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Abstract—In this article, we present the first leader election protocol in the population protocol model that stabilizes within OðlognÞ
parallel time in expectation with OðlognÞ states per agent, where n is the number of agents. Given a rough knowledgem of lg n such

thatm � lg n andm ¼ OðlognÞ, the proposed protocol guarantees that exactly one leader is elected and the unique leader is kept

forever thereafter. This protocol is time-optimal because it was recently proven that any leader election protocol requiresVðlognÞ
parallel time.

Index Terms—Population protocols, leader election, stabilization time

Ç

1 INTRODUCTION

WE consider the population protocol (PP) model [3] in this
paper. A network called population consists of a large

number of finite-state automata, called agents. Agents make
interactions (i.e., pairwise communication) with each other by
which they update their states. The interactions are opportu-
nistic, that is, they are unpredictable. Agents are strongly
anonymous: they do not have identifiers and they cannot dis-
tinguish their neighbors with the same states. As with the
majority of studies on population protocols [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], we assume that the network of
agents is a complete graph and that the scheduler selects an
interacting pair of agents at each step uniformly at random.

In this paper, we focus on the leader election problem,
which is one of the most fundamental and well studied
problems in the PP model. The leader election problem
requires that starting from a configuration where all agents
are in the same state, a population reaches a configuration
in which exactly one leader exists and the population keeps
that unique leader thereafter.

There have been many works which study the leader elec-
tion problem in the PP model (Tables 1 and 2). Angluin
et al. [3] gave the first leader election protocol, which stabilizes
in OðnÞ parallel time in expectation and uses only constant
space of each agent, where n is the number of agents and
“parallel time” means the number of steps in an execution
divided by n. If we stick to constant space, this linear parallel

time is optimal; Doty and Soloveichik [10] showed that any
constant space protocol requires linear parallel time to elect a
unique leader. Alistarh and Gelashvili [4] made a break-
through in 2015; they achieved poly-logarithmic stabilization
time (Oðlog3 nÞ parallel time) by increasing the number of
states fromOð1Þ to onlyOðlog3 nÞ. Thereafter, the stabilization
time has been improved by many studies [6], [7], [8], [9], [14].
Gąsieniec et al. [8] gave a state-of-the-art protocol that stabil-
izes in Oðlogn � log lognÞ parallel time with only Oðlog lognÞ
states. Its space complexity is optimal; Alistarh et al. [5] showed
that any leader election protocol with oðn=ðpolylog nÞÞ parallel
time requiresVðlog lognÞ states. Michail et al. [9] gave a proto-
col with parameter t ð2 � t � nÞ, which stabilizes within
Oðlog2 n=log tÞ parallel time and requires Oðt þ lognÞ states.
Whenwe set t ¼ QðncÞ for some (small) constant c, this proto-
col stabilizes withOðlognÞ parallel time but requires a polyno-
mial number of states. Those protocols with super-constant
number of states [4], [5], [6], [7], [8], [9], [14] require some
rough knowledge of n.1 For example, in the protocols of [7]
and [8], aQðlog lognÞ valuemust be hard-coded to set themax-
imumvalue of one variable (named l and “level” in [7] and [8],
respectively). One can find detailed information about the
leader election in the PPmodel in two survey papers [15], [16].

The stabilization time of [9] is optimal; any leader elec-
tion protocol requires VðlognÞ parallel time even if it uses
any large number of states and assumes the exact knowl-
edge of population size n [11]. At the beginning of an execu-
tion, all the agents are in the same initial state specified by a
protocol. Therefore, simple analysis on Coupon Collector’s
problem shows that we cannot achieve oðlognÞ parallel sta-
bilization time if an agent in the initial state is a leader. It
was shown in [11] that we cannot achieve oðlognÞ parallel
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1. Two leader election protocols are given in [9]. The first one
requires knowledge of an upper bound of n. The second one does not
use any knowledge of n for its transition rules (the authors of [9] call
such a protocol size-oblivious) whereas the domain of a variable used in
the protocol depends on n.
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time even if we define the initial state such that all the
agents are non-leaders initially.

1.1 Our Contribution

In this paper, we present the first time-optimal leader elec-
tion protocol PLL with sub-polynomial number of states.
Specifically, the proposed protocol PLL stabilizes in OðlognÞ
parallel time and uses only OðlognÞ states per agent. Com-
pared to a state-of-the-art protocol [8], PLL achieves shorter
(and best possible) stabilization time but uses larger space
of each agent. Compared to [9] with t ¼ OðncÞ for some con-
stant c, PLL achieves drastically smaller space (from polyno-
mial to logarithmic space) while maintaining the same (and
optimal) stabilization time. The protocol PLL requires a
rough knowledge of the population size n as with the exist-
ing super-constant space protocols; it requires integer m
such thatm � lgn andm ¼ QðlognÞ.

In the original population protocol model, interactions are
asymmetric, that is, when two agents interact, one of them is
given a role initiator and the other is given a role responder.
Thus, an interaction between two agents with states p and q
can show different behavior according to whether the agent
with state p is an initiator or not. However, several works
(e.g., [4], [5], [17]) are devoted to design a symmetric protocol,
which does not utilize the roles, initiator and responder, to
determine the next states at an interaction. (See Section 4 for
the formal definition.) This property is important for some
applications such as chemical reaction networks.Wewill give
PLL as an asymmetric protocol (i.e., a non-symmetric proto-
col) in the main part of this paper only for simplicity of presen-
tation and analysis of stabilization time. Actually, we can
change PLL to a symmetric protocol, which we discuss in Sec-
tion 4. In particular, that section proposes the first implemen-
tation of totally independent and fair (i.e., unbiased) coin flips
in the symmetric version of the PP model. Although the
implementation of coin flips in [5] is almost independent and
fair, the totally independent and fair coin clips achieved in
this paper can contribute to a simple analysis in a variety of
protocols in the PPmodel.

A brief announcement [1] and a preliminary extended
abstract [2] of this article appeared in the proceedings of
PODC 2019 and SSS 2019, respectively.

2 PRELIMINARIES

A population is a network consisting of agents. We denote the
set of all the agents by V and let n ¼ jV j. We assume that a
population is a complete graph, thus every pair of agents
ðu; vÞ can interact, where u serves as the initiator and v
serves as the responder of the interaction. Throughout this
paper, we use the phrase “with high probability” to denote
probability 1�Oðn�1Þ.

A protocol P ðQ; sinit; T; Y;poutÞ consists of a finite set Q of
states, an initial state sinit 2 Q, a transition function T : Q�
Q! Q�Q, a finite set Y of output symbols, and an output
function pout : Q! Y . Every agent is in state sinit when an
execution of protocol P begins. When two agents interact, T
determines their next states according to their current states.
The output of an agent is determined by pout: the output of
an agent in state q is poutðqÞ. In this paper, we assume that a
rough knowledge of an upper bound of n is available. Spe-
cifically, we assume that an integer m such that m � lgn
and m ¼ QðlognÞ are given, thus we can design P ðQ; sinit;
T; Y;poutÞ using this input m, i.e., the parameters Q; sinit;
T; Y , and pout can depend onm.

A configuration is a mapping C : V ! Q that specifies the
states of all the agents. We define Cinit;P as the configuration
ofP where every agent is in state sinit.We say that a configura-
tion C changes to C0 by the interaction e ¼ ðu; vÞ, denoted by
C !e C0, if ðC0ðuÞ; C0ðvÞÞ ¼ T ðCðuÞ; CðvÞÞ and C0ðwÞ ¼ CðwÞ
for allw 2 V n fu; vg.

A schedule g ¼ g0; g1; . . . ¼ ðu0; v0Þ; ðu1; v1Þ; . . . is a
sequence of interactions. A schedule determines which
interaction occurs at each step, i.e., interaction gt happens at
step t. In particular, we consider a uniformly random sched-
ulerG ¼ G0;G1; . . . in this paper: each Gt of the infinite
sequence of interactions is a random variable such that
PrðGt ¼ ðu; vÞÞ ¼ 1

nðn�1Þ for any t � 0 and any distinct
u; v 2 V . All interactions G0;G1; . . . are independent of each
other. Note that we use capital letter G for this uniformly
random scheduler while we refer a deterministic schedule
with a lower case such as g. Given an initial configuration
C0 and a schedule g, the execution of protocol P is uniquely
defined as XP ðC0; gÞ ¼ C0; C1; . . . such that Ct !gt Ctþ1 for all
t � 0. Note that the execution XP ðC0;GÞ ¼ C0; C1; . . . under
the uniformly random scheduler G is a sequence of configu-
rations where each Ci is a random variable. For a schedule
g ¼ g0; g1; . . . and any t � 0, we say that agent v 2 V partici-
pates in gt if v is either the initiator or the responder of gt.
We say that a configuration C of protocol P is reachable if
there exists a finite schedule g ¼ g0; g1; . . .; gt�1 such that

TABLE 1
Leader Election Protocols

States Stabilization Time Parameter

[3] Oð1Þ OðnÞ
[4] Oðlog 3nÞ Oðlog 3nÞ
[5] Oðlog 2nÞ Oðlog 5:3n � log lognÞ
[6] OðlognÞ Oðlog 2nÞ
[7] Oðlog lognÞ Oðlog 2nÞ
[8] Oðlog lognÞ Oðlogn � log lognÞ
[9]2 Oðt þ lognÞ Oðlog 2n=log tÞ 2 � t � n

This work OðlognÞ OðlognÞ
Stabilization time is shown in terms of parallel time and in expectation.

