in same consensus group.

end while
while valid prepare2 received=True do
if number of valid prepare2 > 2f then
forms prepared� certificate2.
multicasts commit2 to r2 in same consensus group.

end if
end while
while valid commit2 received=True do
if number of valid commit2 > 2f then
Forms a quorum commit� certificate2.
Send reply2 to group leader.

end if
end while

When primary is non-faulty and each replica collects
2f þ 1 messages, the number of different versions nv falls in
the interval 2 and f þ 1. That is because, in the worst case
mentioned above, each faulty replica multicasts different
versions of messages, resulting in f different versions
among faulty replicas. Besides, there is an additional ver-
sion kept by f þ 1 non-faulty replicas. At the presence of
faulty primary that multicasts random messages, the mes-
sages in pre� prepare that received by non-faulty replicas
differ. In other words, nv exceeds the upper bound f þ 1,
and the primary is detected to be faulty. This condition,
along with time out, triggers the view� change phase.

6.2.2 View Change

In conventional PBFT [11], replicas invoke view change in
prepare phase. Changes are made to adapt to our multi-
layer model. As shown in Fig. 1, a replica is the primary of
its sub-layer replicas. Thus, in this protocol, replicas in a
specific layer detect their faulty primary in the upper layer
and invoke cross-layer view change. Each replica, which
suspects the primary to be faulty, multicasts a view�
change messages with the stable checkpoint to new primary
(the new primary may be determined by election mecha-
nism based on current view number). The new primary
decides whether to lunch new� view.

Suppose a replica is in layer L as a member for group K,
and notice the group leader is the group member of group
in layer L� 1. If it suspects the group leader is faulty for not
responding or deliver pre� prepare messages with invalid
sequence number, it stops accepting requests and starts
view change that moves the view of this group from n into
nþ 1 by multicasting ½nþ 1;a; C; P; i	view�change, where a is
the sequence number for the latest checkpoint for this rep-
lica and C is the 2f matching certificate for this checkpoint.
P is the collection of prepare� certificate (2f þ 1 matching
prepare requests) for each pre� prepare request that higher
than a. i is the identification of the sender.

If the new primary p in new view nþ 1 has received 2f �
1 valid view� change messages from other group members.
It multicasts ½nþ 1; GP; g; O	new�view, where the g is a set of
2f matching viewChange� certificates, and O is the set of
pre� preparemessages than need to be multicasted for they
are failed to reach consensus in last view n. The sequence of
pre� prepare in O is ranging from the latest checkpoint
know to the new leader and the latest a in P . GP is the
update of itself. describes how p allocate its group member
in layer L� 1 to the rest members in group K. Member rep-
licas accept and execute a valid new view. Those mentioned
above are similar to original view-change protocol.

However, taking over the leader of group K in layer L
implies that this replica becomes the member of a group in
layer L� 1 (for instance, group J). Thus, the primary pmul-
ticasts ½join; n; g; i	join to group J after the view� change.
The n is view number for group J since it should remain
unchanged if there is no view change in J . p extracts view
in J from the commit� certificate that passed by the origi-
nal group leader from group K. Matching n and g prove the
validity. Then this replica directly commits the current
operation since it must have been committed in layer L� 1,
otherwise the consensus protocol will not be executed in
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layer L. This join message informs the member in group J
that there is a change of replica and group J update local
GP .

Also, a member in layer L is the leader in layer Lþ 1. To
reallocate its former members (since p is no longer their
leader), it multicasts ½vþ 1; G; g; i; r	redistribute to replica r
where G is the new designated group in layer L� 1 for rep-
lica r. The replica r then redirects itself to group G and
update local GP . The replicas governed by groupK in layer
deeper than L� 1 are reaching consensus in seam sequence
since they are (indirectly) lead by group K. The effect of
view change is limited.

To reduce the extra communication complexity and
latency introduced by this modified protocol, the redistribute
messages are embedded into GP in new� view message.
Then it is extracted by current members of groupK and pass
to their former group in layer Lþ 1 by piggybacking in pre�
prepare. Those replicas in layer Lþ 1 redirect themselves
before responding to new pre� prepare. Thus, only the join
message attributes to extra communication expenditure
which, in the double-layer case, the sizem of layer 1.

To facilitate the assessment of view change complexity of
our double-layer scenario, suppose that the number of repli-
cas in the first layer is m, and for each group in the second
layer is n (as depicted in Fig. 1). Note that the view change
can be triggered from either the first layer or the second
layer. First, we consider the case that the view change is
triggered in the first layer. As described in the protocol, the
first part of our view change process runs within this layer
(which is similar to original PBFT). For this part, the com-
plexity is Oðm3Þ. As one of the members in the first layer is
selected as the new primary, the extra complexity is intro-
duced by multicasting the redistributemessages to its group
in the second layer. Since the certificate is generated in the
first layer, the complexity of this part is Oðm2nÞ. The total
complexity is Oðm3 þm2nÞ.