TABLE 2
Lower Bounds for Leader Election

States Stabilization Time

[10] Oð1Þ VðnÞ
[5] < 1=2log logn Vðn=ðpolylog nÞÞ
[11] arbitrary VðlognÞ

Stabilization time is shown in terms of parallel time and in expectation.

2. The protocol of [9] is not designed for the standard population
protocol model, that is, this protocol requires randomized transition at
each step. Specifically, when two agents interact, this protocol assumes
that the two agents can access a random number of an arbitrary number
of bits. However, fortunately, this protocol can be simulated in the stan-
dard population protocol model without increasing the stabilization
time and the number of states asymptotically.
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XP ðCinit;P ; gÞ ¼ C0; C1; . . .; Ct and C ¼ Ct. We define CallðP Þ
as the set of all reachable configurations of P .

The leader election problem requires that every agent
should output L or F which means “leader” or “follower”
respectively. Let SP be the set of configurations such that, for
any configuration C 2 SP , exactly one agent outputs L (i.e.,
is a leader) in C and no agent changes its output in execution
XP ðC; gÞ for any schedule g. We say that a protocol P is a
leader election protocol or solves the leader election problem
if execution XP ðCinit;P ;GÞ reaches a configuration in SP with
probability 1. For any leader election protocol P , we define
the expected stabilization time of P as the expected number
of steps during which execution XP ðCinit;P ;GÞ reaches a con-
figuration in SP , divided by the number of agents n. The divi-
sion by n is needed because we evaluate the stabilization
time in terms of parallel time.

We write the natural logarithm of x as lnx and the loga-
rithm of x with base 2 as lgx. We do not indicate the base of
logarithm in an asymptotic expression such as OðlognÞ.

In the proposed protocol, we often use one-way epidemic
[18]. The notion of one-way epidemic is formalized as fol-
lows. Let g ¼ g0; g1; . . . ¼ ðu0; v0Þ; ðu1; v1Þ; . . . be an infinite
sequence of interactions, V 0 be a set of agents (V 0 � V ), and
r be an agent in V 0. The epidemic functionIV 0;r;g : ½0;1Þ ! 2V

is defined as follows: IV 0;r;gð0Þ ¼ frg, and for t ¼ 1; 2; . . .,

IV 0;r;gðtÞ ¼
IV 0;r;gðt� 1Þ if ut�1 =2 V 0 _ vt�1 =2 V 0

IV 0;r;gðt� 1Þ [ fut�1g else if vt�1 2 IV 0;r;gðt� 1Þ
IV 0;r;gðt� 1Þ [ fvt�1g else if ut�1 2 IV 0;r;gðt� 1Þ
IV 0;r;gðt� 1Þ otherwise:

8>><
>>:

We say that v is infected at step t if v 2 IV 0;r;gðtÞ in the epi-
demic in V 0 and under g starting from agent r. At step 0,
only r is infected; at later steps, an agent in V 0 becomes
infected if it interacts with an infected agent from V 0. Once
an agent becomes infected, it remains infected thereafter.

The one-way epidemic plays an important role in analyz-
ing the expected stabilization time of a population protocol.
For example, consider an execution XP ðC0;GÞ ¼ C0; C1; . . .
where agents in V 0 have different values in variable var in
configuration C0 and the larger value is propagated from
agent to agent whenever two agents in V 0 have an interac-
tion. Clearly, all agents in V 0 have the maximum value of
var when all agents in V 0 are infected in one-way epidemic
in V 0 and under G starting from the agent with the maxi-
mum value var in configuration C0.

Angluin et al. [18] prove that one-way epidemic in the
whole population V from any agent r 2 V finishes (i.e., all
agents are infected) within QðnlognÞ interactions with high
probability. Furthermore, Sudo et al. [12] give a concrete
lower bound on the probability that the epidemic in the
whole population finishes within a given number of interac-
tions. We generalize this lower bound for an epidemic in
any set of agents (sub-population) V 0 � V as follows while
the proof is almost the same as the one in [12].

Lemma 1. Let V 0 � V , r 2 V 0, n0 ¼ jV 0j, and t 2 N. We have
PrðIV 0;r;Gð2dn=n0etÞ 6¼ V 0Þ � n0e�t=n.

Proof. For each k ð2 � k � n0Þ, we define T ðkÞ as integer t
such that jIV 0;r;Gðt� 1Þj ¼ k� 1 and jIV 0;r;GðtÞj ¼ k, anddefine
T ð1Þ ¼ 0. Intuitively, T ðkÞ is the number of interactions

required to infect k agents in V 0. Let Xpre ¼ T ðdn0þ12 eÞ and
Xpost ¼ T ðn0Þ � T ðn0 � dn0þ12 e þ 1Þ.

Let k be any integer such that 1 � k � n0. When k
agents are infected, an agent is newly infected with prob-
ability kðn0 � kÞ= n

2

� �
at every step. When n0 � k agents are

infected, an agent is newly infected also with probability
kðn0 � kÞ= n

2

� �
at every step. Therefore, T ðkþ 1Þ � T ðkÞ

and T ðn0 � kþ 1Þ � T ðn0 � kÞ have the same probability

distribution. Thus, Xpre ¼ T ðdn0þ12 eÞ ¼
Pdðn0þ1Þ=2e�1

j¼1 T ðj þ
1Þ � T ðjÞ and Xpost ¼ T ðn0Þ � T ðn0 � dn0þ12 e þ 1Þ ¼Pdðn0þ1Þ=2e�1j¼1
T ðn0 � jþ 1Þ � T ðn0 � jÞ have the same probability dis-
tribution. Moreover, Xpre þXpost � T ðn0Þ holds because
dn0þ12 e � n0 � dn0þ12 e þ 1.

In what follows, we bound the probability thatXpost >
dn=n0et. We denote T ðn0 � dn0þ12 e þ 1Þ by Thalf . For any
agent v 2 V 0, let Tv be the minimum non-negative integer
such that v 2 IV 0;r;GðTvÞ, i.e., agent v becomes infected at
the Tvth step. We define Xv ¼ maxðTC0;GðvÞ � Thalf ; 0Þ.
Consider the case v =2 IV 0;r;GðThalfÞ. At any step t � Thalf , at
least n0 � dn0þ12 e þ 1 ð� n0=2Þ agents are infected. There-
fore, each interaction Gt such that ðt � ThalfÞ infects vwith
the probability at least ð1= n

2

� �Þ � ðn0=2Þ > n0=n2, hence we

have PrðXv > dn=n0etÞ � 1� n0
n2

� �nt=n0
� e�t=n. Since the

number of non-infected agents at step Thalf is at most n0=2,
PrðXpost > dn=n0etÞ � PrðWv2V ðXv > dn=n0etÞÞ � ðn0=2Þ � e�t=n
holds.

By the equivalence of the distribution of Xpre and
Xpost, we have

Pr IV 0;r;G 2dn=n0etð Þ 6¼ V 0
� �
� Pr Xpre > dn=n0et� �þ Pr Xpost > dn=n0et� � � n0e�t=n:

tu
Throughout this paper, we will use the following two

variants of Chernoff bounds.

Lemma 2 ([19], Theorems 4.4, 4.5). Let X1; . . .; Xs be inde-
pendent Poisson trials, and letX ¼Ps

i¼1 Xi. Then

8d; 0 � d � 1 : PrðX � ð1þ dÞE½X	Þ � e�d
2E½X	=3; (1)

8d; 0 < d < 1 : PrðX � ð1� dÞE½X	Þ � e�d
2E½X	=2: (2)

3 LOGARITHMIC LEADER ELECTION

3.1 Key Ideas

In this subsection, we give the key ideas of the proposed pro-
tocol PLL. Each agent v keeps an output variable v:leader 2
ffalse; trueg. An agent outputs L when the value of leader
is true and it outputs F when it is false. An execution of PLL

can be regarded as a competition by agents. At the beginning
of the execution, every agent has leader ¼ true, that is, all
agents are leaders. Throughout the execution, every leader
tries to remain a leader and tries to make all other leaders
followers so that it becomes the unique leader in the pop-
ulation. The competition consists of three modules Quick
EliminationðÞ, TournamentðÞ, and BackUpðÞ, which are exe-
cuted in this order. These three modules guarantee the fol-
lowing properties:
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� QuickEliminationðÞ:
An execution of this module takes OðlognÞ parallel

time in expectation. For any i � 2, exactly i leaders sur-
vive an execution of QuickEliminationðÞ with proba-
bility at most 21�i. The execution never eliminates all
leaders, i.e., at least one leader always survives.

� TournamentðÞ:
An execution of this module takes OðlognÞ parallel

time in expectation. By an execution of TournamentðÞ,
which starts with i � 2 leaders, the unique leader is
elected with probability at least 1�Oði=lognÞ. This
lower bound of probability is independent of an execu-
tion of the previous module QuickEliminationðÞ. The
execution never eliminates all leaders, i.e., at least one
leader always survives.

� BackUpðÞ:
An execution of this component elects a unique

leader within Oðlog 2nÞ parallel time in expectation.
From above, it holds that, after executions of Quick

EliminationðÞ and TournamentðÞ finish, the number of
leaders is exactly one with probability at least 1�Pn

i¼2 O
ð i
2i�1 lognÞ ¼ 1�Oð1=lognÞ. Therefore, combined with Back

UpðÞ, protocol PLL elects a unique leader within OðlognÞ þ
Oð1=lognÞ �Oðlog2 nÞ ¼ OðlognÞ parallel time in expectation.

In the remainder of this subsection, we briefly give the
key ideas to design the three modules satisfying the above
guarantees. In this subsection, keep in mind only that these
ideas are easily implemented with poly-logarithmic number
of states per agent, that is, with a constant number of varia-
bles with Oðlog lognÞ bits. We will present a way to imple-
ment the following ideas with OðlognÞ states per agent
in the next subsection (Section 3.2). In the rest of this sub-
section, we assume a kind of global synchronization, for
example, we assume that each agent begins an execution of
TournamentðÞ after all agents finish necessary operations of
QuickEliminationðÞ. We also present a way to implement
such a synchronization in Section 3.2.

3.1.1 Key Idea for QuickEliminationðÞ
The goal of this module is to reduce the number of leaders
such that, for any i � 2, the resulting number of leaders is
exactly i with probability at most 21�i while guaranteeing
that not all leaders are eliminated. This module is based on
almost the same idea as the lottery protocol in [5]. The proto-
col PLL achieves much faster stabilization time than the lot-
tery protocol thanks to tighter analysis on the number of
surviving leaders, which we will see below, and the combi-
nation with the other two modules.

First, consider the following game:

� Each agent in V executes a sequence of independent
fair coin flips, each of which results in head with
probability 1=2 and tail with probability 1=2, until it
observes tail for the first time,

� Let sv be the number of heads that v observes in the
above coin flips and let smax ¼ maxv2V sv,

� The agents vwith sv ¼ smax are winners and the other
agents are losers.

Let i � 2 and j � 0. Consider the situation that exactly i
agents observe that their first j coin flips result in head and
define pi;j as the probability that all the i agents win the

game in the end starting from this situation. Starting from
this situation, if all the i agents observe tail in their jþ 1-st
coin flips then exactly i agents win the gamewith probability
1; if all the i agents observe head in their jþ 1-st coin flips
then exactly i agents win with probability pi;jþ1; otherwise,
the number of winners of the game is less than iwith proba-
bility 1. Therefore, we have pi;j ¼ 2�i þ 2�i � pi;jþ1. Since we
have pi;j ¼ pi;jþ1 thanks to memoryless property of this
game, solving this equality gives pi;j ¼ 1=ð2i � 1Þ � 21�i. Let
ki be the minimum integer j such that exactly i agents
observe that all of their first j coin flips result in head. For
simplicity, we define ki ¼ �1 if no such j exists and we
define kn ¼ 0. Then, for any i � 2, we have

Prðjfv 2 V j sv ¼ smaxgj ¼ iÞ ¼
X1
j¼0

Prðki ¼ jÞ � pi;j

� 21�i
X1
j¼0

Prðki ¼ jÞ � 21�i:

Module QuickEliminationðÞ simulates this game in the
population protocol model. Every time an agent v has an
interaction, we regard the interaction as the coin flip by v. If v
is an initiator at the interaction, we regard the result of the
coin flip as head; otherwise, we regard it as tail. The correct-
ness of this simulation for coin flips comes from the defini-
tion of the uniformly random scheduler: at each step, an
interaction where v is an initiator happens with probability
1=n and an interaction where v is a responder also happens
with probability 1=n. Strictly speaking, this simple simula-
tion of coin flips does not guarantee independence of coin
flips by u and v for any distinct u; v 2 V . However, the actual
PLL defined in Section 3.2 completely simulates independent
coin flips of leaders andwewill explain it in Section 3.2. Each
agent v computes and stores sv on variable v:levelQ by
counting the number of interactions that it participates in as
an initiator until it interacts as a responder for the first time.
After every agent v computes sv on v:levelQ, the maximum
value of levelQ, i.e., smax, is propagated from agent to agent
via one-way epidemic [18], that is,

� each agent memorizes the largest value of levelQ it
has observed, and

� the larger value is propagated to the agent with
smaller value at every interaction.

From Lemma 1, all agents obtain the largest value within
OðlognÞ parallel time with high probability by this simple
propagation. If agent v knows sv < smax, v changes v:leader
from true to false, that is, v becomes a follower. Thus, when
one-way epidemic of smax finishes, only the agents v satisfy-
ing sv ¼ smax are leaders. From the above discussion, for any
i � 2, the number of such surviving leaders is exactly i with
probability at most 21�i. On the other hand, there is at least
one agent vwith sv ¼ smax, thus this module never eliminates
all leaders. A logarithmic number of states is sufficient for
levelQ because each agent v getsmore than clgn consecutive
headswith probability at most n�c for any c � 1.

3.1.2 Key Idea for TournamentðÞ
Starting from a configuration where the number of leaders
is i, the goal of TournamentðÞ is to reduce the number of
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leaders from i to one with probability 1�Oði=lognÞ while
guaranteeing that not all leaders are eliminated. The idea of
this component is simple. As with the QuickEliminationðÞ,
we use coin flips in TournamentðÞ. Every leader v maintains
variable v:rand. Initially, v:rand ¼ 1. Every time it has an
interaction, it updates v:rand by v:rand 2v:randþ j
where j indicates whether v is a responder in the interaction
or not, i.e., j ¼ 0 if v is an initiator and j ¼ 1 if v is a
responder. This operation stops when v encounters
dlgme ¼ Oðlog lognÞ interactions. Thus, when all the i lead-
ers encounter at least dlgme interactions, for every leader v,
v:rand is a random variable uniformly chosen from the set
f2dlg me; 2dlg me þ 1; . . .; 2dlg meþ1 � 1g, whose size is 2dlg me.
Although u:rand and v:rand are not independent of each
other for any distinct leader u and v, we will present a way
to remove any dependence between u:rand and v:rand in
Section 3.2. As with QuickEliminationðÞ, the maximum
value of rand is propagated to the whole population via
one-way epidemic within OðlognÞ parallel time with high
probability and only leaders with the maximum value
remains leaders in the end of TournamentðÞ.

Let v1; v2; . . .; vi be the i leaders that survive Quick
EliminationðÞ. Let r1; r2; . . .; ri be the resulting values of
v0:rand; v1:rand; . . .; vi:rand and define rmaxðjÞ ¼ maxðr1;
r2; . . .; rjÞ for any j ¼ 1; 2; . . .; i. Clearly, the number of lead-
ers at the end of TournamentðÞ is exactly one if rjþ1 6¼ rmaxðjÞ
holds for all j ¼ 1; 2; . . .; i� 1. By the union bound and inde-
pendence between r1; r2; . . .; ri, this holds with probability at
least 1�Pi�1

j¼1 2
�dlg me � 1� i=m � 1� i=ðlgnÞ. On the other

hand, an execution of TournamentðÞ never eliminates all
leaders since there is always at least one leader vj that satis-
fies rj ¼ rmaxðiÞ.

3.1.3 Key Idea for BackUpðÞ
The goal of BackUpðÞ is to elect a unique leader within
Oðlog2 nÞ parallel time in expectation. We must guarantee
this expected time regardless of the number of the agents
that survive both QuickEliminationðÞ and TournamentðÞ
and remain leaders at the beginning of an execution of
BackUpðÞ. We can only assume that at least one leader exists
at the beginning of the execution. We use coin flips also for
BackUpðÞ. Every leader v maintains v:levelB. Initially,
v:levelB ¼ 0. Every leader v repeats the following procedure
until v:levelB reaches s or v becomes a follower, where s is a
sufficiently large integer inOðlognÞ. (As wewill see later, we
set s ¼ 41m.)

� Make a coin flip. If the result is head (i.e., v partici-
pates in an interaction as an initiator), v increments
v:levelB by one. If the result is tail, v does nothing.