Then we consider that a view change is triggered in one
of the groups in the second layer. Similarly, the complexity
is Oðn3Þ for the first part. The extra complexity is introduced
by multicasting the join messages to the first layer. How-
ever, the certificate is now generated in one of the groups in
the second layer. For this reason, the additional complexity
is Oðn2mÞ. Then the total complexity is Oðn3 þ n2mÞ.

For comparison, the complexities are OððmþmnÞ3Þ for
the original PBFT and OðmþmnÞ for HotStuff when con-
sidering the same total number of replicas. It can be seen
that in both first layer or second layer triggered cases, the
complexity of proposed double layer PBFT is not as good as
HotStuff, however, it reduces the complexity in large scale
when compared with original PBFT.

6.3 Operation Synchronization

The precondition for entering the next phase does not
require synchronization across all replicas. Due to the loss
of connection or other reasons, one replica may skip some
operations. Though the consensus is still reached, the
sequence number a is not necessarily continuous.

But for clients who also access data from the network,
operations are preferably synced on each replica. The asyn-
chronous replica can be detected by the discrete sequence
number and the reached watermark. A replica may extract

the missing operations by inquiring them from other repli-
cas in real-time or at a constant interval.

Once the replica decides to extract a missing operation
from the rest of the network, it multicasts ½na; i; n	extract�request.
If there are no fewer than 2f þ 1 valid extract� reply, the rep-
lica accepts the reply as its missing operation. For replica who
received extract� request, it replies ½O;a; i; n	extract�reply if the
request is valid.

6.4 Garbage Collection

The data recorded on replicas increase its size as the protocol
run. To discard unnecessary operations that have already
reached a consensus, we implement Castro’s [11] garbage
collection.

Replicasmulticast checkpointmessages with the sequence
number of latest committed operations. Sequence number
with f þ 1 checkpoint (including its own) is seated as low
watermark h. To prevent a replica who encounters with the
transmission delay from going too far. A logic size L is set
that the replica only executes operation between h and
H ¼ Lþ h.

6.5 Safety and Liveness

The group-wide operation is inconsistence with the original
PBFT. The network is weakly synchronised that the time t
for a messaged been received after sending does not go
infinity. The byzantine replica is assumed unable to subvert
cryptography. The safety and liveness are retained within/
across groups with modified view change protocol. Suppose
there are no more than 1

3 of the nodes in a group are faulty,
and the network is weakly synchronised that the time t for a
messaged been received after sending does not go infinity.

Since the protocol requires more than 2
3 replicas to com-

munities before advanced into next operation (to ensure the
number of responses from non-faulty replicas is always
greater than that from faulty), there is at least one non-faulty
replica overlap for two consecutive operations. All non-
faulty replicas agree on each other, then they agree on total
order of operations, providing safety. Also, the bound of
faulty replicas indicates the protocol always collects suffi-
cient responses to proceed for liveness. The consensus in
upper layer is the precondition to invoke protocol in sub-
groups. Thus, safety is guaranteed across groups. The modi-
fied view change protocol replaces faulty group leader.
Thus, liveness is guaranteed across groups. This consistency
with PBFT in safety and liveness within and across groups
leads to consistency for the whole network.

7 CONCLUSION

A scalable multi-layer PBFT mechanism is proposed to
reduce the communication complexity of the original sin-
gle-layered PBFT. This paper proves that the communica-
tion complexity of the proposed double-layer PBFT system
is significantly reduced to a minimum of C � 1:9Z

4
3 at sys-

tem’s maximum optimized capacity. To reach the minimum
communication complexity, the optimal values of m and n
are proposed in Section 3.3. Moreover, the analytical results
of the security threshold show that the success rate sinks
significantly when the proportion of faulty nodes exceeds 1

3
of the total. Also, the threshold which keeps success rate at
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100 percent rises from bm3c to bn3c�bm2 c in advanced model.
These results show that the security performance of the dou-
ble-layer system is largely determined by the first layer and is
improved over operation time. Latency performance is also a
trade-off. The confirmation delay increases with increasing
network depth. Finally, we expand the double-layer system
to the multi-layer. We have compared security performance
and communication complexity between double-layer and
multi-layer systems. Results show that communication com-
plexity can be further lowered to a minimum of 16Z�16

3 if the
network depth ismaximized toXmax at the expense of certain
security performance degradation.

This paper provides guidance for multi-layer PBFT sys-
tem design and performance analysis, which would serve
as a foundation for future research. Meanwhile, there are
also limitations to be improved. For example, a system
model to differentiate nodes in the first and second layer
could be proposed as a trade-off between FND/FPD and
the advanced model. Also, experimental evaluation of Prop-
osition 7 would give a further insight into the performance
tradeoffs to help with the system design in different applica-
tion scenarios. Another potential topic is the deployment of
multi-layer PBFT system. It is worth to mention that some
scenarios such as in financial, are sensitive to both latency
and scalability, thus more advanced research should be con-
ducted to solve the issue.
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