� Wait for sufficiently long but logarithmic parallel
time so that the maximum levelB propagates to the
whole population via one-way epidemic. If it
observes larger value in the epidemic, it becomes a
follower, that is, it executes v:leader false. Fur-
thermore, if v interacts with another leader with the
same level during this period and v is a responder in
the interaction, v becomes a follower.

Let j be an arbitrary integer such that 1 � j � s. Consider
the first time that levelB of some leader, say v, reaches j.
Let V 0 � V be the set of leaders at that time. By the

definition of the above procedure, every u 2 V 0 other than v
satisfies u:levelB < j, and u makes a coin flip at most once
with high probability until the maximum value j is propa-
gated from v to u. If the result of the one coin flip is tail, u
becomes a follower. Therefore, with probability at least
1=2�Oðn�1Þ, no less than half of leaders in V 0 n v becomes
followers, that is, the number of leaders decreases to at
most 1þ bjV 0j=2c. Chernoff bound guarantees that the num-
ber of leaders becomes one with high probability until
v:levelB for some leader v reaches s. Even if multiple lead-
ers survive at that time, we have simple election mechanism
to elect a unique leader; when two leaders with the same
level interacts with each other, one of them becomes a fol-
lower. This simple election mechanism elects a unique
leader within OðnÞ parallel time in expectation. Therefore,
the total expected parallel time to elect a unique leader is
Oðm lognÞ þOðn�1Þ �OðnÞ ¼ Oðlog2 nÞ.

3.2 Detailed Description

In this subsection, we present detailed description of the
proposed protocol PLL. The key ideas presented in the pre-
vious subsection achieve OðlognÞ stabilization time if it is
implemented correctly. However, they need some kind of
global synchronization. Furthermore, a naive implementa-
tion of the key ideas requires a poly-logarithmic number of
states (i.e., Oðlogc nÞ states for c > 1) per agent while our
goal is to achieve OðlognÞ states per agent. In this subsec-
tion, we will give how we achieve synchronization and
implement the ideas shown in Section 3.1 with only OðlognÞ
states per agent.

All variables ofPLL are listed in Table 3. All agentsmanage
six variables leader, tick, status, epoch, init, and color.
To implement the key ideas above with OðlognÞ states, we
divide the population into multiple sub-populations or
groups, as in [8], where agents in different groupsmanage dif-
ferent variables in addition to the above six variables. In the
remainder of this paper, we refer to the above six variables as
common variables and other variables by additional variables.
The population is divided to six groups based on two com-
mon variables status 2 fX;A;Bg and epoch 2 f1; 2; 3g.
That is, we divide the population to VX , VB, VA \ V1, VA \ V2,
VA \ V3, where we denote VZ ¼ fv 2 V j v:status ¼ Zg for

TABLE 3
Variables of PLL

Groups Variables Initial values

All agents

leader 2 ffalse; trueg true

tick 2 ffalse; trueg false
status 2 fX;A;Bg X
epoch 2 f1; 2; 3g 1
init 2 f1; 2; 3; 4g 1
color 2 f0; 1; 2g 0

VB count 2 f0; 1; . . .; cmax � 1g Undefined

VA \ V1
levelQ 2 f0; 1; . . .; cmaxg Undefined

done 2 ffalse; trueg Undefined

VA \ V2 rand 2 f1; 2; . . .; 2dlg meþ1 � 1g Undefined

VA \ V3 levelB 2 f0; 1; . . .; cmaxg Undefined
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Z 2 fX;A;Bg and Vi ¼ fv 2 V j v:epoch ¼ ig for i 2 f1; 2; 3g. We
have no additional variables for agents in group VX , one addi-
tional variable count 2 f0; 1; . . .; cmax � 1g for agents in VB

where cmax ¼ 41m, two additional variables levelQ 2
f0; 1; . . .; cmaxg and done 2 ffalse; trueg for agents in VA \ V1,
one additional variable rand 2 f1; 2; . . .; 2dlg meþ1 � 1g for
agents in VA \ V2, and one additional variable levelB 2 f0;
1; . . .; cmaxg for agents in VA \ V3. Agents in any group have
only OðlognÞ states. This is because every common variable
has constant size domain, every group has at most one non-
constant additional variable and any of such variables can
take OðlognÞ values. Therefore, the number of states per
agent used byPLL isOðlognÞ.
Lemma 3. The number of states per agent used by PLL is

OðlognÞ.
Independently of the six groups defined above, we

define groups VL and VF based on a common variable
leader; VL (resp., VF ) is the set of agents v 2 V such that
v:leader ¼ true (resp., v:leader ¼ false). We introduce
these two groups only for simplicity of notation.

The pseudocode of PLL is given in Algorithm 1 and its
modules CountUpðÞ, QuickEliminationðÞ, TournamentðÞ,
and BackUpðÞ are presented in Algorithms 2, 3, 4, and 5,
respectively. Themain function of PLL (Algorithm 1) consists
of four parts. The first part (Lines 1-6) assigns statusA orB to

each agent. The second part (Lines 7-10) manages variable
epoch using module CountUpðÞ. Initially, v:epoch ¼ 1 holds
for all v 2 V1, that is, V1 ¼ V . In an execution of PLL, v:epoch
never decreases and increases by one every sufficiently large
logarithmic parallel time in expectation until it reaches 3, as
wewill explain later. Note that v:epochmay increase bymore
than one at an interaction, but this happens with a negligibly
small probability, as we will see later. In the third part (Lines
11-15), we initialize additional variables when an agent
increases its epoch. Each agent v has a common variable
init, which is set to 1 initially. Whenever v:epoch increases,
v:epoch > v:initmust hold, then v initializes additional var-
iables according to v’s group and executes v:init v:epoch.
For example, when the epoch of agent v 2 VA changes from 2
to 3 i.e., v moves from group VA \ V2 to VA \ V3, it initializes
an additional variable ai:levelB to 0 (Line 13). Additional
variables for groups VB and VA \ V1 are initialized not in this
part but in the first part as we will explain in Section 3.2.1. In
the fourth part (Lines 16-22), agents execute modules based
on the values of their epoch. Specifically, agents execute
QuickEliminationðÞ, TournamentðÞ, and BackUpðÞ while
they are in V1, V2, and V3, respectively.

In the remainder of this subsection, we explain
how PLL assigns status to agents, PLL synchronizes the
population by CountUpðÞ, and the implementation of the
three modules QuickEliminationðÞ, TournamentðÞ, and
BackUpðÞ.

3.2.1 Assignment of Status

At the beginning of an execution, all agents are in VX, that is,
the statuses of all agents are the “initial” status X. Every
agent is given status A or B at its first interaction where A
means “leader candidate” and B means “timer agent”. As
we will explain later, the unique leader is elected from VA

and agents in VB are mainly used to synchronize the popu-
lation with their count-up timers.

Agents determine their status, A or B, by the following
simple way. When two agents in VX meet, the initiator and
the responder are given status A and B, respectively (Line 2-
3). The initiator initializes its additional variable levelQ and
done to 0 and false respectively and remains a leader (Line 2)
while the responder initializes its additional variable count

to 0 and becomes a follower by leader false (Line 3).
When an agent in VX meets an agent in VA or VB, it gets status
A but it becomes a follower. It also initializes its additional
variable levelQ and done to 0 and true respectively (Line 5).
For agent v, assigning true to v:donemeans that v never joins
a gamewith coin flips inQuickEliminationðÞ.

No agent changes its status once it gets status A or B, and
no follower becomes a leader in an execution of PLL. There-
fore, we have the following lemmas.

Lemma 4. In an execution of PLL, jVBj � 1 always holds after
the first interaction finishes.

Proof. The first interaction of the execution assigns status B
to one agent, and it never changes its status thereafter. tu

Lemma 5. In an execution of PLL, jVAj � n=2 and jVF j � n=2
always hold after every agent gets status A or B.

Proof. Consider any configuration in CallðPLLÞ where every
agent has status A or B. Let x (resp., y and z) be the the

Algorithm 1. PLL

Notations:
cmax ¼ 41m
VZ ¼ fv 2 V j v:status ¼ Zg for Z 2 fX;A;Bg
Vi ¼ fv 2 V j v:epoch ¼ ig for i 2 f1; 2; 3g

Output function pout:
if v:leader ¼ true holds, then the output of agent v is L, oth-
erwise F .

Interaction between initiator a0 and responder a1:
1: if a0; a1 2 VX then
2: ða0:status; a0:levelQ; a0:done; a0:leaderÞ

 ðA; 0; false; trueÞ
3: ða1:status; a1:count; a1:leaderÞ  ðB; 0; falseÞ
4: else if 9i 2 f0; 1g : ai 2 VX ^ a1�i =2 VX then
5: ðai:status; ai:levelQ; ai:done; ai:leaderÞ

 ðA; 0; true; falseÞ
6: end if
7: a0:tick a1:tick false
8: CountUpðÞ
9: for all i 2 f0; 1g such that ai:tick do

ai:epoch maxðai:epochþ 1; 3Þ endfor
10: a0:epoch a1:epoch maxða0:epoch; a1:epochÞ
11: for all i 2 f0; 1g such that ai:epoch > ai:init do
12: if ai 2 VA \ V2 then ai:rand 1 endif
13: if ai 2 VA \ V3 then ai:levelB  0 endif
14: ai:init ai:epoch
15: end for
16: if a0; a1 2 V1 then
17: Execute QuickEliminationðÞ
18: else if a0; a1 2 V2 then
19: Execute TournamentðÞ
20: else if a0; a1 2 V3 then
21: Execute BackUpðÞ
22: end if
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number of agents which get status A (resp., B and A) by
Line 2 (resp., Line 3 and Line 5). We have x ¼ y � n=2 by
the definition of PLL, which gives jVAj ¼ xþ z ¼ n� y � n=2.
Moreover, jVLj � x � n=2 holds because the number
of leaders is monotonically non-increasing in an execution
ofPLL. tu

Lemma 6. In an execution of PLL, with high probability, every
agent gets status A or B within dn lnne steps.

Proof. By definition of PLL, once an agent has an interac-
tion, it gets status A or B and never changes its status
thereafter. Thus, it suffices to show that, with high proba-
bility, every agent has at least one interaction during the
first dn lnne steps. Each agent v has an interaction with
probability ðn� 1Þ= n

2

� � ¼ 2=n at each step. Therefore, v
has no interaction during the first n lnn steps with proba-
bility at most ð1� 2=nÞn lnn � e�2 lnn ¼ n�2. Thus, the
union bound gives the lemma. tu

3.2.2 Synchronization and Epochs

When a unique leader exists in the population, we can syn-
chronize the population by Phase clocks with constant space
per agent [18]. Recently, in [7] and [8], it is proven that even
when we cannot assume the existence of the unique leader,
Phase clocks can be used for synchronization if we are
allowed to use Oðlog lognÞ states per agent. Since we use
OðlognÞ states for other modules, we achieve synchroniza-
tion inmuch simpler waywithOðlognÞ states per agent.

For synchronization, we use common variables color 2
f0; 1; 2g in all agents and an additional variable count 2 f0;
1; . . .; cmax � 1g for agents in group VB. Initially, all agents
have the same color, namely, 0. The color of an agent is
incremented by modulo 3 when the agent changes its color.
We say that the agent gets a new color when this event hap-
pens. Roughly speaking, our goal is to guarantee that

1) whenever one agent gets a new color (e.g., changes
its color from 0 to 1), the new color spreads to the
whole population within OðlognÞ parallel time with
high probability,

2) thereafter, all agents keep the same color for suffi-
ciently long but QðlognÞ parallel time with high
probability.

Specifically, “sufficiently long but QðlognÞ time” in the
second item means sufficiently long period such that any
OðlognÞ parallel time operations in QuickEliminationðÞ,
TournamentðÞ, and BackUpðÞ, such as one-way epidemic of
some value, finishes with high probability during the period.

At every interaction,moduleCountUpðÞ is invoked (Line 8)
and variables color and count can be changed only in this
module. InCountUpðÞ, every agent in VB increments its count
by one modulo cmax (Line 24). For every v 2 VB, if this incre-
mentation changes v:count from cmax � 1 to 0, v gets a new
color by incrementing v:color by one modulo 3 (Line 26).
Once one agent gets a new color, the new color spreads to the
whole population via one-way epidemic in the whole popula-
tion. Specifically, if agents u and v satisfying u:color ¼
v:colorþ 1 ðmod 3Þ meet, v executes v:color u:color and
resets its count to 0 (Line 31-33).

Every time an agent v gets a new color, it raises a tick flag,
i.e., assigns v:tick true (Lines 27 and 32). This common
variable v:tick is used only for simplicity of the pseudocode
and it does not affect the transition at v’s next interaction
(v:tick is reset to false in Line 7), unlike any other variable.
When v:tick is raised, v:epoch increases by one unless it has
already reached 3 (Line 9). After two agents u and v execute
Lines 7-9 at an interaction, u:epoch ¼ v:epoch usually holds.
However, this equation does not hold when synchronization
fails. For this case, we substitute maxðu:epoch; v:epochÞ into
u:epoch and v:epoch in Line 10.

As mentioned above, every agent gets a new color in
every sufficiently large QðlognÞ parallel time with high
probability. This means that, for every v 2 V , v:tick is
raised and v:epoch increases by one with high probability in
every sufficiently large QðlognÞ parallel time until v:epoch
reaches 3. If this synchronization fails, e.g., some agent gets
a color 1 without keeping color 0 for QðlognÞ parallel
time, the modules QuickEliminationðÞ and TournamentðÞ
may not work correctly. However, starting from any config-
uration after a synchronization fails arbitrarily, module
CountUpðÞ and Lines 7-10 guarantee that all agents proceed
to the third epoch within OðlognÞ parallel time in expecta-
tion, and thereafter BackUpðÞ guarantees that exactly one
leader is elected within OðnÞ parallel time in expectation.
Hence, PLL guarantees that a unique leader is elected with
probability 1. The above OðnÞ parallel time never prevent us
from achieving stabilization time of OðlognÞ parallel time in
expectation because synchronization fails with probability
at most Oðlogn=nÞ as we will see later.

Definition 1. For any i ¼ 0; 1; 2, we define CcolorðiÞ as the set of
all configurations in CallðPLLÞ where every agent has color i.

Definition 2. For any i ¼ 0; 1; 2, we define CstartðiÞ as the set of
all configurations in CallðPLLÞ each of which satisfies all of the
following conditions:

� some agent has color i,
� v:count ¼ 0 holds for all v 2 VB such that v:color ¼ i,

and
� no agent has color iþ 1 ðmod 3Þ.

Lemma 7. In an execution of XðCinit;PLL ;GÞ, each agent in VB

always gets a new color within OðlognÞ parallel time with high
probability.

Algorithm 2. CountUpðÞ
Interaction between initiator a0 and responder a1:
23: for all i 2 f0; 1g such that ai 2 VB do
24: ai:count ai:countþ 1 ðmod cmaxÞ
25: if ai:count ¼ 0 then
26: ai:color ai:colorþ 1 ðmod 3Þ
27: ai:tick true
28: end if
29: end for
30: if 9i 2 f0; 1g : a1�i:color ¼ ai:colorþ 1 ðmod 3Þ then
31: ai:color a1�i:color
32: ai:tick true

33: if ai 2 VB then ai:count 0 endif

34: end if
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Algorithm 3. QuickEliminationðÞ
Interaction between initiator a0 and responder a1:
35: if 9i 2 f0; 1g such that ai 2 VL ^ a1�i 2 VF ^ :ai:done then
36: if i ¼ 0 then a0:levelQ  minða0:levelQ þ 1; cmaxÞ endif
37: if i ¼ 1 then a1:done true endif
38: end if
39: if a0; a1 2 VA ^ a0:done ^ a1:done ^ 9i 2 f0; 1g : ai:levelQ <

a1�i:levelQ then
40: ai:leader false
41: ai:levelQ  a1�i:levelQ
42: end if

Proof. Simple Chernoff bound gives the lemma because
each agent has an interaction with probability 2=n at each
step and each agent in VB gets a new color before it has
cmax interactions. tu
The goal of our synchronization, 1) and 2), are formalized

as follows.

Lemma 8. Let i 2 f0; 1; 2g, C0 2 CstartðiÞ, and XPLLðC0;GÞ ¼
C0; C1; . . .. Then, all of the following propositions hold.

� P1: No agent gets color iþ 1 ðmod 3Þ by the first
21n lnnb c steps in XPLLðC0;GÞ with high probability.

� P2: Execution XPLLðC0;GÞ reaches a configuration
in CcolorðiÞ by the first b4n lnnc steps with high
probability.

� P3: Execution XPLLðC0;GÞ reaches a configuration in
Cstartðiþ 1 ðmod 3ÞÞ within OðlognÞ parallel time
with high probability.

Proof. Proposition P2 immediately follows from Lemma 1
with n0 ¼ n. Proposition P3 also immediately follows
from Lemmas 4 and 7. In the following, we prove propo-
sition P1. Starting from a configuration C0 2 CstartðiÞ, no
agent gets color iþ 1 ðmod 3Þ until some agent in VB par-
ticipates in no less than cmax interactions. For any agent v,
v participates in an interaction with probability 2=n at
every step. Therefore, letting X be a binomial random
variable such that X 
 Bð 21n lnnb c; 2=nÞ, v participates
in no less than cmax interactions with probability
PrðX � cmaxÞ, which is bounded as follows.

PrðX � cmaxÞ ¼ Pr X � cmax

42 lnn
E½X	

� �
� Pr X � 58

42
E½X	

� �

� exp �ð58� 42Þ2
422 � 3 E½X	

 !

� expð�2 lnnþ 0:05Þ ¼ O n�2
� �

;

where we use cmax � 41lg n � 58 lnn for the first inequal-
ity and Chernoff Bound in the form of (1) in Lemma 2 for
the second inequality. Thus, the union bound gives that
no agent gets color iþ 1 ðmod 3Þ by the first 21n lnnb c
interactions in XPLLðC;GÞwith probability 1�Oðn�1Þ. tu

3.2.3 QuickEliminationðÞ
The module QuickEliminationðÞ uses additional variables
levelQ 2 f0; 1; . . .; cmaxg and done 2 ffalse; trueg of group

VA \ V1. Each agent v executes this module only when
v:epoch ¼ 1 holds. As mentioned in Section 3.2.1, when an
agent v is assigned with status VA, it holds that v is a leader
and v:done ¼ false or v is a follower and v:done ¼ true.

In an execution of module QuickEliminationðÞ, each
leader v 2 VA makes fair coin flips repeatedly until it sees
“tail” for the first time and stores on v:levelQ the number of
times it observes “heads”. Specifically, a leader with
v:done ¼ false makes a fair coin flip every time it interacts
with a follower (i.e., an agent in VF ). If the result is head (i.e.,
v is an initiator at the interaction), it increments levelQ by
one (Line 36); otherwise, it stops coin flipping by assigning
v:done true (Line 37). The largest levelQ among all
agents in VL spreads to the whole sub-population VA via one-
way epidemic. Specifically, when two stopped agents
u; v 2 VA meet, they update their levelQ to maxðu:levelQ;
v:levelQÞ (Line 41). When an agent v 2 VA meets an agent
with larger levelQ than v:levelQ, it becomes a follower
(Line 40). The correctness of QuickEliminationðÞ is formal-
ized as the following lemma.

Lemma 9. Let X ¼ XPLLðCinit;PLL ;GÞ ¼ C0; C1; . . .. In a config-
uration C 21n lnnb c, PrðjVLj ¼ iÞ < 21�i þ �i holds for any
i ¼ 2; 3; . . .; n where �i is a non-negative number such thatPn

i¼2 �i ¼ Oðn�1Þ.
Proof. Coin flips inQuickEliminationðÞ are not only fair but

also independent of each other. This is because we
assume the uniformly random scheduler G and at most
one agent makes a coin flip at each step (i.e., at each inter-
action) since a coin flip is made only when a leader and
a follower meet. Therefore, an execution of this module
correctly simulates the competition game introduced in
Section 3.1.1 and the simulation of the game finishes
within the first 21n lnnb c interactions if all of the follow-
ing conditions hold in C 21n lnnb c:

� every agent v is still in the first epoch, i.e.,
v:epoch ¼ 1 holds,

� v:levelQ < cmax holds for all v 2 VA

� all agents in VA have the same levelQ and
v:done ¼ true holds for all v 2 VA.

Intuitively, the second condition guarantees that no
agent increases levelQ to the upper limit cmax within the
first 21n lnnb c interactions and the third condition means
that every leader finishes coin flips and the maximum
value of levelQ propagates to the whole sub-population
VA within the first 21n lnnb c interactions. The second
condition 8v 2 VA : v:levelQ < cmax is necessary because
if some agent in VA increases levelQ to cmax, then it may
fail to simulate the competition game successfully.

Note that the competition game guarantees that
exactly i agents survive the game with probability at
most 21�i. Therefore, it suffices to prove that all the three
conditions hold with high probability, i.e., with probabil-
ity 1�Oðn�1Þ. Since Cinit;PLL 2 Cstartð0Þ holds, it directly
follows from Lemma 8 that the first condition holds with
high probability. The second condition holds with high
probability because the second condition does not hold
only when some leader gets head cmax times in a row and
the probability that such an event happens is at most
nð1=2Þcmax � n � 2�41 lg n ¼ Oðn�1Þ.
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In what follows, we prove that the third condition
holds with high probability. By Lemma 6, with high
probability, every agent gets status A or B during
the first dn lnne interactions. After that, each leader
meets a follower with probability at least jVF j= n

2

� � � 1=n
at each step by Lemma 5. Hence, Chernoff bound in the
form of ð2Þ in Lemma 2, it holds with high probability that
every leader meets followers no less than 2lg n times dur-
ing the first 10n lnnd eð� dn lnne þ d6nlg neÞ interactions.
As with the analysis of the probability of the second con-
dition, we can easily prove that, with high probability, no
leader gets “heads” 2lg n times in a row. Therefore, with
high probability, all agents in VA finish making coin flips
within the first 10n lnnd e interactions. Thereafter, the
maximum value of levelQ is propagated to the whole
sub-population VA by one-way epidemic in VA. The epi-
demic finishes within the next d8n lnne interactions with
high probability by Lemma 1. Since 10n lnnd e þ d8n lnne
< 21n lnnb c, the third condition also holds with high
probability. tu
Note that an execution of QuickEliminationðÞ never

eliminates all leaders from the population because a leader
v with v:levelQ ¼ maxu2VA\V1u:levelQ never becomes a
follower.

3.2.4 Tournament ()

In an execution of TournamentðÞ, each leader v gets a ran-

dom number, say nonce, uniformly at random from f2dlg me;
2dlg me þ 1; . . .; 2dlg meþ1 � 1g by making coin flips dlg me
times, and stores it in v:rand (Line 43-45). The uniform ran-

domness of this nonce is guaranteed because these coin

flips are not only fair but also independent of each other, as

mentioned in Section 3.2.3. Leaders who finishes generating

a nonce begin one-way epidemics of the largest value of
these nonces (Lines 46-49). By Chernoff bound, it holds with

high probability that all leaders finish generating their non-

ces within OðlognÞ parallel time and the largest value of

these nonces propagates to the whole sub-populations VA

within OðlognÞ parallel time. Note that an execution of

TournamentðÞ never eliminates all leaders from the popula-

tion because a leader with the largest nonce never becomes

a follower.

Lemma 10. In an execution X ¼ XPLLðCinit;PLL ;GÞ ¼ C0; C1; . . .,
the number of leaders becomes exactly one before some agent
enters the third epoch (i.e., epoch ¼ 3) with probability
1�Oð1=lognÞ.

Algorithm 5. BackUpðÞ
Interaction between initiator a0 and responder a1:
50: if a0:tick ^ a0 2 VL then
51: a0:levelB  minða0:levelB þ 1; cmaxÞ
52: end if
53: if a0; a1 2 VA ^ 9i 2 f0; 1g : ai:levelB < a1�i:levelB then
54: ai:levelB  a1�i:levelB
55: ai:leader false
56: end if
57: if 8i 2 f0; 1g : ai 2 VL then a1:leader false end if

Proof. By Lemma 8, all agents are still in the first epoch in
configuration C 21n lnnb c with high probability. Thereafter,
execution X reaches a configuration in Cstartð1Þ within the
next OðnlognÞ interactions with high probability by
Lemma 8. After that, we execute TournamentðÞ in the sec-
ond epoch. In what follows, we assume that jVF j � n=2
and jVAj � n=2 always hold in the second epoch, which
does not ruin the correctness of this proof because we
have Lemmas 5 and 6 and allow an error probability of
Oð1=nÞ � Oð1=lognÞ.

We say that an execution of TournamentðÞ finishes
completely if every leader finishes generating a nonce and
the maximum value of nonces is propagated to the whole
sub-population VA. In the second epoch, each leader gener-
ates a nonce by meeting followers dlg me ¼ OðlogmÞ ¼
Oðlog lognÞ times while each leader meets a follower with
probability jVF j= n

2

� � � 1=n at each step. Therefore, by
Chernoff bound and Lemma 1 (we assume jVAj � n=2
above), an execution of TournamentðÞ finishes completely
within 21n lnnb c � b4n lnnc � b17n lnnc interactions with
high probability for sufficiently large n. Hence, by Lemma
8, an execution of TournamentðÞ finishes completely before
some agent enters the third epoch, with high probability.

Let i be the number of leaders in C 21n lnnb c. Since a
leader generates a nonce uniformly at random among
f2dlgme; 2dlgme þ 1; . . .; 2dlgmeþ1 � 1g, the arguments in
Section 3.1.2 yields that exactly one leader is elected with
probability at least 1� i � 2�dlg me � 1�Oði=lognÞ after an
execution of module TournamentðÞ finishes completely.
Therefore, by Lemma 9, the execution of Tournament
decreases the number of leaders to exactly one before
some agent enters the third epochwith probability

1�O n�1 þ
Xn
i¼2

21�i � i

logn

� � !

¼ 1�O n�1 þ 1

logn

Xn
i¼2

i

2i�1

 !
¼ 1�O

1

logn

� �
:

tu

3.2.5 BackUpðÞ
This module BackUpðÞ uses only one additional variable
levelB to elect the unique leader. For any v 2 VA, variables
v:levelB is initialized by v:levelB  0 at the first time
v:epoch ¼ 3 holds (Line 9).

As long as synchronization succeeds, each v:tick is
raised every QðlognÞ (but sufficiently long) parallel time. In

Algorithm 4. TournamentðÞ
Interaction between initiator a0 and responder a1:
43: if i 2 f0; 1g : ai 2 VL ^ a1�i 2 VF ^ ai:rand < 2dlg me then
44: ai:rand 2ai:randþ i
45: end if
46: if a0; a1 2 VA ^ a0:rand � 2dlg me ^ a1:rand � 2dlg me ^ 9i 2 f0; 1g:

ai:rand < a1�i:rand then
47: ai:leader false
48: ai:rand a1�i:rand
49: end if
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an execution ofBackUpðÞ, each leader has a chance ofmaking a
coin flip every time its tick is raised at an interaction. If v sees
“head” (i.e., it is an initiator at that interaction), it increments
v:levelB by one unless v:levelB already reaches cmax (Lines
50-52). The largest value of levelB is propagated via one-way
epidemic in sub-population VA (Lines 53-56). If a leader v
observes a larger value of levelB than v:levelB, it becomes a
follower (Line 55). Furthermore, this module includes simple
leader election [3]; when two leaders interact and they observe
that they have the same value of levelB at Line 57, then the
responder becomes a follower. Note that, unlike coin flips in
QuickEliminationðÞ and TournamentðÞ, coin flips made by
leaders in BackUpðÞ are not necessarily independent of each
other because two coin flipsmay bemade simultaneously at an
interaction when two leaders interact directly and then their
results are no longer independent of each other. However, this
dependence does not matter since an interaction between two
leaders makes one of them a follower, which will be carefully
analyzed in the proof of Lemma 13.

Definition 3. We define bmax ¼ maxv2VA\V3v:levelB. We do
not care about bmax when VA \ V3 is empty.

Lemma 11. There is always at least one leader in an execution
of PLL.

Proof. As mentioned above, QuickEliminationðÞ and
TournamentðÞ never eliminate all leaders from the popu-
lation. Therefore, it suffices to show that BackUpðÞ never
eliminates all leaders from the population. Define Vmax ¼
fu 2 VL \ VA \ V3 ju:levelB ¼ bmaxg. In the third epoch,
only leaders can increase bmax (Line 51). Therefore, Vmax is
not empty when all agents enter the third epoch, and a
leader in Vmax becomes a follower only if it interacts with
another leader in Vmax. This means that jVmaxj decreases if
and only if an interaction happens such that two leaders
in Vmax meet or a leader in Vmax increases its levelB. After
such an interaction, at least one leader exists in Vmax.
Thus, BackUpðÞ also never eliminates all leaders. tu

Definition 4. We define B as the set of all configurations in
CallðPLLÞ where every agent is in the third epoch (i.e., epoch ¼ 3)
and has statusA orB, and all agents in VA have the same value for
levelB (i.e., 8v 2 VA : v:levelB ¼ bmax). For j ¼ 0; 1; . . .; cmax,
we defineBj as the set of all configurations inB where bmax ¼ j.

Lemma 12. Execution X ¼ XPLLðCinit;PLL ;GÞ reaches a configu-
ration in ðB0 [ B1Þ \ Ccolorð2Þ within OðlognÞ parallel time
with high probability.

Proof. By Lemmas 6 and 8, execution X reaches a configura-
tion C 2 Cstartð2Þ where every agent has status A or B
withinOðn lognÞ steps with high probability. After that, by
Lemma 8, it holds with high probability that X reaches a
configuration in Ccolorð2Þwithin the next b4n lnnc steps and
bmax 2 f0; 1g holds at this time. Thereafter, the maximum
value bmax, which is either 0 or 1, is propagated to the whole
population within the next d8n lnne steps with high proba-
bility by Lemma 1 with t ¼ 2 lnn. At this time, a configura-
tion is still in Ccolorð2Þ with high probability by Lemma 8
again and the fact that b4n lnnc þ d8n lnne � 21n lnnb c.
Overall, X reaches a configuration in ðB0 [ B1Þ \ Ccolorð2Þ
withinOðlognÞ parallel timewith high probability. tu

Lemma 13. Let i 2 f0; 1; 2g, j 2 f0; 1; . . .; cmax � 1g, and k 2
f1; 2; . . .; n� 1g. Let C0 be a configuration in Bj \ CcolorðiÞ
where exactly 1þ k leaders exist. Let XPLLðC0;GÞ ¼ C0; C1; . . ..
Then, the following propositionsP4 andP5 hold.

� P4: With probability 1=4�Oð1=nÞ, execution X
reaches a configuration in Bjþ1 \ Ccolorðiþ 1 ðmod 3ÞÞ
where at most 1þ bk=2c leaders exist within OðlognÞ
parallel time.

� P5: With high probability, execution X reaches a config-
uration in ðBj [ Bjþ1Þ \ Ccolorðiþ 1 ðmod 3ÞÞ within
OðlognÞ parallel time.

Proof. First, we prove P5. A leader increases its levelB only
when it raises a tick. Therefore, by Lemma 1 with n0 ¼ jVAj
and Lemmas 5 and 8, X reaches a configuration C0 2 ðBj [
Bjþ1Þ \ Ccolorðiþ 1 ðmod 3ÞÞ within OðlognÞ parallel time,
with high probability. Thus, P5 holds.

Then, we prove P4. As mentioned above, the popula-
tion reaches a configuration C0 2 ðBj [ Bjþ1Þ \ Ccolorðiþ 1
ðmod 3ÞÞ within OðlognÞ parallel time, with high proba-
bility. Before the population reaches a configuration C0,
every leader raises a tick exactly once. When a leader
raises a tick, it increases its levelB with probability 1=2.
(Note that this probability is independent of the probabil-
ity that synchronization succeeds.) Since there is always
at least one leader, levelB increases from j to jþ 1 before
the population reaches C0 with probability at least 1=2.
Consider this case and let vl be the leader that increases
its levelB to jþ 1 for the first time. Then, the new level
jþ 1 is propagated to the whole population, by which all
leaders with levelB ¼ j become followers. Divide the set
of the k leaders except for vl in C0 to three subsets L1, L2,
and L3 based on how each leader makes a coin flip before
the population reaches C0. Set L1 is the set of the leaders
each of which makes a coin flip when it interacts with a
follower. Set L2 is the set of the leaders each of which
makes a coin flip when it interacts with a leader. Set L3 is
the set of the leaders each of which becomes a follower
before it raises a tick in X. Let k1 ¼ jL1j, k2 ¼ jL2j, and
k3 ¼ jL3j. Each of the k1 leaders in L1 makes a coin flip
independently and it sees “tail” with probability 1=2,
after which it becomes a follower before the population
reaches C0. Since an interaction between two leaders
makes one of them a follower, exactly half of the leaders
in L2 becomes a follower. By definition, every leader in
L3 becomes a follower before the population reaches C0.
Therefore, with probability at least 1=2, at most bk1=2cþ
k2=2 < bk=2c leaders survive (i.e., are still leaders) in
C0 2 Bjþ1 \ Ccolorðiþ 1 ðmod 3ÞÞ. To conclude, with proba-
bility 1=4�Oð1=nÞ, execution X reaches a configuration in
Bjþ1 \ Ccolorðiþ 1 ðmod 3ÞÞwhere atmost 1þ bk=2c leaders
exist withinOðlognÞ parallel time. Thus, P4 holds. tu

Lemma 14. Let C0 be a configuration in ðB0 [ B1Þ \ Ccolorð2Þ.
Then execution X ¼ XPLLðC0;GÞ reaches a configuration where
there exists exactly one leader within Oðlog 2nÞ parallel time,
with probability 1�OððlognÞ=nÞ.

Proof. Lemma 13 yields that, in every OðlognÞ parallel time,
the number of leaders decreases almost by half, specifi-
cally decreases from 1þ k to at most 1þ bk=2c, with
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probability 1=4�Oð1=nÞ. During this period, no matter
whether the number of leaders decreases almost by half or
not, bmax increases by at most one with high probability.
Therefore, by applying Lemma 13 cmax � 1 times, Chernoff
bound in the form of (2) and the union bound, the number
of leaders decreases to one within Oðlog2 nÞ parallel time
with probability 1�OððlognÞ=nÞ. tu

Lemma 15. Let C be any configuration in CallðPLLÞ where all
agents are in the third epoch and let X ¼ XPLLðC;GÞ ¼
C0; C1; . . .. Then X reaches a configuration where there exists
exactly one leader within OðnÞ parallel time in expectation.

Proof. Execution X elects the unique leader within OðnÞ
parallel time in expectation because module BackUpðÞ
includes the simple leader election mechanism [3], i.e.,
one leader becomes a follower when two leaders meet. tu

Lemma 16. Let C0 be a configuration in ðB0 [ B1Þ \ Ccolorð2Þ.
Then, execution X ¼ XPLLðC0;GÞ reaches a configuration where
there is exactly one leader within Oðlog2 nÞ parallel time in
expectation.

Proof. By Lemmas 14 and 15, X reaches such a configuration
within Oðlog2 nÞ þOððlognÞ=nÞ �OðnÞ ¼ Oðlog2 nÞ parallel
time in expectation. tu

Lemma 17. Let C be any configuration in CallðPLLÞ and let
X ¼ XPLLðC;GÞ ¼ C0; C1; . . .. Execution X reaches a configu-
ration where all agents are in the third epoch within OðlognÞ
parallel time with high probability and in expectation.

Proof. Each agent increments its epoch every time it gets a
new color until it reaches the third epoch (Lines 9, 26–27,
and 31–32). Therefore, by Lemmas 4 and 7, at least one
agent in VB enters the third epoch within OðlognÞ parallel
time with high probability and in expectation. Since the
largest value of epoch is propagated to the whole popula-
tion via one-way epidemic, all agents enter the third
epoch within OðlognÞ parallel time with high probability
and in expectation by Lemma 1. tu

Theorem 1. Let X ¼ XPLLðCinit;PLL ;GÞ ¼ C0; C1; . . .. Execution
X reaches a configuration where exactly one leader exists within
OðlognÞ parallel time in expectation.

Proof. First, by Lemmas 10 and 17, execution X reaches a con-
figuration where exactly one leader exists within OðlognÞ
parallel time with probability 1�Oð1=lognÞ. Second, by
Lemma 12, execution X reaches a configuration in
ðB0 [ B1Þ \ Ccolorð2Þ within OðlognÞ parallel time with high
probability. Thereafter, execution X reaches a configuration
where exactly one leader exists within Oðlog2 nÞ parallel
time in expectation by Lemma 16. Finally, Lemmas 15 and 17
shows that starting from any configuration in CallðPLLÞ, X
reaches a configuration where exactly one leader exists
within OðnÞ parallel time in expectation. To conclude, start-
ing from initial configuration Cinit;PLL , execution X reaches a
configuration where the unique leader exists within
OðlognÞ þOð1=lognÞ �Oðlog2 nÞ þOð1=nÞ �OðnÞ ¼ OðlognÞ
parallel time in expectation. That configuration must belong
to SPLL because the number of leaders are monotonically
non-increasing and no interaction brings a configuration
with no leader in an execution ofPLL (Lemma 11). tu

Algorithm 6. Symmetric BackUpðÞ
Interaction between initiator a0 and responder a1:
1: for all i 2 f0; 1g do ai:statusL ¼ 1� ai:statusL endfor
2: for all i 2 f0; 1g such that ai 2 VLdo
3: if ai:tick then
4: ai:ready true
5: else if ai:ready ^ a1�i 2 VF0 then
6: ai:levelB  minðai:levelB þ 1; cmaxÞ
7: ai:ready false
8: else if ai:ready ^ a1�i 2 VF1 then
9: ai:ready false
10: end if
11: end for
12: if a0; a1 2 VA ^ 9i 2 f0; 1g : ai:levelB < a1�i:levelB then
13: ai:levelB  a1�i:levelB
14: ai:leader false
15: end if
16: if 9i 2 f0; 1g : ai 2 VL0 ^ a1�i 2 VL1 then
17: a1�i:leader false
18: end if

4 DISCUSSION

A protocol is symmetric if its transition function T satisfies
dðp; qÞ ¼ ðp0; q0Þ ) dðq; pÞ ¼ ðq0; p0Þ for any p; q 2 Q. In other
words, a symmetric protocol is a protocol that does not uti-
lize the roles of the two agents at an interaction. In particular,
when two agents with the same state p meet, they cannot
updates their states to different states, that is, dðp; pÞ ¼
ðq; rÞ ) q ¼ r for any p 2 Q, which immediately follows
from the definition of a symmetric protocol.

The proposed protocol PLL described above is not sym-
metric, however, we can make it symmetric with keeping
OðlognÞ stabilization time in expectation. Protocol PLL per-
forms asymmetric actions only for assignment of status
(Lines 2-3), the simple leader election (Line 57 in BackUpðÞ),
and flipping fair and independent coins in Quick
EliminationðÞ, TournamentðÞ, and BackUpðÞ.

To assign the agents their statuses by symmetric transi-
tions, we only have to add additional status Y and make the
following three rules: X �X ! Y � Y; Y � Y ! X �X,
X � Y ! A�B. Furthermore, similarly to the original rules
of PLL, when an agent v with status X or Y meets an agent
with status A or B, v gets status A but it becomes a follower.
This modification does not make any harmful influence on
the analysis of stabilization time, at least asymptotically.

Coin flips are dealt with in the same way. We assign a
coin status J , K, F0, or F1 to each follower. Every time a
leader v becomes a follower, initial status J is assigned to v.
Thereafter, when two followers meet, they change their coin
statuses according to the following rules: J � J ! K �K,
K �K ! J � J , J �K ! F0 � F1. These rules guarantee
that the numbers of the followers with state F0 and F1 are
always equal. Therefore, a leader canmake a fair and indepen-
dent coin flip every time it meets a follower whose coin state is
F0 or F1. If it meets a follower with coin state F0 (resp. F1), it
recognizes that the result of the flip is head (resp. tail).

Making BackUpðÞ symmetric is slightly complicated, thus
we give a pseudocode of a symmetric version of BackUpðÞ
in Algorithm 6. In the pseudocode, we denote the set of the
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followers with coin status F0 (resp., F1) by VF0 (resp., VF1).
Similarly, we denote the set of the leaders whose statusL, a
new variable introduced later, is 0 (resp., 1) by VL0 (resp.,VL1).
In BackUpðÞ described in Section 3.2.5, a leader makes a coin
flip every time its tick is raised. However, a leader may not
be able to make a coin flip that uses the coin status of a fol-
lower because the leader may interact not with a follower
but with a leader when its tick is raised.We introduce a var-
iable ready 2 ffalse; trueg to overcome this issue. Initially,
ready ¼ false. It becomes truewhen its tick is raised, and it
remains true until it interacts with a follower and makes a
coin flip (Lines 2-11). To implement the simple leader elec-
tion inBackUpðÞ by symmetric transitions, we introduce var-
iable statusL 2 f0; 1g. An agent flips its statusL, from 0 to 1
or from 1 to 0, every time it has an interaction (Line 1). When
a leader with statusL ¼ 0 and a leader with statusL ¼ 1
meet, the latter becomes a follower (Lines 16-18). The
statusL of a follower is meaningless, but a follower also exe-
cutes Line 1 for simplicity of the following analysis.

It is enough to prove the stabilization time to beOðn lognÞ
parallel time in expectation because then, the stabilizat-
ion time of the overall protocol is OðlognÞ þOð1=lognÞ�
Oðlog2 nÞ þOð1=nÞ �Oðn lognÞ ¼ OðlognÞ parallel time in
expectation. We say that two agents have a matchwhen they
meet and their statusLs have different values. Note that this
definition of having a match includes the case that one or
two agents in an interaction are followers, for simplicity of
the analysis. Clearly, exactly one leader exists in the popula-
tion when all agents have a match at least once with each
other after all agents enter the third epoch. Let u; v be any dis-
tinct agents. Consider aMarkov chain with two states, where
one state s1 represents that the statusLs of u and v have the
same value and the other state s2 represents that they have
the opposite values. At each step, regardless whether the
state of the chain is s1 or s2, the chain changes its state if and
only if either u or v but not both of them has an interaction at
the step. This happens with probability 2ðn� 2Þ= n

2

� �
while

the chain keeps its state with probability 1� 2ðn� 2Þ= n
2

� �
.

When the state of the chain is s2, u and v have an interaction
with probability 1= n

2

� � ¼ Oð1=n2Þ, at which they have a
match. By a simple analysis of the chain, u and v have a
match within Oðn2Þ steps in expectation. Hence, from
Markov’s inequality, there exists a constant c such that u
and v have a match within cn2 steps with probability at least
1=2. By repeating this observation, u and v have a match
within d3cn2lg ne steps with probability at least 1� 2�3lg n ¼
1�Oð1=n3Þ. By the union bound, all agents have a match
with each other within d3cn2lg ne steps with high probabil-
ity. Hence, with every Oðn lognÞ parallel time, exactly one
leader is electedwith high probability. Thus, the stabilization
time isOðn lognÞ also in expectation.

5 CONCLUSION

In this paper, we gave a leader election protocol with logarith-
mic stabilization time and with logarithmic number of agent
states in the population protocolmodel. Given a rough knowl-
edge m of lg n such that m � lg n and m ¼ OðlognÞ, the pro-
posed protocol guarantees that exactly one leader is elected
from n agents within OðlognÞ parallel time in expectation,
where n is the number of agents in a population.
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